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A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR
COUPLED POROELASTICITY-ELASTICITY PROBLEMS
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Abstract. This work is concerned with the analysis of a space-time finite element discontinuous
Galerkin method on polytopal meshes (XT-PolydG) for the numerical discretization of wave propa-
gation in coupled poroelastic-elastic media. The mathematical model consists of the low-frequency
Biot’s equations in the poroelastic medium and the elastodynamics equation for the elastic one. To
realize the coupling, suitable transmission conditions on the interface between the two domains are
(weakly) embedded in the formulation. The proposed PolydG discretization in space is then coupled
with a dG time integration scheme, resulting in a full space-time dG discretization. We present
the stability analysis for both the continuous and the semidiscrete formulations, and we derive error
estimates for the semidiscrete formulation in a suitable energy norm. The method is applied to a
wide set of numerical test cases to verify the theoretical bounds. Examples of physical interest are
also presented to investigate the capability of the proposed method in relevant geophysical scenarios.
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1. Introduction. The numerical simulation of wave propagation in heteroge-
neous media is an important aspect of a wide range of scientific problems including
acoustic engineering [73], vibro-acoustics [54], aeronautical engineering [32], biomed-
ical engineering [48], computational seismology [31], and oil and gas exploration
[80, 59]. In this framework, recent studies have been concerned with the propagation
of seismic waves in coupled elastic and poroelastic media. For the region of reser-
voirs, Biot’s model of poroelastic wave equations is selected while for the background
region [22], the visco-elastic wave equation is employed, cf. [60]. Poroelastic-elastic
problems model elastic waves impacting a porous material and consequently propa-
gating through it. The coupling between the elastic and the poroelastic domain is
a more general realization of the physically consistent transmission conditions dis-
cussed in [47, 60, 75]. Indeed, in our case, partial filtration at the interface can be
also taken into account. Based on a second-order in-time displacement formulation,
in this paper, we present a high-order space-time discontinuous Galerkin method on
polytopal grids (XT-PolydG) for the discretization of a coupled poroelastic-elastic
problem. The theory developed completes the one presented in [9] and [5], where cou-
pled poroelastic-acoustic and elastic-acoustic problems were studied, respectively. We
remark that the geometric flexibility, due to mild regularity requirements on the un-
derlying polytopal mesh, together with the arbitrary-order accuracy featured by the
proposed XT-PolydG method is fundamental within the applicative context under
investigation as it guarantees: (i) flexibility in the representation of the geometry; (ii)
high level of accuracy in both space and time dimensions; (iii) efficiency for parallel
computation. Finally, the coupling conditions between the elastic and the poroelastic
domains are naturally incorporated (in a weak sense) in the proposed scheme.

In the literature, we can find many works concerning the numerical discretiza-
tion of coupled poroelastic models. Here, we recall, e.g., the semi-analytical solution
and the plane wave decomposition method [55, 63], the Lagrange Multipliers method
[67, 3, 43], the finite and boundary element methods [21, 42, 41], mixed and dis-
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continuous finite elements [20, 65, 45, 4], the spectral and pseudo-spectral element
method [60, 68], the finite difference method, [35, 77, 57, 79], the ADER scheme
[76, 36, 33, 78, 81, 39], the virtual element method [24], and the references therein.
Here, by taking inspiration from [45], we analyze an Interior Penalty discontinu-
ous Galerkin formulation of the coupled problem, where the interface conditions are
naturally taken into account by the penalization terms. The geometrical flexibility
and high-order accuracy of the proposed scheme are ensured by the use of polygo-
nal meshes and by the dG discretization in the time dimension. We refer the reader
to [52, 37, 50, 44] for early results on time dG schemes for wave type equations, to
[74, 1, 38] for first-order hyperbolic problems, to [53, 18] and to [46, 58, 64] for Tre-
fftz and tent-pitching techniques, to [17, 11, 14] for the second-order wave equation,
and to [61] for a comprehensive review. On the other hand, regarding polytopal dG
methods, we refer the reader to [10, 19, 12, 28, 34, 26, 27] for early results on elliptic
and parabolic problems, to [13, 15] for linear and non-linear hyperbolic problems, and
to [5, 6, 9, 8] for coupled wave propagation problems. A dG approximation of the
fully coupled thermo-poroelastic problem is presented in [7]. Wave propagation in
thermo-poroelastic media with dG methods is discussed in [23].

The remaining part of the paper is structured as follows. In Section 2 we present
the coupled poroelastic-elastic differential model for wave propagation in heteroge-
neous media, we discuss the weak formulation and present the stability analysis in
the continuous setting. In Section 3 we introduce the polytopal discontinuous Galerkin
space discretization and analyze its stability. The convergence analysis of the afore-
mentioned discretization is discussed in Section 4, while a dG time integration scheme
and its algebraic formulation are presented in Section 5. Section 6 contains verifica-
tion test cases to validate the theoretical error bounds as well as numerical tests of
physical interest. Finally, in Section 8 we draw some conclusions and discuss some
perspectives about future work.

Notation. Let Ω ⊂ Rd, d = 2, 3, be an open, convex polygonal/polyhedral
domain with Lipschitz boundary ∂Ω. In what follows, for X ⊆ Ω, the notation
L2(X) is adopted in place of [L2(X)]d, with d ∈ {2, 3}. The scalar product in L2(X)
is denoted by (·, ·)X , with associated norm ∥ · ∥X . Similarly, Hℓ(X) is defined as
[Hℓ(X)]d, with ℓ ≥ 0, equipped with the norm ∥ · ∥ℓ,X , assuming conventionally that
H0(X) ≡ L2(X). In addition, we will use H(div, X) to denote the space of L2(X)
functions with square integrable divergence. For a given final time T > 0, k ∈ N,
and a Hilbert space H, the usual notation Ck([0, T ];H) is adopted for the space of
H-valued functions, k-times continuously differentiable in [0, T ]. The notation x ≲ y
stands for x ≤ Cy, with C > 0, independent of the discretization parameters, but
possibly dependent on the physical coefficients and the final time T .

2. The physical model and governing equations. The computational do-
main Ω can be seen as the union of two disjoint, polygonal/polyhedral regions:
Ω = Ωe ∪ Ωp, representing the elastic and the poroelastic domains, respectively. The
two subdomains share part of their boundary, resulting in the Lipschitz-regular inter-
face ΓI = ∂Ωe ∩ ∂Ωp, being ∂Ωe and ∂Ωp the boundaries of elastic and poroelastic
domains, respectively. See Figure 1. We set Γe = ∂Ωe \ΓI and Γp = ∂Ωp \ΓI , so that
Γi ∩ ΓI = ∅ for i = {e, p}. For the sake of presentation, on Γi, i = {e, p} we apply
homogeneous Dirichlet conditions. The general case follows similarly. Additionally,
we suppose that the Hausdorff measures of Γe, Γp, and ΓI are strictly positive, but
the following theory also covers the cases: i) Ωp = ΓI = ∅, i.e. Ω ≡ Ωe and ii)
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Fig. 1: Simplified representations of the domain Ω = Ωp ∪Ωe. Here, ΓI = ∂Ωe ∩ ∂Ωp

represents the interface bewteen the elastic and the poroelastic domains, where ∂Ωe

and ∂Ωp are the boundaries of elastic and poroelastic sub-domains, respectively.

Ωe = ΓI = ∅, i.e. Ω ≡ Ωp; as well as iii) ∂Ωp = ΓI , i.e. Γp = ∅ and iv) ∂Ωe = ΓI , i.e.
Γe = ∅. The outer unit normal vectors to ∂Ωe and ∂Ωp are denoted by ne, and np

respectively, so that np = −ne on ΓI .

Elastic domain. In the solid elastic domain Ωe, we consider the linear visco-
elastodynamics model

(2.1) ρeüe + 2ρeζu̇e + ρeζ
2ue −∇ · σe(ue) = fe, in Ωe × (0, T ],

where ue represents the solid displacement, ρe > 0 is the medium density, ζ > 0 is an
attenuation parameter [8], and fe is a given external load. The stress tensor σe(u) is
defined as σe(u) = C : ϵ(u), where ϵ(u) = 1

2 (∇u+∇uT ) is the strain tensor, and C
is the fourth-order, symmetric and uniformly elliptic elasticity tensor defined by

C : τ = 2µτ + λtr(τ ) for all τ ∈ Rd×d,

with tr(τ ) =
∑d

i=1 τii. Here, λ ≥ 0 and µ ≥ µ0 > 0 are the Lamé coefficients.

Poroelastic domain. In the poroelastic domain Ωp, following [9], we consider
the low-frequency Biot’s equations:

(2.2)

ρpüp + ρf üf + 2ρpζu̇p + ρpζ
2up −∇ · σp(up,uf ) = fp, in Ωp × (0, T ],

ρf üp + ρwüf + η
k u̇f +∇p(up,uf ) = gp, in Ωp × (0, T ].

