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Abstract

In this paper we investigate the practical and methodological use of
universal kriging of functional data to predict unconventional shale pro-
duction in undrilled locations from known production data. In univer-
sal kriging of functional data, two approaches are considered: 1) estima-
tion by means of cokriging of functional components (Universal Cokrig-
ing, UCok), requiring cross-variography and 2) estimation by means of
trace-variography (Universal Trace-Kriging, UTrK), which avoids cross-
variogram modeling. While theoretically, under known variogram struc-
tures, such approaches may be quite equivalent, the practical application
yields marked differences. We investigate these difference by means of
a real field application in the Barnett shale play and by a Monte Carlo
study inspired from such real field application. We find that, for the stud-
ied cases, in terms of sum of squared errors (SSE), UTrK outperforms
UCok. We speculate that the main reason lies in the robustness of es-
timating experimental trace-variography over the cross-variography and
the possible loss of information induced by the functional decomposition
required for cokriging.
Keywords: Geostatistics; functional data; trace-variogram; shale gas;
unconventional resources

1 Introduction
Functional data analysis (FDA, Ramsay and Silverman, 2005) has gained re-
newed attention in the modeling of phenomenon that can be regarded as sta-
tistical observations displaying systematic variation. In particular in terms of
time series, FDA has been considered as an alternative to multivariate analysis,
where in FDA the data is seen a single functional object with an underlying
smooth dynamic that drives variation in time. While applications have primor-
dially been in bio-informatics (see Ullah and Finch, 2013, for a recent review),
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FDA has been gaining attention both in development of theory and application
in the Earth & Environmental Sciences, for example in climate science (Besse
et al., 2000), water resources (Josset et al., 2015; Satija and Caers, 2015), en-
vironmental science (Henderson, 2006; Yan et al., 2015; Sancho et al., 2015),
oceanography (Nerini et al., 2010), land use (Besse et al., 2005) and geology
(Manté and Stora, 2012; Menafoglio et al., 2014).

Particular to the application in the Earth Sciences is the spatial context and
the need for spatial models for functional data, as has historically been developed
in geostatistics (Matheron, 1969; Cressie, 1993). A recent body of theoretical
work has been published, extending ordinary kriging to the functional case (e.g.,
Delicado et al., 2010; Nerini et al., 2010; Menafoglio et al., 2014; Menafoglio and
Petris, 2015, and references therein). However, in several practical applications,
there is a need to address phenomena that require non-stationary approaches in
space. To address such need, universal kriging of spatial functional data has been
proposed by Caballero et al. (2013); Menafoglio et al. (2013). An alternative
approach to deal with non-stationarity is proposed by Ignaccolo et al. (2014).

In this work, we present a timely and economically important application
of functional data, namely to the modeling and forecasting in unconventional
shale resources. The term “unconventional” emanates from the way such re-
sources are exploited: a sand-water mixture is injected into horizontal wells,
fracturing nearly impermeable shale formations enabling production of com-
mercially significant hydrocarbon volumes. Shale production can be considered
as one of the driving factors for low oil/gas prices in 2015 (Mǎnescu and Nuño,
2015) which has put financial pressures on further resource development (“The
Shale Industry Could Be Swallowed By Its Own Debt”, Bloomberg news, July
18, 2015). As a consequence, technical innovation is required for such resources
to remain competitive with conventional exploitation which tend to have lower
costs. In addition, better modeling, understanding and more optimal drilling
practices will lead to lesser environmental impact (see, e.g., Vidic et al., 2013).
Part of such technical innovation lies in understanding the impact of the geo-
logical and hydraulic fracturing factors on production, which drives the spatial
variability of production in wells. Due to the complexity involved, data scientific
approaches are preferred over physical modeling approaches (Mohaghegh, 2011,
2013; Kormaksson et al., 2015; Grujic et al., 2015). Production rates in wells
start from an initial peak in production right after hydraulic fracturing followed
by a long multi-month decline. In this paper, we focus on modeling the spatial
distribution of production decline rates only. We consider data from the prolific
Barnett Shale and our data set contains 922 wells drilled over the basin. Such
dataset consists of functional data (decline rate) varying over space (geographic
coordinated).

The first aim of this paper is to investigate the use of universal kriging
of functional data to the spatial interpolation of gas production rate curves
(GPRC) which is required to estimate production for undrilled location. Our
second aim is to compare two methods: 1) estimation by means of cokrig-
ing of the components over a functional basis (Universal Cokriging, UCok),
which is similar to the strategy of Nerini et al. (2010) and requires cross-
variography, and 2) estimation by means of trace-variography (Universal Trace-
Kriging, UTrK), which follows the approach of Menafoglio et al. (2013) and
avoids cross-variogram modeling. Our comparison is with respect to the Bar-
nett shale data set and a Monte Carlo study designed based on that dataset.
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In that vein, the paper structure is as follow. We first review both methods as
well as provide an overview of the theoretical and methodological implications
for comparison. Then we apply and evaluate both methods to the Barnett shale
and provide and in-depth Monte Carlo comparison.

2 Methodology
In this Section, we pursue the functional and geostatistical approach to the anal-
ysis of GPRCs, and explore two alternative methods for their spatial prediction.

