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Abstract:

LifeV is a library for the finite element (FE) solution of partial differential equations in one, two,
and three dimensions. It is written in C++ and designed to run on diverse parallel architectures,
including cloud and high performance computing facilities. In spite of its academic research
nature, meaning a library for the development and testing of new methods, one distinguishing
feature of LifeV is its use on real world problems and it is intended to provide a tool for many
engineering applications. It has been actually used in computational hemodynamics, including
cardiac mechanics and fluid-structure interaction problems, in porous media, ice sheets dynamics
for both forward and inverse problems. In this paper we give a short overview of the features of
LifeV and its coding paradigms on simple problems. The main focus is on the parallel environment
which is mainly driven by domain decomposition methods and based on external libraries such
as MPI, the Trilinos project, HDF5 and ParMetis.

Dedicated to the memory of Fausto Saleri.

1 Introduction

LifeV1 is a parallel library written in C++ for the approximation of Partial Differential Equations
(PDEs) by the finite element method in one, two and three dimensions. The project started in
1999/2000 as a collaboration between the modeling and scientific computing group (CMCS) at
EPFL Lausanne and the MOX laboratory at Politecnico di Milano. Later the REO and ESTIME
groups at INRIA joined the project. In 2006 the library has been progressively parallelized using
MPI with the Trilinos library suite as back-end interface. In 2008 the Scientific Computing group

∗Corresponding author, simone.deparis@epfl.ch
1Pronounced “life five”, the name stands for Library for Finite Elements, 5th edition as V is the Roman notation for

the number 5
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at Emory University joined the LifeV consortium. Since then, the number of active developers has
fluctuated between 20 and 40 people, mainly PhD students and researchers from the laboratories
within the LifeV consortium.

LifeV is open source and currently distributed under the LGPL license on github2, and migration
to BSD License is currently under consideration. The developers page is hosted by a Redmine
system at http://www.lifev.org. LifeV has two specific aims: (i) it provides tools for developing
and testing novel numerical methods for single and multi-physics problems, and (ii) it provides
a platform for simulations of engineering and, more generally, real world problems. In addition
to “basic” Finite Elements tools, LifeV also provides data structures and algorithms tailored for
specific applications in a variety of fields, including fluid and structure dynamics, heat transfer,
and transport in porous media, to mention a few. It has already been used in medical and indus-
trial contexts, particularly for cardiovascular simulations, including fluid mechanics, geometrical
multiscale modeling of the vascular system, cardiac electro-mechanics and its coupling with the
blood flow. When in 2006 we decided to introduce parallelism, the choice has turned towards
available open-source tools: MPI (mpich or openmpi implementations), ParMETIS, and the Epe-
tra, AztecOO, IFPACK, ML, Belos, and Zoltan packages distributed within Trilinos Heroux et al.
[2005].

LifeV has benefited from the contribution of many PhD students, almost all of them working on
project financed by public funds. We provide a list of supporting agencies hereafter.

In this review article we explain the parallel design of the library and provide two examples
of how to solve PDEs using LifeV. Section 2 is devoted to a description of how parallelism is
handled in the library while in Section 3 we discuss the distinguishing features and coding
paradigms of the library. In Section 4 we illustrate how to use LifeV to approximate PDEs by
the finite element method, using a simple Poisson problem as an example. In Section 5 we show
how to approximate unsteady Navier–Stokes equations and provide convergence, scalability, and
timings. We conclude by pointing to some applications of LifeV.

Before we detail technical issues, let us briefly address the natural question when approaching
this software, namely yet another finite element library?

No question that the research and the commercial arenas offer a huge variety of finite element
libraries (or, in general, numerical solvers for partial differential equations) to meet diverse
expectations in different fields of engineering sciences. LifeV is - strictly speaking - no exception.

Since the beginning, LifeV was intended to address two needs: (i) a permanent playground for new
methodologies in computational mechanics; (ii) a translational tool to shorten the time-to-market of new
successful methodologies to real engineering problems. Also, over the years, we organized portions of
the library to be used for teaching purposes. It was used as a sort of gray box tool for instance
in Continuing Education initiatives at the Politecnico di Milano, or in undergraduate courses
at Emory University (MATH352: Partial Differential Equations in Action) - see Formaggia et al.
[2012].

As such, LifeV incorporated since the beginning the most advanced methodological developments
on topics of interest for the different groups involved. In fact, state-of-the-art methodologies have
been rapidly implemented, particularly in incompressible computational fluid dynamics, to be
tested on problems of real interest, so to quickly assess the real performances of new ideas and
their practical impact. On the other hand, advanced implementation paradigms and efficient
parallelization were prioritized, as we will describe in the paper.

When a code is developed with a strong research orientation, the working force is mainly pro-
vided by young and junior scholars on specific projects. This has required a huge coordination
effort, in each group and overall. Stratification of different ideas evolving has sometimes made
the crystallization of portions of the code quite troublesome, also for the diverse background

2https://github.com/lifev, install instructions at https://bitbucket.org/lifev-dev/lifev-release/wiki/
lifev-ubuntu
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of the developers. Notwithstanding this, the stimulus of the applications has promoted the de-
velopment of truly advanced methods for the solution of specific problems. In particular, the
vast majority of the stimuli were provided by computational hemodynamics, as all the groups
involved worked in this field with a strict connection to medical and healthcare institutions. The
result is a library extremely advanced regarding performances and with a sort of unique deep
treatment of a specific class of problems. Beyond the overall approach to the numerical solution
of the incompressible Navier-Stokes equations (with either monolithic or algebraic partitioning
schemes), fluid-structure interaction problems, patient-specific image based modeling, defective
boundary conditions and geometrical multiscale modeling have been implemented and tested in
LifeV in an extremely competitive and unique way. The validation and benchmarking on real
applications, as witnessed by several publications out of the traditional field of computational
mechanics, makes it a reliable and efficient tool for modern engineering. So, it is another finite
element library yet with peculiarities that make it a significant - somehow unique - example of
modern scientific computing tools

1.1 Financial support

LifeV has been supported by the 6th European Framework Programme (Haemodel Project, 2000-
2005, PI: A. Quarteroni), the 7th European Framework Programme (VPH2 Project, 2008-2011,
ERC Advanced Grant MATHCARD 2009-2014, PI: A. Quarteroni), the Italian MIUR (PRIN2007,
PRIN2009 and PRIN12 projects, PI: A. Quarteroni and L. Formaggia), the Swiss National Science
Foundation (several projects, from 1999 to 2017, 59230, 61862, 65110, 100637, 117587, 125444,
122136, 122166, 141034, PI: A. Quarteroni), the Swiss supercomputing initiatives HP2C and PASC
(PI: A. Quarteroni), the Fondazione Politecnico di Milano with Siemens Italy (Aneurisk Project,
2005-2008, PI: A. Veneziani), the Brain Aneurysm Foundation (Excellence in Brain Aneurysm
Research, 2010, PI: A. Veneziani), Emory University Research Committee Projects (2007, 2010,
2015, PI: A. Veneziani), ABBOTT Resorb Project (2014-2017, PI: H. Samady, D. Giddens, A.
Veneziani), the National Science Foundation (NSF DMS 1419060, 2014-2017, PI: A. Veneziani,
NSF DMS 1412963, 2014-2017, PI: A. Veneziani, NSF DMS 1620406, 2016-2018, PI: A. Veneziani),
iCardioCloud Project (2013-2016, PI: F. Auricchio, A. Reali, A. Veneziani), the Lead beneficiary
programm (Swiss SNF and German DFG, 140184, 2012-2015, PI: A. Klawonn, A. Quarteroni, J.
Schröder), and the French National Research Agency. Some private companies also collaborated
to both the support and the development, in particular MOXOFF SpA (2012-2104) exploited the
geometric multiscale paradigm for the simulation of an industrial packaging system and and Eni
SpA (2011-2014) contributed to the development of the Darcy solver and extended FE capabilities,
as well as the use of the library for the simulation the evolution of sedimentary basins Cervone
et al. [2012].

