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Abstract

We present a computational framework that allows investigating the Thermo-Hydro-Mechanical re-
sponse of a representative part of a sedimentary basin during a glaciation cycle. We tackle the complexity
of the problem, arising by the mutual interaction among several phenomena, by means of a multi-physics,
multi-scale model with respect to both space and time. Our contribution addresses both the generation
of the computational grid and the algorithm for the numerical solution of the problem. In particular
we present a multi-scale approach accounting for the global deformation field of the lithosphere coupled
with the Thermo-Hydro-Mechanical feedback of the ice load on a representative part of the domain at
a finer scale. In the fine scale model we also include the erosion possibly caused by the ice melting.
This methodology allows investigating the evolution of the sedimentary basin as a response to glacia-
tion cycle at a fine scale, taking also into account the large spatial scale movement of the lithosphere
due to isostasy. The numerical experiments are based on the analysis of simple scenario, and show the
emergence of effects due to the multi-physics nature of the problem that are barely captured by simpler
approaches.

1 Introduction

Reconstructing the stress and deformation history of a sedimentary basin is a challenging and important
problem in the geosciences and a variety of applications [47]. The mechanical response of a sedimentary
basin is the consequence of complex multi-physics processes involving mechanical, geochemical, geophysical,
geological and thermal aspects [49]. The strongly coupled nature of the deformation problem may be
understood in terms of the feedbacks underlying crustal dynamics. The pore fluid pressure affects stress,
stress changes can lead to fracturing, and fracturing can affect pore fluid pressure [4, 46].

Basin scale compaction processes involve mechanical and chemically induced transformations that take
place during the accumulation of sediments [49]. In this context a number of approaches have considered the
geochemical and mechanical compaction problem from a one-dimensional perspective, i.e. by considering
mass, momentum and energy balances along the vertical direction, applied to fluid and solid phases [4,
18,21,46]. These simplified one-dimensional approaches may be effective in interpreting qualitatively well
data (e.g. [15]), however, they cannot capture inherently three dimensional processes that may arise due to
the coupling of mechanical deformations and fluid mechanics in geological bodies that play an important
role in the presence of glaciations [32].

Hydro-mechanical effects of continental ice sheets are widely recognized to cause movements and stresses
of overridden terrains by ice load. The effect of the ice load on top of the sedimentary basin can be
represented by the combination of two effects. The first is a large scale effect where we consider the action
of the ice load on the entire lithosphere. The second is a fine scale analysis where we take into account the
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thermo-hydro-mechano-chemical (THMC) effects of the ice load into a small portion of the crust, such as
a sedimentary basin [32].

In the global large scale framework, the interaction between the lithosphere and the glaciation cycle is
modeled by means of a viscoelastic model. This choice is based on significant previous efforts devoted to
define a proper mathematical model for the description of glacial isostatic adjustment. Initially this problem
has been considered by Rayleigh [38] which studied the problem of a pre-stressed elastic compressible layer
as an approximation of a “flat” planet. After Rayleigh’s work other authors enriched his theory, including
many other details, like the effect of viscosity or the stratified structure of the Earth. First of all, Love [28]
gave a more detailed theory and defined the basic concepts which are included in more recent works.
Peltier and his coauthors in a series of articles [35, 36, 52] gave a detailed description of a more realistic
viscoelastic model of stratified Earth. The Peltier’s model is essentially an extension of Love’s model,
where a viscoelastic rheology is used instead of an elastic one. All the mathematical details of this theory
are contained in the works of Biot and, more recently, Ogden [6, 33].

In this work we apply these models to describe the global deformation field of the lithosphere and to
extract from it the information of the movement of a selected part of the sedimentary basin. Since the
spatial scale of such region is very small compared to the global scale, we describe it as a rigid motion. More
precisely, the rigid motion of the fine scale basin model is extrapolated from the lithosphere displacement
fields and used at run time to move the computational grid in the simulations. In what follows we describe
in more details this the workflow of this multiscale approach.

A number of numerical simulation tools have been presented to model THMC processes [31, 42, 44].
While considering a similar mathematical approach, our work introduces the following new features with
respect to previous studies:

i) it combines the global deformation of the lithosphere with the local simulation of pressure and
temperature fields;

ii) it is built on available geophysical and geological information on the whole sedimentary system and
relying on information available at selected wells;

iii) it allows considering the effects of erosion induced by glaciation, which is often neglected in previous
studies.

Our work focuses on the integration of THM simulation of a single glaciation cycle with larger scale infor-
mation available on basin scale compaction and lithosphere dynamics, thus the proposed THM simulation
of glaciations can be cast within a multi-scale geological simulation framework. A visual sketch of the
multiscale model outline is provided in Figure 1.

2 Isostatic glacial rebound model

From the mechanical point of view the interior of the Earth can be considered as composed of four main
layers: the inner and outer core, the mantle and the lithosphere [48]. During the growth of a continental ice
sheet, the lithosphere under the ice load is deformed into the mantle and the removal of the ice load during
deglaciation initiates a rebound process. The uplift is well known in formerly glaciated areas, e.g. North
America and Scandinavia, and in currently deglaciating areas, e.g. Alaska, Antarctica, and Greenland.
Compared to water, the mantle viscosity is 1022 − 1025 times higher, therefore the uplifting will be slowed
down and continue long time after the ice has gone. The entire process of subsidence during the glacial
growth, followed by uplift during and after deglaciation, is referred to as glacial isostatic adjustment.

The glacial isostatic adjustment process is dependent on the viscosity structure of the mantle, as well
as the elastic thickness of the lithosphere. Observations of this process can therefore be used to gain insight
into these properties of the Earth and this is important for an understanding of the dynamics of the Earth’s
interior.

A well established assumption for the computation of the solid Earth response to surface ice loads
over glacial timescales is that the Earth can be considered as a viscoelastic body ( [37]). In particular the
lithosphere can be assumed to be elastic and the solid mantle beneath behaves as a viscous fluid.
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Figure 1: A visual sketch of the multiscale model outline.