We call (Ω,F,P) a probability space, Ω denoting a space of events, F a σ-
algebra, and P a probability measure. We indicate by xs1 , ..., xsn the observed
GPRCs1 at a set of given locations s1, ..., sn in an Euclidean spatial domain
D ⊆ R2. As in classical geostatistics, we assume the data to be a partial
observation of a random field

{Xs, s ∈ D}, (1)

on (Ω,F,P), where the index s indicates a location in D. As the observations are
curves, the random field (1) is assumed to be valued in an infinite-dimensional
(functional) space. Specifically, throughout this work we assume that, for any
location s ∈ D, the element Xs is a random element of the space L2(T ) of
squared-integrable real-valued functions on the time interval T = [1, 60]. The
space L2(T ) (or L2 for short) is a separable Hilbert space if equipped with the
usual inner product 〈f, g〉 =

´
T
f(t)g(t)dt and the induced norm ‖f‖ =

√
〈f, f〉,

for f, g ∈ L2(T ).
Following Menafoglio et al. (2013), we assume that process (1) is non-

stationary, and represent the its element Xs, at a generic location s ∈ D, as
sum of its mean ms, called drift, and a zero-mean stochastic residual δs that is
stationary in the sense that is specified below, i.e.,

Xs = ms + δs.

Here, the mean ms of Xs can be defined point-wise as ms(·) = E[Xs(·)], and
is a non-random element of L2(T ). Hereafter in this work, we assume that the
mean is non-constant in space, and we model its spatial variation through a
functional linear model in L2(T ) of the form

ms(t) =

L∑
l=0

al(t)fl(s), t ∈ T, s ∈ D, (2)

where {al, l = 0, ..., L} are functional coefficients in L2(T ), independent of the
spatial location, while {fl(s), l = 0, ..., L} are known scalar regressors depending
on s ∈ D. Finally, we assume that the residuals form a zero-mean random
field {δs, s ∈ D} on (Ω,F,P), with stationary spatial covariance function. The
latter is defined as the function that maps any increment between locations in
D, (s1 − s2) ∈ R2, into the cross-covariance operator on L2(T ) between the
elements of the process at those locations:

C(s1 − s2)x = E[〈δs1 , x〉δs2 ], x ∈ L2(T ).

1To preserve the positivity of GPRCs, the model and the subsequent procedures can be
applied to the log-transformed GPRCs.
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Under these assumptions, and given the random observations Xs1 , ..., Xsn at
the sampled locations, we aim to predict the unobserved element Xs0 of process
(1) at a target location s0 ∈ D. To this end, in the next Subsections we will
introduce and explore two alternative approaches to Kriging functional data,
namely the Universal Cokriging based on a projection strategy (UCok), and the
Universal Trace-Kriging (UTrK) method of Menafoglio et al. (2013).

2.1 Universal Cokriging of functional data
We here present an extension to the non-stationary setting of the Kriging pre-
dictor for functional data proposed by Giraldo (2009) and Nerini et al. (2010).

Throughout this Subsection, we consider an orthonormal set {ek, 1 ≤ k ≤
K} in L2(T ), and we assume that each element of process (1) can be represented
through the expansion over this set, i.e.,

Xs =

K∑
k=1

ξk(s)ek, s ∈ D, (3)

where ξk(s) = 〈Xs, ek〉 is the projection of Xs on the k-th element of the basis.
Under representation (3), one can characterize process (1) through the distri-

butional properties of the K-dimensional random field of coefficients {ξ(s), s ∈
D}, with ξ(s) = (ξ1(s), ..., ξK(s))T . For instance, one can define the drift ms of
the process at s in D, through the drift of the field {ξ(s), s ∈ D} at the same
location, mξ(s) = (mξ1(s), ...,mξK(s))T ,

ms(·) =

K∑
k=1

E[ξk(s)]ek(·) =

K∑
k=1

mξk(s)ek(·). (4)

Note that under model (2), the drift of the coefficients field is described by the
linear model

mξk(s) =

L∑
l=0

αklfl(s), s ∈ D, (5)

with αkl = 〈al, ek〉. Indeed, one has

〈ms, ek〉 =

L∑
l=0

〈al, ek〉fl(s) = mξk(s),

where the first equality follows from Eq. (2), and the second equality is obtained
by using Eq. (4). We thus represent the elements of the multivariate field
{ξ(s), s ∈ D} as

ξ(s) = mξ(s) + ε(s), (6)

where {ε(s), s ∈ D} forms a zero-mean K-dimensional random field.
If the assumption of second-order stationarity (in L2(T )) for {δs, s ∈ D}

holds true, then also {ε(s), s ∈ D} is second-order stationary (in RK). Indeed,
under representation (3), one has the following matrix representation of the
spatial covariance function C

C(s1 − s2)x =

K∑
j=1

K∑
k=1

Cξjk(s1 − s2)xjek, s1, s2 ∈ D, (7)
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where Cξjk(s1 − s2) = 〈C(s1 − s2)ej , ek〉. The latter quantity is equivalently
found as the covariance between the coefficients ξj(s1) and ξk(s2):

Cξjk(s1 − s2) = E[(ξj(s1)−mξj (s1))(ξk(s2)−mξk(s2))].