1.2 Main Contributors

The initial core of developers was the group of A. Quarteroni at MOX, Politecnico di Milano,
Italy and at the Department of Mathematics, EPFL, Lausanne, Switzerland from an initiative of
L. Formaggia, J.F. Gerbeau, F. Saleri and A. Veneziani. The group of J.F. Gerbau at the INRIA,
Rocquencourt, France gave significant contributions from 2000 through 2009 (in particular with M.
Fernandez and, later, M. Kern). The important contribution of C. Prud’homme and G. Fourestey
during their stays at EPFL and of D. Di Pietro at University of Bergamo are acknowledged too. S.
Deparis has been the coordinator of the LifeV consortium since 2007.

Here, we limit to summarize the list of main contributors who actively developed the library in
the last five years. We group the names by affiliation. As some of the authors moved over the
years to different institutions, they may be listed with multiple affiliations hereafter.

[D. Baroli, A. Cervone, M. Del Pra, N. Fadel, E. Faggiano, L. Formaggia, A. Fumagalli, G. Iori,
R.M. Lancellotti, A. Melani, S. Palamara, S. Pezzuto, S. Zonca]3. [L. Barbarotta, C. Colciago, P.

3MOX, Politecnico di Milano IT
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Crosetto, S. Deparis, D. Forti, G. Fourestey, G. Grandperrin, T. Lassila, C. Malossi, R. Popescu, S.
Quinodoz, S. Rossi, R. Ruiz Baier, P. Tricerri]4, M. Kern5, [S. Guzzetti, L. Mirabella, T. Passerini, A.
Veneziani]3,6, U. Villa6, L. Bertagna6, 7,8, M. Perego3,6,7,8, A. Quaini9,6, H. Yang6,7, A. Lefieux10,6.

Abbreviations : Algebraic Additive Schwarz (AAS), FE (Finite Elements), FEM (Finite Element
Method), DoF (Degree(s) of Freedom), OO (Object Oriented), PCG (Preconditioned Conjugate
Gradient), PGMRes (Preconditioned Generalized Minimal Residual), ML (Multi Level), DD (Do-
main Decomposition), MPI (Message Passing Interface), ET (Expression Template), HDF (Hierar-
chical Data Format), HPC (High Perfromance Computing), CSR (Compact Sparse Row)

2 The Parallel Framework

The library can be used for the approximation of PDEs in one dimension, two dimensions, and
three dimensions. Although it can be used in serial mode (i.e., with one processor), parallelism is
crucial when solving three dimensional problems. To better underline the ability of LifeV to tackle
large problems, in this review we focus on PDEs discretized on unstructured linear tetrahedral
meshes, although we point out that LifeV also supports hexahedral meshes as well as quadratic
meshes.

Parallelism in LifeV is achieved by domain decomposition (DD) strategies, although it is not
mandatory to use DD preconditioners for the solution of sparse linear systems. In a typical
simulation, the main steps involved in the parallel solution of the finite element problem using
LifeV are the following:

1. All the MPI processes load the same (not partitioned) mesh.

2. The mesh is partitioned in parallel using ParMETIS or Zoltan. At the end each process
keeps only its own local partition.

3. The DoFs are distributed according to the mesh partitions. By looping on the local partition,
a list of local DoF in global numbering is built.

4. The FE matrices and vectors are distributed according to the DoFs list. In particular, the
matrices are stored in row format, for which whole rows are assigned to the process owning
the associated DoF.

5. Each process assembles its local contribution to the matrices and vectors. Successively,
global communication consolidates contributions on shared nodes (at the interface of two
subdomains).

6. The linear system is solved using an iterative solver, typically either a Preconditioned
Conjugate Gradient (PCG) when possible or a Preconditioned GMRes (PGMRes). The
preconditioner runs in parallel. Ideally, the number of preconditioned iterations should be
independent of the number of processes used.

7. The solution is downloaded to mass storage in parallel using HDF5 for post-processing
purposes (see Sect. 2.4).

The aforementioned steps are explained in detail in the next subsections.

4CMCS, EPFL Lausanne, CH
5INRIA, Rocquencourt, FR
6Dept. Math & CS, Emory Univ, Atlanta GA USA
7 Department of Scientific Computing, Florida State University, Tallahassee, FL USA
8Sandia National Lab, Albuquerque, NM USA
9Department of Mathematics, University of Houston, TX USA

10Department of Civil Engineering and Structures, University of Pavia, IT
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2.1 Mesh partitioning: ParMETIS and Zoltan

As mentioned above, LifeV achieves parallelism by partitioning the mesh among the available
processes. Typically, this is done “online”: the entire mesh is loaded by all the processes but
it is deleted after the partitioning phase, so that each process keeps only the part required for
the solution of the local problem and to define inter-process communications. As the mesh size
increases, the “online” procedure may become problematic. Therefore for large meshes it is
possible, and sometimes necessary, to partition the mesh offline on a workstation with sufficient
memory Popescu [2013]. It is also possible to include an halo of ghost elements such that the
partitions overlap by one or more layers of elements (see e.g. Guzzetti et al. [2015]). This may be
relevant for schemes that require a large stencil. To perform the partition, LifeV can interface with
two third party libraries: ParMetis and Zoltan Karypis and Kumar [1998], Devine et al. [2002].

2.2 Distributed arrays: Epetra

The sparse matrix class used in LifeV is a wrapper to the Epetra matrix container Epetra_FECrsMatrix
and, similarly, the vector type is a wrapper to Epetra_FEVector, both provided by the Epetra Her-
oux [2009] package of Trilinos. The distribution of the unknowns is determined automatically by
the partitioned mesh: with a loop over each element of the local mesh we create the list of DoF
managed by the current processor. This procedure in fact creates a repeated map, i.e., an instance
of an Epetra_Map with some entries referring to the DoF associated with geometric entities lying
on the interface between two (or more) subdomains. Then, a unique map is created, in such a
way that, among all the owners of a repeated DoF, only one will also own it in the unique map.
The unique map is used for the vectors and matrices to be used in the linear algebra routines as
well as for the solution vector. The repeated map is used to access information stored on other
processors, which is usually necessary only in the assembly and post-processing phases.