3



A complete review of the state of the art concerning the modeling and simulation of the glacial rebound
can be found in [50, 51] whereas the importance of this phenomenon in the context of basin simulation is
discussed in [17,26,53].

2.1 A viscoelastic model for the Earth

In accordance with the previously cited works the Earth has been modeled has a linear viscoelastic spherical
shell Ω ⊂ R3 since the dynamics due to the glacial isostatic adjustment does not involve the core of the
planet. Following the approach presented in [43] we assume that the viscoelastic stress tensor is given
σ = σe − q, where σe is the elastic stress and tensor q is an internal variable used to model the effects of
viscosity. Denoting with u the displacement field, the elastic stress tensor σe is given by the sum of the
deviatoric and the volumetric parts

σe = 2µ e(u)− pI ,
where I denotes the identity matrix. The deviatoric part is the product between the shear modulus µ and

the deviatoric strain e(u) defined as

e(u) :=
1

2
(∇u +∇ut)− 1

3
(∇ · u)I.

The volumetric part depends on the pressure p which is defined by the equation

∇ · u +
3

2µ

1− 2ν

1 + ν
p = 0, (1)

where ν is the Poisson ratio.
The internal variable q is defined by the evolution equation

q̇ +
1

τ
q =

1

τ
2µ e(u),

q(0) = 0,

(2)

where q̇ denotes the derivative of the quantity q with respect to time and τ is called relaxation time and
it is related to the viscosity η through the relation τ = η

2µ .
The Equation (2) can be rewritten in the integral form as:

q(t) =

∫ t

0

1

τ
e−

t−s
τ 2µ e(u(s)) ds.

By means of the previous expressions the viscoelastic stress tensor σ is evaluated through a convolution
integral defined as

σ(t) = −pI +

∫ t

0
e−

t−s
τ 2µ e(u̇(s)) ds .

This equation coupled with the Equation (1) and with the equation of conservation of linear momentum
give us a system of partial differential equations that describe the motion of a viscoelastic body:

∇ · σ + f = 0 in Ω,

∇ · u +
3

2µ

1− 2ν

1 + ν
p = 0 in Ω,

σ = −pI +

∫ t

0
e−

t−s
τ 2µ e(u̇(s)) ds in Ω.

(3)

The unknowns of this system of equations are the displacement field u, the pressure field p and the stress
tensor field σ. The volumetric force field f is the gravitational force field, how this term has been modeled
will be discussed later.
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Since our domain is a spherical shell its boundary is the union of two connected components: the inner
and the outer surfaces of the shell. The outer surface Γout is the surface of the Earth and on this portion
of the boundary we assume to know the history of the load due to the presence of the ice or other type of
loads, like sediments. According to these data the following boundary condition is assumed: σn = sload on
Γout, where n denotes the outer normal defined on the boundary. The inner surface Γin of the shell is chosen
in such a way it corresponds to the core-mantle boundary (about 2900 km of depth). On this portion of
the boundary the displacement u is assumed to be equal to zero, since the deformation due to the glacial
isostatic adjustment involves only the shallow part of the mantle, until few hundreds of kilometer, namely
u = 0 on Γin.

The force field f is given by the product between the density field ρ and the acceleration gravity g.
Since we are dealing with a model of the whole Earth we cannot assume a constant value for the gravity
and its value must be computed in accordance with the density field using the Gauss’s law for the gravity{

g = −∇φ,
∇ · g + 4πGρ = 0,

(4)

where G is the universal gravitational constant and the boundary conditions are g = −gsurfacen on Γout and
φ = 0 on Γin. Even though the displacement u is small if compared to the characteristic length of problem
(1 km vs 6371 km) the gravity acceleration acting on the point change in accordance with the displacement
field, so the force field f is given by ρg(x+u) ≈ ρg(x) + ρ(∇xg)u. From a physical point of view the first
term ρg(x) is a static component, it does not change in time, on the other side the second term ρ(∇xg)u
is the buoyancy term that determine the uplift and subsidence processes. This physical interpretation
can be justified from a mathematical point of view. Exploiting the linearity of the problem the stress
tensor σ is decomposed as a sum of two components: a static stress term σ0 (which is not important for
our purposes) and a dynamic term σd which is the solution of Problem (3) with f = ρ(∇xg)u and the
boundary conditions.

3 The Thermo-Hydro-Mechanical model including erosion

In this section we focus the attention on the mathematical framework describing the mechanical and
thermal evolution of the basin. First, we show how the basin model is built and how we basin tilting
is extracted from the large scale isostasy model. Second, we use mathematical models to describe the
thermal and mechanical evolution of the basin under the effect of a glaciation cycle. The combination of
these models consist in the multiscale modeling of glacial loading illustrated in Figure 1.

3.1 The geological model of a sedimentary basin

We assume that information about sedimentary units thicknesses, porosity and/or mineral composition are
available at selected locations across a sedimentary system, typically from well logs, i.e. along the vertical
direction (as sketched in Figure 1). In this framework we employ the stochastic inverse modelling procedure
implemented in [15] to interpret vertical distributions of system properties with a one-dimensional model,
which was developed in [18] starting from classical approaches to vertical compaction modeling (e.g., [49]).
At each location such one-dimensional model provides an approximation of layers interface locations,
whose characterization under uncertainty is investigated in detail in [14]. These interface locations can
then be approximated in the whole domain starting from these data. This task is here performed using
an interpolation based on ordinary kriging [39]. Our procedure assumes a smooth spatial variation of
the sedimentary unit thicknesses. While this hypothesis can be restrictive in practical cases (e.g., in the
presence of fault zones), our procedure is still able to handle geological settings of interest such as the
occurrence of pinch out layers.