As such, the cross-covariogram of ξj and ξk is stationary for all j, k = 1, ...,K.
Given the observations Xs1 , ..., Xsn , we aim to predict Xs0 via the Best

Linear Unbiased Predictor (BLUP) in the sense of Nerini et al. (2010), that is
X∗s0 =

∑n
i=1 Λ∗iXsi , where Λ∗1, ...,Λ

∗
n are the operators that solve the constrained

optimization problem

min E

∥∥∥∥∥Xs0 −
n∑

i=1

ΛiXsi

∥∥∥∥∥
2
 s.t. E

[
Xs0 −

n∑
i=1

ΛiXsi

]
= 0, (8)

among all the linear Hilbert-Schmidt operators Λ1, ...,Λn on L2(T ). We call
Universal Cokriging (UCok) predictor the solution X∗s0 of problem (8).

As shown by Nerini et al. (2010) in the stationary setting, finding the UCok
predictor is equivalent to determine an optimal estimate of the coefficients vector
ξ(s0) at the target location s0 by solving the following Cokriging problem

min E

∥∥∥∥∥ξ(s0)−
n∑

i=1

Liξ(si)

∥∥∥∥∥
2

Rd

 s.t. E

[
ξ(s0)−

n∑
i=1

Liξ(si)

]
= 0, (9)

among all the matrices of weights L1, ...,Ln in RK×K . This follows from the
observation that (i) the operators Λi, i = 1, ..., n, admit a matrix representation
through Li, i = 1, ..., n, analogous to that of C in Eq. (7); (ii) by exploiting
expression (3) and Parsival identity, one has that the objective functionals in
Eqs. (8) and (9) coincide; and (iii) developing the unbiasedness constraint in
Eq. (8) in the light of Eq. (3) one gets

E

[
Xs0 −

n∑
i=1

ΛiXsi

]
=

K∑
k=1

E

[
ξk(s0)−

[
n∑

i=1

Liξ(si)

]
k

]
ek,

which is the null function if and only if E [ξ(s0)−
∑n

i=1 Liξ(si)] is the null
vector in RK .

Therefore, the UCok predictor X∗s0 of Xs0 can be found in this setting as
X∗s0 =

∑K
k=1 ξ

∗
k(s0)ek, where ξ∗(s0) =

∑n
i=1 L∗i ξ(si) and the optimal matrices

of weights are found by solving the Universal Cokriging system (Chilès and
Delfiner, 1999)

C11 · · · C1n F10 · · · F1L

...
. . .

...
...

. . .
...

Cn1 · · · Cnn Fn0 · · · FnL

F10 · · · Fn0 0 · · · 0
...

. . .
...

...
. . .

...
F1L · · · FnL 0 · · · 0





L1

...
Ln

Z0

...
ZL


=



C01

...
C0n

F00

...
F0L


, (10)

where Cij is the cross-covariance matrix between ξ(si) and ξ(sj), i, j = 1, ..., n;
Ci0 is the cross-covariance matrix between ξ(s0) and ξ(si), i = 1, ..., n; Fil =
diag(fl(si), ..., fl(si)) ∈ RK×K and Zl, l = 0, ..., L are the matrices of Lagrange
multipliers.
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2.2 Universal Trace-Kriging
In this Subsection, we recall another approach to Kriging, following the work
of Menafoglio et al. (2013). Here, we get rid from the assumption of the basis
representation (3) by defining a different measure of spatial dependence.

We call trace-covariogram of the residual field {δs, s ∈ D}, the real-valued
function Ctr defined, for s1, s2 in D and in the previous assumptions, as

Ctr(s1 − s2) = E[〈δs1 , δs2〉].

The trace-covariogram defines a global measure of spatial dependence, in the
sense that, for any fixed increment (s1 − s2) in R2, it is the trace of the corre-
sponding cross-covariance operator C(s1−s2). The trace-covariogram plays the
same role as the univariate covariogram, but in the infinite-dimensional setting.
Here, the corresponding trace-variogram is defined as

2γtr(s1 − s2) = E[‖δs1 − δs2‖2],

and describes the expected increment in the value of the (functional) process
for a given increment in the spatial domain. On these bases, Menafoglio et al.
(2013) define and explore global notion of stationarity for functional random
fields, weaker than those considered so far. For sake of clarity in the following
comparisons, we here keep the same stationarity assumption on the residual
field as those introduced before.

To predict the unobserved element Xs0 , given the observations Xs1 , ..., Xsn ,
Menafoglio et al. (2013) consider a Kriging predictor in the form of a linear com-
bination of the observations. We call Universal Trace-Kriging (UTrK) predictor
the linear unbiased predictor X∗trs0 =

∑n
i=1 λ

∗
iXsi , whose weights λ∗1, ..., λ∗n solve

min E

∥∥∥∥∥Xs0 −
n∑

i=1

λiXsi

∥∥∥∥∥
2
 s.t. E

[
Xs0 −

n∑
i=1

λiXsi

]
= 0, (11)

over all the scalar weights λ1, ..., λn in R. The authors then prove that problem
(11) is well-posed even if one relies only upon the global definitions of spatial
dependence introduced above. Indeed, the weights λ∗1, ..., λ∗n are found by solving

Ctr(0) · · · Ctr(h1n) f1(s1) · · · fL(s1)
...

