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1 Introduction

This work is concerned with convergence and weak scalability1 analysis of
one-level parallel Schwarz method (PSM) and optimized Schwarz method
(OSM) for the solution of the problem

−∆u = f in Ω, u(a1, y) = u(bN , y) = 0 y ∈ (0, 1),

Bb(u)(x) = Bt(u)(x) = 0 x ∈ (a1, bN ),
(1)

where Ω is the domain depicted in Fig. 1, and Bb and Bt are either Dirichlet,
or Neumann or Robin operators:

Dirichlet: Bb(u)(x) = u(0, x), Bt(u)(x) = u(1, x),

Neumann: Bb(u)(x) = ∂yu(0, x), Bt(u)(x) = ∂yu(1, x),

Robin:Bb(u)(x) = qu(0, x)− ∂yu(0, x), Bt(u)(x) = qu(1, x) + ∂yu(1, x).

Here, q > 0 and the subscripts ‘b’ and ‘t’ stand for ‘bottom’ and ‘top’. As
shown in Fig. 1, the domain Ω is the union of subdomains Ωj , j = 1, . . . , N ,
defined as Ωj := (aj , bj) × (0, 1), where a1 = 0, aj = L + aj−1 for j =
2, . . . , N + 1 and bj = aj+1 + 2δ for j = 0, . . . , N . Hence, the length of each
subdomain is L+ 2δ and the length of the overlap is 2δ with δ ∈ (0, L/2).

It is well known that one-level Schwarz methods are not weakly scalable, if
the number of subdomains increases and the whole domain Ω is fixed. How-
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1 Here, weak scalability is understood in the sense that the contraction factor does
not deteriorate as the number N of subdomains increases and, hence, the number of
iterations, needed to reach a given tolerance, is uniformly bounded in N ; see, e.g., [3].
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Fig. 1 Two-dimensional chain of N rectangular fixed-sized subdomains.

ever, the recent work [2], published in the field of implicit solvation models
used in computational chemistry, has drawn attention to the opposite case in
which the number of subdomains increases, but their size remains unchanged,
and, as a result, the size of the whole domain Ω increases. In this setting,
weak scalability of PSM and OSM for (1) with Dirichlet boundary conditions
is studied in [4, 3]. Scalability results for the PSM in case of more general
geometries of the (sub)domains are presented in [5, 6, 7]. In these works,
only external Dirichlet conditions are discussed and, in such a case, weak
scalability is shown; see also [11] for a scalability analysis of the classical
(alternating) Schwarz method. A short remark about the non-scalability in
case of external Neumann conditions is given in [3]. Similar results have been
recently presented in [1] for time-harmonic problems. Moreover, very similar
results to the ones of [3] are obtained a few years later in [9]. The goal of this
work is to study the effect of different (possibly mixed) external boundary
conditions on convergence and scalability of PSM and OSM. In particular, we
will show that only in the case of (both) external Neumann conditions at the
top and the bottom of Ω, PSM and OSM are not scalable. External Dirichlet
conditions lead to the fastest convergence, while external Robin conditions
lead to a convergence that depends heavily on the parameter q.

One-level PSM and OSM for the solution of (1) are

−∆unj = fj in Ωj ,

Bb(unj )(x) = Bt(unj )(x) = 0 x ∈ (a1, bN ),

T`(unj )(aj) = T`(un−1j−1 )(aj), Tr(unj )(bj) = Tr(un−1j+1 )(bj),

(2)

for j = 1, . . . , N , where T` and Tr are Dirichlet trace operators,

T`(unj )(aj) = unj (aj , y) and Tr(unj )(bj) = unj (bj , y), (3)

for the PSM, and Robin trace operators,

T` (unj )(aj )=punj (aj ,y)−∂xunj (aj ,y) and Tr (unj )(bj )=punj (bj ,y)+∂xu
n
j (bj ,y),

(4)
with p > 0 for the OSM. The subscript ‘`’ and ‘r’ stand for ‘left’ and ‘right’.
For j = 1 the condition at a1 must be replaced by un1 (a1, y) = 0 and for
j = N the condition at bN must be replaced by unN (bN , y) = 0. In this
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paper, ‘external conditions’ and ‘transmission conditions’ will always refer
to the conditions obtained by the pairs (Bb,Bu) and (T`, Tr), respectively.
Note that the Robin parameter p of the OSM can be chosen independently
of the Robin parameter q used for the operators Bb and Bt. We analyze
convergence of PSM and OSM by a Fourier analysis in Section 3. For this
purpose, we use the solutions of eigenproblems of the 1D Laplace operators
with mixed boundary conditions. These are studied in Section 2. Finally,
results of numerical experiments are presented in Section 4.