Here, up and uf represent the solid and filtration displacements, respectively. In (2.2)
the average density ρp is given by ρp = ϕρf + (1 − ϕ)ρs, where ρs > 0 is the solid
density, ρf > 0 is the saturating fluid density, ρw is defined as ρw = a

ϕρf , being ϕ the
porosity satisfying 0 < ϕ0 ≤ ϕ ≤ ϕ1 < 1, and being a > 1 the tortuosity measuring the
deviation of the fluid paths from straight streamlines, cf. [70]. The dynamic viscosity
of the fluid is represented by η > 0 while the absolute permeability by k > 0. In (2.2),
fp and gp are given (regular enough) loading and source terms, respectively. In Ωp,
we assume the following constitutive laws, cf. [40], for the stress σp and pressure p:

σp(up,uf ) = σe(up)− β p(up,uf )I, p(up,uf ) = −m(β∇ · up +∇ · uf ),(2.3)
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where the Biot–Willis’s coefficient β and the Biot’s modulusm are such that ϕ < β ≤ 1
and m ≥ m0 > 0. It can be shown that the dilatation coefficient of the saturated
matrix corresponds to λf = λ+β2m. A summary of all the model coefficients together
with their physical meaning and unit of measure is given in Table 3 below. To be
consistent, in (2.2) we consider the same viscous model as in (2.1). We remark that
other viscous models can be considered in both equations, see e.g. [60], but are beyond
the scope of this work.

Poroelastic-elastic coupling. On ΓI the coupling between the elastic and the
poroelastic domains is achieved by imposing the following transmission conditions,
expressing continuity of the normal stresses, the continuity of displacements, and the
absence of fluid flow into the elastic domain:

σe(ue)np = σe(up)np − δβ p(up,uf )Inp, in ΓI × (0, T ],(2.4)

ue = up, in ΓI × (0, T ],(2.5)

((1− δ)βup + uf ) · np = 0, in ΓI × (0, T ],(2.6)

for δ ∈ [0, 1] representing the fluid entry resistance of the interface. In the case
δ = 1, condition (2.6) reduces to uf ·np = 0, namely there is no filtration through the
interface; whereas if 1−δ = ϕβ−1 < 1, then (2.6) imposes that the normal component
of the fluid displacement up+ϕ

−1uf is zero, meaning that the fluid is partially flowing
into the interface. This assumption on the coupling conditions is somewhat similar
to the one that is considered [9] for the poroelastic–acoustic case. For the latter, the
continuity of the pressure at the interface was a function of the parameter τ ∈ [0, 1]
modeling the closing/opening of the pores at the interface.

Coupled problem. Supplementing the previous constitutive equations with
homogeneous Dirichlet boundary conditions, the coupled poroelastic-elastic problem
reads: for any t ∈ (0, T ], find the vector-fields U = (ue,up,uf ) : Ωe × Ωp × Ωp → R
such that (2.1)–(2.2) coupled with (2.4)–(2.6) hold. Finally, we close the problem
by considering initial conditions U(·, 0) = U0 = (u0e,u0p,u0f ) and U̇(·, 0) = V0 =
(v0e,v0p,v0f ).

2.1. Weak formulation and stability estimates. In order to state the weak
formulation taking into account the essential boundary conditions, we also introduce
the subspaces

V i = {v ∈H1(Ωi) |v|Γi
= 0}, i = {e, p},

W p = {z ∈H(div,Ωp) | (z · np)|Γp
= 0}.

and define the Hilbert spaces V0 = L2(Ωe)×L2(Ωp)×L2(Ωp) and V = V e×V p×W p,
endowed with the following norm and seminorm, respectively

∥U∥20 = ∥ρ1/2e ue∥2Ωe
+ ∥ρ1/2u up∥2Ωp

+ ∥(ρfϕ)1/2(up + ϕ−1uf )∥2Ωp
∀U ∈ V0,

|U|2V = ∥C1/2 : ϵ(ue)∥2Ωe
+ ∥ρ1/2e ζue∥2Ωe

+ ∥C1/2 : ϵ(up)∥2Ωp
+ ∥ρ1/2ζup∥2Ωp

+ ∥m1/2∇ · (βup + uf )∥2Ωp
∀U ∈ V ,

where ρu = (1 − ϕ)ρs/2. The weak form of (2.1)–(2.6) reads as: for any t ∈ (0, T ],
find U ∈ V s.t. ue = up on ΓI and

(2.7) M(Ü,V) +D(U̇,V) +A(U,V) + C(U,V) = F(V) ∀ V ∈ V ,
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with U(·, 0) = U0 ∈ V and U̇(·, 0) = V0 ∈ V0. In (2.7) F : Ωe × Ωp × Ωp → R is a
linear functional defined as

F(V) = (fe,ve)Ωe
+ (fp,vp)Ωp

+ (gp,vf )Ωp

for any V = (ve,vp,vf ) ∈ V , while for any U,V ∈ V we have set
(2.8)
M(U,V) = (ρeue,ve)Ωe + (ρpup + ρfuf ,vp)Ωp + (ρfup + ρwuf ,vf )Ωp ,

D(U,V) = (2ρeζue,ve)Ωe
+ (2ρpζup,vp)Ωp

+ (ηk−1uf ,vf )Ωp
,

A(U,V) = (σe(ue), ϵ(ve))Ωe + (ρeζ
2ue,ve)Ωe + (σe(up), ϵ(vp))Ωp + (ρpζ

2up,vp)Ωp

+ (m∇ · (βup + uf ),∇ · (βvp + vf ))Ωp

C(U,V) = −⟨σe(ue)np,vp − ve⟩ΓI
+ ⟨p(up,uf ), ((1− δ)βvp + vf ) · np⟩ΓI

,

with ⟨·, ·⟩ΓI
in (2.8) denoting the H

1
2 (ΓI)-H

− 1
2 (ΓI) duality product. Before pre-

senting a stability estimate for the solution of problem (2.7) we define, for all U ∈
C1([0, T ];V0) ∩ C0([0, T ];V ), the energy norm

(2.9) ∥U(t)∥2E = ∥U̇(t)∥20 + |U(t)|2V +

∫ t

0

D(U̇, U̇)(s) ds+D(U,U)(0) t ∈ (0, T ],

and we adopt the notation ∥U0∥2E = ∥U(0)∥2E = ∥V0∥20+ |U0|2V +D(U0,U0). As a result
of Lemma 2.1 below, max0≤t≤T ∥ · ∥E is a norm on C1([0, T ];V0) ∩ C0([0, T ];V ).

Lemma 2.1. The bilinear forms M, D, and A defined in (2.8) are such that

M(U,V) ≲ ∥U∥0∥V∥0 ∀U,V ∈ V0,(2.10)

M(U,U) ≳ ∥U∥20 ∀U ∈ V0,(2.11)

A(U,V) ≲ |U|V |V|V ∀U,V ∈ V ,(2.12)

A(U,U) = |U|2V ∀U ∈ V .(2.13)

Proof. Inequalities (2.10) and (2.12) are readily inferred by applying the Cauchy–
Schwarz and triangle inequalities. For (2.11) we use the definition of the density
functions ρe, ρp, ρu, and ρw, we observe that a > 1 to prove that M(U,U) ≳ ∥U∥20,
cf. [8]. The last equality (2.13) follows by the definition (2.8).

Theorem 2.2 (Stability of the continuous weak formulation). Assume that the
problem data satisfy F = (fe,fp, gp) ∈ L2((0, T );V0), U0 ∈ V , and V0 ∈ V0. For any
t ∈ (0, T ], let U = (ue,up,uf ) ∈ V be the solution of (2.7). Then, it holds

max
0≤t≤T

∥U(t)∥2E ≲ ∥U0∥2E +

∫ T

0

(
∥(2ρeζ)−1/2fe∥2Ωe

+ ∥(2ρeζ)−1/2fp∥2Ωp

+ ∥(η/k)−1/2gp∥2Ωp

)
ds,

with hidden constant depending on the observation time t and the material properties.

Proof. The proof follows the lines of the one proposed in [8, Proposition 5.1]. We
take U̇ = (u̇e, u̇p, u̇f ) as test functions in (2.7) so that the interface terms are null,

i.e., C(U, U̇) = 0, thanks to condition (2.5). We integrate in time between 0 and t,
add on both side D(U0,U0) ≥ 0, and use (2.10)–(2.13) to get

∥U(t)∥2E +

∫ t

0

D(U̇, U̇)(s) ds ≲ ∥U0∥2E + 2

∫ t

0

F(U̇)(s)ds.
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The thesis follows by applying the Cauchy-Schwarz and Young inequalities to bound
the second term on the right-hand side.

3. Semi-discrete formulation and stability analysis. We introduce a poly-
topic mesh Th made of general polygons (in 2d) or polyhedra (in 3d) and write Th
as Th = T e

h ∪ T p
h , where T #

h = {κ ∈ Th : κ ⊆ Ω#}, with # = {e, p}. Implicit in
this decomposition there is the assumption that the meshes T e

h and T p
h are aligned

with Ωe and Ωp, respectively. Polynomial degrees pe,κ ≥ 1 and pp,κ ≥ 1 are associ-
ated with each element of T e

h and T p
h . The discrete spaces are introduced as follows:

V e
h = [Ppe

(T e
h )]

d and V p
h = [Ppp

(T p
h )]d where Pr(T #

h ) is the space of piecewise poly-

nomials in Ω# of total degree less than or equal to rκ in any κ ∈ T #
h with # = {e, p}.