. . .
...

...
. . .

...
Ctr(hn1) · · · Ctr(0) f1(sn) · · · fL(sn)
f1(s1) · · · f1(sn) 0 · · · 0

...
. . .

...
...

. . .
...

fL(s1) · · · fL(sn) 0 · · · 0





λ1
...
λn
ζ0
...
ζL


=



Ctr(h10)
...

Ctr(hn0)
f1(s0)

...
fL(s0)


,

(12)
with hij = si − sj , and ζ0, ..., ζL the Lagrange multipliers associated with the
(L+ 1) unbiasedness constraints.

2.3 Methodological comparison
Even though the methods devised in Subsections 2.1 and 2.2 do achieve the same
purpose, namely the geostatistical prediction of functional data, they are intrin-
sically different. We here compare the different perspectives they are grounded

6



on, to underline the methodological strengths and weaknesses of the two ap-
proaches to deal with real studies.

We first note that the derivation of the UCok predictor relies upon the
assumption that the elements of the process admit expansion (3), for a given
order K and an orthonormal set {ek, 1 ≤ k ≤ K}. In FDA, this is a viable
assumption, as most analyses in this field employ a preprocessing step based
on an expansion over a truncated functional basis (e.g., Fourier basis). This
step enables one to smooth the actual discrete observations, by removing from
the measured curves the effects that are chiefly due to the measurement error.
Non-orthonormal bases may be employed in the smoothing procedure (e.g., B-
splines). Nevertheless, one can always perform a change of basis to map the
observations on an orthonormal set, and accordingly represent the process via
expansion (3).

Even though expansion (3) does not imply a substantial loss of generality
in most real studies, the dimension of the expansion is influential indeed on the
analysis. Indeed, as noted by Menafoglio and Petris (2015) in the stationary
setting, even in the ideal case of known drift and covariance structure, the pa-
rameter K controls the dimension of system (10) (i.e., the number K(n+L+1)
of equations and unknowns), hence the problem complexity. Thus, in a real
case study, one may need to employ a dimensionality reduction method prior to
the geostatistical analysis. For instance, one can perform Functional Principal
Component Analysis (FPCA, Ramsay and Silverman, 2005) as detailed in the
Appendix, or the Functional Singular Value Decomposition (SVD, Yang et al.,
2011). In all these cases, part of the information is inevitably lost as a conse-
quence of the dimensionality reduction, and cannot be employed for prediction
purposes. This marks the first difference between Universal Cokriging and Uni-
versal Trace-Kriging methodologies, as the latter does not require to express the
observations through a basis representation.

Furthermore, the dimensionality of the Trace-Kriging system does not de-
pend on the representation of the data. Indeed, system (12) is a linear system of
(n+L+ 1) equations and the same number of unknowns, independently on the
possible truncated basis expansion employed to represent the data. Notice that
this is possible because of the simple form of the UTrK predictor, as opposed
to the more complex form of the UCok predictor. This is both a weakness and
a strength of Trace-Kriging. On one hand, the UCok predictor is more general
and, in principle, able to achieve a better prediction quality than the UTrK
predictor. On the other hand, the simple form of the UTrK allows to exploit
the entire information embedded into the data, without the need to reduce the
dimensionality of the dataset prior to the geostatistical analysis.

In the context of Gaussian stationary random fields and under the repre-
sentation (3), with K ≤ n, a formal relation between the Cokriging and the
Trace-Kriging predictors has been established by Menafoglio and Petris (2015).
In this framework, the authors prove that the Cokriging and Trace-Kriging
approaches lead almost surely to the same results, provided that the spatial
covariance function C is known. In most applications, the spatial dependence
is actually not known a priori and one needs to infer C from available data
(or basis coefficients). To this end, different viewpoints on the Kriging problem
induce different ways to estimate the spatial covariance. If one is willing to solve
the Universal Cokriging system (10), the covariograms and cross-covariogram
of the coefficients will be the target estimates. To this end, a Linear Model of
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Coregionalization (LMC) can be introduced for the vector of coefficients, and
a parametric semivariogram structure can be fitted to the empirical estimates.
Note that the dimension K of the representation (3) directly reflects on the
number of variogram and cross-variogram structures that one needs to estimate
to solve Eq. (10). In contrast, to solve system (12) one will only estimate the
trace-covariogram, or the trace-variogram as usually preferred. Estimating the
latter follows the same line as in finite dimension. First an empirical estimate
is computed from (estimated) residuals as

γ(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

‖δsi − δsj‖2, (13)

where h denotes the lag, N(h) the set of couples at lag h and |N(h)| the
number of elements of set N(h). Second, a valid variogram model is fitted to the
empirical estimate. Here, the well-known one-dimensional parametric families,
such as spherical or Matérn, can be employed. Note that estimator (13) requires
to compute a number of integrals (recall: ‖f−g‖2 =

´
T

(f(t)−g(t)2dt, for f, g in
L2(T )). These can be computed in terms of basis coefficients whenever a basis
representation of the kind (3) is employed, or via quadrature schemes otherwise.