The assembly of the FE matrices is typically performed by looping on the local elements Ern and
Guermond [2006], Formaggia et al. [2012]. To reduce latency time, the loops on each subdomain
are performed in parallel, without need of any communication during the loop. Just a single
communication phase takes place once all processes have assembled their local contribution, to
complete the assembly for interface dofs.

Efficiency and stability may be improved by two further available operations, (i) precomputing
the matrix graph; (ii) using overlapping meshes. The former demands for the creation at the
beginning of the simulation of an Epetra_Graph, associated to the matrix. Since it depends on the
problem at hand and the chosen finite elements, its computation needs a loop on all the elements.
This is coded by Expression Templates (ET), see Sect. 3.2, using the same call sequence as for the
matrix assembly. The latter further reduces communications by allowing all processes to compute
the local finite element matrix also on all elements sharing a DoF on the interface. As a result,
each process can independently compute all the entries of matrices and vectors pertaining to the
DoF it owns at the price of some extra computation. Yet, the little overhead is justified by the
complete elimination of the post-assembly communication costs.

2.3 Parallel preconditioners

The solution of linear systems in LifeV relies on the Trilinos Heroux et al. [2005] packages AztecOO
and Belos Bavier et al. [2012], which provide an extensive choice of iterative or direct solvers.
LifeV provides a common interface to both of them.

The proper use of ParMETIS and Zoltan for the partitioning, and of Epetra matrices and vectors for
the linear algebra, ensures that matrix-vector multiplication and vector operations are properly
parallelized, i.e., they scale well with the number of processes used, and communications are
optimized. In this situation the parallel scalability of iterative solvers like PCG or PGMRES
depends essentially on the properties of the preconditioner.

c© by the authors, 2011 Archive of Numerical Software 1(S1), 2011
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The choice of preconditioner is thus critical. In our experience it may follow two directions:
(i) parallel preconditioners for the generic linear systems, like single or multilevel overlapping
Schwarz preconditioners, or multigrid preconditioners, that are generally well suited for highly
coercive elliptic problems, or incomplete factorization (ILU), which are generally well suited for
advection-dominated elliptic problems; (ii) problem specific preconditioners, typically required
for multifield or multiphysics problem. These preconditioners exploits specific features of the
problem at hand to recast the solution to standard problems that can be eventually solved with
the generic strategies in (i). Preconditioners of this class are, e.g., the SIMPLE, the Least Square
Commutator, the Caouet-Chabard and the Yosida preconditioners for the incompressible Navier-
Stokes equations Patankar and Spalding [1972], Elman et al. [2014], Cahouet and Chabard [1988],
Veneziani [2003] or the Monodomain preconditioner for the Bidomain problem in electrocardiol-
ogy Gerardo-Giorda et al. [2009].

In LifeV preconditioners for elliptic problems are indeed an interface to the Trilinos package
IFPACK Sala and Heroux [2005], which is a suite of algebraic preconditioners based on incomplete
factorization, and to ML Gee et al. [2006] or MueLu Prokopenko et al. [2014], which are two Trilinos
packages for multi-level preconditioning based on algebraic multigrid. Typically we use IFPACK
to define algebraic overlapping Schwarz preconditioners with exact or inexact LU factorization
of the restricted matrix. The preconditioner P in this case can be formally written as

P−1 =

n∑
i=1

RT
i A−1

i Ri, where Ai = RiA−1RT
i , (1)

where A is the finite element matrix related to the PDE approximation, n is the number of partitions
(or subdomains) Ωi, Ri is the restriction operator to Ωi and RT

i the extension operator from Ωi to
the whole domain Ω. Ai is inverted many times during the iterations of PCG or PGMRES, which
is why it is factorised by LU or ILU. In LifeV, the choice of the factorization is left to the user.

Similarly, it is possible to use multilevel preconditioners via the ML Gee et al. [2006] or MueLu Prokopenko
et al. [2014], Hu et al. [2014] packages. They work at the algebraic level too and the coarsening
and extension are done either automatically, or by user defined strategies, based on the parallel
distribution of the matrix and its graph. The current distribution of LifeV does not offer the last
option, but the interested developer could add this extra functionality with relatively little effort.

2.4 Parallel I/O with HDF5

When dealing with large meshes and large number of processes, input/output access to files
on disk deserves particular care. A prerequisite is that the filesystem of the supercomputing
architecture being used provides the necessary access speed in parallel. However this is not
enough. MPI itself offers parallel I/O capabilities, for which HDF5 is one of the existing front-
ends The HDF Group [1997]. Although other formats are also supported (see section 3.1), LifeV
strongly encourages the use HDF5 for I/O processing essentially for three reasons.

• The number of files produced is independent of the number of running processes: each
process accesses the same file in parallel and writes out his own chunks of data. As a
result, LifeV generally produces one single large output binary file, along with a xmf text
file describing its contents.

• HDF5 is compatible with open source post-processing visualization tools like Paraview Ahrens
et al. [2005] and VisIt Childs et al. [2012]).

• Having one single binary file makes it very easy to use for restarting a simulation.

The interface to HDF5 in LifeV exploits the facilities of the EpetraExt package in Trilinos, and
since the LifeV vectors are compatible with Epetra format the calls are simple Heroux [2009].

Archive of Numerical Software 1(S1), 2011 c© by the authors, 2011
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3 Features and Paradigms

3.1 I/O data formats

In a typical simulation, the user provides a text file containing input data (including physical
and discretization parameters, and options for the linear/nonlinear solvers), and the code will
generate results, which need to be stored for post-processing. Although it is up to the user to
write the program main file where the data file is parsed, LifeV makes use of two particular
classes in order to forward the problem data to all the objects involved in the simulation: the
GetPot class Schaefer [2007] (for which LifeV also provides an ad hoc re-implementation inside
the core module), and the ParameterList class from the Teuchos package in Trilinos. The former
has been the preferred way since the early development of LifeV, and is therefore supported by
virtually all classes that require a setup. The latter is used mostly for the linear and nonlinear
solvers, since it is the standard way to pass configuration parameters to the Trilinos solvers. Both
classes map strings representing the names of properties to their actual values (be it a number, a
string, or other), and they both allow the user to organize the data in a tree structure. Details on
the syntax of the two formats are available online.

When it comes to mesh handling, LifeV has the built-in capability of generating structured meshes
on domains of the form Ω = [a1, b1]× [a2, b2]× [a3, b3]. If a more general mesh is required, the user
needs to create it beforehand. Currently, LifeV supports the FreeFem Hecht [2012] and Gmsh
Geuzaine and Remacle [2009] formats (both usually with extension .msh) in 2D, while in 3D it
supports the formats of Gmsh, Netgen Schöberl [1997] (usually with extension .vol) and Medit
Frey [2001] (usually with extension .mesh). Additionally, as mentioned in Section 2.1, LifeV offers
the capability of offline partitioning. The partitions of a mesh are stored and subsequently loaded
using HDF5 for fast and parallel input.