In the following, we assume that C andm are element-wise constant and we define
Cκ = (|C1/2|22)|κ for all κ ∈ T e

h ∪T p
h , and mκ = (m)|κ for all κ ∈ T p

h . The symbol | · |2
stands for the ℓ2-norm on Rn×n, with n = 3 if d = 2 and n = 6 if d = 3. In order to
deal with polygonal and polyhedral elements, we define an interface as the intersection
of the (d − 1)-dimensional faces of any two neighboring elements of Th. If d = 2, an
interface/face is a line segment and the set of all interfaces/faces is denoted by Fh.
When d = 3, an interface can be a general polygon that we assume could be further
decomposed into a set of planar triangles collected in the set Fh. We decompose Fh

as Fh = FI
h ∪ Fe

h ∪ Fp
h , where FI

h = {F ∈ Fh : F ⊂ ∂κe ∩ ∂κp, κe ∈ T e
h , κ

p ∈ T p
h },

and Fe
h, and Fp

h denote all the faces of T e
h , and T p

h respectively, not laying on ΓI .
Finally, the faces of T e

h and T p
h can be further written as the union of internal (i) and

boundary (b) faces, respectively, i.e.: Fe
h = Fe,i

h ∪ Fe,0
h and Fp

h = Fp,i
h ∪ Fp,0

h .
Following [29], we next introduce the main assumption on Th.
Definition 3.1. A mesh Th is said to be polytopic-regular if for any κ ∈ Th,

there exists a set of non-overlapping d-dimensional simplices contained in κ, denoted
by {SF

κ }F⊂∂κ, such that for any face F ⊂ ∂κ, it holds hκ ≲ d|SF
κ | |F |−1.

Assumption 3.1. The sequence of meshes {Th}h is assumed to be uniformly poly-
topic regular in the sense of Definition 3.1.

As pointed out in [29], this assumption does not impose any restriction on either the
number of faces per element nor their measure relative to the diameter of the element
they belong to. Under Assumption 3.1, the following trace-inverse inequality holds:

||v||L2(∂κ) ≲ ph−1/2
κ ||v||L2(κ) ∀ κ ∈ Th ∀v ∈ Pp(κ).(3.1)

In order to avoid technicalities, we also assume that Th satisfies a hp-local bounded
variation property:

Assumption 3.2. For any pair of neighboring elements κ± ∈ T #
h , it holds hκ+ ≲

hκ− ≲ hκ+ , p#,κ+ ≲ p#,κ− ≲ p#,κ+ , with # = {e, p}.
Finally, following [16], for sufficiently piecewise smooth scalar-, vector- and tensor-

valued fields ψ, v and τ , respectively, we define the averages and jumps on each
interior face F ∈ Fe,i

h ∪ Fp,i
h ∪ FI

h shared by the elements κ± ∈ Th as follows:

JψK = ψ+n+ + ψ−n−, JvK = v+ ⊗ n+ + v− ⊗ n−, JvKn = v+ · n+ + v− · n−,

{{ψ}} =
ψ+ + ψ−

2
, {{v}} =

v+ + v−

2
, {{τ}} =

τ+ + τ−

2
,

where ⊗ is the tensor product in R3, ·± denotes the trace on F taken within κ±, and
n± is the outer normal vector to ∂κ±. Accordingly, on boundary faces F ∈ Fe,0

h ∪Fp,0
h ,

we set JψK = ψn, {{ψ}} = ψ, JvK = v ⊗ n, JvKn = v · n, {{v}} = v, {{τ}} = τ .
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For later use, we also define ∇h and ∇h· to be the broken gradient and divergence

operators, respectively, set ϵh(v) =
∇hv+∇hv

T

2 , σeh(v) = C : ϵh(v), and use the short-
hand notation (·, ·)Ω#

=
∑

κ∈T #
h

∫
κ
· and ⟨·, ·⟩F#

h
=

∑
F∈F#

h

∫
F
· for # = {e, p}.

3.1. Semi-discrete PolydG formulation. We define the space Vh = V e
h ×

V p
h × V p

h and denote by Uh = (ue,up,uf )h a generic function in Vh. The semi-
discrete PolydG formulation of problem (2.7) reads as: find Uh ∈ Vh such that

(3.2) M(Üh,Vh) +D(U̇h,Vh) +Ah(Uh,Vh) + Ch(Uh,Vh) = F(Vh) ∀Vh ∈ Vh.

As initial conditions we take suitable projections onto Vh of the initial data, namely
Uh(0) = U0h and U̇h(0) = V0h. The bilinear forms M and D appearing in (3.2) are
defined as in (2.8) while

(3.3) Ah(U,V) = Ae
h(ue,ve) +Ap

h(up,vp) + Bp
h(βup + uf , βvp + vf )

for all U = (ue,up,uf ) and V = (ve,vp,vf ) ∈ Vh with

(3.4)

A⋆
h(u⋆,v⋆) = (σeh(u⋆), ϵh(v⋆))Ω⋆

+ (ρ⋆ζ
2u⋆,v⋆)Ω⋆

− ⟨{{σeh(u⋆)}}, Jv⋆K⟩F⋆
h

− ⟨Ju⋆K, {{σeh(v⋆)}}⟩F⋆
h
+ ⟨αJu⋆K, Jv⋆K⟩F⋆

h
, ⋆ = {e, p},

Bp
h(u,v) = (m∇h · u,∇h · v)Ω − ⟨{{m(∇h · u)}}, JvKn⟩Fp

h

− ⟨JuKn, {{m(∇h · v)}}⟩Fp
h
+ ⟨γJuKn, JvKn⟩Fp

h
,

cf also [9]. Here, the stabilization functions α ∈ L∞(F⋆
h), for ⋆ = {p, e} and γ ∈

L∞(Fp
h) are defined s.t.

α|F =

c1 max
κ∈{κ+,κ−}

(
Cκ p

2
⋆,κh

−1
κ

)
∀F ∈ F⋆,i

h ∪ FI
h , F ⊆ ∂κ+ ∩ ∂κ−,

Cκ p
2
⋆,κh

−1
κ ∀F ∈ F⋆,b

h , F ⊆ ∂κ,
(3.5)

γ|F =

c2 max
κ∈{κ+,κ−}

(
mκ p

2
p,κh

−1
κ

)
∀F ∈ Fp,i

h , F ⊆ ∂κ+ ∩ ∂κ−,

mκ p
2
p,κh

−1
κ ∀F ∈ Fp,b

h ∪ FI
h , F ⊆ ∂κ, κ ∈ T p

h ,
(3.6)

with positive constants c1 and c2 that have to be properly chosen. The definition of the
penalty functions (3.5)–(3.6) is based on [29, Lemma 35]. Alternative stabilization
functions can be defined in the spirit of [2]. The analysis of the latter is however
beyond the scope of this work. The bilinear form Ch(·, ·) is responsible for the coupling
between the elastic and the poroelastic domain and is defined as the sum of five
contributions, namely

Ch(U,V) = Ae
ΓI
(ue,ve) +Ap

ΓI
(up,vp) + Bpp

ΓI
(up,vp) + Bpf

ΓI
(up,vf )

+ Bfp
ΓI
(uf ,vp) + Bff

ΓI
(uf ,vf ) + Cep

ΓI
(ue,vp) + Cpe

ΓI
(up,ve),

for any U,V ∈ Vh, where

Ae
ΓI
(ue,ve) =⟨σeh(ue)np,ve⟩FI

h
+ ⟨σeh(ve)np,ue⟩FI

h
+ ⟨αue,ve⟩FI

h
,

(3.7)

Ap
ΓI
(up,vp) =⟨αup,vp⟩FI

h
,
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Bpp
ΓI
(up,vp) =− ⟨mβ∇h · up, (1− δ)βvp · np⟩FI

h
− ⟨mβ∇h · vp, (1− δ)βup · np⟩FI

h

+ ⟨γ(1− δ)βup · np, (1− δ)βvp · np⟩FI
h
,

Bpf
ΓI
(up,vf ) =− ⟨mβ∇h · up,vf · np⟩FI

h
− ⟨m∇h · vf , (1− δ)βup · np⟩FI

h

+ ⟨γ(1− δ)βup · np,vf · np⟩FI
h
,

Bfp
ΓI
(uf ,vp) =− ⟨m∇h · uf , (1− δ)βvp · np⟩FI

h
− ⟨mβ∇h · vp,uf · np⟩FI

h

+ ⟨γuf · np, (1− δ)βvp · np⟩FI
h
,

Bff
ΓI

(uf ,vf ) =− ⟨m∇h · uf ,vf · np⟩FI
h
− ⟨m∇h · vf ,uf · np⟩FI

h

+ ⟨γuf · np,vf · np⟩FI
h
,

Cep
ΓI
(ue,vp) =− ⟨σeh(ue)np,vp⟩FI

h
− ⟨αue,vp⟩FI

h
,

Cpe
ΓI
(up,ve) =− ⟨σeh(ve)np,up⟩FI

h
− ⟨αup,ve⟩FI

h
.