2 Laplace eigenpairs for mixed external conditions

Consider the 1D eigenvalue problem

ϕ′′(y) = −λϕ(y), for y ∈ (0, 1), Bb(ϕ)(0) = Bt(ϕ)(1) = 0, (5)

and six pairs of boundary operators (Bb,Bt):
(DD) Bb(ϕ)(0) = ϕ(0), Bt(ϕ)(1) = ϕ(1),

(DR) Bb(ϕ)(0) = ϕ(0), Bt(ϕ)(1) = qϕ(1) + ϕ′(1),

(DN) Bb(ϕ)(0) = ϕ(0), Bt(ϕ)(1) = ϕ′(1),

(RR) Bb(ϕ)(0) = qϕ(0)− ϕ′(0), Bt(ϕ)(1) = qϕ(1) + ϕ′(1),

(NR) Bb(ϕ)(0) = ϕ′(0), Bt(ϕ)(1) = qϕ(1) + ϕ′(1),

(NN) Bb(ϕ)(0) = ϕ′(0), Bt(ϕ)(1) = ϕ′(1),

where q > 0 and ‘D’, ‘R’ and ‘N’ stand for ‘Dirichlet’, ‘Robin’ and ‘Neumann’.
For all these six cases the eigenvalue problem (5) is solved by orthonormal
(in L2(0, 1)) Fourier basis functions.

Theorem 1 (Eigenpairs of the Laplace operator)

Let q > 0. The eigenproblems (5) with the above external conditions are
solved by the non-trivial eigenpairs (ϕk, λk) given by

(DD) ϕk(y) =
√

2 sin(πky), λk = π2k2, k = 1, 2, . . .

(DR) ϕk(y) =
√

4µk
2µk−sin(2µk) sin(µky), λk = µ2

k, k = 1, 2, . . . , where

µk ∈ (kπ − π/2, kπ), k = 1, 2, . . . , are roots of d̂(x) := q sin(x) +
x cos(x). Moreover, limq→0 µ1(q) = π/2 and limq→∞ µ1(q) = π.

(DN) ϕk(y) =
√

2 sin( 2k+1
2 πy), λk = (2k+1)2

4 π2, k = 0, 1, 2, . . .

(RR) ϕk(y) =
√

4τk
(τ2
k−q2) sin(2τk)+4qτk sin(τk)2+2τ3

k+2q2τk

(
q sin(τky)+τk cos(τky)

)
,

λk = τ2k , k = 1, 2, . . . , where τk ∈ (0, π), k = 1, 2, . . . , are roots of

d̃(x) := 2qx cos(x) + (q2 − x2) sin(x). Moreover, limq→0 τ1(q) = 0 and
limq→∞ τ1(q) = π.

(NR) ϕk(y) =
√

4νk
2νk+sin(2νk)

cos(νky), λk = ν2k, k = 1, 2, . . . , where

νk ∈ ((k−1)π, (k− 1
2 )π), k = 1, 2, . . . , are roots of d(x) := x sin(x)−

q cos(x). Moreover, limq→0 ν1(q) = 0 and limq→∞ ν1(q) = π/2.
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Fig. 2 Left: Maps q 7→ µ1(q), q 7→ ν1(q) and q 7→ τ1(q) . Right: ρDR, ρNR, ρDD and
ρDN as functions of q and for δ = 0.1 and L = 1.0.

(NN) ϕk(y) =
√

2 cos(πky), λk = π2k2, k = 0, 1, 2, . . .

