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Abstract

Quantum singular value transformation (QSVT) is a powerful technique that
applies a polynomial transformation to the singular values of a matrix encoded
in a unitary operator. Many quantum algorithms can be viewed as a particular
application of this technique, though its application to the quantum computation
of classical dynamics has not been extensively explored. We introduce a telescopic
quantum algorithm for solving the advection-diffusion-reaction (ADR) equation at
a given (possibly large) final simulation time, applying the QSVT to an efficient
block-encoding of the matrix representing the considered dynamics. We decompose
the ADR time evolution function using a Chebyshev polynomial of degree d and we
show that effectively exploiting the spectral knowledge of the input matrix within
the QSVT protocol can provide a similar simulation error with up to an order of
magnitude lower of polynomial degree. The associated quantum circuit employs
only n + 4 qubits where N = 2" is the number of spatial discretization points, and
achieves circuit depth of O(d X poly(n)). The efficient use of quantum resources
and the reduced overall complexity pave the way for the application of the proposed
algorithm on near term quantum hardware.

1 Introduction

The numerical simulation of transport phenomena in fluid dynamics is one of the ma-
jor challenges for many practical applications in science and engineering due to the
associated computational cost. Recent advances in quantum computing provide novel
approaches that offer a significant speed-up when compared to classical methods [1, 2,
3]. Developing quantum algorithms for computational fluid dynamics is an active field



of research. Among the most promising strategies are a quantum version of the lattice
gas cellular automata [4, 5, 6] and of the lattice Boltzmann method [7, 8, 9].

The potential for such advantage derives from peculiar features of quantum mechan-
ics, such as superposition and entanglement, which offer powerful tools that, when har-
nessed by carefully designed algorithms, can surpass conventional computational meth-
ods. These principles allow quantum computers to perform linear algebra computations
in a state space that grows exponentially with the number of its information units, the
qubits [10]. The quantum singular value transformation (QSVT) provides a powerful
framework for applying polynomial transformations to the singular values of a matrix
encoded within a unitary operator [11]. This technique has already been used for differ-
ent applications, from matrix inversion [12, 13] to Hamiltonian simulation [14] among
others [15, 16]. In this article we apply QSVT to the simulation of classical transport
phenomena with the aim of developing new techniques for the practical realization of
quantum computational fluid dynamics algorithms, effectively reducing the quantum
resource requirements for a complete simulation. In particular, in section 2 we review
the main mathematical and practical aspects of QSVT. Subsequently, in Section 3 we
introduce a new algorithm based on QSV'T to simulate the unsteady advection-diffusion-
reaction (ADR) equation for a one-dimensional test case, we analyse the associated error,
the circuit complexity and the success probability of the algorithm. Using numerical sim-
ulations we validate the proposed algorithm in Section 4. Finally, we comment on the
key findings and discuss future developments in Section 5.

2 QSVT

By the late 20th century, quantum computers were proposed as a revolutionary tool
for simulating quantum physics [17]. Subsequently, the physical realization of quantum
computing hardware has rapidly progressed, and numerous quantum algorithms have
been developed able to offer a significant speedup over their classical counterparts. No-
table examples include Shor’s algorithm for integer factorization, Grover’s algorithm for
searching unstructured databases and the HHL algorithm for solving linear systems of
equations. QSVT, recently developed in a pioneering work [11], is a generalization to
higher dimensions of quantum signal processing (QSP) and qubitization [18, 19], and
offers a unifying perspective of many different algorithms. It originates from the study
of the product of two reflections which can be interpreted as a rotation in the two dimen-
sional space where the overall operation can be decomposed. This feature is shared by
many successful quantum computing algorithms, such as the Grover’s search algorithm,
and the Szegedy’s quantum walk algorithm [20, 21].

In this work, we use the QSVT to apply a polynomial transformation to the singular
values of a projected matrix A embedded in a unitary matrix Us. A simple way to
construct projected unitary encodings is to use the block-encoding technique [19, 22].
We report the main results from Refs. [11] and [15] by introducing the following definition
for the singular value decomposition (SVD) of a projected unitary matrix.