Finally, LifeV offers three different formats for storing the simulation results for post-processing:
Ensight Computational Engineering International, Inc. [2011], HDF5 The HDF Group [1997],
which is the preferred format when running in parallel, and VTK Schöberl et al. [2006]. All
these formats are supported by the most common scientific visualization software packages, like
Paraview Ahrens et al. [2005] and VisIt Childs et al. [2012]. The details on these formats can be
found on their respective webpages.

3.2 Expression Templates for Finite Elements

One of the aims of LifeV is to be used in multiple contexts, ranging from industrial and social
applications to teaching purposes. For this reason, it is important to find the best trade-off
between computational efficiency and code readability. The high level of abstraction proper of
C++ is in principle perfectly matched by the abstraction of mathematics. However, versatility
and efficiency may conflict. Quoting Furnish [1997], a “natural union has historically been more
of a stormy relationship". This aspect is crucial in High Performance Computing, where efficiency
is a priority. Operator overloading has a major impact on efficiency, readability, maintainability
and versatility, however it may adversely affect the run time. Expression Templates (ET) have
been originally devised to minimize this drawback by T. Veldhuizen Veldhuizen [1995], and later
further developed in the context of linear algebra Härdtlein et al. [2009], Iglberger et al. [2012]
and solution of partial differential equations Pflaum [2001], Di Pietro and Veneziani [2009a].

In the context of linear algebra, the technique was developed to allow high level vector syntax
without compromising on code speed, due to function overloading. The goal of ET is to write high
level Expressions, and use Template meta-programming to parse the expression at compile-time,
generating highly efficient code. Put it simply, in the context of PDE’s, ET aims to allow a syntax
of the form

auto weak_formulation = alpha*dot(grad(u), grad(v)) + sigma*u*v;

c© by the authors, 2011 Archive of Numerical Software 1(S1), 2011
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which is an expression very close to the abstract mathematical formulation of the problem. How-
ever, during the assembly phase, the resolution of the overloaded operators and functions would
yield a performance hit, compared to a corresponding ad-hoc for loop. To overcome this issue, the
above expression is implemented making massive use of template meta-programming, which al-
lows to expand the expression at compile time, resulting in highly efficient code. Upon expansion,
the expression takes the form of a combination of polynomial basis functions and their derivative at
a quadrature point. At run time, during the assembly phase, such combination is then evaluated
at once at a given quadrature point, as opposed to the more classical implementation, where all
contributions are evaluated separately and then summed up together.

For instance, for the classical linear advection-diffusion-reaction equation in the unknown u,
−µ∆u+β·∇u+σu, we need to combine three different differential operators weighted by coefficients
µ, β and σ. These may be numbers, prescribed functions or pointwise functions (inherited for
instance by another FE computation). In nonlinear problems — after proper linearization —
expressions may involve finite element functions too. Breaking down the assembly part to each
differential operator individually with its own coefficient is possible but leads to duplicating
the loops over the quadrature nodes, as opposed to the assembly of their sum. In LifeV the
possible differential operators for the construction of linear and nonlinear advection-diffusion-
reaction problems are enucleated into specific Expressions, following the idea originally proposed
in Di Pietro and Veneziani [2009b]. The ET technique provides readable code with no efficiency
loss for operator parsing. As a matter of fact, the final gathering of all the assembly operations
in a single loop, as opposed to standard approaches with a separate assembly for each elemental
operator, introduces computational advantages. Indeed, numerical tests have pointed out a
significantly improved performance for probelms with non-constant coefficients when using the
ET technique.

A detailed description of ET definition and implementation in LifeV can be found in Quinodoz
[2012] and in the code snapshots presented later on.

4 Basics: Life = Library of Finite Elements

The library supports different type of finite elements. The use of ET makes the set-up of simple
problems easy, as we illustrate hereafter.

4.1 The Poisson problem

As a first example, we present the setup of a finite element solver for a Poisson problem. We
assume a polygonal Ω with boundary ∂Ω split into two subsets ΓD and ΓN of positive measure
such that ΓD

∪ ΓN = ∂Ω and ΓD
∩ ΓN = ∅. Let VD

h ⊂ H1
ΓD be a discrete finite element space relative

to a mesh of Ω, for example continuous piecewise linear functions vanishing on ΓD. The Galerkin
formulation of the problem reads: find uh ∈ VD

h such that∫
Ω

κ∇uh : ∇ϕh = −

∫
Ω

κ∇uD : ∇ϕh +

∫
Ω

fϕh +

∫
ΓN

gNϕh ∀ϕh ∈ VD
h , (2)

where κ is the diffusion coefficient, possibly dependent on the space coordinate, gN is the Neu-
mann boundary condition, ∂u

∂n = gN on ΓN, and f are the volumetric forces. The lifting uD can be
any finite element function such that uD

|ΓD is a suitable approximation of gD. As usually done, uD

is such that uD
|ΓD is the Lagrange interpolation of gD, extended to zero inside Ω.

In LifeV, DoF associated with Dirichlet boundary conditions are not physically eliminated from
the FE unknown vectors and matrices. Even though this elimination would certainly affect
positively the performances of the linear algebra solver, it introduces a practical burden in the
implementation and memory particularly in 3D unstructured problems, that makes it less appeal-
ing. The enforcement of these conditions can be done alternatively in different ways as illustrated

Archive of Numerical Software 1(S1), 2011 c© by the authors, 2011
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e.g. in Formaggia et al. [2012], after the matrix assembly. We illustrate the strategy adopted in the
following sections.

4.2 Matrix form and expression templates

Firstly, we introduce the matrix assembled for homogeneous Natural conditions associated with
the differential operator at hand (aka “do-nothing” boundary conditions, as they do not require
any extra work to the pure discretization of the differential operator), i.e.

A = (ai j)i, j=1,...,n and ai j =

∫
Ω

κ∇ϕ j : ∇ϕi, i, j = 1, ...,n,

where ϕ j, j = 1, ...,n are the basis functions of the finite element space Vh. Thanks to the ET
framework Di Pietro and Veneziani [2009b], Quinodoz [2012], once the mesh, the solution FE
space and the quadrature rule have been created, the assembly of the stiffness matrix A is as
simple as the following instruction

integrate ( elements ( localMeshPtr ) , quadratureRule , uFESpace , uFESpace ,
value ( kappa ) ∗ dot ( grad ( phi_i ) , grad ( phi_j ) ) ) >> systemMatrixPtr ;

We emphasize how the ET syntax clearly highlights the differential operator being assembled,
making the code easy to read and maintain. In a similar way, we define the right hand side of the
linear problem as the vector

b = (bi)i=1,...,n where bi =

∫
Ω

fϕi +

∫
ΓN

gNϕi, i = 1, ...,n.

In this case, possible non-homogeneous Neumann or natural conditions are included. Finally,
the DoF related to the Dirichlet boundary conditions are enforced by setting the associated rows
of A equal to zero except for the diagonal entries. In this way, the equation associated with the
i-th Dirichlet DoF is replaced by cui = cgi, where c is a scaling factor, depending in general on the
mesh size, to be used to control the condition number of the matrix. A general strategy is to pick
up values of the same order of magnitude of the entries of the row of the do-nothing matrix being
modified.