Proof If we multiply (5) with ϕ, integrate over [0, 1], and integrate by parts,

we get λ
∫ 1

0
|ϕ(y)|2dy =

∫ 1

0
|ϕ′(y)|2dy − ϕ′(1)ϕ(1) + ϕ′(0)ϕ(0). Using any of

the above external conditions (and that q > 0, for the Robin ones) one gets
λ ≥ 0. We refer to, e.g., [10, Section 4.1] for similar discussions. Now, all the
cases can be proved by using the ansatz ϕ(y) = A cos(

√
λy) + B sin(

√
λy),

which clearly satisfies (5), and computing, e.g., A and λ in such a way that
ϕ(y) satisfies the two external conditions and B as a normalization factor.�

The coefficients ν1, µ1 and τ1 as functions of q are shown in Fig. 2 (left),
where we can observe that ν1(q) < π

2 < µ1(q) < π and 0 < τ1(q) < π, and
that the maps q 7→ ν1(q), q 7→ µ1(q) and q 7→ τ1(q) increase monotonically
and approach, respectively, π

2 and π as q → ∞. Hence, by taking the limit
q → 0, one can pass from the conditions (DR), (RR) and (NR) to (DN), (NN)
and (NN), respectively. Similarly, by taking the limit q →∞, the conditions
(DR), (RR) and (NR) become (DD), (DD) and (DN), respectively.

3 Convergence and scalability

Consider the Schwarz method (2) and any pair (Bb,Bt) of operators as in
Section 2. The Fourier expansions of unj (x, y), j = 1, . . . , N , are

unj (x, y) =
∑
k

ûnj (x, λk)ϕk(y), (6)

where the sum is over k = 1, 2, . . . for (DD), (DR), (RR) and (NR), and over
k = 0, 1, 2, . . . for (DN) and (NN). The functions ϕk depend on the external
boundary conditions and are the ones obtained in Theorem 1. The Fourier
coefficients ûnj (x, λk) satisfy2

2 Notice that the procedure to obtain (7) is standard. We refer to, e.g., [10] for more
details and examples.
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−∂xxûnj (x, λk) + λkû
n
j (x, λk) = f̂j(x, λk) in (aj , bj),

T`(ûnj (·, λk))(aj) = T`(ûn−1j−1 (·, λk))(aj),

Tr(ûnj (·, λk))(bj) = Tr(ûn−1j+1 (·, λk))(bj),

(7)

for j = 1, . . . , N . For j = 1, the condition at a1 must be replaced by un1 (a1) =
0 and for j = N the condition at bN must be replaced by unN (bN ) = 0. If the
operators T` and Tr correspond to Dirichlet conditions (see (3)), then (7) is a
PSM. If they correspond to Robin conditions (see (4)), then (7) is an OSM.
The convergence of the iteration (7) is analyzed in Theorem 2.

Theorem 2 (Convergence of Schwarz methods in Fourier space)

The contraction factors of the Schwarz methods3 (7) are bounded by

ρ(λk, δ) =
e2λkδ + eλkL

e2λkδ+λkL + 1
. (8)

Moreover, it holds that ρ(λk, δ) ∈ [0, 1] with ρ(0, δ) = 1 (independently of N),
and that λ 7→ ρ(λ, δ) is strictly monotonically decreasing.

Proof The Dirichlet case follows from [4, Lemma 2 and Theorem 3]. See
also [3, Lemma 2 and Theorem 1]. We focus here on the Robin case. From
Theorem 3 in [3] and the corresponding proof we have that the contraction
factor of the OSM is bounded by max{ϕ(λ, δ, p), |ζ(λ, δ, p)|} where

ϕ(λ, δ, p) :=
(λ+ p)2e2δλ − (λ− p)2e−2δλ + (λ+ p)|λ− p|(eλL − e−λL)

(λ+ p)2eλL+2λδ − (λ− p)2e−λL−2λδ
≥ 0,

ζ(λ, δ, p) :=
(λ+ p)e−λL + (λ− p)eλL

(λ+ p)eλ(L+2δ) + (λ− p)e−λ(L+2δ)
,

with ϕ(λ, δ, p) ≤ ϕ(λ, δ, 0) = limp̃→∞ ϕ(λ, δ, p̃) = e2δλ−e−2δλ+eλL−e−λL
eλL+2δλ−e−λL−2δλ for all

λ ≥ 0 and δ > 0. If we compute the derivative of λ 7→ ϕ(λ, δ, 0) we get

∂λϕ(λ, δ, 0) = −L(e4δλ+Lλ − eLλ) + 2δ(e2δλ+2Lλ − e2δλ)