Definition 2.1 (SVD of a projected unitary matrix) Let A € C"™" be a generic
matriz, then there exist two unitary matrices W € C"™ qnd V € C**" such that

A=wzv' (1)

where ¥ = diag(oy,---,0,) € R™" with p = min(m,n) and oy > --- > 0, > 0 are the
singular values of A.

If A is embedded in a unitary operator Ua, then there exist the orthogonal projectors
I and II such that A = TIUAIL. Moreover, there exist two orthonormal bases |v;) and
lw;) of the subspaces Im(IT) and Im(I1) respectively, such that

P
A=) oilw) (vil. (2)
i=1

Using an alternating phase modulation circuit Ug defined, for a given set of d phase

factors @ = [¢1, da, ..., da]T € RY, as

(3)

UAei¢d(2H_I)...U;e"@(m_”UAei¢1(2H_I) for odd d
Us; = o o .
® Ujge‘%(m_”...ULe“bZ(QH_I)UAe”’“(QH_” for even d,

then, for a generic matrix A embedded in a unitary operator Uy, the following theorem on
singular value transformation by a polynomial function, denoted generically as P5Y (A),
holds [11]:

Theorem 2.1 (QSVT by alternating phase modulation) Let ® e RY be a set of
d phase factors, let P : R — C be a polynomial of degree at most d and let Us be the
projected unitary matriz encoding of a matriz A, then for odd d, the polynomial P is odd
and

p
PSY(A) = 3" P(ay) lwi) (vi] = TTUZ T (4)
i=1
which consists in a polynomial transformation to the singular value of A. Similarly, for
an even value of d, the polynomial P is even and it holds

P
PSY(A) = " P(ov) [vi) (vi| = TU T (5)
i=1
which consists in a polynomial transformation to the singular value of A with a modifi-
cation of the input and output spaces.

Using this result and the following Corollary 11 of [11] it can be showed that if the
polynomial P is real valued, has parity d mod 2 and |P(x)| <1 Vx € [-1,1], then:

((+] ® T)(0) (0 U, + [1) (1] U_g)(|+) ®TT)  for odd d

((+| ® I (|0) O] Ug + [1) (1| U_g)(|+) ® IT)  for even d. (©)

PSV(A) — {
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It is worth noting that it is possible to reformulate the previous results using ap-
propriate QSP convention for the phase factors [15]. In this case, the phase factors
® are d + 1 real parameters and the alternating phase modulation circuit can be de-
fined accordingly to QSP definitions. Moreover, the quantum circuit associated with
Eq. (6), can be reformulated with a reduced complexity: the two controlled versions of
the alternating phase modulation circuit (with opposite angles) are equivalent to using
an Hadamard gate on the ancillary qubit employed for QSVT, while measuring the |+)
state corresponds to measuring the |0) state with a final additional Hadamard gate. The
improved circuit, using a minimum number of ancillary qubits, is presented in Figure 1,
while the simplest implementation, i.e., when IT = |0) (0|, of a projector-controlled phase
shift PS(¢) which applies e/®1=D) for a given angle ¢, is shown in Figure 2.

Many applications of QSVT involve applying a real function f : R — R to a matrix.
Some examples include the matrix inversion problem [12, 23], eigenvalue threshold fil-
tering [15] and finding a Gibbs distribution for a given Hamiltonian [16]. In these cases
a proper even or odd, limited polynomial approximation p4(x) =~ f(x) of degree d of the
target function should be implemented, and the corresponding phase factors @ have to
be precisely computed. In particular, finding the phase factors to achieve the desired
polynomial transformation is not an easy task, and different numerical methods can be
used. An efficient iterative numerical method, using QSP symmetric conventions, de-
scribed in [24] and further analyzed in [25], employs an expansion in terms of Chebyshev
polynomials of the first kind of a target function and a cost function L(G_S) measuring
the mean-squared loss between the target expansion and the alternating phase modula-
tion circuit over discrete sample points. In order to minimize such a cost function, an
L-BFGS quasi-Newton method is used to find the phase factors, exploiting symmetry,
until a specific tolerance € is reached, namely L(&)) < €. We will refer to this method
as symmetric-QSP. This optimization-based method is numerically stable, and it can be
proved that the cost function has a global minimum L(®*) = 0 (see Theorem 1 in [24]).