3.2 Extraction of the basin tilting from the isostasy model

The isostatic movement of the basin is taken into account as a rigid motion. In particular, we locate the
computational cell that embed the fine scale geometrical model from the isostatic adjustment simulation,
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as shown in Figure 3. From the displacement field of the selected cell we evaluate the deformation gradient
and the vertical rigid motion. We then isolate the rotational part of the deformation gradient that is
uniquely defined by the polar decomposition [22], F = R ·U , where F is the deformation gradient, U is the
symmetric stretch tensor and R, such that det(R) = 1, is the rotation matrix that we want to determine. In
particular, from the deformation gradient we evaluate the Right Cauchy-Green Deformation Tensor namely
matrix G := F T ·F . Using the definition of F , we obtain that G = (RU)T · (RU) = (UT ·RT ) · (R ·U), and
using the orthogonality of the rotation matrix, namely RT = R−1, we obtain G = UT ·U . We recall that U
is a diagonalizable matrix so can be represented by U = Q−1 ·Λ ·Q, where Q is the square matrix in which
the ith column is the eigenvector qi of U and Λ is the diagonal matrix composed by the corresponding
eigenvalues, namely Λii = ζi. We recall that U is a symmetric matrix so UT · U = U · U , so using the
spectral decomposition we obtain that G = (Q−1 ·Λ2 ·Q) where Λ2 is a diagonal matrix defined by Λ2

ii = ζ2
i .

From the previous considerations, it follows that by computing the eigenvalues and the eigenvectors of G,
which is a known matrix, we calculate the matrix Q, Λ2, and, as a consequence, Λ. Using U = Q−1 ·Λ ·Q
we compute the matrix U so that we finally retrieve the rotation matrix R using R = F · U−1.

The collection of the rotation matrices together with the axial displacement evaluated at every time
step of the isostatic adjustment simulation, defines the rigid motion that we consider in fine scale model. In
particular we use a Lagrangian and an Eulearian approach for the mechanical and the thermal problems,
respectively. More precisely, in the mechanical problem the imposed rigid motion does not causes any
additional stress so that the calculation of stress and the strain can be performed in the reference (static)
configuration, while the rotation matrix is used to change the orientation of the gravity vector. In this
framework, we let pressure, flow and displacement evolve under the action of the weight of the basin and
of the ice. Concerning the thermal evolution of the basin we account of the variation of the heat flux with
the isostatic movement of the sedimentary basin by means of the Eulerian approach, that is we actually
move the domain in the computational model. In this way, both the vertical displacement and the rotation
matrix are taken into account in the evaluation of the thermal source, as it will be discussed later.

3.3 A poromechanical approach to coupled hydro-mechanical effects

For the mechanical evolution of the basin we rely on the theory of poroelasticity introduced by Biot
in [5] under the quasi-static assumption for modeling a linearly elastic fully saturated porous medium.
Such approach is widely used in literature, see [7, 16, 30, 47] for a non exhaustive list of examples. Given
a domain Ω ∈ Rd, we consider for simplicity an isotropic material (named the skeleton) filled with an
isothermal single-phase fluid. A sketch of a typical domain together with the frame of reference is shown
in Figure 17. In this framework the momentum equation reads

−∇ · σ(u) + α∇p = f in Ω(t) , (5)

∂t

( p
M

+ α∇ · u
)
−∇ ·K∇p = 0 in Ω(t) , (6)

where (with little abuse of notation with respect to the isostatic adjustment model) here u denotes the
solid matrix displacement vector and p is the variation of pore pressure from the hydrostatic load. We
notice that ∂t denotes the standard partial derivative with respect to time in the Eulerian framework.
The parameters α, M and K are the Biot coefficient, the Biot modulus and the hydraulic conductivity,
respectively. We recall that the hydraulic conductivity is defined as the ratio between the permeability
ks and the dynamic viscosity of the fluid µf , namely K = ks/µf . Finally f is the gravity load of the
porous material evaluated as f = (ρs−ρf )g, where ρs, ρf and g are the fluid density, the solid density and
the gravity vector, respectively. We remark that in the mechanical model the isostasy movement coming
from the isostatic adjustment simulation is taken into account by means of a Lagrangian approach. As
a consequence, the gravity vector g varies during the simulation according to a prescribed profile. Such
profile is defined by the angles evaluated from the polar decomposition of the deformation gradient of the
computational cell, of the large scale simulation, that contains the portion of the sedimentary basin we
consider. To complete the definition of the problem we recall the linear elasticity behavior for the skeleton.
This implies that the stress tensor σ, appearing in (5), is defined by σ(u) := 2µε(u) +λ∇·u , where µ and
λ are the Lamé coefficients and ε(u) is the symmetric gradient of the skeleton displacement. For further
details on poromechanical modeling, the interested reader is referred to e.g. [13, 16].
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For a well-posed problem we must complement the previous governing equations with appropriate
boundary and initial conditions. Concerning the initial condition, the following constraints u = 0 and
p = 0 are considered at the initial time t = t0. Let us label with Γ the top surface of the basin, while ∂Ωb

and ∂Ωl are the bottom and the lateral boundary of the domain Ω, as show in Figure 17. According to this
notation, we consider the following boundary conditions, p = 0 , σ(u) ·n = σice(t) on Γ(t), u = 0 ,∇p ·n =
0 on ∂Ωb(t) , u · n = 0 ,∇p · n = 0 on ∂Ωl(t), where n is the unit outward normal to the boundary and
σice(t) is the load resulting from the ice sheet on top of the basin. We further assume that the load relative
to the solid component of the ice sheet transfers only to the solid matrix of the basin, while the fluid phase
at the top surface is subject to the hydrostatic load.