Without further modification, the system matrix is not symmetric anymore. Many of the problem
faced in application are not symmetric, therefore we describe here only how to deal with non-
symmetric matrices.

It is worth noting that the symmetry break does not prevent using specific methods for symmetric
systems like CG when appropriate as pointed out in Ern and Guermond [2006]. A symmetrization
of the matrix can be also achieved by enforcing the condition cui = cgi column-wise, i.e. by setting
to 0 also the off-diagonal entries of the columns of Dirichlet DoF. Some sparse-matrix formats
oriented to row-wise access of the matrix, like the popular CSR, need in this case to be equipped
with specific storage information that could make the column-wise access convenient Formaggia
et al. [2012].

4.3 Linear algebra

The linear system Ax = b can be solved by a preconditioned iterative method like PCG, PGMres,
BiCGStab, etc, available in the packages AztecOO or Belos of Trilinos. The following snippet
highlights the simplicity of the usage of LifeV’s linear solver interface.

c© by the authors, 2011 Archive of Numerical Software 1(S1), 2011
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/ / Load the l i n e a r s o l v e r parameters
Teuchos : : RCP<Teuchos : : ParameterList> params = Teuchos : : getParametersFromXmlFile ( " params . xml " ) ;
/ / Create and setup the precondi t ioner
std : : shared_ptr<Preconditioner> precPtr (new PreconditionerIfpack ) ;
precPtr−>setParametersList ( params−>sublist ( " Precondi t ioner " ) . sublist ( " I fpack " ) ) ;
/ / Create and setup the l i n e a r s o l v e r
LinearSolver linearSolver ( Comm ) ; / / Comm i s the communicator
linearSolver . setOperator ( systemMatrix ) ; / / Set the matrix of the system
linearSolver . setParameters ( ∗ params ) ; / / Set the l i n e a r s o l v e r parameters
linearSolver . setPreconditioner ( precPtr ) ; / / Set the precondi t ioner
linearSolver . setRightHandSide ( rhs ) ; / / Set the r i g h t hand s ide
/ / Solve the l i n e a r system , and s t o r e the s o l u t i o n in the given vec tor
linearSolver . solve ( solution ) ;

The choice of the method and its settings are to be set via an input xml file. For the above example
(which used AztecOO as solver and Ifpack as preconditioner), a minimal input file params.xml
would have the following form

<ParameterLis t>
<Parameter name=" Solver Type " type=" s t r i n g " value=" AztecOO " />
<Parameter name=" Prec Type " type=" s t r i n g " value=" I fpack " />
<ParameterLis t name=" S o l v e r : Operator L i s t ">

<ParameterLis t name=" T r i l i n o s : AztecOO L i s t ">
<Parameter name=" s o l v e r " type=" s t r i n g " value=" gmres " />
<Parameter name=" conv " type=" s t r i n g " value=" rhs " />
<Parameter name=" t o l " type=" double " value=" 1 . e−9" />
<Parameter name=" max_iter " type=" i n t " value=" 50 " />
<Parameter name=" kspace " type=" i n t " value=" 20 " />

< / ParameterLis t>
</ ParameterLis t>
<ParameterLis t name=" Precondi t ioner ">

<ParameterLis t name=" I fpack ">
<Parameter name=" prectype " type=" s t r i n g " value=" ILU " />
<Parameter name=" overlap l e v e l " type=" i n t " value=" 2 " />
<Parameter name=" f a c t : l e v e l −of− f i l l " type=" i n t " value=" 2 " />

< / ParameterLis t>
</ ParameterLis t>

</ ParameterLis t>

The main difficulty is to set up a scalable preconditioner. As pointed out , in LifeV there are
several options based on Algebraic Additive Schwarz (AAS) or Multigrid preconditioners. In
the first case, the local problem related to Ai in (1) has to be solved. It is possible to use an LU
factorization, using the interface with Amesos Sala et al. [2006a,b] or incomplete factorizations
(ILU). LU factorizations are more robust than incomplete ones in the sense that they do not need
any parameter tuning, which is delicate in particular within AAS, while incomplete ones are
much faster and require less storage. In a parallel context though, for a given problem, the size of
the local problem is inversely proportional to the number of subdomains. The LU factorization,
whose cost depends only on the number of unknowns, is perfectly scalable, but more memory
demanding. An example of the scalability in this settings is given in Figure 1. LifeV leaves the
choice to the user depending on the type of problem and computer architecture at hand.

The previous example is just an immediate demonstration of LifeV coding. For other examples
we refer the reader to Formaggia et al. [2012].

5 The CFD Portfolio

A core application developed since the beginning, consistently with the tradition of the group
where the library has been originally conceived, is incompressible fluid dynamics, which is
particularly relevant for hemodynamics. It is well-known that the problem has a saddle point
nature that stems from the incompressiblity constraint. From the mathematical stand point, this
introduces specific challenges, for instance the choice of finite element spaces for velocity and
pressure that should satisfy the so called inf-sup condition, unless special stabilization techniques
are used Elman et al. [2014]. LifeV offers both possibilities. In fact, one can choose among inf-sup
stable P2-P1 finite element pairs or equal order P1-P1 or P2-P2 stabilized formulations, either
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Figure 1: Solving a Poisson problem in a cube with P2 finite elements with 1’367’631 degrees of
freedom. The scalability in terms of CPU time (left) is perfect, however the number of iterations
(right) linearly increases. The choice of the preconditioner is not optimal, the use of a coarse level
or of multigrid in the preconditioner is essential and allows to use more processes with no loss of
resources, cf. also Figures 2 and 3.

by interior penalty Burman and Fernández [2007] or SUPG-VMS Bazilevs et al. [2007], Forti and
Dedè [2015].

As it is well known, for high Reynolds flow it is important to be able to describe turbulence
by modeling it, being impossible to resolve it in practice. Being hemodynamics the main LifeV
application, where turbulence is normally less relevant, LifeV has not implemented a full set
of turbulence models. However, it includes the possibility of using the Large Eddie Simulation
(LES) approach, which relies on the introduction of a suitable filter of the convective field in the
Navier-Stokes equations with the role of bringing the unresolved scales of turbulence to the mesh
scale. The Van Cittert deconvolution operator considered in Bowers and Rebholz [2012] has been
recently introduced in LifeV in Bertagna et al. [2016]. Validation up to a Reynolds number 6500
has been validated with the FDA Critical Path Initiative Test Case.

Another LES procedure based on the variational splitting of resolved and unresolved parts of the
solution has been considered in Forti and Dedè [2015], while other LES filtering techniques, in
particular the σ-model Nicoud et al. [2011], have been implemented in Lancellotti [2015].