The derivation of the coupling bilinear form Ch(·, ·), starting from the strong formu-
lation of the poroelastic-elastic problem, is detailed in the Appendix.

Remark 3.2. Notice that the coupling conditions (2.4) and (2.5) are imposed
(weakly) through the bilinear forms Ae

ΓI
(·, ·),Ap

ΓI
(·, ·), Cep

ΓI
(·, ·) and Cpe

ΓI
(·, ·), while con-

dition (2.6) is included in the bilinear forms Bpp
ΓI
(·, ·), Bpf

ΓI
(·, ·), Bfp

ΓI
(·, ·), and Bff

ΓI
(·, ·).

The latter couples at the interface the filtration displacement in Ωp to the elastic
displacement in Ωe, through the elastic displacement in Ωp.

By fixing a basis for the space Vh and denoting by Uh = (Ue,Up,Uf )
T ∈ Rndof

the vector of the ndof expansion coefficients in the chosen basis of the unknown Uh,
the semi-discrete formulation (3.2) can be written equivalently as:

(3.8)

Me
ρe

0 0
0 Mp

ρ Mp
ρf

0 Mp
ρf

Mp
ρw

Üe

Üp

Üf

+

De
ρe

0 0
0 Dp

ρ 0
0 0 Df

U̇e

U̇p

U̇f


+

A
e
h +Ae

ΓI
Cpe

ΓI
0

Cep
ΓI

Ap +Ap
ΓI

+Bp
β2 +Bpp

ΓI
Bp

β +Bfp
ΓI

0 Bp
β +Bpf

ΓI
Bp +Bff

ΓI


Ue

Up

Uf

 =

Fe

Fp

Gp


with initial conditions U0h and V0h. We remark that Fe, Fp and Gp are the vector rep-
resentations of the linear functional F . To ease the notation, we set Fh = [Fe,Fp,Gp]T

and we rewrite system (3.8) in compact form as

(3.9) MÜh(t) +DU̇h(t) + (A+B + C)Uh(t) = Fh(t) ∀t ∈ (0, T ].

3.2. Stability analysis. To carry out the stability analysis of the semi-discrete
problem, we introduce the energy norm

(3.10) ∥U(t)∥2E = ∥U̇(t)∥20 + |U(t)|2dG + |U(t)|2ΓI
+

∫ t

0

D(U̇, U̇)(s) ds+D(U,U)(0),

for all U = (ue,up,uf ) ∈ C1([0, T ];Vh), where

|U|2dG = ∥ue(t)∥2dG,e + ∥up(t)∥2dG,p + |(βup + uf )(t)|2dG,p,

∥u⋆∥2dG,⋆ = ∥C1/2 : ϵh(u⋆)∥2Ω⋆
+ ∥α1/2Ju⋆K∥2F⋆

h
∀u⋆ ∈ V ⋆

h ⋆ = {e, p},
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|up|2dG,p = ∥m1/2∇h · up∥2Ωp
+ ∥γ1/2JupKn∥2Fp

h
∀up ∈ V p

h ,

and for any (ue,up,uf ) ∈ V e
h × V p

h × V p
h we have

|U|2ΓI
= ∥α1/2(up − ue)∥2FI

h
+ ∥γ1/2((1− δ)βup + uf ) · np∥2FI

h
.

Before showing the main result of the section, we introduce the following funda-
mental lemmas.

Lemma 3.3. For any U,V ∈ Vh and for large enough parameters c1, c2, it holds

Ah(U,U) ≳ |U|2dG, Ah(U,V) ≲ |U|dG|V|dG.

Proof. For the proof we use the definition of the bilinear form Ah(·, ·) in (3.3)
and combine the results in [9, Lemma A.3].

Lemma 3.4. For any (ue,up) ∈ V e
h × V p

h and any uf ∈ V p
h it holds

(3.11) 2|⟨σeh(ue)ne,up − ue⟩FI
h
| ≲ 1

√
c1

∥ue∥dG,e∥α1/2(up − ue)∥FI
h
,

(3.12) 2|⟨m∇ · (βup + uf ), ((1− δ)βup + uf ) · np⟩FI
h
|

≲
1

√
c2

|(βup + uf )(t)|dG,p∥γ1/2((1− δ)βup + uf ) · np∥FI
h
,

where c1 and c2 are the two positive constants at our disposal appearing in the defini-
tion of the stabilization function given in (3.5)–(3.6).

Proof. The proof hinges on Assumption 3.1 and the trace inverse inequality (3.1).
See also [9, Lemma A.2]

Corollary 3.5. For any U = (ue,up,uf ) ∈ Vh and for c1 and c2 large enough
it holds

(3.13) |U|2dG + |U|2ΓI
≲ Ah(U,U) + Ch(U,U) ≲ |U|2dG + |U|2ΓI

.

Proof. The proof follows by noting that

Ch(U,W) = −2⟨σe(ue)np,up−ue⟩FI
h
−2⟨m∇·(βup+uf ), ((1−δ)βup+uf ) ·np⟩ΓI

+ ∥α1/2(up − uf )∥2FI
h
+ ∥γ1/2((1− δ)βup + uf ) · np∥2FI

h
,

and using the results in Lemma 3.3 and Lemma 3.4.

The main stability result is stated in the following theorem.

Theorem 3.6 (Stability of the semi-discrete formulation). Let Assumption 3.1
and Assumption 3.2 be satisfied. For sufficiently large penalty parameters c1 and c2 in
(3.5) and (3.6), respectively, let Uh(t) ∈ Vh be the solution of (3.2) for any t ∈ (0, T ].
Then, it holds

(3.14)
sup

0≤t≤T
∥Uh(t)∥2E ≲ ∥Uh0∥2E +

∫ T

0

(
∥(2ρeζ)−1/2fe∥2Ωe

+ ∥(2ρeζ)−1/2fp∥2Ωp

+ ∥(k/η)1/2gp∥2Ωp

)
ds,

where the hidden constant depends on the final time T , on the penalization parameters
c1 and c2 in (3.5)–(3.6) and on the material properties.
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Proof. By taking Vh = U̇h ∈ Vh in (3.2) we obtain

1

2

d

dt

[
M(U̇h, U̇h) +Ah(Uh,Uh) + Ch(Uh,Uh)

]
+D(U̇h, U̇h) = F(U̇h).

Next, we integrate in time between 0 and t, add on both side D(U0,U0) ≥ 0, use
(3.13) and (2.10)–(2.11) to obtain

∥Uh(t)∥2E +

∫ t

0

D(U̇h, U̇h)(s) ds ≲ ∥Uh0∥2E + 2

∫ t

0

F(U̇h)(s) ds,

for large enough penalty constants c1 and c2. Next, to estimate the last term on the
right-hand side we use the Cauchy-Schwarz and Young inequalities.

4. Semi-discrete error analysis. This section is devoted to the semi-discrete
error analysis. We first recall some standard interpolation error estimates written
in the context of polytopal discretizations and then present the main results of the
section. We introduce the following definition and a further mesh assumption (cf.
[30, 29]) in order to avoid technicalities in the following proofs.

Definition 4.1. A covering T§ = {K} of the polytopic mesh Th is a set of regular
shaped d-dimensional simplices K, d = 2, 3, s.t. ∀ κ ∈ Th, ∃ K ∈ T§ s.t. κ ⊆ K.

Assumption 4.1. Any mesh Th admits a covering T§ in the sense of Defini-
tion 4.1 such that i) maxκ∈Th

card{κ′ ∈ Th : κ′ ∩ K ≠ ∅, K ∈ T§ s.t. κ ⊂ K} ≲ 1 and
ii) hK ≲ hκ for each pair κ ∈ Th, K ∈ T§ with κ ⊂ K.

For all t ∈ [0, T ] we also introduce the norm

|||U(t)|||2E = ∥U̇(t)∥20 + |||U(t)|||2dG + |U(t)|2ΓI
+

∫ t

0

D(U̇, U̇)(s) ds+D(U,U)(0),

for any U = (ue,up,uf ) ∈H2(T e
h )×H2(T p

h )×H2(T p
h ), where

(4.1) |||U|||2dG = |U|2dG + ∥α−1/2{{C : ϵh(ue)}}∥2Fe
h
+ ∥α−1/2{{C : ϵh(up)}}∥2Fp

h

+ ∥γ−1/2{{m∇h · (βup + uf )}}∥2Fp
h
.

Next, we prove the following lemma.