In addition, it is also important to remark that when A is a square n X n Hermitian
matrix, the overall description is extensively simplified and the QSVT technique can be
considered as a quantum eigenvalue transformation (QET) of the input matrix

PSV(A) = Z P() [vi) (vil . (7)

In fact, in this case all eigenvalues A; are real and the singular values are such that
o; = |A;|. Moreover, the singular value decomposition is connected to the eigenvalue
decomposition through the following relation [26]

A= Zai vy (vil = Z 4] [sign(An)ve) (vi = Z oy lwiy (vil (8)
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Figure 1: Full QSV'T circuit employing the block-encoding U, and its inverse U;l = UI‘,
to implement a real polynomial function of matrix A, when using d+1 phase factors. The
circuit uses only 1 additional ancilla qubit beyond the register needed for the unitary

block encoding Ug.
o—i0Z
PS(¢) =
m /m

7 O O

Figure 2: Projector-controlled phase shift PS(¢) implementation with a single ancilla
qubit, using the control state |0), as is standard for block encoding.

3 QSVT applied to the advection-diffusion-reaction equa-
tion

We introduce here the advection-diffusion-reaction (ADR) equation, which is a proto-
typical model for one-dimensional transport, given by

o %y Oy

EZDW—CE—CZ;D xe(0,L),t>0

¥ (x,0) =g xe(0,L) (9)
w(0,1) =y (L,t) >0

where ¢ is the physical quantity of interest, whereas parameters D,a € R* and ¢ € R
representing the constant diffusion, reaction and velocity coefficients, respectively. The
problem has periodic boundary conditions and an initial condition ¢ is given.

Using a second order centered finite difference scheme to approximate the derivatives
with respect to the variable x on a uniform distribution of spatial nodes x; = 0 < x93 <
... <Xy <Xxn4+1 = L, problem (9) can be discretized as:

. D
= E(lﬁj—l =20+ i) - i(lﬁj+l —Yj-1) —ay; forj=1,..,N (10)

dy i d it
i = vy ). The corre-

with Ax = L/N the uniform grid spacing and where ¢ ; =

t
sponding algebraic form is given by the following system of linear, first-order ordinary



differential equations '
y(t) = Au(t
(1) = AU (1) )
¥ (0) = o
with A € RY*N and J(t) e RN. Without loss of generality, we take N = 2" where n
is the number of qubits used to embed the numerical problem into a quantum register.
Matrix A can be written in a compact form by highlighting the corresponding tridiagonal
circulant structure being

2D D c
Aij = (‘@ - ) bii* (m - E) Sii

D c ..
+ E-FE 6i,j—1 fOI‘l,]=1,...N.

(12)

Matrix A can be efficiently block encoded with only 3 ancilla qubits, using the sparse
access method described in [22] and subsequently employed in [27, 28]. The overall
circuit that block encodes A/4 is provided in Figure 3.

0) R, [~
H
H

0 @]
0 @]

W) —# St 5=

Figure 3: Quantum circuit for the implementation of matrix A in (12) using block-
encoding. The initial state |¢) is embedded in the n-qubit register, while the 3 ancilla
qubits ]0)®3 are used to embed the position and value of the non-null elements of the
matrix A. The implementation uses a multi-controlled rotation R, with a different angle
for each value of the control qubits and two controlled shift operators S, S— that increase
and decrease by one the value of the target qubits respectively.

The exact solution of the initial value problem (11) is ¥ (1) = eMiy. When the order
of matrix A becomes larger, the cost of calculating this exponential can quickly become
prohibitive on classical computers when time-discretization schemes are employed.