3.4 Thermal effects

The heat transfer is modeled through the following advection diffusion equation

ρbcb
∂T

∂t
+ ρfcfvD · ∇T −∇ · (b∇T ) = qr , (7)

where T is the temperature field, ρf and cf are the fluid density and specific heat, respectively; ρb and
cb are the bulk density and the bulk specific heat defined as ρbcb = φρfcf + (1 − φ)ρscs with φ, ρs and
cs being the porosity, the solid density and specific heat capacity; vD is the Darcy velocity defined as
vD = −K∇p, b is the bulk thermal conductivity which is an average of the conductivity of the solid and the
fluid phase and finally qr is the heat source. Concerning the initial condition, we consider an homogeneous
temperature field, namely T = 0∀x ∈ Ω(t = t0). According to the nomenclature shown in Figure 17, we
consider the following boundary conditions,T = Tice(t) on Γ(t), ∇T ·n = 0 on ∂Ω(t) \ Γ(t), where n is the
unit outward normal to the boundary and Tice(t) is the basin top temperature. Following a widely used
approach in literature, see for example [17, 30], the presence of the ice on top of the basin is taken into
account by means of a variation of the top temperature of the basin (Tice(t)) during the glaciation cycle.

4 Results and discussion

4.1 Results of the glacial rebound model

The glacial rebound simulation addresses the deformation of the lithosphere of the whole Earth, based on
a viscoelastic model. The forcing term of such simulation is the load of the ice sheet under a glaciation
cycle.

The approach presented in this work is different from the one presented in the previously cited arti-
cles [35, 36, 52]. In these articles the authors describe a model for the deglaciation, the initial condition
of their model is a glaciated Earth, the authors take into account the presence of this load at the initial
condition defining a prestressed configuration. We rather simulate a full cycle of glaciation-deglaciation
process to avoid the definition of a prestressed configuration, in our model the initial condition considered
is a fully relaxed configuration, without enforced load.

In this case we consider a benchmark problem, where a circular sheet of radius R = 1111 Km (equivalent
to an angular sector of 10◦) centered at the North pole is formed and melt over a time window of 26 103

years, according to the variable thickness profile shown in Figure 2. More precisely, we assume that the
glaciation phase starts -26 103 years ago and ends at present. We split this time window in three uniform
intervals of 8.6 103 years each. In the first one we assume formation of the ice sheet up to a maximal
thickness of 4 Km. In the central phase, we assume that the ice is static, while in the last term we model ice
melting with a linearly decreasing profile of the ice thickness. The results of such simulation are reported
in Figure 3. In Figure 4 we show a zoom of the computational cells on the crust layer of the glacial
rebound simulations. The zoom is taken in correspondence of the computational cell used to calculate the
deformation gradient F . More precisely, the numerical calculation of the deformation gradient involves the
displacement field in the x, y and z direction at the nodal points of of the selected cell. The time history
of the displacement at these time points is shown in Figure 5. Even if the presented test is just a synthetic
example, the order of magnitude of the obtained vertical displacement is reasonable and in good agreement
with the results reported in [17,53].
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Figure 2: The evolution of the height of the ice sheet is shown on the left and the prescribed temperature
field on top on the basin is reported on the right.

Figure 3: The simulation of isostatic adjustment with visualization of the selection of the location where
the deformation tensor is extracted.

4.2 Results of the kriging algorithm for the geological basin model setup

An example of a simple reconstructed basin geometry is represented in Figure 6. These results are obtained
on a synthetic example which considers a domain of 50 by 20 km in planar dimension. The one-dimensional
simulations consider sediment deposition for a total period of time of 40 Ma. The sedimentation velocity
is assumed to be fixed in time and is assigned at each x, y location between a maximum value 90 m/Ma
(at the domain center) and and a minimum of 40 m/Ma (at the domain boundaries, i.e. at x = 0 and
x = 50 km). Interfaces between different layers are approximated in such a domain by applying ordinary
kriging starting from interface depths calculated at 20 locations randomly placed in the computational
domain. Four interfaces are considered in total, including the top and bottom surfaces. We assume that
two interface collapse on each other, i.e. the second and third interface correspond for x > 35 km. This
means that one of the layers is not found at locations x > 35 km, and that a layer pinch-out occurs.

Note that in the simulation approach presented in Section 3 the effects of chemical compaction pro-
cesses, such as quartz precipitation and smectite to illite transformation [19, 21, 45], are not explicitly
included. However, the effects of chemical processes are considered in the one-dimensional model employed
to approximate the interfaces [18, 41] at selected locations, and therefore are implicitly embedded in the
system geometry. The geometrical reconstruction of the sedimentary system obtained in this way can then
be further enriched by mapping mineral compositions, porosity, permeability or other properties which
may be available at selected location, e.g. through compositional kriging. These data are not considered
in the following for simplicity.
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Figure 4: A zoom of the computational cells on the crust layer of the glacial rebound simulations. The
magnitude of the vertical displacement is shown (meters). The black edges highlight the computational
cell used to calculate the deformation gradient F .

4.3 Results of the thermo-hydro-mechanical effects of glaciation

In this section we consider the application of the solver described in Section 3. As introduced in Section
3.3, the mechanical effect of the glaciation is taken into account by means of a variable load. This load
is related to the height of the ice accumulated on top of the basin and follows the curve shown in the left
part of Figure 2. Concerning the thermal problem, adiabatic conditions are considered at the bottom and
the lateral surfaces of the physical domain while a time-dependent temperature profile is imposed in the
top boundary of the basin. This profile models the thermal effect of the ice and it is shown in the right
panel of Figure 2.

The configuration of the basin simulated in this section and the physical parameters used to initialize the
THM model are reported in Figure 7. More precisely, to perform the three-dimensional THM simulation,
we consider a portion of the basin of 4 × 4Km size with an average depth of of 2.8Km located at the
x, y coordinates (32.5, 36.5)×(8, 12) km of the basin shown in Figure 6. The domain is split into three
layers (numbered as 1,2 and 3 from bottom to top, as shown in the left part of Figure 7) and one of them
is not continuous across the whole planar domain size resulting in a geological model with a pinch-out,
consistent with the data in Figure 6. The material properties of all the different components of the basin
are summarized in the right panel of Figure 7. We assume that the intermediate layer has a permeability
that is significantly higher than the other ones and we consider the evolution of the basin during a time
window of 26.000 years (26Ky) with a time step of 0.14Ky chosen to follow with enough detail glaciation
evolution.