Lemma 4.2. For any U ∈H2(T e
h )×H2(T p

h )×H2(T p
h ) and any Vh ∈ Vh it holds

Ah(U,Vh) + Ch(U,Vh) ≲ (|||U|||dG + |U|ΓI
)(|Vh|dG + |Vh|ΓI

).(4.2)

Proof. The proof is obtained by using classical dG arguments and by noting that

Ch(U,Vh) =− ⟨σeh(ue)np,vph − veh⟩FI
h
− ⟨σeh(veh)np,up − ue⟩FI

h

+ ⟨α(up − ue),vph − veh⟩FI
h

− ⟨m∇h · (βup + uf ), ((1− δ)βvph + vfh) · np⟩FI
h

− ⟨m∇h · (βvph + vfh), ((1− δ)βup + uf ) · np⟩FI
h

+ ⟨γ((1− δ)βup + uf ) · np, ((1− δ)βvph + vfh) · np⟩FI
h
.

See also [13] and [9, Lemma A.3].
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For an open bounded polytopic domain Σ ⊂ Rd and a generic polytopic mesh Th
over Σ satisfying Assumption 4.1, as in [30], we can introduce the Stein’s extension
operator Ẽ : Hm(κ) → Hm(Rd) [72], for any κ ∈ Th and m ∈ N0, such that Ẽv|κ = v
and ∥Ẽv∥m,Rd ≲ ∥v∥m,κ. The corresponding vector-valued version mapping Hm(κ)
onto Hm(Rd) acts component-wise and is denoted in the same way. In what follows,
for any κ ∈ Th, we will denote by Kκ the simplex belonging to T§ such that κ ⊂ Kκ.

The next result provides the interpolation bounds that are instrumental for the
derivation of the a-priori error estimate.

Lemma 4.3. For any U = (ue,up,uf ) ∈ C1([0, T ];V ∩Hm(T e
h ) ×Hn(T p

h ) ×
Hℓ(T p

h )) with m,n, ℓ ≥ 2, there exists UI = (ue,up,uf )I ∈ C1([0, T ];Vh) such that

(4.3)

max
0≤t≤T

|||(U− UI)(t)|||2E ≲
∑
κ∈T e

h

h
2(sκ−1)
κ

p2m−3
e,κ

N (ue)
2
m,Kκ

+
∑
κ∈T p

h

h
2(qκ−1)
κ

p2n−3
p,κ

N (up)
2
n,Kκ

+
∑
κ∈T p

h

h
2(rκ−1)
κ

p2ℓ−3
p,κ

N (uf )
2
ℓ,Kκ

,

where sκ = min(m, pe,κ + 1), qκ = min(n, pp,κ + 1), rκ = min(ℓ, pp,κ + 1), and

N (u)2m,Kκ
= max

0≤t≤T

(
(1 + T )∥Ẽu̇(t)∥2m,Kκ

+ ∥Ẽu(t)∥2m,Kκ

)
.

Proof. The first part of the proof readily follows by reasoning as in [5, Lemma 5.1],
cf. also [9, Lemma 4.2]. To infer estimate (4.3), we resort to the hp-approximation
properties stated in [29, Lemma 23], implying

∥U̇− U̇I∥20 ≲
∑
κ∈T e

h

h2sκκ

p2me,κ
∥Ẽu̇e∥2m,Kκ

+
∑
κ∈T p

h

h2qκκ

p2np,κ
∥Ẽu̇p∥2n,Kκ

+
∑
κ∈T p

h

h2rκκ

p2ℓp,κ
∥Ẽu̇f∥2ℓ,Kκ

.

Then, a similar result hods for the terms
∫ t

0
D(U̇ − U̇I , U̇ − U̇I)(s) ds and D(U −

UI ,U − UI)(0). Finally, we bound the term |U − UI |2ΓI
by applying the triangle and

Cauchy–Schwarz inequalities followed by [29, Lemma 33], to infer

|U− UI |2ΓI
≲ ∥α1/2(ue − ueI)∥2FI

h
+ ∥α1/2(up − upI)∥2FI

h

+ ∥γ1/2(1− δ)β(up − upI) · np∥2FI
h
+ ∥γ1/2(uf − ufI) · np∥2FI

h

≲
∑
κ∈T e

h

h
2(sκ−1)
κ

p2m−3
e,κ

∥Ẽue∥2m,Kκ
+

∑
κ∈T p

h

h
2(qκ−1)
κ

p2n−3
p,κ

∥Ẽup∥2n,Kκ

+
∑
κ∈T p

h

h
2(rκ−1)
κ

p2ℓ−3
p,κ

∥Ẽuf∥2ℓ,Kκ
.

Before presenting the main result of this Section, we set for any time t ∈ (0, T ]

E(t) = (U− Uh)(t) = (ue − ueh,up − uph,wp −wph)(t),

and use the strong consistency of the semi-discrete formulation (3.2) to write the
following error equation

(4.4) M(Ë,Vh) +D(Ė,Vh) +Ah(E,Vh) + Ch(E,Vh) = 0 ∀Vh ∈ Vh.
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Theorem 4.4 (Semi-discrete error estimates). Let Assumption 3.1, Assump-
tion 3.2, Assumption 4.1, and the hypothesis of Theorem 2.2 hold. Let the solution
U = (ue,up,uf ) of problem (2.7) be such that

U ∈ C2([0, T ];Hm(T e
h )×Hn(T p

h )×Hℓ(T p
h )) ∩ C1([0, T ];V ),

with m,n, ℓ ≥ 2 and let Uh = (ue,up,uf )h ∈ C2([0, T ];Vh) be the solution of (3.2)
with c1 and c2 sufficiently large. Then, the discretization error E = U− Uh satisfies

(4.5) max
0≤t≤T

∥E(t)∥2E ≲
∑
κ∈T e

h

h
2(sκ−1)
κ

p2m−3
e,κ

N (ue)
2
m,Kκ

+
∑
κ∈T p

h

h
2(qκ−1)
κ

p2n−2
p,κ

N (up)
2
n,Kκ

+
∑
κ∈T p

h

h
2(rκ−1)
κ

p2ℓ−3
p,κ

N (uf )
2
ℓ,Kκ

,

with N (u)2m,Kκ
= max0≤t≤T

(
∥Ẽü(t)∥2m,Kκ

+ ∥Ẽu̇(t)∥2m,Kκ
+ ∥Ẽu(t)∥2m,Kκ

)
and hid-

den constant depending on the final time T and the material properties, but indepen-
dent of the discretization parameters.

Proof. For any time t ∈ (0, T ], let UI(t) = (ue,up,uf )I(t) ∈ Vh be the inter-
polants defined in Lemma 4.3. We split the error as E(t) = EI(t)− Eh(t), where

EI(t) = (U− UI)(t) = (ue − ueI ,up − upI ,uf − ufI)(t),

Eh(t) = (Uh − UI)(t) = (ueh − ueI ,uph − upI ,ufh − ufI)(t).

From the triangle inequality, we have ∥E(t)∥2E ≤ ∥Eh(t)∥2E+∥EI(t)∥2E, and Lemma 4.3
can be used to bound the term ∥EI(t)∥E. As for the term ∥Eh(t)∥E, by taking Vh =
Ėh ∈ Vh as test functions in (4.4) and collecting a first time derivative, we obtain

(4.6)
1

2

d

dt

(
M(Ėh, Ėh) +Ah(Eh,Eh) + Ch(Eh,Eh)

)
+D(Ėh, Ėh) = M(ËI , Ėh)

+D(ĖI , Ėh)−Ah(ĖI ,Eh)− Ch(ĖI ,Eh) +
d

dt
Ah(EI ,Eh) +

d

dt
Ch(EI ,Eh),

where we have used Leibniz’s rule on the term Ah(EI , Ėh) and Ch(EI , Ėh). Now,
reasoning as in the proof of Theorem 3.6, integrating (4.6) between 0 and t ≤ T ,
and assuming for simplicity that we can set the initial conditions of the semi-discrete
problem so that Ėh(0) = Eh(0) = 0, we get

∥Eh(t)∥2E +

∫ t

0

D(Ėh, Ėh)(s) ds ≲ Ah(EI ,Eh)(t) + Ch(EI ,Eh)(t)

+

∫ t

0

(
M(ËI , Ėh)−Ah(ĖI ,Eh)− CΓI

(ĖI ,Eh) +D(ĖI , Ėh)
)
(s) ds.

Note that also D(Eh,Eh)(0) = 0 under the assumption that Uh(0) = UI(0). Then, we
apply Cauchy-Schwarz and Young’s inequality together with (4.2) to get

∥Eh(t)∥2E ≲ |||EI |||2dG + |EI |2ΓI
+

∫ t

0

D(ĖI , ĖI)(s) ds

+

∫ t

0

(∥ËI∥0 + |||ĖI |||dG + |ĖI |ΓI
)(∥Ėh∥0 + ∥Eh∥dG + |Eh|ΓI

)(s) ds.



A SPACE-TIME DG METHOD FOR COUPLED POROELASTICITY-ELASTICITY 13

We note that the first three addends can be bounded by |||EI(t)|||2E. Finally, we take
the maximum over t ∈ [0, T ], employ the Cauchy-Schwarz and Young’s inequality,

and observe that
∫ T

0
|f(s)|ds ≤ T maxt∈[0,T ] |f(t)| to infer

max
0≤t≤T

∥Eh(t)∥2E ≲ max
0≤t≤T

|||EI(t)|||2E + T 2 max
0≤t≤T

(∥ËI∥20 + |||EI |||2dG + |EI |2ΓI
)(t)

≲ max
0≤t≤T

|||EI(t)|||2E + T 2 max
0≤t≤T

|||ĖI(t)|||
2

E.