We adopt the following simplification for the problem under study: we use a reference
frame moving at velocity ¢, which is equivalent to set ¢ = 0. In this constant velocity
case, the exact final state at a time ¢ can be recovered by shifting the resulting state
by a value c - t along the x interval. With this choice, the matrix A is symmetric and
negative definite and the corresponding set of eigenvalues can be computed analytically



2D oD (2ni
A= (-5 —a)+ Seos|Z2) i=0,1,2,.. ,N-1. (13)
Ax Ax? N

More generally, the interval J where all the eigenvalues of A lie can be computed using
Gershgorin circle theorem, being

(14)

In this case, the following quantum algorithm can be used to solve problem (11): given
an efficient block-encoding of matrix A in a unitary matrix Us [27], and a final time
t, construct a QSVT circuit to compute a polynomial approximation of f(x) = e 1!,
where x is an eigenvalue of A. We remark that the efficient quantum circuit for matrix
A is shown in Figure 3 and it represent the diffusion-reaction dynamics obtained by
setting the velocity ¢ = 0. The resulting operator is then applied to the initial state 1,170,
embedded in the state of a target register using amplitude encoding

Mo i

Yo — o) = ~
llgoll

The final state provides an approximation of ¥ (7), up to a normalization factor, and is
obtained conditionally on measuring the |0) state on the ancillary qubits employed. The
advection part can be recovered by a simple shift of ¢ - t using classical postprocessing
or via an appropriate quantum circuit.

As a consequence of the previous analysis, we have chosen the function

flx) = e (15)

defined in the domain [-1, 1], as the target function for a given time ¢, as is equivalent to
the original exponential function for the negative eigenvalues of the input matrix A under
the quantum eigenvalue transformation framework (see Equation (7)). Function f in (15)
is the same used in [15] to approximate the Gibbs distribution p(g8) = 1/ Ze BH for a
given Hamiltonian H, an inverse temperature 8 and with partition function Z = Z(8) by
exploiting its definite parity. With this choice f(x) is an even limited function, therefore
there exists an approximating polynomial of degree d ps(x) = f(x) satisfying the same
requirements stated for Equation (6). We remark that this simplification can yield a
quantum algorithm with a reduced circuit depth and fewer qubits than techniques based
on time discretization, which obtain solutions at multiple time steps through matrix
inversion [3].

It is worth mentioning that matrix A has to be properly scaled in order to be block-
encoded, or alternatively the ADR. coefficients ¢, D, a have to be scaled, so that matrix
A has all the eigenvalues with modulus less than or equal to 1. Moreover, the block-
encoding scheme may introduce an additional scaling factor. If the operator is repre-
sented as A/ = ITU4II, then the simulation time 7 has to be rescaled as t — at so that
the effect of alpha cancels out and e~lalat = o-lAlr,



We now turn to the problem of constructing an approximating polynomial for the
function f(x). It is well known that every continuous function on a bounded interval
can be approximated to arbitrary accuracy by polynomials (Weierstrass approximation
theorem [29]). A possible choice for the polynomial approximation p, € P4, of degree at
most d, of f(x) is obtained by using an expansion in terms of Chebyshev polynomials

of the first kind, being
d

pa(x) = ) ¢;Tj(x) = f(x) (16)
Jj=0

with d € N the maximum degree of the expansion, c¢; € R the weight associated with the
J-th polynomial T;(x) = cos[jarccos(x)]. This choice has the additional advantage of
being compatible with the efficient numerical method for computing the phase factors
previously described [24]. The coefficients c¢; are determined in order to find the best
approximating polynomial which minimizes the error in the interval [—1, 1], which is the
domain of the polynomial transformation applied by QSVT to the input singular values.
To this aim it is possible to use the Chebyshev discrete transform method, or a least
squares fitting of Chebyshev series to the given data, or the Remez method [30, 24, 31].

3.1 Error analysis and improvement

The result of the algorithm, for a given time ¢, is the normalized state

[y (1)) = C- pa(A) o), (17)

while the exact normalized solution is given by

Wexact (1)) = C” - e o) . (18)

Assuming that the norm factor is equal for both states, i.e., C = C’ = ||le? |yo) ||2‘1, a
sound assumption if the polynomial approximation is accurate, the Euclidean norm of
the error can be written as

1y (5) = Wexact (1) ll2 = C - [[(pa(A) = ) o) |l (19)

where || - ||z denotes the Euclidean vector norm and the induced matrix spectral norm.
Since matrix A is symmetric, it follows that also pg(A) and e4’ are symmetric matrices.
By exploiting the compatibility between the Euclidean and spectral norms, it follows
that