(e2δλ+Lλ + 1)2
,

which is negative for any λ ≥ 0 and δ > 0. Thus, λ 7→ ϕ(λ, δ, 0) is strictly
monotonically decreasing. Let us now study the function ζ(λ, δ, p). Direct

calculations reveal that ∂pζ(λ, δ, p) = − 2λe2δλ(e4λ(δ+L)−1)
((λ+p)e4δλ+2Lλ+λ−p)2 , which is neg-

ative for any λ ≥ 0 and δ > 0, and ζ(λ, δ, 0) = (e2Lλ+1)e2δλ

e4δλ+2Lλ+1
> 0 and

limp→∞ ζ(λ, δ, p) = − (e2Lλ−1)e2δλ
e4δλ+2Lλ−1 < 0 for any λ ≥ 0 and δ > 0. These

observations imply that p 7→ ζ(λ, δ, p) is strictly monotonically decreasing
and attains its maximum at p = 0. Finally, a direct comparison shows that

3 The contraction factor for (7) (corresponding to the k-th Fourier component) is the
spectral radius of the Schwarz iteration matrix; see [4, 3].
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ϕ(λ, δ, 0) ≥ ζ(λ, δ, 0) ≥ limp→∞ |ζ(λ, δ, p)| and the result follows, because

ϕ(λ, δ, 0) = e2δλ−e−2δλ+eλL−e−λL
eλL+2δλ−e−λL−2δλ = e2λδ+eλL

e2λδ+λL+1
. �

Theorem 2 gives the same bound (8) for the convergence factors of PSM
and OSM. This fact is not surprising. First, it is well known that OSM con-
verges faster than PSM for δ > 0. Hence, a convergence bound for the PSM
is a valid bound also for the OSM. Second, in the above proof the conver-
gence bound for the OSM is obtained for p → ∞, which corresponds to
passing from Robin transmission conditions to Dirichlet transmission condi-
tions. The bound (8) is based on the ones obtained in [4, 3]. These are quite
sharp for large values of N ; see, e.g., [3, Fig. 4 and Fig. 5].

We can now prove our main convergence result, which allows us to study
convergence and scalability of PSM and OSM for all the external conditions
considered in Section 2.

Theorem 3 (Convergence of PSM and OSM)

The contraction factors (in the L2 norm) of PSM and OSM for the solution
to (1) are bounded by

(DD) ρDD(δ) := ρ(π2, δ), (DR) ρDR(δ, q) := ρ(µ1(q)2, δ),

(DN) ρDN(δ) := ρ(π2/4, δ), (RR) ρRR(δ, q) := ρ(τ1(q)2, δ),

(NR) ρNR(δ, q) := ρ(ν1(q)2, δ), (NN) ρNN(δ) := ρ(0, δ) = 1,

where q ∈ (0,∞) and ρ(λ, δ) is defined in Theorem 2. Moreover, for any
δ > 0 we have that

ρDD(δ) < ρDR(δ, q) < ρDN(δ) < ρNR(δ, q) < ρNN(δ) = 1, (9)

ρDD(δ) < ρRR(δ, q) < ρNN(δ) = 1. (10)

Proof According to Theorem 2, the bounds of the Fourier contraction factor
ρ(λ, δ) is monotonically decreasing in λ. Therefore, an upper bound for the
convergence factor of PSM and OSM (in the L2 norm) can be obtained by
taking the maximum over the admissible Fourier frequencies λk and invoking
Parseval’s identity (see, e.g., [4]). Recalling Theorem 1, these maxima are
attained at λ1 = π2 for (DD), λ1 = µ2

1 for (DR), λ0 = π2/4 for (DN),
λ1 = τ21 for (RR), λ1 = ν21 for (NR), and λ0 = 0 for (NN). The inequalities
(9) and (10) follow from the monotonicity λ 7→ ρ(λ, δ) and the fact that
ν1(q) < π

2 < µ1(q) < π and τ1(q) ∈ (0, π). �

The inequalities (9) and (10) imply that the contraction factor is bounded,
independently of N , by a constant strictly smaller than 1 for all the cases
except (NN). In the case (NN), the first Fourier frequency is λ0 = 0. Hence,
the coefficients ûnj (x, λ0) are generated by the 1D Schwarz method