5.1 Preconditioners for Stokes problem

In Section 2.3 we have introduced generic parallel preconditioners based on AAS or multigrid.
These algorithms have been originally devised for elliptic problems. In our experience, their use
for saddle-point problems like Darcy, Stokes and Navier–Stokes equations, or in fluid structure
interaction problems, is not effective. However, their combination with specific preconditioners,
like e.g. SIMPLE, Least Square Commutator, Yosida for unsteady Navier–Stokes equations or
Dirichlet-Neumann for FSI, leads to efficient and scalable solvers.

In Deparis et al. [2014b] this approach has been applied with success to unsteady Navier-Stokes
problems with inf-sup stable finite elements, and then extended to a VMS-LES stabilized for-
mulation with equal order elements for velocity and pressure Forti and Dedè [2015], see also
Figure 2.

Applying the same techniques to build a parallel preconditioner for FSI based on a Dirichlet–
Neumann splitting Crosetto et al. [2011a] and a SIMPLE Patankar and Spalding [1972], Elman
et al. [2008] preconditioner does not lead to a scalable algorithm. To this end, it is necessary to
add additional algebraic operations which leads to a FaCSI preconditioner Deparis et al. [2016],
see also Figure 3.
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Figure 2: Flow around a cylinder, Reynolds number equal to 22’000. Scalability of hybrid
preconditioners for stabilized Navier–Stokes equations Forti and Dedè [2015]. Simulations on
PizDora at CSCS. VMS-LES stabilized P2-P2 finite elements, 9’209’040 degrees of freedom and
time step 0.0025 s. On the left the number of iterations and on the right the time to solve an entire
time step.

Mesh Fluid DoF Structure DoF Coupling DoF Geometry DoF Total
Coarse 9’029’128 2’376’720 338’295 8’674’950 20’419’093
Fine 71’480’725 9’481’350 1’352’020 68’711’934 151’026’029

Table 1: Femoropopliteal bypass test case: number of Degrees of Freedom (DoF).

5.2 Algebraic Factorizations

Another issue is to reduce the computational cost by separating pressure and velocity compu-
tations. The origin of splitting schemes for Navier-Stokes problems may be dated back to the
separate work of A. Chorin and R. Temam that give rise to the well-known scheme that bears their
name. The basic scheme operates at a differential level by exploiting the Helmholtz decomposi-
tion Theorem (also known as Ladhyzhenskaja Theorem) to separate the differential problem into
the sequence of a vector advection-diffusion-reaction problem and a Poisson equation, with a final
correction step for the velocity. As opposed to the “split-then-discretized” paradigm, B. Perot
in Perot [1993] advocates a “discretize then split” strategy, by pointing out the formal analogy
between the Chorin-Temam scheme and an inexact LU factorization of the matrix obtained after
discretization of the Navier-Stokes equations. This latter approach, often called “algebraic factor-
ization” is easier to implement, particularly when one has to treat general boundary conditions
Quarteroni et al. [2000].

Let us introduce briefly a general framework. Let A be the matrix obtained by the finite ele-
ment discretization of the (linearized) incompressible Navier-Stokes equations. The discretized
problem at each step reads

A
[
u
p

]
=

[
f
0

]
with A =

[
C DT

D 0

]
where A collects the contribution of the linearized differential operator acting on the velocity field
in the momentum equation, D and DT are the discretization of the divergence and the gradient
operators, respectively. Notice that

A = LU =

[
C 0
D −DC−1DT

] [
I C−1DT

0 I

]
.
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Figure 3: Blood flow in a patient-specific arterial bypass. Scalability of FaCSI preconditioner for
FSI simulations Deparis et al. [2016]. Simulations on PizDora at CSCS. Finite elements used: fluid
P2-P1, structure P2, ALE mapping P2. See Table 1 for the number of degrees of freedom.

This “exact” LU factorization of the problem formally realizes a velocity-pressure splitting. How-
ever there is no computational advantage because of the presence of the matrix C−1, which is
not explicitly available, so any matrix-vector product with this matrix requires to solve a linear
system. The basic idea of algebraic splitting is to approximate this factorization. A first possibility
is to replace C−1 with the inverse of the velocity mass matrix scaled by ∆t. This is the result of the
first term truncation of the Neumann expansion that may be used to represent C−1. The advantage
of this approximation is that the mass matrix can be further (and harmless) approximated by a
diagonal matrix by the popular “mass-lumping” step. In this way, DC−1DT is approximated by
a s.p.d matrix — sometimes called “discrete Laplacian” for its spectral analogy with the Laplace
operator — that can be tackled with many different convenient numerical strategies. In addition,
it is possible to see that the splitting error gathers in the first block row, i.e. in the momentum
equation. We finally note that replacing the original C−1 with the velocity mass matrix in the
U factor of the splitting implies that the exact boundary conditions cannot be enforced exactly.
The Yosida strategy, on the other hand, follows a similar pathway, except for not approximating
C−1 in U. Similar properties can be proved as for the Perot scheme, however in this case the
splitting error affects only the mass conservation (with a moderate mass loss depending on the
time step) and the final step does actually enforce the exact boundary conditions for the velocity.
Successively, different splittings have been proposed in Gauthier et al. [2004], Saleri and Veneziani
[2005], Gervasio et al. [2006], Gervasio and Saleri [2006], Gervasio [2008], Veneziani [2009] to re-
duce the impact of the splitting error by successive corrections of the pressure field. In particular,
in Veneziani [2003], Gauthier et al. [2004] the role of inexact factorizations as preconditioners for
the original problem was investigated.

LifeV incorporates these last developments. In particular, the Yosida scheme has been preferred
since the error on the mass conservation has less impact on the interface with the structure in
fluid-structure interaction problems. It is worth noting that a special block operator structure
reflecting the algebraic factorization concept has been implemented in Villa [2011].

It is worth noting that a robust validation of these methods has been successfully performed
not only against classical analytical test cases but also within the framework of one Critical
Path Initiative promoted by the US Food and Drug Administration (FDA) Passerini et al. [2013],
(https://fdacfd.nci.nih.gov). Also, extensions of the inexact algebraic factorization approach to
the steady problem have been recently proposed in Viguerie and Veneziani [2017].

5.2.0.1 Time adaptivity An interesting follow up of the pressure corrected Yosida algebraic
factorizations is presented in Veneziani and Villa [2013]. This work stems from the fact that the
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sequence of pressure corrections not only provides an enhancement of the overall splitting error,
but also provides an error estimator in time for the pressure field - with no additional compu-
tational cost. Based on this idea, a sophisticated time adaptive solver has been introduced Villa
[2011], Veneziani and Villa [2013], with the aim of cutting the computational costs by a smart
and automatic selection of the time step. The latter must be the trade-off among the desired
accuracy, the computational efficiency and the numerical stability constraints introduced by the
splitting itself. The final result is a solver that automatically detects the optimal time step, possibly
performing an appropriate number of pressure correction to attain stability.

This approach is particularly advantageous for computational hemodynamics problems featuring
a periodic alternation of fast and slow transients (the so called systolic and diastolic phases in
circulation). As a matter of fact, for the same level of accuracy, the total number of time steps
required within a heart beat is reduced to one third of the ones required by the non adaptive
scheme.