To estimate the drift, the residuals and the variogram structure, one can
employ very similar strategies in both the discussed approaches. In this work,
we estimate the drift mξ via Generalized Least Squares (GLS), and employ
the classical iterative algorithm to jointly estimate the drift via GLS and the
variograms/cross-variograms of the corresponding residuals. Similarly, we es-
timate via GLS the drift ms, as follows (see Menafoglio et al., 2013). We
call Σ the global covariance matrix Σij = E[〈δsi , δsj 〉], F the design matrix
Fil = fl(si), i = 1, ..., n, l = 0, ..., L, X the vector of functional observations
X = (Xs1 , ..., Xsn)T ∈ L2×· · ·×L2 and we introduce the following matrix nota-
tion: [Af ]i =

∑n
j=1 Aijf j , for A ∈ Rn×n, f ∈ L2×· · ·×L2. The GLS estimator

of the drift at the observed locations,m = (ms1 , ...,msn)T , is (Menafoglio et al.,
2013)

m̂ = F(FT Σ−1F)−1FT Σ−1X. (14)

Similarly as in the classical setting, m̂ can be computed by resorting to an
iterative algorithm: having initialized m̂ (e.g., to the ordinary least square
estimate obtained by setting Σ to a multiple of the identity matrix in Eq. (14)),
at each step the residuals are estimated by difference from the GLS estimate of
the drift, and then the trace-variogram is estimated from the latest update of
the residuals estimate. We refer to Menafoglio et al. (2013) for the algorithmic
details.

In the next Section we compare the results of applying these different strate-
gies to the dataset of GPRCs available at the Barnett Shale field site.

3 Application

3.1 Dataset Description
In this study we use gas production rate curves (GPRC) from 922 wells drilled
in the Barnett shale, one of the most prolific and the most developed uncon-
ventional gas reservoirs in North America. This dataset was compiled from the
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Figure 1: Left: final basis system found by the GCV on GPRCs; Right:
Smoothed GPRCs. Gas rates are given in MMCF per month.

“drillinginfo.com” (further DI), an online oil and gas data repository. At the time
when this dataset was prepared, DI did not provide information about well spe-
cific hydraulic fracturing parameters, which would have enabled us to search for
wells with similar completions. Therefore, we decided to query for wells whose
lateral length was anywhere between 1800 and 2300 feet and were owned by the
same company (operator), with an assumption that the number of hydraulic
fractures was the same or at least very similar across all wells. We considered
wells drilled after 2005, which had at least 5 years of production history (60
months), immediately following the peak gas rate. As a part of pre-processing,
all data entries preceding the peak gas rates (about 3 months) were discarded.
Such pre-processing approach is very common in unconventional reservoir data
analyses (see Patzek et al., 2013), since during that time period wells mostly
produce flow-back water that comes as a consequence of hydraulic fracturing.

Most functional data analyses start with a basis expansion, or data fitting.
In ideal conditions2, GPRCs are smooth and monotonically decreasing positive
curves. Obviously, in such setting there is a complete absence of periodicity
and B-Spline basis system comes as a natural choice for representing such data.
To honor the data positivity, we elected to perform basis expansion (Ramsay
and Silverman, 2005) on the log-transformed observations, with a smoothing
penalty on the second derivative. Preliminary data analysis revealed that most
variation in GPRCs occurred during the first 12 months of production history.
Therefore, we decided to place the knots of B-spline basis functions irregularly
over analyzed time domain (60 months), with higher placement density over
the first 12 months (Figure 1 Left). Finally, the number of basis functions
for this dataset was set to n = 10, and the best smoothing penalty on the
second derivative (λ = 103) was found with generalized cross validation (GCV,
Ramsay and Silverman, 2005). Figure 1 shows final B-spline basis system (left)
with resulting smoothed GPRCs (right).

3.2 Results
We first analyzed the smoothed dataset according to the approach devised in
Subsection 2.2. For the analyses that follow we considered the log-transformed
GPRCs (further log-GPRCs) to honor the positivity constraint. Hereafter we
display the results in the original scale to ease their interpretation.

2Uninterrupted production with constant bottom hole or well head pressures.
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Figure 2: Estimated trace-variogram of log-GPRCs at the Barnett shale: em-
pirical estimate (symbols), calibrated model (solid line). Numbers indicate the
number of couples of locations upon which the corresponding empirical estimate
is based.
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Figure 3: Prediction by UTrK of GPRCs for 20 random locations at the Barnett
shale. Left: smoothed data (grey lines) and predictions (colored lines). Right:
sampled location (grey symbols) and target locations (colored symbol).

Based on preliminary analyses at the site, we selected for the drift term the
set of linear regressors in the spatial coordinates: f0(s) = 1; f1(s) = x; f2(s) = y,
s = (x, y) denoting a location in D. Following the strategy detailed in Subsec-
tion 2.3, we jointly estimate the drift and the trace-variogram, fitting to the lat-
ter a spherical model with nugget. Figure 2 shows the empirical trace-variogram
along with the fitted model.