In the example of this section, the surface erosion on top of the basin is active during the last 8.7 Ky of
the simulation. It is modeled as the prescribed evolution of the upper part of the sedimentary basin. More
precisely, we assume that during the last part of the simulation a certain amount of material is removed
from the upper part of the basin. As a consequence the top surface of the physical domain evolves from
S1 to S2, as shown in Figure 8. From the modeling standpoint, the motion of the top surface is described
by means of a the level set function, that is defined in terms of spatial coordinates x, y and time t,

ls(x, z, t) = −(−0.285x+ 1.6z + 12353) + 400(1 + a) , (8)

a = 0 if t < −8.7Ky , (9)

a =
t+ 8.7Ky

8.7ky
if t ≥ −8.7Ky . (10)

Finally, in the simulations presented in this section, we consider that the basin is exposed to a spatially

9



−200

−100

0

u
[m

]

0 10 20
t[Ky]

dx

dy

dz

Figure 5: We show the average displacement field over time in the x, y and z direction at the nodal points
of of the selected cell. Precisely, the light regions mark the minimum and the maximum displacement
sampled at the nodes of the selected computational cell.
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z 
(k

m
)

Figure 6: Kriging-based basin-scale reconstruction of layers interfaces

dependent heat source qr, determined by the heat flux from the mantle and by the internal radiogenic
thermal source. The combination of these factors is accounted as a volumetric thermal source of this form
qr(x) = qr(z) = q0f(z). Following [11], the baseline source q0 is determined by means of a heat balance
equation that distributes over the basin volume the heat flux coming form the bottom surface (i.e. the one
closer to the mantle) and the radiogenic source. Precisely, we set q0 = φS/V + qr,0 where φ is the surface
heat flux from the bottom surface, S, V is the basin volume and qr,0 is the baseline radiogenic source.
In this way we obtain q0 = 0.1µW/m3 . To account for the exponentially decreasing radioactivity with
depth, this source is evaluated as a function of the actual position of the domain according to the following
empirical formula q = q0e

−z/D where the parameter D = 5Km.
The kriging-based horizon reconstruction addressed before approximates the interface locations on a

user-defined spatially uniform grid (with uniform size equal to 0.5 km in our example), so that each interface
is represented by a point cloud. Such point clouds are used to generate the internal surfaces of the basin
as shown in the left panel of Figure 9. Then the boundaries of the horizons are used for the creation of
the lateral surfaces of the geological model as shown in the middle panel. These operations result in the
definition of a water tight geological model and are performed using the platform GOCAD. The geological
model is then used as the input of the mesh generator RINGMesh [34] that produces the 3D a labeled
computational grid shown in Figure 9, right panel.

For the analysis and the interpretation of the results we subdivide the simulation in three different
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Young Modulus E1 1011 Pa
E2 2 1010 Pa
E3 1010 Pa

Rock density ρs 2.2 103 Kg/m3

Rock permeability K1 10−18 m2

K2 10−12 m2

K3 10−16 m2

Thermal diffusivity b1 10−6 m2/s
b2 2 10−6 m2/s
b3 10−6 m2/s

Water density ρl 103 Kg/m3

Water viscosity µl 10−3 Pa s

Dimension l 4 103 m

Radiogenic source q 10−7 W/m3K

Figure 7: On the left we show a sketch of the physical domain, ot top of which is superposed a layer
visualizing the ice sheet. The labels 1, 2, 3 mark the different materials. On the right the list of materials
properties is reported.

t[Ky]-26 -17.4 -8.7

h ice[Km]

4

0
0

Erosion

Figure 8: The evolution of the top surface of the basin due to erosion form configuration S1 to S2 is shown
during the last part of the simulation, from −8.7 Ky to the present.

phases: phase A (formation of the ice sheet) from −26 to −17.4Ky where the ice is growing, phase B
(isostatic adjustment) from −17.4 to −8.7Ky where the ice load is steady and most of the isostatic motion
takes place and the phase C (erosion) from −8.7 to 0Ky where the ice on top of the basin vanishes
and the erosion takes place. A schematic of this temporal subdivision is reported in Figure 10. The
current configuration of the domain Ω(t), rotated according to the rigid motion coming from the isostatic
adjustment simulation at different time steps, is shown in Figure 16. The evolution of displacement and
pressure along the phases A, B and C of the simulation is shown in Figure 11.

In the first phase (A), the action of the ice load generates the mechanical compaction of the basin.
According to the Biot model the compaction leads to an increase in the pore pressure in the different layers
of the basin. This effect is more evident in the top layers, 2 and 3, while layer 1 is almost unperturbed,
because it is the most impermeable and it is subject to zero displacement conditions on the bottom surface.
Moreover, we notice that the pressure field in the pinch out layer (layer 2) is almost uniform and equal to
the value at the interface with the upper layer (layer 3). This effect is due to the fact that layer 2 is the
most permeable. According to the Darcy law, this is the region where the smallest pressure gradients are
observed.

In the second phase (B) we can observe the effect of the isostatic adjustment. The interaction between
the isostatic motion end the poromechanical problem is illustrated in Figures 11 and 12, where we show at
tB = −13Ky the pressure field in an internal slice of the domain, together with the displacement direction
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Figure 9: A sketch of the pipeline to build the geological model and the mesh. On the left we show the
point cloud and corresponding reconstruction of the horizons. In the middle we show the lateral surfaces
together with the internal horizon. On the right we report the final Computational grid of the geological
model.

phase A phase B phase C

-26Ky -17.4Ky -8.7Ky 0Ky

tA = −21.7Ky tB = −13Ky tC = −4.3Ky

hice

Ttop
erosion

Figure 10: Timeline of the simulation. On the top we show the height of the ice, on the bottom temperature
profile (red) and the thickness of the eroded material (green).

inside layer 3. We observe that the imposed rotation generates a tangential component of the load applied
on the top of layer 3, namely σicen · t 6= 0. This effect, combined with the boundary conditions enforcing
zero normal displacement on the lateral surfaces of the basin, generates a mechanical compression effect
along the tangential direction of the top and bottom surface planes of layer 3. Because of the poromechanic
coupling, this tangent stress induces the pressure peak observed at the left corner of the basin. Furthermore,
in the right part of Figure 12, an internal slice along the xz plane is shown. From this view, the transition
from layer 1 to layer 2 (at the pinch out) is visible. In this visualization, the effect of the permeability
jump can be appreciated. More precisely, the pressure increases only along the interface between layers 1
and 3, while the pressure gradients are significantly smeared out along the contact line with layer 2 as a
consequence of the high permeability of it. Finally, we notice that these effects are difficult to appreciate
in the bottom layer, where the high young modulus limits the displacement field and the low permeability
almost blocks the diffusion of the pressure peak occurring in the top layer.