In fact, in Veneziani and Villa [2013] a smart combination of algebraic factorizations as solvers and
preconditioners of the Navier-Stokes equations based on the a posteriori error estimation provided
by the pressure corrections is proposed as a potential optimal trade-off between numerical stability
and efficiency.

6 Beyond the proof of concept

As explained in Sect. 1, LifeV is intended to be a tool to work aggressively on real problems,
aiming at a general scope of bringing most advanced methods for computational predictive tools
in the engineering practice (in broad sense).

In particular, one of the most important applications — yet non exclusive — is the simulation of
cardiovascular problems. Examples of the use of LifeV for real clinical problems are: simulations
of Left Ventricular Assist Devices (LVAD) Bonnemain et al. [2013, 2012], the study of the phys-
iological Crosetto et al. [2011b] and abnormal fluid-dynamics in ascending aorta in presence of
a bicuspid aortic valve Bonomi et al. [2015], Vergara et al. [2012], Faggiano et al. [2013], Viscardi
et al. [2010], of Thoracic EndoVascular Repair (TEVAR) van Bogerijen et al. [2014], Auricchio
et al. [2014], of the Total Cavopulmonary Connection Mirabella et al. [2013], Restrepo et al. [2015],
Tang et al. [2015], of blood flow in stented coronary arteries Gogas et al. [2013] and in cerebral
aneurysms Passerini et al. [2012]. The current trend in this field is the setting up of in silico
or “Computer Aided” Clinical TrialsVeneziani [2015], i.e. of systematic investigations on large
pools of patients to retrieve data of clinical relevance by integrating traditional measures and
numerical simulations11 In this scenario, numerical simulations are part of a complex, integrated
pipeline involving: (i) Image/Data retrieval; (ii) Image Processing and Reconstruction (extract-
ing the patient-specific morphology); (iii) Mesh generation and preprocessing (encoding of the
boundary conditions); (iv) Numerical simulation (with LifeV); (v) Postprocessing and synthesis.
As in the following sections we mainly describe applications relevant to step (iv), it is important
to stress the integrated framework in which LifeV developers work, toward a systematic automa-
tion of the process, required from the large volume of patients to process. In this respect, we may
consider LifeV as a vehicle of methodological transfer or translational mathematics, as leading edge
methods are made available to the engineering community with a short time-to-market. Here we
present a series of distinctive applications where we feel that using LifeV actually allowed to to
bring rapidly new methods to real problems beyond the proof of concept stage.

11The ABSORB Project granted by Abbott Inc. at Emory University and the iCardioCloud Project granted by Fondazione
Cariplo to University of Pavia have been developed in this perspective using LifeV.
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6.1 FSI

In the Fluid-Structure Interaction (FSI) context, LifeV has offered a very important bench for testing
novel algorithms. For example, it has been possible to test Robin-based interface conditions for
applications in hemodynamics Nobile and Vergara [2008], Nobile et al. [2013, 2014], or compare
segregated algoritms, the monolithic formulation, and the Steklov-Poincaré formulation Deparis
et al. [2006].

An efficient solution method for FSI problem considers the physical unknowns and the fluid
geometry problem for the Arbitrary Lagrangian-Eulerian (ALE) mapping as a single variable.
This monolithic description implies to use ad-hoc parallel preconditioners. Most often they
rely on a Dirichlet-Neumann inexact factorization between fluid and structure and then specific
preconditioners for the subproblems Crosetto et al. [2011a]. Recently a new preconditioner
FaCSI Deparis et al. [2016] has been developed and tested with LifeV with an effective scalability
up to 4 thousands processors. A next step in FSI has been the use of non-conforming meshes
between fluid and structure using rescaled-localized radial basis functions Deparis et al. [2014a].

A study on different material constitutive models for cerebral arterial tissue — in particular
Hypereslatic isotropic laws, Hyperelastic anisotropic laws — have been studied in Tricerri et al.
[2015]. A benchmark for the simulation of the flow inside carotids and the computation of shear
stresses Balzani et al. [2015] has been tested with LifeV coupled with the FEAP library Taylor
[2014], which includes sophisticated anisotropic material models.

6.2 Geometric Multiscale

The cardiovascular system features coupled local and global dynamics. Modeling its integrity by
three dimensional geometries including FSI is either unfeasible or very expensive computation-
wise and, most of the time, useless. A more efficient model entails for the coupling of multiple
dimensions, like lumped zero-dimensional models, hyperbolic one-dimensional ones, and three
dimensional FSI, leading to the so called geometric multiscale modeling as advocated in Veneziani
[1998], Formaggia et al. [2001].

LifeV implements a full set of tools to integrate 0D, 1D and 3D-FSI models of the cardiovascular
system Malossi et al. [2011, 2013], Blanco et al. [2013], Passerini et al. [2009], with also a multirate
time stepping scheme to improve the computational efficiency Malossi et al. [2012]. It has been
used to simulate integrated models of the cardiovascular system Bonnemain et al. [2013].

A critical aspect of this approach is the management of the dimensional mismatch between the
different models, as the accurate 3D problems require more information at the interface that the
one provided by the other surrogate models, This required the accurate analysis of “defective
boundary problems” Formaggia et al. [2002], Veneziani and Vergara [2005, 2007], Formaggia et al.
[2008, 2010]. A recent review on these topics can be found in Quarteroni et al. [2016].

6.3 Heart dynamics

Electrocardiology is one of the problems - beyond CFD but still related to cardiovascular math-
ematics - where LifeV has cumulated extensive experience. An effective preconditioner for the
bidomain equations has been proposed and demonstrated in Gerardo-Giorda et al. [2009]. The
basic idea is to use the simplified extended monodomain model to precondition the solution of
the more realistic bidomain equations. Successively, the idea has been adapted to reduce the
computational costs by mixing Monodomain and Bidomain equations in an adaptive procedure.
A suitabe a posteriori estimator is used to decide when the Monodoimain equations are enough
or the bidomain solution is needed Mirabella et al. [2011], Gerardo-Giorda et al. [2011]. Ionic
models solved in LifeV ranges from the classical Rogers McCulloch, Fenton Karma, Luo Rudy
I and II Clayton et al. [2011] to more involved ones Dupraz et al. [2015]. Specific high order
methods (extending the classical Rush Larsen one) have been proposed and implemented in the
library Perego and Veneziani [2009].
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In addition, one research line has been oriented to the coupling of electrocardiology with cardiac
mechanics. Hyperelasticity problems based on non-trivial mixed and primal formulations with
applications in cardiac biomechanics have been studied in Rossi et al. [2011, 2012]. LifeV-based
simulations of fully coupled electromechanics (using modules for the abstract coupling of solvers)
can be found in Nobile et al. [2012], Ruiz-Baier et al. [2013], Rossi et al. [2014], Andreianov et al.
[2015] for whole organ models, and in Ruiz-Baier et al. [2014], Gizzi et al. [2015], Ruiz-Baier
[2015] for single-cell problems. The coupling with ventricular fluid dynamics and arterial tree FSI
description are possible through a multiscale framework Quarteroni et al. [2015]. The coupling
the Purkinje network, a network of high electrical conductivity myocardium fibers, has been
implemented in Vergara et al. [2016].