(D) = Wexact (1)) ll2 < Clipa(A) = eIzl o) llz = C - p(pa(A) — ™), (20)

the initial quantum state being normalized (i.e., || [¥o) ||l2 = 1), and where p(pq(A) —e”?)
denotes the spectral radius of the difference between the two matrices pg(A) and 4.
Employing the QET framework (see Equation (7)) we have that

At):

p(pa(A) —e max_ [pa(d;) - et < suplpa(x) = fF) = Ipa = fllsss  (21)

i=1,..., xeJ



where J is the interval containing all the eigenvalues of A as defined in Equation (14),
and where, from now on, || ||, denotes the supremum norm restricted to the interval J.
The time dependence of functions f and pg4 is not made explicit. Thus, we can conclude
that

” |lﬁ(1)> - |'7”exact(l)> ||2 < CHPd - f||00,J- (22)

Therefore, disregarding any inaccuracy introduced by the calculation of the phase factor,
the main computational source of error in the proposed algorithm to solve (11) is given
by the approximation error ||ps— f|le,7, Which depends on the degree d of the polynomial
expansion and on the final time t.

There are different possible choices to find the best Chebyshev polynomial approxi-
mation of degree d of function f. A straightforward approach is to use the least-squares
fitting of function f at the M Chebyshev nodes

x; = —cos(ni/M), i=0,...M-1 (23)
over [—1,1], with M > d + 1. Thus, using a Chebyshev expansion of degree d

pa(x) =co+c1Ti(x) + coTo(x) + -+ caTa(x) = f(x), (24)

the d + 1 unknowns ¢; collected in vector ¢, which minimize Y; |p(x;) — f(x;)|?, can be
found by solving the system (possibly over-determined) of equations

vé=73 (25)

where ¥ = [ f(x0), f(x1), .... f(xpr-1})]7 is the function evaluation vector and V € RM*(d+1)
is the pseudo Vandermonde matrix associated with the Chebyshev polynomials.

As an alternative to the least-squares fitting, in [24], the authors use the Remez
method to build polynomial pg, that converges uniformly to the best approximating
polynomial p? with linear or quadratic convergence, depending on the regularity of
function f(x).

We propose a improvement to this framework by using an approximating polynomial
of degree d designed to achieve higher accuracy not over the entire interval [-1,1]
but specifically on the relevant subset [—1,—a] which contains the interval J where the
eigenvalues of matrix A lie. This choice can lead to a reduced error using the same degree
d (see Figure 4) or similar error by using a lower degree approximating polynomial. An
even smaller error could be achieved by by restricting the approximation to the interval
J. However, we propose to extend the interval to -1 on the left since this prevents the
resulting polynomial from exhibiting rapid oscillations as typically occurs in Runge’s
phenomenon [30]. As a result, the polynomial can be reliably used to compute the phase
factors through the symmetric-QSP method [24]. In particular, we want to solve the
following constrained optimization problem: for a given time ¢ and an assigned degree d,
find the best approximating polynomial, p?, expressed as an expansion in even Chebyshev
polynomials of the first kind, on the interval [-1, —a] such that

py = argmin|[pg = flle.s

Pa€Pa (26)
p;, ()| <1 Vxel[-1,1].

9



We remark that the Remez method cannot be used to solve this problem as it may
provide an approximating polynomial which does not satisfy the constraint |pg(x)| <
1 Vx € [-1,1]. Problem (26) can be numerically solved using efficient libraries [32, 33]
that offer high level interfaces for formulating and solving convex optimization problems
in order to obtain an approximate solution that we denote by p,;. This polynomial
can provide a significantly lower absolute error (i.e., a simulation error) compared to a
polynomial p; which has been computed to approximate function f on the full interval
[-1, 1], namely it holds

1Pa = fllo.s < lpa = flleo,s (27)

for any polynomial p,; of degree d defined as in (16), approximating f on the whole
interval [-1,1]. In Section 4, we will show that the p,; case achieves experimentally
comparable errors to pg, while requiring up to an order of magnitude lower polynomial
degree and, consequently, fewer phase factors.