Based on the calibrated trace-variogram model, we perform a UTrK pre-
diction over a uniform spatial grid of 104 locations at the field site. Figure
3 reports a subsample of 20 predicted GPRCs, for a randomly selected set of
20 location of the prediction grid. Figure 4 reports the maps of the predicted
functional field, taken for the time instants t = 1, 12, 24, 48 months (colors are
given on a non-uniform color scale). Note that, unlike multivariate techniques, a
functional prediction allows to obtain simultaneous kriging maps for any instant
point t ∈ [1, 60] (months).

To compare these predictions with those obtained through UCok, we per-
formed FPCA to reduce the dimensionality of the dataset and represent the
log-GPRCs over an orthonormal system (see the Appendix for the modeling
details of FPCA). We select the first two FPCs, which together explain 94% of
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Figure 4: Prediction maps obtained with UTrK at the Barnett shale, for t =
1, 12, 24, 48 months. Colors are given on a non-uniform scale. Gas rate reported
at contour lines are meant up to a factor 105.
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Figure 5: FPCA of log-GPRCs. Left: sample mean of log-GPRCs plus/minus
the first FPC, represented in the original scale. Center: sample mean of log-
GPRCs plus/minus the second FPC, represented in the original scale. Right:
scores along the first two FPCs.

the data variability. To ease the interpretation of FPCs, Figure 5 reports, in the
original space, the sample mean of the log-GPRCs plus/minus the FPCs. Visual
inspection of Figure 5 suggests that the first FPC can be interpreted in terms of
the amplitude of the peak gas and the overall production rate, high scores being
associated with low peak gas and production rates. The second FPC is instead
interpreted in terms of a contrast between the production rate in the first 35
months and the further production rate. Here, high scores correspond to curves
with early production rate lower than the mean, and further production rate
higher than the mean.

Based on the results of FPCA, we geostatistically analyzed the scores along
the selected components, reported in Figure 5 (right panel). Consistent with
the previous assumption, we consider for the drift the set of modified linear
spatial regressors f1(s) = x− 1

n

∑n
i=1 xi; f2(s) = y − 1

n

∑n
i=1 yi, with s = (x, y)

in D (see the appendix for the details). Variograms and cross-variograms of the
residuals – referred to the multivariate model (5) for the scores – are estimated
by fitting a LMC, based on a spherical model with nugget. Figure 6 reports
the calibrated multivariate model. On this basis, we performed the UCok of the
scores on the same spatial grid introduced before, obtaining the results displayed
in Figure 7. Here we represent the same set of curves reported in Figure 3.
Finally, Figure 8 displays the maps of the predicted gas production rate, at the
time instants t = 1, 12, 24, 48 months (colors are given on a non-uniform color
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Figure 6: Estimated variograms and cross-variograms of the scores along the
first two FPCs.
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Figure 7: Prediction by UTrK of GPRCs for 20 random location at the Barnett
shale. Left: smoothed data (grey lines) and predictions (colored lines). Right:
sampled location (grey symbols) and target locations (colored symbol).

scale).
The predictions obtained via UTrK and UCok appears overall consistent.

They both show increasing values of the gas production rate in direction S-W
to N-E, justifying a posteriori the introduction of the drift term. From the
application viewpoint, the results suggest the presence of a more productive
region in the North-Eastern part of the study area. From field development
perspective, this indicates “sweet spots” that would be most favourable for future
reservoir development.

3.3 Monte Carlo Study
To assess the quality of predictions obtained through UTrK and through UCok,
we performed a Monte Carlo study based on the same dataset analysed before.
We randomly split the dataset in (a) a training set of κ% of data and (b) a test
set of (100− κ)% of data, with κ = 25, 50, 75. For each training set, we applied
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Figure 8: Prediction maps obtained with UTrK at the Barnett shale, for t =
1, 12, 24, 48 months. Colors are given on a non-uniform scale. Gas rate reported
at contour lines are meant up to a factor 105.

the estimation procedures as illustrated in Subsection 3.2, and predicted the
data in the test set by UTrK and UCok. To assess the quality of the predictions,
we defined the sum of squared error (SSE) of UTrK for the i-th element xsi of
the test set as:

SSE
(UTrK)
i = ‖X∗trsi − xsi‖

2.

Here, X∗trsi denotes the predictor of the GPRC at si, obtained by taking the ex-
ponential of the UTrK predictor from the log-GPRCs. Analogously, we defined
the SSE related to UCok as

SSE
(UCok)
i = ‖X∗si − xsi‖

2,

with X∗si the exponential of the UCok predictor at si from the log-GPRCs.
An overall index of prediction performance on a given test set can be then

obtained as the mean or the median of SSE(UTrK)
i , SSE(UTrK)

i over the ele-
ments of the test set. To appreciate the magnitude of the error with respect
to the amplitude of the data, we normalized the SSEs by the average squared
norm of the data in the training set, as suggested by Menafoglio et al. (2013).
We refer to the normalized indices as relative SSEs (RSSEe). SSEs evaluated
on log-GPRCs are in agreement with those in the original scale and are thus
omitted from the description below.