Another research line in this field successfully carried out with LifeV is the variational estimation
of cardiac conductivities (the tensor coefficients that are needed by the Bidomain equations) from
potential measures Yang and Veneziani [2013].

6.4 Inverse problems and data assimilation

One of the most recent challenging topics in computational hemodynamics is the quantification
of uncertainty and the improvement of the reliability in patient-specific settings. As a matter of
fact, while the inclusion of patient specific geometries is now a well established procedure (as
we recalled above), many other aspects of the patient-specific modeling still deserve attention.
Parameters like viscosity, vessel wall rigidity, or cardiac conductivity are not routinely measured
(or measurable) in the specific patient and however have generally a major impact on the numer-
ical results. These concepts have been summarized in Veneziani and Vergara [2013]. Variational
procedures have been implemented in LifeV, where the assimilation with available data or the
parameter estimation are obtained by minimizing a mismatch functional. In D’Elia et al. [2012]
this approach was introduced to incorporate into the numerical simulation of the incompressible
Navier-Stokes equations sparse data available in the region of interest; in Perego et al. [2011] the
procedure was introduced for estimating the vascular rigidity by solving an inverse FSI problem,
while a similar procedure in Yang and Veneziani [2013, 2017] aims at the estimate of the cardiac
conductivity.

6.5 Model reduction

One of the major challenges of modern scientific computing is the controlled reduction of the
computational costs. In fact, practical use of HPC demands for extreme efficiency — even real
time solutions. Improvement of computing architectures and cloud solutions that make relatively
easy the access to HPC facilties is only a partial answer to this need Guzzetti et al. [2017]. From
the modeling and methodological side, we need also customized models that can realize the
trade off between efficiency and accuracy. These may be found by a smart combination of
available High Fidelity solutions, according to the offline/online paradigm; or by the inclusion
of specific features of a problem that may bring a significant advantage in comparison with
general versatile but expensive methods. In LifeV these strategy have been both considered. For
instance, in Colciago et al. [2014], a model for blood flow dynamics in a fixed domain, obtained by
transpiration condition and a membrane model for the structure, has been compared to a full three
dimesional FSI simulation. The former model is described only in the lumen with the Navier–
Stokes equations, the structure is taken into account by surface Laplace–Beltrami operator on
the surface representing the fluid-strucutre interface. The reduced model allows for roughly one
third of the computational time and, in situations where the displacement of the artery is pretty
small, the dynamics, including e.g. wall shear stresses, are very close if not indistinguishable
from a full three dimensional simulation

In Bertagna and Veneziani [2014] a solution reduction procedure based on the Proper Orthogonal
Decomposition (POD) was used to accelerate the variational estimate of the Young modulus of
vascular tissues by solving an Inverse Fluid Structuire Interaction problem. POD wisely combines
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available offline High Fidelity solutions to obtain a rapid (online) parameter estimation. More
challenging is the use of a similar approach for cardiac conductivities Yang [2015], Yang and
Veneziani [2017], requiring nonstandard procedures.

A directional model reduction procedure called HiMod (Hierarchical Model Reduction - see Perotto
et al. [2010], Aletti et al. [2015], Perotto [2014], Perotto and Veneziani [2014], Blanco et al. [2015],
Mansilla Alvarez et al. [2016]) to accelerate the computation of advection diffusion reaction
problems as well as incompressible fluids in pipe-like domains (or generally domains with a clear
dominant direction, like in arteries) has been implemented in LifeV Aletti et al. [2015], Guzzetti
[2014]. These modules will be released in the library soon.

6.6 Darcy equations and porous media

Single and multi-phase flow simulators in fractured porous media are of paramount importance
in many fields like oil exploration and exploitation, CO2 sequestration, nuclear waste disposal
and geothermal reservoirs. A single-phase flow solver is implemented with the standard finite
element spaces Raviart-Thomas for the Darcy velocity and piecewise constant for the pressure. A
global pressure-total velocity formulation for the two-phase flow is developed and presented in
Fumagalli and Scotti [2011], Fumagalli [2012] where the equations are solved using an IMPES-like
technique. To handle fractures and faults in an efficient and accurate way the extended finite
element method is adopted to locally enrich the cut elements, see Iori [2011], Del Pra et al. [2015],
and a one-codimensional problem for the flow is considered for these objects, see Ferroni et al.
[2016].

6.7 Ice sheets

Another application that has used the LifeV library (at Sandia Nat Lab, Albuquerque, NM) is the
simulation of ice sheet flow. Ice behaves like a highly viscous shear-thinning incompressible fluid
and can be modeled by nonlinear Stokes equations. In order to reduce computational costs several
simplifications have been made to the Stokes model, exploiting the fact that ice sheets are very
shallow. LifeV has been used to implement some of these models, including the Blatter-Pattyn
(also known as First Order) approximation and the L1L2 approximation. The former model is
a three-dimensional nonlinear elliptic PDE and the latter a depth-integrated integro-differential
equations (see Perego et al. [2012]). In all models, nonlinearity has been solved with Newton
method, coupling LifeV with Trilinos NOX package. The LifeV based ice sheet implementation
has been mentioned in Evans et al. [2012] as an example of modern solver design for the solution
of earth system models. Further, in Tezaur et al. [2015] the authors verified the results of another
ice sheet code with those obtained using LifeV.

LifeV ice sheet module has been coupled with the climate library MPAS and used in inter-
comparison studies to asses sensitivities to different boundary conditions and forcing terms, see
Edwards et al. [2014] and Shannon et al. [2013]. The latter (Shannon et al. [2013]) has been
considered in the IPCC (Intergovernmental Panel on Climate Change) report of 2014.

In Perego et al. [2014] the authors perform a large scale PDE-constrained optimization to estimate
the basal friction field (70K parameters) in Greenland ice sheet. For this purpose LifeV has been
coupled with the Trilinos package ROL to perform a reduced-gradient optimization using BFGS.
The assembly of state and adjoint equations and the computation of objective functional and its
gradient have been performed in LifeV.
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7 Perspectives

LifeV has proved to be a versatile library for the study of numerical techniques for large scale and
multiphysics computations with finite elements. The code is in continuous development. The
latest introduction of expression templates has increased the easiness of usage at the high level.
Unfortunately, due to the fact the way the code has been developed, mainly by PhD students, not
all the applications have been ported yet to this framework. Work is ongoing in that direction.
The library has been coded using the C++98 yet porting is ongoing to exploit new features of the
C++11 and C++14 standard, which can make the code more readable, user friendly and efficient.

As for the parallelization issues, LifeV relies strongly on the tools provided by the Trilinos libraries.
We are following their development closely and we will be ready to integrate all the new features
the library will offer, in particular with respect to hybrid type parallelism.

A target use of the library the team is working on is running on cloud facilities Slawinski et al.
[2012], Guzzetti et al. [2017] and GPL architectures.
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