We conclude by applying the estimates in Lemma 4.3.

5. dG time discretization. It is known, in the literature, that problems of wave
propagation in porous media present difficulties from the point of view of integration
over time. This is because in the low-frequency range, as the one we are interested in,
the evolution problem becomes stiff [33, 36], and therefore implicit time integration
schemes might be preferred to avoid stability constraint. In that respect, to integrate
in time the second-order differential system in (3.9) we adopt the scheme proposed in
[14] for the elastodynamics equations, which consists in applying a time dG method
to the first-order system

(5.1)

[
I 0
0 M

] [
U̇h

V̇h

]
+

[
0 −I

A+ C D

] [
Uh

Vh

]
=

[
0
Fh

]
.

The latter can be rewritten in a compact form as

(5.2) M̂ Żh + K̂Zh = F̂h,

by setting Zh = [Uh,Vh]
T , and M̂ and K̂ defined as

M̂ =

[
I 0
0 M

]
, and K̂ =

[
0 −I

A+ C D

]
.

Remark that, with respect to the system introduced in [14], here the first equation
of (5.1) has not been multiplied by A (that in this case is not positive definite). To
discretize in time this system we partition the interval I = (0, T ] into NT time-slabs
In = (tn−1, tn] having length ∆tn = tn − tn−1, for n = 1, . . . , N with t0 = 0 and
tN = T . Then, we introduce the functional spaces

V rn
∆tn

= {Z : In → R2ndof s.t. Z ∈ [Prn(In)]
2ndof , rn ≥ 1},

and

(5.3) V r
∆t = {Z ∈ L2(0, T ] s.t. Z|In = [U,V]T |In ∈ V rn

∆tn
∀n = 1, ..., NT }.

We use the notation [·]n to denote the jump of Z ∈ V r
∆t at time instant tn, i.e.,

[Z]n = Z(t+n )−Z(t−n ), for n ≥ 0. With this notation, the time-dG formulation of (5.2)
reads as: find ZdG ∈ V r

∆t such that

(5.4) AT(ZdG,W) = G(W) ∀ W ∈ V r
∆t,

where the bilinear form AT : V r
∆t × V r

∆t → R is defined by

AT(Z,W) =

NT∑
n=1

(M̂ Ż,W)In + (K̂Z,W)In +

NT−1∑
n=1

M̂ [Z]n ·W(t+n ) + M̂Z(0+) ·W(0+),
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for all Z,W ∈ V r
∆t. The linear functional G : L2(0, T ) → R is defined as

(5.5) G(W) =

NT∑
n=1

(F̂h,W)In + M̂Z0 ·W(0+),

for any W ∈ V r
∆t, being Z0 = [U0h,V0h]

T . In practice, to compute the discrete
solution to (5.4) we iterate over the time intervals, using as initial conditions for In+1

the trace in tn of the computed solution in the previous interval In. Hence, problem
(5.4) written for the generic time interval In reduces to: find Zn

dG ∈ V rn
∆tn

such that

(5.6) (M̂ Ż
n

dG,W)In + (K̂Zn
dG,W)In + M̂Zn

dG(t
+
n−1) ·W(t+n−1)

= (F̂h,W)In + M̂Zn−1
dG (t−n−1) ·W(t+n−1).

Focusing on the generic interval In, we introduce a basis {ψℓ(t)}ℓ=1,...,rn+1 for the
polynomial space Prn(In) and set d = ndof(rn + 1) the dimension of the local finite

dimensional space V rn
∆tn

. We also introduce the vectorial basis {ψℓ
i (t)}

ℓ=1,...,rn+1
i=1,...,2ndof ,

where ψℓ
i is the 2ndof-dimensional vector whose i-th component is ψℓ and the other

components are zero. Using the above notation, we can write the trial function Zn
dG

as a linear combination of the basis functions, i.e,

Zn
dG(t) =

2ndof∑
j=1

rn+1∑
m=1

αm
j ψ

m
j (t),

where αm
j ∈ R for j = 1, ..., 2ndof and m = 1, ..., rn+1. Next, we write equation (5.6)

for any test function ψℓ
i (t), i = 1, ..., 2ndof, ℓ = 1, ..., rn + 1, obtaining the algebraic

system of equations

Anαn = bn,

where on the interval In, α
n ∈ R2d is the solution vector, bn ∈ R2d corresponds to

the data and is given componentwise as

bnk = (F̂h,ψ
ℓ
i )In + M̂Zn−1

dG (t−n−1)ψ
ℓ
i (t

+
n−1), n = 1, ..., NT ,

for k = ℓ + (i − 1)(rn + 1), and ℓ = 1, ..., rn + 1, i = 1, ..., 2ndof. Note that we
implicitly use the convention Zn−1

dG (0−) = Z0h. The system matrix An ∈ R2d×2d has
the following structure

An = (N1 +N3)⊗
[
I 0
0 M

]
+N2 ⊗

[
0 −I

A+ C D

]
, n = 1, ..., NT

where the time matrices Ni, i = 1, 2, 3, are defined as follows

N ℓm
1 = (ψ̇m, ψℓ)In , N ℓm

2 = (ψm, ψℓ)In , N ℓm
3 = ψm(t+n−1)ψ

ℓ(t+n−1),

for m, ℓ = 1, ..., rn + 1. By defining the solution vector and the right-hand side
αn = [αn

u,α
n
v ]

T and bn = [bnu, b
n
v ]

T , respectively, and using the properties of the
Kronecker product we obtain

(5.7)

(
In ⊗

[
I 0
0 M

]
+N5 ⊗

[
0 −I

(A+ C) D

])[
αn

u

αn
w

]
= N4 ⊗

[
I 0
0 I

] [
bnu
bnw

]
,



A SPACE-TIME DG METHOD FOR COUPLED POROELASTICITY-ELASTICITY 15

where N4 = (N1+N3)
−1, N5 = N4N2, and In is the identity matrix of order rn+1. As

noted in [69, Remark 1] the above scheme is equivalent to an Implicit Runge-Kutta
(IRK) method with (rn + 1)-stages. As in this case, when the entries of the time
matrices Ni, i = 1, .., 3, and of the right-hand side are computed through a Gauss-
Legendre-Lobatto (GLL) quadrature formula having rn + 1 points and weights, and
the basis functions ψℓ are the characteristic polynomials associated with that points,
one obtains the so-called IRK-Lobatto IIIC schemes (see, e.g. [66, Section 11.8.3]).
As a consequence, scheme (5.7) is L-stable, algebraically stable, and thus B-stable.
Moreover, as observed in [51], it is perfectly suited for stiff problems. According to [25]
Lobatto IIIC methods with rn+1 stages have a maximal order of convergence 2rn−2
when a scalar problem is taken into account. However, when the method is applied
to a system of ordinary differential equations its order of accuracy can deteriorate as
observed in [66, 69]. In the case under consideration it holds

∥Zh(T
−)− ZdG(T

−)∥2 ≲ ∆trn+1,

if the time slabs In have all the same length ∆t for any n = 1, ..., N , cf. Section 6.
The formal proof of this result is out of the scope of the paper and will be subject to
future research.

To numerically solve system (5.7) we apply a block Gaussian elimination getting

(5.8)

[
In ⊗ I −N5 ⊗ I

0 Mw

] [
αn

u

αn
w

]
=

[
(N4 ⊗ I)bnu

bnw − (N6 ⊗ I)bnu

]
,

with Mw = (N1 +N3) ⊗M +N2 ⊗D +N7 ⊗ (A + C) being N6 = N2N4 and N7 =
N2N4N2. Next, we computeαn

w, by solving the linear systemMwα
n
w = bnw−(N6⊗I)bnu

and then we update αn
u by using the first equation.

6. Numerical results. In this section, we present numerical results concerning
the verification of our scheme on problems with manufactured solutions and the ap-
plication of the method to cases of geophysical interest. In all numerical tests, the
penalty parameters c1 and c2 appearing in definitions (3.5)–(3.6), respectively, have
been chosen equal to 10.

6.1. Verification test. We consider problem (2.1)–(2.2) coupled with (2.4)–
(2.6) in Ω = Ωe ∪ Ωp with Ωe = (0, 1) × (0, 1) and Ωp = (−1, 0) × (0, 1). We choose
the exact solution

(6.1) ue = cos(4πt)

[
x2 sin(2πx)
x2 sin(4πx)

]
, up = cos(π

√
2t)

[
x2 cos(πx/2) sin(πx)
x2 cos(πx/2) sin(πx)

]
,

and uf = −up. Dirichlet boundary conditions, initial conditions, and the forcing
term fe,fp, and gp are set accordingly. For the interface conditions (2.4)–(2.6) we
choose δ = 1. The model problem is solved on a sequence of polygonal meshes as the
one shown in Figure 2, with adimensional parameters reported in Table 1.
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Fig. 2: Test case of Section 6.1. Example
of the computational domain having 100
polygonal elements. The red line repre-
sents the interface ΓI .