To appreciate the impact of taking into account the isostatic response, we compare the pressure field
in the top layer with the one obtained through a different numerical experiment in which we neglect the
isostatic adjustment and the erosion. In the second scenario the basin model is completely static. In such
case, because the load on top of the basin is constant, the general temporal trend of the pressure is to
progressively reach a steady state in all the layers of the basin according to the characteristic temporal
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Rigid motion

Displacement

Pressure

tA tB tC

Figure 11: Evolution of the isostatic adjustment, the displacement and the pressure fields along the different
phases of the simulation. In particular, we show on the top we show an the imposed rigid motion. The
displacement (middle row) and the pressure fields (the variation from the hydrostatic pressure profile is
shown, bottom row) are reported at times tA = −21.7ky tB = −13Ky and tC = −4.3Ky, from left to
right.

scale determined by the different permeability values.
The comparative study of the two scenarios described above is reported in Figure 13. In this Figure

we compare the pressure field along two transversal lines r1 and r2, obtained switching on (first scenario,
solid line) and off (second scenario, dashed line) the isostatic motion of the basin. As previously observed
in the central panel of Figure 11, we notice that in the first scenario the pressure reaches a peak in the left
corner of the layer 3 (as also illustrated in Figure 13). Such peak is not present in the second scenario,
where we neglect the isostatic movement of the basin, as we can see from Figure 13 (dotted line). From
that comparison we notice that limited spatial variations of the pressure are generate without taking into
account the rigid motion of the basin, Conversely, the introduction of the isostatic rebound significantly
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Figure 12: Front (on the left) and lateral (on the right) view of the basin. The color marks the pressure
field, the arrows shows the direction of the solid displacement (in the interior and on the boundary of the
domain, that is u ·n = 0) and the black lines show the direction of gravity. The configuration of the basin
layers is also shown, to facilitate the interpretation of the results.

increases the pressure variability, generating local peaks that depend on the morphology of the basin.
Then, we conclude that the motion due to the isostatic adjustment simulation is the primary reason of the
overpressure generation.

We now focus on the final phase (namely phase C) when the ice sheet is disappearing from the top of
the basin and the erosion takes place. In this phase the mechanical load due to the ice weight goes to zero.
The reduction of mechanical compaction is also augmented by the erosion of the top part of the basin. The
combination of these effects leads to a general decrease of the pore pressure in all layers, as shown in the
right panel of Figure 11, right column. More precisely, the lowest values of pressure (in terms of variations
from the hydrostatic load) are located in the softest layer.

Concerning the temperature field, the model is initiated with a temperature field at thermal equilibrium
and it evolves according to the (time dependent) heat equation under the action of a space dependent heat
source. To analyze and validate the simulation of the thermal field we address two indicators: the overall
thermal gradient from the top to the bottom of the basin and the temporal variations of the temperature
from the steady state. Concerning the vertical temperature gradient, we observe from Figure 14 that a
difference of 60 degC along the vertical axis is established as a consequence of thermal balance between
the thermal source and the imposed temperature at the top of the basin. This results is in good agreement
with the thermal gradients expected in literature, see for example [11, 20] for thermal properties and, in
particular [11] for expected temperature profiles. For a more detailed analysis of the thermal variations
from the initial equilibrium state, we report, in Figure 15, difference of the temperature field at time
tA = −21.7ky tB = −13Ky from the one at t0 = −26Ky. We notice that at tA and tB, the main
temperature variations are driven by the increase of surface temperature from −10 degC to 0 degC at the
top of the basin, due to the protective effect of the ice cap, that is progressively forming in this phase.
Comparing more in detail the profiles at tA and tB, we observe that at time tB the temperature in the
central part of the basin has slightly increased with respect to the one at tA, by the effect of the thermal
source . The profile at tC differs significantly form the others, because of the erosion, active in the time
interval from tB to tC . During erosion, the reference temperature of 0 degC enforced at the contact
interface with the ice, progressively shifts downwards, swiping a region of the basin that was previously
hotter than 0 degC. For this reason, the temperature in the basin after erosion significantly decreases
with respect to the initial time. Finally, in Figure 16 we report the variation of the total thermal source
term, relative to the initial state, that is the spatial integral during the evolution of the domain Ω(t) of
the heat source

∫
Ω(t) q(x)dω/

∫
Ω(t0) q(x)dω. These data suggest that variation of the basin volume due to

erosion decreases the thermal source more significantly than the progressive increase of basin depth due to
isostasy.

The analysis of the thermal field confirms that, in the short time window of one cycle of glaciation, the
surface temperature, possibly modulated by erosion, is the main diving factor that determines temperature
variations from the equilibrium state. This finding is in accordance with the detailed analysis of the effects
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Figure 13: Pressure field on the lateral (on top) and front (on the bottom) lines r1 and r2, respectively.
Solid (Piso) and dashed line (Pno−iso) mark the results obtained considering and neglecting the effect of
erosion and of the isostasy movements, respectively.

of glaciations on sedimentary basins provided in [17]. It should also be observed that using a time dependent
heat equation correctly models the natural inertia of the basin to change its equilibrium state. As a result,
it is expected that the repetition of many glaciation cycles is required to significantly cool down the entire
basin.