To provide a Monte Carlo estimate of the RSSEs, we replicated the ex-
periment over 100 randomly selected training/test sets, for each value of the
parameter κ in {25, 50, 75}, i.e, we repeated the experiment for 100 random
training sets with 25% (or 50% or 75%) of the data to predict the elements of
the corresponding test sets composed by the remaining 75% (or 50% or 25%
respectively) of the data.

Figure 9 reports the boxplots of the mean/medianRSSE(UTrK) andRSSE(UCok)

estimated via Monte Carlo simulation. To ease the comparison, Table 1 reports
the mean, median and standard deviation of the estimated indices, assessed via
Monte Carlo. Simulations show that for both UTrK and UCok the prediction
quality increases as the number of data in the training set increases. This re-
flects the fact that κ is associated with the amount of information available to
perform predictions. Moreover, for any given κ, UTrK and UCok performances
are almost equivalent, with slightly better results for UTrK. This is confirmed
from the graphical inspection of Figure 9.
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Median Mean Std. dev.

Mean RSSE(Cok)
κ = 25 0.153 0.153 0.019
κ = 50 0.136 0.137 0.012
κ = 75 0.132 0.133 0.014

Median RSSE(UCok)
κ = 25 0.066 0.066 0.006
κ = 50 0.060 0.060 0.005
κ = 75 0.056 0.057 0.007

Mean RSSE(UTrK)
κ = 25 0.150 0.151 0.017
κ = 50 0.134 0.136 0.011
κ = 75 0.129 0.130 0.014

Median RSSE(UTrK)
κ = 25 0.065 0.065 0.005
κ = 50 0.059 0.059 0.005
κ = 75 0.056 0.057 0.006

Table 1: Distribution of the RSSE indices for UCok and UTrK in the original
scale, assessed via Monte Carlo simulation.
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Figure 9: Boxplots of RSSE indices for UCok and UTrK.
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Median Mean Std. dev.

Mean RSSE(UCok)
κ = 25 0.170 0.528 3.198
κ = 50 0.148 0.163 0.080
κ = 75 0.141 0.144 0.019

Median RSSE(UCok)
κ = 25 0.070 0.070 0.007
κ = 50 0.063 0.063 0.006
κ = 75 0.060 0.060 0.009

Table 2: Distribution of the RSSE indices for UCok based of FSVD in the
original scale, assessed via Monte Carlo simulation.

Even though UCok could potentially provide improved results with respect
to UTrK – due to its generality – no gain seems to be obtained when increasing
the problem complexity. We recognize at least two reasons for this: (i) the
preprocessing step by FPCA and (ii) the fitting of a multivariate variogram
model to the scores. In fact, the simplicity of the UTrK predictor is likely to be
the key for its slightly better performance over the UCok predictor.

For sake of completeness, we report in Table 2 and Figure 10 the results
obtained by projecting the log-GPRCs over the basis of the first two right func-
tional singular vectors (FSVs), computed numerically. These are the equivalent,
in the functional case, of the right singular vector obtained in the well-known
singular value decomposition (SVD) of a multivariate dataset. In this context
and unlike FPCA, the procedure detailed in Subsection 2.1 can be applied with-
out modifications, ek being represented by the k-th right FSVs.

We first notice that a significant number of upper outliers affects the results
related to the mean RSSE(UCok), for κ = 25. This is probably caused by an am-
plification of the error due to the exponential transformation, as only one outlier
is recorded when SSE is evaluated on a log-scale. Besides this, simulations show
that UTrK outperforms UCok in all the tested scenarios under FSVD prepro-
cessing. In fact, marked differences are recorded between the performances of
UCok under FPCA and of UCok under FSVD preprocessing. This is likely to
be due to the fact that UCok under FPCA preprocessing is applied to centered
observations, i.e., those obtained by subtracting the sample mean of the dataset
from the observations (see the Appendix). In this sense, the entire information
within the sample mean is kept in UCok prediction, as the latter is added to the
UCok prediction obtained from centered data. In contrast, FSVD is applied to
non-centered observations: here the dimensionality of the non-centered obser-
vations is reduced. Intuitively, given K, FPCA exploits one dimension (that of
the sample mean) more than FSVD, at the same expense.

These results underline the fact that, whenever a dimensionality reduction
is performed prior to apply UCok, the prediction results may be strongly influ-
enced by the preprocessing step and the chosen dimension K. Such problem is
overcome when using UTrK, as no preprocessing is required.

15



●
●

●

●
●

●

●

●●●

● ●

●

U
Tr

K
: κ

=
25

U
Tr

K
: κ

=
50

U
Tr

K
: κ

=
75

U
C

ok
: κ

=
25

U
C

ok
: κ

=
50

U
C

ok
: κ

=
75

5

10

15

20

25

Mean RSSE

R
S

S
E

 [%
]

● ●

●●

●

●

U
Tr

K
: κ

=
25

U
Tr

K
: κ

=
50

U
Tr

K
: κ

=
75

U
C

ok
: κ

=
25

U
C

ok
: κ

=
50

U
C

ok
: κ

=
75

0

5

10

15

Median RSSE

R
S

S
E

 [%
]

Figure 10: Boxplots of RSSE indices for UCok based on FSVD and UTrK.