Ωp Ωe

Fluid ρf 1 –
η 1 –

Grain ρs (ρe) 1 1
µ 1 1
ζ 1 1

Matrix ϕ 0.5 –
a 1 –
k 1 –
λ 1 2
m 1 –
β 1 –

Table 1: Parameters em-
ployed for the test case of Sec-
tion 6.1.

As a first test, we set the final time equal to 1 and consider, for the time integration
scheme in Section 5, a timestep ∆tn = ∆t = 10−3 and a polynomial degree rn = r = 1,
for any n = 1, ..., 1000. In Figure 3 (left), we report the computed energy error
∥U − Uh∥E at the final time T , cf. (3.10) as a function of the mesh size h for a
polynomial degree pe = pp = 2, 3, 4. In this case, we retrieve the rate of convergence
O(hp) as proved in (4.5). In Figure 3 (right) we report the same results as before as
a function of the polynomial degree p = pp = pe obtained by fixing the number of
grid elements Nel = 100 and considering ∆tn = ∆t = 5.e − 4 and rn = r = 1 for
n = 1, ..., 2000. Notice that this latter case is not covered by our theoretical analysis,
nevertheless, we observe numerically optimal convergence.

On the same numerical example, we compute numerically the L2-norm of the
error, i.e., ∥U − Uh∥0, as a function of the time step ∆t, by fixing a polygonal mesh
of Nel = 100 elements and the polynomial degree p = pp = pe = 7. We compute the
error at the final time T = 1 by choosing different polynomial degrees r = 1, 2, 3. As
it can be seen from Figure 4 the estimated order of convergence is O(∆tr). Although
this is only numerical evidence, it shows that the considered dG method outperforms
classical methods such as the Newmark scheme, which is still widely used for wave
propagation problems, see e.g., [9]. Next, in Table 2 we report the computed L2-error
∥U − Uh∥0 as a function of the discretization parameters. In particular, we fix the
polynomial degree for both space and time variables and we let Nel and ∆t vary. It is
possible to notice that the spatial discretization error is dominant since we obtain an
almost constant value for each row of Table 2. It is interesting to analyze these results
in connection with the condition number of the system matrix Mw, cf. Figure 5 (first
row) and the computational time spent for the single run, cf. Figure 5 (second row).
First of all, we can observe that the condition number of the system matrix increases
by one order whenever the polynomial degree increases by one. Moreover, when fixing
the polynomial degree, the matrix Mw is better conditioned for a smaller value of ∆t,
see Figure 5 (first row). Concerning the computational cost, it is obvious that this is
proportional to the dimension of the system matrix. Looking at the plot in Figure 5
(second row) one can observe that even if different combinations of discretization
parameters can lead to the same amount of time spent for a single simulation, they
do not provide the same level of accuracy. Indeed, the sets (p = r = 3,∆t = 0.01,
Nel = 400) and (p = r = 4,∆t = 0.02, Nel = 200) are equivalent from the point of
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−
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Fig. 3: Test case of Section 6.1. Left: computed energy-errors ∥U − Uh∥E at T = 1
in logarithmic scale as a function of the mesh size h for different polynomial degrees
p = pe = pp and fixing the time step ∆t = 0.001 and the time polynomial degree
r = 1. The rate of convergence is in agreement with the theoretical estimates in
(4.5). Right: computed energy-errors ∥U − Uh∥E at T = 1 in semilogarithmic scale
as a function of the polynomial degree p = pp = pe by fixing the number of elements
Nel = 100, the time step ∆t = 5.e− 4, and the time polynomial degree r = 1.

10−2 10−1

10−7

10−5

10−3

10−1

2

3

4

∆t

∥U
−
U

h
∥ 0

r = 1
r = 2
r = 3

Fig. 4: Test case of Section 6.1. Computed L2-errors ∥U−Uh∥0 at T = 1 in logarithmic
scale as a function of the time step ∆t for different polynomial degrees r = 1, 2, 3 in
time. We set Nel = 100 polygonal elements and a space polynomial degree p = pp =
pe = 7.

view of the computational cost (1389 s and 1130 s, respectively) but, with the first set
we obtain an L2−error equal to 1.7814e-04, while with the second we get 5.6899e-05.

6.2. Wave propagation in a two layer medium. Inspired by [60], we con-
sider a wave propagation problem in a two-layered medium. The computational do-
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Nel \ ∆t 0.1 0.05 0.02 0.01

p = r = 1

50 2.5734e-01 2.3169e-01 2.1453e-01 2.0908e-01
100 2.4613e-01 2.0702e-01 1.9284e-01 1.9759e-01
200 2.4419e-01 1.9706e-01 1.8611e-01 1.8736e-01
400 2.5188e-01 2.0336e-01 1.7338e-01 1.6802e-01

p = r = 2

50 4.8538e-02 4.8105e-02 4.8164e-02 4.8125e-02
100 5.1387e-02 4.7603e-02 4.7353e-02 4.7406e-02
200 3.2140e-02 2.7143e-02 2.6818e-02 2.6841e-02
400 1.5432e-02 8.3925e-03 8.0168e-03 8.0096e-03

p = r = 3

50 1.5983e-02 1.5933e-02 1.5947e-02 1.5943e-02
100 3.1176e-03 3.0956e-03 3.1093e-03 3.1157e-03
200 8.7709e-04 8.4075e-04 8.4631e-04 8.5067e-04
400 2.7540e-04 1.7519e-04 1.7682e-04 1.7814e-04

p = r = 4

50 9.1399e-04 9.2689e-04 9.3522e-04 9.3748e-04
100 2.8139e-04 2.8182e-04 2.8601e-04 2.8739e-04
200 5.6281e-05 5.6095e-05 5.6899e-05 5.7177e-05
400 1.3301e-05 1.0781e-05 1.0890e-05 1.1072e-05

Table 2: Test case of Section 6.1. Computed L2-errors ∥U− Uh∥0 as function of the
discretization parameters.

Fig. 5: Test case of Section 6.1. First row: computed condition number (condest
function in Matlab) as a function of the discretization parameters. Second row: com-
putational time employed for a single run as a function of the discretization parame-
ters.

main Ω = (0, 4800 m)2 and consists of two layers as shown in Figure 6 (left). We
assume the upper layer to be a poroelastic material while the lower layer to be an
elastic medium, cf. Table 3.

An explosive source is located in the upper layer at xs = (1600, 2900) m whose
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Fig. 6: Left: computational domain for the test case of Section 6.2. Right: compu-
tational domain for the test case of Section 6.3. Yellow stars denote the nucleation
point xs, while green dots denotes the position of the receivers xr1 and xr2.

Proelastic Layer
Fluid Fluid density ρf 950 kg/m3

Dynamic viscosity η 0 (0.0015) Pa · s
Grain Solid density ρs 2200 kg/m3

Shear modulus µ 4.3738 ·109 Pa
Matrix Porosity ϕ 0.4

Tortuosity a 2
Permeability k 1 · 10−12 m2

Lamé coefficient λ 7.2073·109 Pa
Biot’s coefficient m 6.8386·109 Pa
Biot’s coefficient β 0.0290
Damping coefficient ζ 0 (0.01) s−1

Elastic Layer
Matrix Solid density ρ 2650 kg/m3

Shear modulus µ 1.5038 ·109 Pa
Lamé coefficient λ 1.8121·109 Pa
Damping coefficient ζ 0 (0.01) s−1

Table 3: Test case of Section 6.2. Physical parameters for the layered media.

expression is given by

(6.2) fp = gp = −M · ∇δ(x− xs)S(t),

being M = M0I the moment tensor with M0 > 0, δ(x − xs) is the Dirac delta
distribution centered in xs and S(t) is the source time function. This is a classical
choice in the context of earthquake simulation, cf. [60]. We consider as a time
evolution for S(t) in (6.2) a Ricker-wavelet

(6.3) S(t) = (1− 2βp(t− t0)
2)e−βp(t−t0)

2

, βp = π2f2p ,
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with time-shift t0 = 0.3 s and peak-frequency fp = 5 Hz. Finally, we set M0 =
1 Nm. We use a shape-regular polygonal mesh with characteristic size h = 100
and a polynomial degree p = 3 for space discretization. For time integration, we
set ∆t = 0.01, a polynomial degree r = 2 and we fix the final time T = 1.5 s.
For this model, we consider interface conditions (2.4)–(2.6) with δ = 1, free surface
boundary conditions on the top boundary, i.e. σpnp = 0, and absorbing boundary
conditions on the remaining part of the boundary to avoid artificial reflections and
simulate an unbounded medium. In particular, we use the classical first-order paraxial
approximations proposed in [71] for the elastic boundary Γe, i.e.,

σene = ρ(cp − cs)(∂tue · ne)ne + ρecs∂tue,(6.4)

and the ones proposed in [60] for the poroelastic boundary Γp, i.e.,

σpnp = ρpcpI(∂tup · np)np + ρfcpII(∂tuf · np)np(6.5)

+ (ρp − ρfϕ/a)cs(I − npnp) · ∂tup,

−pnp = ρfa/ϕcpII(∂tuf · np)np + ρfcpI(∂tup · np)np.