−∂xxûnj (x, λ0) = f̂j(x, λ0) in (aj , bj),

T`(ûnj (·, λ0))(aj) = T`(ûn−1j−1 (·, λ0))(aj),

Tr(ûnj (·, λ0))(bj) = Tr(ûn−1j+1 (·, λ0))(bj),

(11)
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bottom
top Dirichlet Robin Neumann

Dirichlet yes yes yes
Robin yes yes yes
Neumann yes yes no

bottom
top Dirichlet Robin Neumann

Dirichlet - yes -
Robin yes no no
Neumann - no -

Table 1 Left: Scalability of PSM and OSM for different external conditions (for a
fixed and finite q > 0) applied at the top and at the bottom of the domain. Right:
Robustness of PSM and OSM with respect to q ∈ [0,∞].

which is known to be not scalable; see, e.g., [3, 8]. The scalability of PSM
and OSM for different external conditions applied at the top and at the bot-
tom of the domain is summarized in Table 1. Inequalities (9) and (10) lead
to another interesting observation. The contraction factors are clearly influ-
enced by the external boundary conditions. Dirichlet conditions lead to faster
convergence than Robin conditions, which in turn lead to faster convergence
than Neumann conditions. For example, if one external condition is of the
Dirichlet type, then PSM and OSM converge faster if the other condition is
of the Dirichlet type and slower if this is of Robin and even slower for the
Neumann type. The case (RR) is slightly different, because the corresponding
convergence of PSM and OSM depends heavily on the Robin parameter q.
The behavior of the bounds ρRR(δ, q), ρDR(δ, q) and ρNR(δ, q) with respect
to q is depicted in Fig. 2 (right), which shows the bounds discussed in Theo-
rem 3 as functions of q (recall that ρNN = 1). Here, we can observe that the
inequalities (9) and (10) are satisfied and that

• As q increases the Dirichlet part of the Robin external condition domi-
nates. In addition, the bounds ρRR and ρDR decrease and approach ρDD

as q →∞. Similarly, ρNR decreases and approaches ρDN.
• As q decreases the Neumann part of the Robin external condition dom-

inates. In addition, the bounds ρNR and ρRR decrease and approach
ρNN = 1 as q → 0. Similarly, ρDR increases and approaches ρDN.

These observations lead to Tab. 1 (right), where we summarize the robustness
of PSM and OSM with respect to the parameter q. The methods are robust
with respect to q only if one of the two external boundary conditions is of
Dirichlet type. This is due to the fact that Robin conditions become Neumann
conditions for q → 0.

4 Numerical experiments

In this section, we test the scalability of PSM and OSM by numerical simula-
tions. For this purpose, we run PSM and OSM for all the external boundary
conditions discussed in this paper and measure the number of iterations re-
quired to reach a tolerance on the error of 10−6. To guarantee that the initial
errors contain all frequencies, the methods are initialized with random initial
guesses. In all cases, each subdomain is discretized with a uniform grid of
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N DD DR(10) DN RR(10) NR(10) NN RR(0.1)
3 12 - 9 13 - 10 27 - 19 14 - 10 26 - 19 77 - 54 65 - 45
4 13 - 9 14 - 10 29 - 21 15 - 11 29 - 21 130 - 90 95 - 66
5 13 - 9 14 - 10 31 - 22 15 - 11 31 - 22 194 - 134 124 - 86
10 13 - 10 14 - 10 33 - 24 15 - 11 34 - 24 >401 - >401 227 - 155
30 13 - 10 14 - 10 34 - 24 15 - 11 35 - 24 >401 - >401 311 - 210
50 13 - 10 14 - 10 34 - 24 15 - 11 35 - 24 >401 - >401 319 - 216

Table 2 Number of iterations of PSM (left) and OSM (right) needed to reduce the
norm of the error below a tolerance of 10−6 for increasing number N of fixed-sized
subdomains. The maximum number of allowed iterations is 401. This limit is only
reached in the (NN) case, for which PSM and OSM are not scalable.

size 90 interior points in direction x and 50 interior points in direction y.
The mesh size is h = L

51 , with L = 1, and the overlap parameter is δ = 10h.
For the OSM the robin parameter is p = 10. The Robin parameter q of the
external Robin conditions is q = 10, and the (RR) case is also tested with
q = 0.1. The results of our experiments are shown in Tab. 2 and confirm the
theoretical results discussed in the previous sections.
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