3.2 Circuit complexity and success probability

Ad discussed before, the sparse banded-circulant matrix in Equation (12) can be effi-
ciently block-encoded into an operator U, using n+ 3 qubits and O(poly(n)) gates, while
the QSVT implementation of a real polynomial transformation requires one additional
ancillary qubit. Using a degree d polynomial expansion leads to an overall circuit equiv-
alent to the one shown in Figure 1. This circuit consists of a repeated application of
operator Uy and its inverse, interleaved with d + 1 controlled phase factors e!%i (21-1)
acting as projectors. Hence, the total circuit complexity scales as O(d X poly(n)) and is
therefore considered efficient. The quantum circuit can be viewed as a block encoding
of e4" applied to the initial state |¥o). As a consequence, the success probability of the
algorithm is given by

p(0) = c3llpa(A) o) I3 = cglle™ o) I3, (28)

where cq is a constant that depends on A and ¢, while ps(A) is the d—degree polynomial
transformation of the input matrix. Notice that the desired simulation result is obtained
conditionally on measuring the ancillary qubits in the |0) state. When the reaction term
in (12) is dominant, the success probability rapidly decays as e~2%, while in a scenario
characterized by a dominant diffusion the success probability stays close to cg as in this
case the term e? is close to a unitary operator (morm preserving). From numerical
simulations it is possible to find that cg ~ 1 as discussed in next sections.

3.3 Proposed algorithm

In conclusion, the overall algorithm (described in Algorithm 1) is significantly improved
by using a polynomial approximation of the function f in (15), restricted to the sub-
interval of interest [—1,—a]. The algorithm outputs a quantum state corresponding to
an approximate solution of the discretized ADR problem (11) at a given final time 7. The
circuit size of the proposed algorithm scales efficiently with the number of qubits but

10
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1 4D

Figure 4: The eigenvalues of a a proper scaling of matrix A in (12), with ¢ = 0 and
D and a positive constants, lie inside the closed interval J = [—% —a,—a] centered at
—% —a. All the represented functions are symmetric in [—1, 1], but only the left part of
the interval is shown. The black curve represents the transformation e~*! that we aim to
apply to the input eigenvalues for r = 1. The dashed curve denotes a possible polynomial
approximation of degree d = 8 of the target function, computed over the entire interval
[—1, 1], while the dotted curve pg is a polynomial approximation of the same function
again of degree d = 8, but targeted to minimize the error in the interval [-1, —a] and
with an additional constraint of a limited range. In the enlarged view on the right it is
possible to appreciate the better approximation of the desired curve provided by pg in

J when compared with psg.
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has the drawback of requiring a higher polynomial degree d (and thus a deeper circuit)
in order to simulate longer times while maintaining the same level of accuracy.

The characteristic times for diffusion 74,7 ¢ = L?/D, reaction 7. = 1/a, and advection
Taav = L/c define the relevant time scales. For a meaningful simulation, the total
simulated time should extend over an interval comparable to these values to capture
the essential dynamics. If we consider diffusion, the time scale can be expressed as
Tdiff = (AxN)?/D, which scales as O(N?) where N = 2". This scaling poses a challenge
for the proposed algorithm since simulating longer times requires a higher polynomial
degree d to achieve the desired transformation within a given error €. In fact computing
a polynomial approximation of the function f(x) = e~*I*| is a challenging task when the
time ¢ increases. However, restricting the simulation time to values on the order of a
few cell diffusion times 74 = Ax?/D, which in our case so that | — 4D/Ax? —a| < 1, can
be achieved with a polynomial degree of about d ~ 100 while maintaining a reasonable
error. An intermediate goal should is to reach a simulation time scale of O(N). Achieving
such goal would provide an exponential advantage over classical computation for the
simulation of classical systems with geometrically local interactions such as advection-
diffusion-reaction dynamics [34].