In (6.4) cp =
√

λ+2µ
ρe

and cs =
√

µ
ρe

are the compressional and shear wave velocities,

respectively, while in (6.5) cpI and cpII are the fast and slow compressional wave

velocities, respectively, defined as cpI = max
√
Λ and cpII = min

√
Λ, where Λ are the

solutions of the generalized eigenvalue problem Av = ΛBv where

A =

[
ρp ρf
ρf ρw

]
, B =

[
λ+ 2µ+mβ2 mβ

mβ m

]
.

In Figure 7, we report some snapshots of the vertical component velocity (u̇p, u̇e)y
obtained by neglecting or considering viscous effects in the model. In particular, we
consider the model TC1 where η = ζ = 0 (Figure 7-first row), and the model TC2

where we set η = 0.0015 and ζ = 0.01 (Figure 7-second row). The results of TC1

are in agreement with the ones presented in [60, 62]. Indeed, from Figure 7 (first
row), we clearly observe: (i) the continuity of the velocity field across the interface
ΓI = (0, 4800) m×{2400} m; (ii) the propagation of the direct fast cpI compressional
wave (first front), the reflected fast cpI compressional wave (second front), the reflected
shear cs (third front) and slow compressional cpII wave (fourth front) in the upper
poroelastic layer; (iii) the transmitted compressional cp and shear cs wave in the lower
elastic layer. The same physical phenomena, although less evident, are present when
the viscous damping terms are introduced in TC2, cf. Figure 7(second row). In this
case, the transmitted shear cs and the reflected slow longitudinal cPII waves are too
weak to be visible at this scale. From the plot, we can also see the effect of the first-
order absorbing boundaries, which are not perfectly transparent. Recent studies have
adopted the more efficient perfectly matched layer (PML) methodology, e.g. [56, 49].
The PML implementation is not included in this paper but it will be addressed in the
next future.

In Figure 8 we compare the the time histories velocities (u̇p, u̇e) at the two re-
ceivers xr1 = (2000, 2934) m and at xr2 = (2000, 1867) m for the different modeling
assumptions. Again here we notice the effect of the damping assumption on the
scattered wave field.

6.3. Wave propagation in an elastic domain with poroelastic inclusions.
To demonstrate the feasibility of tackling a more complex model with the proposed
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Fig. 7: Test case of Section 6.2. Snapshots of the vertical component velocity (u̇p, u̇e)y
at different time instants: t = 0.9s (left), t = 1.2s (center), and t = 1.5s (right). The
top and bottom rows refer to the model TC1 and TC2, respectively.

Fig. 8: Test case of Section 6.2. Horizontal and vertical component velocity u̇p (top)
and u̇e (bottom) for the receivers xr1 (top) and xr2 (bottom), respectively.

method, we consider a coupled elastic-poroelastic model shown in Figure 6 (right).
The background media is regarded as a perfectly elastic medium (whose mechanical
properties are listed in Table 3) while the circle and ellipses with different sizes rep-
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resent oil and gas reservoirs, which are modeled as poroelastic media. This example
takes inspiration from the one proposed in [80]. The poroelastic domains have dif-
ferent material properties: for the domains depicted in light blue in Figure 6 (right)
we consider the values in Table 3 while for the remaining ones, we use the ones in
Table 4.

Proelastic Layer
Fluid Fluid density ρf 750 kg/m3

Dynamic viscosity η 0 Pa · s
Grain Solid density ρs 2650 kg/m3

Shear modulus µ 1.503 ·109 Pa
Matrix Porosity ϕ 0.2

Tortuosity a 2
Permeability k 1 · 10−12 m2

Lamé coefficient λ 1.8121·109 Pa
Biot’s coefficient m 7.2642·109 Pa
Biot’s coefficient β 0.9405
Damping coefficient ζ 0 s−1

Table 4: Test case of Section 6.3: physical parameters for the dark blue poroelastic
domain in Figure 6 (right).

We consider a seismic source as in the previous test case applied to the point xs =
(500, 780) m, with time variation given by a Ricker wavelet with time shift t0 = 0.2 s
and peak frequency fp = 10Hz, cf. (6.3). We consider absorbing boundary conditions
for the external elastic domain, cf. (6.4), while we choose different values for δ in (2.4)–
(2.6). In particular, we consider δ = 0, 12 , 1. For the numerical discretization, we
consider a polygonal decomposition with both quadrilateral and triangular elements
of characteristic size h = 25, cf. Figure 6 (right), a polynomial degree p = r = 3, a
time step ∆t = 0.01 s and a final time T = 1 s.

In Figure 9 we report the snapshots at different times of the computed vertical
velocity, for different values of δ. From the results reported in Figure 9, we see
that when the seismic waves, generated by the seismic source, reach the oil and gas
reservoirs, they are reflected and transmitted. The seismic waves are clearly shown,
and we can claim that there is no significant numerical dispersion. We can see the
absorbing boundary conditions perform rather well for this complex model, and the
seismic waves are absorbed by the boundary elements. The effect of δ is also visible,
the more δ is close to zero and the more the waves remain trapped inside the gas
reservoirs. This is in agreement with the model hypothesis in Section 2 (see also [9]).
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8. Conclusions. In this work, we have presented a space-time PolydG meth-
ods for wave propagation problems in coupled poroelastic-elastic media. Based on a
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Fig. 9: Test case of Section 6.3. Snapshots of the vertical component velocity (u̇p, u̇e)y
at different time instants: from left to right t = 0.3, 0.4, 0.7 s; top row δ = 1, middle
row δ = 0.5, bottom row δ = 0.

displacement weak formulation of the problem, we proved stability and error bound
for the semi-discretization, where (an interior penalty type) PolydGdG method is
considered. Time integration is achieved by an unconditionally stable and implicit
dG scheme, which also guarantees high-order accuracy in the time domain. Numeri-
cal experiments have been designed not only to verify the numerical performance of
the space-time PolydG method but also to exploit the flexibility in the process of
mesh design offered by polytopic elements. In this respect, numerical tests of geo-
physical interest have been also discussed. The presented space-time PolydG method
allows a robust and flexible numerical discretization that can be successfully applied
to multiphysics wave propagation problems. Future developments in this direction in-
clude the extension to realistic three-dimensional problems, the coupling of this model
to fluid-structure (with poroelastic, thermo-elastic, or acoustic structure) interaction
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problems as well as the design of efficient solvers for the solution of the (linear) system
of equations stemming from this space-time PolydG discretization.

Appendix A. Definition of the coupling bilinear form. The aim of this
appendix is to motivate the definition of Ch(·, ·) adopted in Section 3.1. We consider
equations (2.1) and (2.2), and we multiply them by test functions we ∈ V e

h and
wp,wf ∈ V p

h , respectively, integrate by parts element-wise and focus only to the
interface terms, i.e., integrals on ΓI , namely,

5∑
i=1

Ti = −
∫
ΓI

σe(ue)ne ·we ds−
∫
ΓI

σe(up)np ·wp ds

+ δ

∫
ΓI

βp(up,uf )wp · np ds+ (1− δ)

∫
ΓI

βp(up,uf )wp · np ds

+

∫
ΓI

p(up,uf )wf · np ds,

removing the subscript h to ease the notation. Next, we notice that, in view of
condition (2.4), the terms T1 + T2 + T3 can be rewritten as

T1 + T2 + T3 = −
∫
ΓI

σe(ue)np · (wp −we) ds,(A.1)

while T4 + T5 as

T4 + T5 = −
∫
ΓI

m∇ · (βup + uf )((1− δ)βwp +wf ) · np ds.(A.2)

Then, we add to (A.1) and (A.2) the following strongly consistent terms to ensure the
symmetry and positivity of the resulting system:

−
∫
ΓI

σe(ve)np · (up − ue) ds+

∫
ΓI

α(up − ue) · (vp − ve) ds,(A.3)

and

(A.4) −
∫
ΓI

m∇ · (βwp +wf )((1− δ)βup + uf ) · np ds

+ γ

∫
ΓI

((1− δ)βup + uf ) · np((1− δ)βvp + vf ) · np ds,

being α and γ defined as in (3.5)–(3.6). Finally, summing up equations (A.1)–(A.4)
we get

Ch(U,W) = −⟨σe(ue)np,wp−we⟩FI
h
−⟨σe(ve)np,up−ue⟩FI

h
+⟨αup−ue,vp−ve⟩FI

h

− ⟨m∇ · (βup + uf ), ((1− δ)βwp +wf ) · np⟩ΓI

− ⟨m∇ · (βwp +wf ), ((1− δ)βup + uf ) · np⟩FI
h

+ γ⟨((1− δ)βup + uf ) · np, ((1− δ)βvp + vf ) · np⟩FI
h
,

that is definition (3.7). Note that Ch(U,W) = Ch(W,U).
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