5 Conclusions

We have developed a fully coupled multiphysics and multiscale description of the evolution of a sedimentary
basin under the effect of a glaciation cycle. To the best of our knowledge, thermo-hydro-mechanical
effects are combined with isostatic adjustment and erosion within a fully time dependent three-dimensional
simulation for the first time. Although the geological model that has been considered does not represent yet
the complexity of a real sedimentary basin, we have described a pipeline of steps that could handle the most
complex cases as well, thanks to a multiscale approach that decouples phenomena occurring at very different
space and time scales. For example, our methodology establishes a quantitative framework to transfer
information from the definition of a large scale geological architecture to local fluid displacement and
deformation dynamics. Preliminary numerical results suggest that the combination of all these phenomena
reveals the emergence of effects that were not expected or predictable using simpler approaches. In the
considered synthetic test case we have quantified the effects of large scale isostatic displacement on local
pressure and displacement field, in the presence of layer a pinch-out. Moreover, our results demonstrate
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Figure 14: Comparison of the initial (t = −26Ky on the left) and final (t = 0Ky on the right) temperature
fields. It is observed, at the depth of 4Km, temperature gradient of approximately 60 degC as qualitatively
expected in [11].

tA tB tC

Figure 15: The difference of the temperature field at time tA = −21.7ky tB = −13Ky and tC = −4.3Ky
from that at t0 = −26Ky is shown from left to right.

the effect of erosion on the temperature dynamics of the sedimentary system. We believe that our results
show the predictive potential of this holistic description of sedimentary basins subject to glaciations.

A The numerical solver for the isostatic glacial rebound model

The numerical solver for the glacial isostatic adjustment is implemented using the deal.II library [1, 3].
This library provides the tools for an efficient implementation of a parallel solver based on the Discontin-
uous Galerkin method. Let Th be a subdivision of the geometric domain Ω consisting of non-overlapping
hexahedra with characteristic mesh size h, we introduce the finite dimensional spaces

Vk
h = {v ∈ L2(Ω;R3) : v|K ∈ Pk(K;R3) ∀K ∈ Th},

Qkh = {q ∈ L2(Ω) : q|K ∈ Pk(K) ∀K ∈ Th}.

Let Eh =
⋃
K∈Th ∂K denote the set of the faces of Th then E0

h = Eh\∂Ω is the set of internal faces. Let

e ∈ E0
h be a face shared by two elements K+ and K−, define the unit normal vector n+ and n− on the e

pointing exterior to K+ and K−, respectively. With φ± = φ|K± we set the average operators as

{v} =
v+ + v−

2
{q} =

q+ + q−

2
,

together with the jump operators:

JvK = v+ ⊗ n+ + v− ⊗ n− JqK = q+n+ + q−n−.
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Figure 16: Time variation of the relative total thermal source (qr) during the evolution of the domain
because of isostasy and erosion.

Equation (4) is discretized using the standard SIPG method [2]: find φh ∈ Qkh such that∫
Ω
∇hφh · ∇hψh + 4πGρψh dx+

+

∫
E0
h

γJφhK · JψhK− {∇hφh} · JψhK− JφhK{∇hψh} ds+ B.C. = 0 ∀ψh ∈ Qkh.

Where B.C. is the term related to the boundary conditions and γ is a proper penalization factor. The
algebraic system obtained from this weak formulation is solved using the standard conjugate gradient
method preconditioned with a geometric multigrid method, available in deal.II library [25].

The Equations (3) are discretized using a standard second order accurate, one-step and unconditionally
stable scheme [43] and the integral is approximated using the mid-point formula. Using this approach the
equations describing the motion of the viscoelastic Earth model can be rewritten in semi-discrete form
using only the variables u, p and h:

∇ ·
(

2µe−
∆tn
2τ e(un − un−1)− pnI + e−

∆tn
τ hn−1

)
+ ρ(∇xg)un = 0 in Ω,

∇ · un +
3

2µ

1− 2ν

1 + ν
pn = 0 in Ω,

hn = 2µe−
∆tn
2τ e(un − un−1) + e−

∆tn
τ hn−1 in Ω.

The first two equations of this system have the same structure of the linear elastic problem and they are
discretized using the Discontinuous Galerkin scheme. In order to keep the notation simpler the shear

modulus will be redefined as µ̂n = µe−
∆tn
2τ and all the known terms in the first equation are written as a

unique term Fn:

Fn = ∇ ·
(

2µ̂ne(un−1)− e−∆tn
τ hn−1

)
.

These equations can be rewritten in a full discrete form using the standard SIPG-method for the linear
elasticity [40]: find (uh,n, ph,n) ∈ Vk+1

h ×Qkh such that
a(uh,n,vh) + b(vh, ph,n) =

∫
Ω
Fn · vh dx + B.C. ∀vh ∈ Vk+1

h ,

b(uh,n, qh)− c(ph,n, qh) = B.C. ∀qh ∈ Qkh.
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Where the bilinear forms are defined by

a(uh,vh) =

∫
Ω

2µ̂ne(uh) : e(vh) + ρ(∇xg)uh · vh dx+

+

∫
E0
h

γJuhK : JvhK− {2µ̂ne(uh)} : JvhK− JuhK : {2µ̂ne(vh)} ds,

b(uh, qh) = −
∫

Ω
∇ · uhqh dx +

∫
E0
h

JuhK : {qhI} ds,

c(ph, qh) =

∫
Ω

3

2µ

1− 2ν

1 + ν
phqh dx,

The terms B.C. are related to the boundary conditions and γ is a proper penalization factor. This problem
is equivalent to the algebraic block structured linear system2µ̂nA BT

B − 3

2µ

1− 2ν

1 + ν
C

[Un
Pn

]
=

[
Fn
Gn

]

This system is solved using the GMRES method and it is preconditioned with the block-triangular pre-
conditioner

P =

2µ̂nÂ −BT

0
3

2µ
M


Where Â is the matrix associated to the Discontinuous Galerkin approximation of the vector-valued Laplace
operator in Vk+1

h and M is the mass matrix in Qkh. The implementation of P−1 requires the computation

of the inverse matrix for Â and M . The mass matrix M can be inverted easily, because a proper choice
of the base functions for the space Qkh and the quadrature rule to evaluate the integral leads to a diagonal

mass matrix. The inverse of matrix Â is replaced with a geometric multigrid preconditioner [10].
Even if the numerical solver is general with respect to the polynomial order k, the results presented in

this work are obtained using quadratic polynomials for the gravity potential field (in order to evaluate the
gradient of gravity acceleration) and the stable pair of spaces V2

h × Q1
h is used for the displacement and

the pressure unknowns in the viscoelastic problem.