Input: matrix A with velocity parameter set to ¢ = 0, time ¢, initial state |q),
even degree d, velocity c

Output: Final state |y (¢))

if ||A|l2 > 1 then

a = ||All2;
A=Ala;
end
Ua < block encoding of A; 8 « scaling factor of Ug;
a=aXp;
t=axt;
[co,c1,C2,...,cq]T < solve problem 26 for pg;
O = [¢0, #1, ..., da]T « use quasi-Newton symmetric-QSP method for the
coefficients [co, c1,c¢2,...,cq]l;
r=1;

while r # 0 do
| [y (1)) = QSVT (U, U}, @) |0) [vo);
m < measure the state of 4 ancillary qubits;
if m = |0) then
r=0;
Shift the resulting state by the factor ¢ - ¢ to recover the advection part.
end

end
Algorithm 1: QSVT for advection-diffusion-reaction problems with constant coef-
ficients

12



4 Numerical results

In this section we present the results of numerical simulations carried out using the Qiskit
software framework [35] and the pygsp library [24] for computing the phase factors ,
which implements the quasi-Newton symmetric-QSP method. The cvxpy library was
also employed to solve polynomial approximation problems. The results have also been
validated using spectral transformations of the input matrix A.

P32 P32

Figure 5: Comparison between polynomials of degree d = 32 (dashed lines) approximat-
ing function f(x) = e~*I* (solid lines) (a) in the interval [=1,1] and (b) in the interval
J = [-1,—a] for different times 7. The vertical dotted line in (a) represents the right
endpoint of the J interval.

In Figure 5, we compare the polynomial approximation py of function f using stan-
dard least squares fitting over [—1, 1] with the improved polynomial approximation p4
restricted to the interval [—1,—0.2] obtained solving problem (26) for a degree d = 32.
The improved polynomial p,; accurately approximates the target function over the re-
quired interval with a significantly reduced error.

The quantum circuit for QSVT has been implemented using Qiskit, and is the one
represented in Figure 1 where the number of grid sites is N = 2" with n working qubits,
while the block encoding of A employs 3 ancillary qubits. The circuit depth scales as
O(d x poly(n)) with poly(n) =~ n®7 as verified by transpiling the circuit for a generic
quantum hardware (see Figure 6). This scaling can be considered efficient and primar-
ily depends on the block encoding method employed for the matrix A (see Figure 3).
The success probability is close to 1 for the pure diffusive case, indicating that c% ~1
in Equation (28). To demonstrate the effectiveness of the proposed method, we have
measured the Euclidean error between the normalized solution obtained from the quan-
tum simulation and the exact solution, considering the two different cases of polynomial

13
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Circuit depth

102 ]
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Figure 6: Circuit depth (solid lines) as a function of the number of working qubits n
with degree d = 4 and d = 8 of polynomial expansion for QSVT, using a logarithmic

scale for both axes. The interpolating dashed lines correspond to a polynomial scaling
of n37.

approximation, pg and pg, of the function f(x) = e **I. For the simulation we use
n = 6 working qubits while we set & = 0.2 and a = 0.1. The initial state of the system
is the Gaussian function as depicted in Figure 8 for r+ = 0. For the sake of simplicity,
we have used a block encoding with scaling factor 1 which does not require rescaling
the simulation time. In Figure 7 the solid lines show the error while the dashed lines
represent the error bound of Equation (22) for the simulation times t = 2 and ¢ = 10
which are measured in units of cell diffusion time 74 = Ax2/D. These results indicate
that employing a polynomial approximation of f on the interval [—1, —a] can reduce the
required degree to achieve a target error tolerance by up to an order of magnitude. For a
qualitative comparison, Figure 8 shows the simulation results, adjusted for the advection
component, against the exact solution at different times using polynomial expansion of
degree d = 100, starting from an initial Gaussian profile. Figure 8 also shows that, for
a fixed polynomial degree, the accuracy of the simulation decreases as times increases.
Finally, a comprehensive representation of the error as a function of time and the degree
of polynomial approximation pg over the interval [-1, —a], is provided in Figure 9, for
N = 64 sites, 25 = 0.2, and a = 0.1.