4 Conclusions
In this work, we considered two approaches to the spatial prediction of gas
production rate curves (GPRCs) in unconventional reservoirs: (1) Universal
Cokriging (UCok) and (2) Universal Trace-Kriging (UTrK). We analysed the
strengths and weaknesses of these methodologies both theoretically and from
the application viewpoint, through an extensive Monte Carlo study on field
data.

Our study shows that the investigated approaches lead to consistent re-
sults on available data. Nevertheless, UTrK proved preferable in most scenarios
tested though Monte Carlo simulation. Here we showed that the dimensionality
reduction operated on the data prior to the geostatistical analysis with UCok
approach can be highly influential on the quality of the results. In this context,
the simplicity of UTrK allows to avoid such preprocessing, and seems to be the
key of its better performances over UCok.

Anyway, we note that the theoretical study of UCok deserves attention from
the methodological viewpoint. Indeed, UCok appears better suited than UTrK
to extensions related to the form of the drift term. Indeed, one might want to
consider a more complex functional linear model than that in Eq. (2). This
would allow to incorporate geological or production variables, possibly time-
varying (i.e., functional regressors), in the geostatistical analysis.

Appendix: Functional Principal Component Anal-
ysis
We here consider the Functional Principal Component Analysis (FPCA Ram-
say and Silverman, 2005, Chapter 8) as a dimensionality reduction method for
GPRCs, possibly log-transformed. FPCA is a methodology aiming to identify
a reduced space to optimally represent a set of observations. Given a tar-
get dimension K, FPCA determines the system of K orthonormal directions
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{ek, 1 ≤ k ≤ K} that best represents the variability of the data set around its
mean.

As in the multivariate setting, the k-th Functional Principal Component
(FPC) is the eigenfunction associated with the k-th largest eigenvalue of the
(zero-lag) covariance operator C(0), that is C(0)ek = ρkek, ρ1 > ... > ρk. Note
that, in the assumptions of Section 2, all the data are featured by the same
covariance operator C(0).

The proportion of the variability explained by the first K Functional Princi-
pal Components (FPCs) can be measured through the ratio between the partial
and the total sum of the eigenvalues of C(0):

∑K
k=1 ρk/

∑∞
k=1 ρk. To perform

dimensionality reduction, one can then consider the projection of the data along
the first K FPCs, {ek, 1 ≤ k ≤ K}, where K is set as to explain a given amount
of the total variability (e.g., 90% or 95%).

If spatial covariance C is unknown, one can introduce the empirical FPCA,
that is based on the eigen-decomposition of the empirical zero-lag covariance
operator, defined for x ∈ L2(T ) as

Ĉ(0)x =
1

n

n∑
i=1

〈Xsi −X,x〉(Xsi −X),

whereX =
∑n

i=1Xsi is the sample mean (see, e.g., Horváth and Kokoszka, 2012,
Chapter 2.17). The coefficients for the basis representation are then obtained as
ξ̃k(si) = 〈Xsi −X, ek〉, i = 1, ..., n, k = 1, ...,K. Notice that, if the mean were
spatially constant, X would estimate the mean of the process, and ξ̃k(si), i =
1, ..., n would be (approximately) zero-mean. In the non-stationary assumptions
of Section 2, ξ̃k(si) is not zero-mean, but approximately follows a model of the
form (5), as we show below.

We call X̃si , i = 1, ..., n, the modified dataset obtained by centering the Xsi
with respect to the sample mean of the dataset, i.e., X̃si = Xsi − X. Under
models (2) and (3), for the modified process X̃si one has

X̃s =

K∑
k=1

L∑
l=0

akl

(
fl(s)−

1

n

n∑
i=1

fl(si)

)
+

K∑
k=1

εk(s)ek−
K∑

k=1

1

n

n∑
i=1

εk(si)ek. (15)

For a sample size sufficiently large with respect to K and a moderate spatial de-
pendence (see Horváth and Kokoszka, 2012, Chapter 18), the last term becomes
negligible, since {εk(s)} is zero-mean. By noting that, given the regressors,∑n

i=1 fl(si) is a known constant, the following approximate model is obtained
from expression (15)

X̃s ≈
K∑

k=1

L∑
l=0

aklf̃l(s) +

K∑
k=1

εk(s)ek. (16)

The latter term has the same form as Eq. (6), but with modified regressors.
Notice in particular that model (16) is without intercept.

Therefore, when the dimensionality reduction is performed via the empirical
FPCA, one can proceed as follows: (i) project the X̃si , i = 1, ..., n over the first
K eigenfunctions and compute the scores ξ̃k(si), i = 1, ..., n, k = 1, ...,K; (ii)
perform the geostatistical analysis/prediction of ξ̃k(si) and obtain the UCok
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prediction X̃∗s0 at the target location s0 as described in Subsection 2.1; (iii)
compute the final prediction by adding to X̃∗s0 the sample mean X: X∗s0 =

X̃∗s0 +X.
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