B The numerical solver for the THM model

The surface erosion on top of the basin is taken into account as a prescribed evolution of the upper part of
the sedimentary basin. To model erosion, we use the cut finite element method, briefly CutFEM, in which
the boundary of the physical domain is represented on a background grid using a level set function see
for example [9]. This approach requires that the computational domain must embed all possible eroded
configurations. As a consequence, we immerse the physical domain that describes the basin Ω(t), into a
larger computational domain Ω(t)∪Ωout as shown in Figure 17. The background or computational grid is
also used to approximate the solution of the governing problem. We ideally divide the computational grid
into three regions, Ω(t), Ωout and Γ, where the level set is lower, grater and equal to zero, respectively; Ω(t)
is the physical domain where the poromechanical problem is solved; Ωout is a dummy zone that does not
affect the solution, while Γ is the top surface of the basin where the top boundary conditions are enforced.

Since Equations (5) - (7) are solved numerically, we briefly introduce the corresponding finite element
discretization, which is based on the weak formulation of the problem.

Let Th := {K} denote a triangulation of ΩT = Ω(t) ∪ Ωout that does not necessarily conform to the
surface Γ and let us introduce the discrete spaces

Vh := {vh ∈ H1(ΩT ,R3) : vh|T ∈ P1(K,R3), ∀K ∈ Th} ,
Qh := {qh ∈ H1(ΩT ) : qh|T ∈ P1(K),∀K ∈ Th} ,
Wh := {wh ∈ H1(ΩT ) : wh|T ∈ P1(K),∀K ∈ Th} ,
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Figure 17: On the left we show the physical domain. On the right the physical domain (gray) is embedded
in a larger computational domain (Ω ∪ Ωout). Γ marks the top surface of the basin.

Figure 18: A schematic of the complete algorithm for the solution of the thermal poro mechanical problem.
Matrices Bu, Bp, BT correspond to the discretization of equations (11)a, b, c respectively.

where P1 denotes the space of scalar piecewise linear polynomials on Th. We introduce the following
bilinear forms:a(u,v) := 2

∫
Ω(t) µε(u) : ε(v)dΩ +

∫
Ω(t) λ(∇·u)(∇·v)dΩ and c(p, q,K) :=

∫
Ωin

K∇p ·∇qdΩ.

Let us also introduce the operators Dp(p, q,u) = 1/M(p, q) + α(∇ · u, q) , DT (T,w,v) = ρbcb (T,w) +
ρfcf (v · ∇T,w) and Θ〈p, q〉KΓ = −

∫
ΓK∇p · nqdΓ + γh−1

∫
Γ pqdΓ −

∫
ΓK∇q · npdΓ, where (·, ·) is the

standard inner product in the space L2(Ω(t)), h is the characteristic size of the quasi-uniform computational
mesh and γ > 0 denotes a penalization parameter. For the imposition of the pressure and temperature
boundary conditions on the internal unfitted interface Γ, we rely to the Nitsche’s method following the
approaches proposed in [8, 23, 24, 27]. This technique allows to weakly enforce interface conditions at the
discrete level by adding to the variational formulation of the problem appropriate penalization terms (γ).
Finally, considering a backward-Euler time discretization scheme, the fully discretized problem at time tn,
n = 1, 2, ..., N can be written as follows: find (uh, ph, Th) ∈ Vh ×Qh ×Wh such that:

a(unh,vh)− α(pnh,∇ · vh) = (f ,vh) ∀vh ∈ Vh ,

Dp(p
n
h, qh,u

n
h) + τΛ(pnh, qh,K) = Dp(p

n−1
h , qh,u

n
h) ∀qh ∈ Qh ,

DT (Tnh , wh,v
n
D,h) + τΛ(Tnh , wh, b) = DT (Tn−1

h , wh,0) + (qnr , wh) ∀wh ∈Wh .

(11)
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where Λ(p, q, k) = c(p, q,K) +Θ〈p, q〉KΓ and τ is the computational time step.
The solution of equations (11) is not trivial. We decouple the solution of poromechanical problem (i.e.

the first two equations of (11)) from the solution of the thermal problem (last equation of (11)). However the
solution of the poromechanical problem is still challenging due to the tight coupling between deformation
and flow. To solve such problem we adopt the fixed stress iterative scheme as proposed in [7, 29]. This
algorithm is a sequential procedure where the flow is solved first followed by the solution of the mechanical
problem. In particular, in every time steps, the algorithm is iterated until the solution converges within an
acceptable tolerance. In the first step the fixed stress algorithm, given (un,kh , pn,kh ) ∈ Vr

h ×Qsh we evaluate

pn,k+1
h ∈ Qsh where ·k is the index of the fixed stress iteration. In the second step, given the new pressure

pn,k+1
h ∈ Qsh we find the new un,k+1

h ∈ Vr
h. The iterative steps are performed until the following convergence

criterion is fulfilled
pn,k+1
h − pn,kh

pn,0h
< ηp,

un,k+1
h − un,kh

un,0h
< ηu, (12)

where ηp and ηu are the desired tolerances (here chose equal to 10−7). A schematic of the complete
algorithm for the solution of the thermal poro mechanical problem in a compact form is shown in Figure
18. For further details about the performance of this method we remand to [12].
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