' Ax?2

5 Conclusions and discussion

The ADR equation serves as a fundamental model for the analysis of transport phenom-
ena in classical fluid systems. When the ADR coefficients are constant and the model
setting is one-dimensional, the dynamics can be solved analytically. However, when the
model is multidimensional and characterized by complex boundary conditions, the solu-
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Figure 7: Simulation error (solid lines) in the Euclidean norm between the exact solution
and the QSVT result shown on logarithmic axes. Panels on the left (b) t+ = 274 and
(d) t+ = 1074 for the standard case where the polynomial p; has been computed to
approximate function f on the full interval [—1,1]. Panels on the right (a) t = 274 and
(d) t = 1074, the case where the polynomial p,; has been computed to approximate the
f in the interval [-1, —a]. Dashed lines indicate the error bound of Equation (22). The
initial condition is the same employed as Figure 8, represented as t = 0. Parameters
are set to N = 64 sites, & = 0.2, a = 0.1, with varying polynomial degree for QSVT

approximating the even function f(x) =e

—t]x|

15



0.51

0.4

0.31

0.2

0.1

0.0

Figure 8: Comparison between the exact solution (solid line) and the QSVT simulation
(markers) setting N = 64 sites, & =0.2,a = 0.1, ¢c = 0.1, 101 angles for QSVT ap-
proximating the even function f(x) = e~*I*! with a degree d = 100 polynomial expansion
targeted to the interval [—1,—a]. Time is expressed in expressed in units of the cell
diffusion time 74 = Ax?/D. The initial condition is a Gaussian function centered in the
site 15, with a standard deviation of 2.
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tion is computed numerically. Therefore, the inherent simplicity of the ADR equation
makes it an ideal testbed for assessing the feasibility of a quantum simulation of classical
dynamics.

In this work, we have proposed and fully characterized a quantum algorithm for simu-
lating one-dimensional ADR dynamics within the QSVT framework. QSVT is a powerful
tool capable of implementing approximate propagators for dynamical systems. Specif-
ically, we used QSVT to derive a telescopic solution for long-time dynamics, thereby
circumventing the time-discretization techniques, while directly solving the original dif-
ferential equation. Thus, we have extensively studied the quantum circuit along with the
numerical methods employed to achieve the correct transformation that accurately rep-
resents the state at the final simulation time by employing a polynomial approximation
over a restricted interval of the exponential function. We have analyzed the dependence
of the simulation error on the degree of the polynomial approximation together with the
temporal range of the telescopic simulation. Polynomial degree and temporal range are
related together, as longer simulation times need a higher polynomial degree to achieve
an acceptable error and vice versa. The numerical results show that using polynomial
expansion of degree 100 provides a low error for a simulation time comparable to 40 cell
diffusion times, but so far reaching the time scale 74,75 = L?/D = (2"Ax)?/D is beyond
the capability of the proposed method as the number of qubits n increases. Furthermore,
we have derived an analytical upper bound for the Euclidean error of the simulation,
with the twofold goal of verifying the reliability of the polynomial expansion, and iden-
tify the necessary expansion degree to maintain the error within a specified threshold.
Hence, we have fully analyzed the quantum circuit. For the constant coefficient case an
efficient block-encoding technique allows to implement the circuit with a reduced num-
ber of ancilla qubits. Moreover, we have found that the depth of the circuit scales as
n37, a polynomial growth that remains within the capabilities of near terms quantum
hardware [36] for a relevant number of spatial lattice sites.

Despite the promising results, we emphasize that our findings pertain an extremely
simple scenario. A more difficult challenge that requires further investigation is to tackle
the ADR dynamics in the presence of non constant advection, diffusion and reaction coef-
ficients, for which an analytical solution is not known. To perform a quantum simulation
of this scenario, one should find an efficient block encoding of the discretized differential
equation. Once such encoding is realized, QSVT could be applied to the block-encoded
matrix, and our analysis of the error would remain pertinent. Another application where
QSVT offers a potential computational advantage is the simulation of nonlinear systems
in even more complex scenarios, like the fluid dynamics described by Navier-Stokes equa-
tions for time-dependent incompressible flows. Similarly, the QSVT framework could be
applied to the Carleman lattice Boltzmann method [9, 37], which can provide a good
degree of approximation to the solution of the Navier-Stokes equations, to obtain the
result at the final simulation time with an appropriate polynomial transformation.
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