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1 Introduction

This work is concerned with the numerical solution of so-called economic
optimal control problems of the parabolic type. Let Ω = (−1, 1), T > 0 and
U := L2(0, T ;L2(Ω)) endowed with its norm � · �U . We want to solve

min
U×U

J (u,w) :=
1

2
�u�2U +

1

2
�w�2U , (1a)

subject to the PDE-constraint

yt(t, x)−Δy(t, x) = f(t, x) + u(t, x), in (0, T )×Ω,

y(t,−1) = y(t, 1) = 0, in (0, T ),

y(0, x) = y◦(x), in Ω,

(1b)

with y◦ ∈ L2(Ω) and f ∈ U , and to mixed control-state constraints

|u(t, x)| ≤ cu, |y(t, x) + εw(t, x)| ≤ cy(t), in (0, T )×Ω, (1c)

where cu, ε > 0 and cy ∈ L2(0, T ) with cy(t) > 0 for t ∈ (0, T ). Problem (1) is
related to the virtual control approach [6, 8, 9], which is a regularization tech-
nique for pointwise state-constrained problems. Under further assumptions on
w, in fact, one can show that, as ε → 0, the solution to (1) converges to the one
of the same optimal control problem with (1c) replaced by |u(t, x)| ≤ cu and
|y(t, x)| ≤ cy(t) in (0, T )×Ω; see, e.g., [8]. Note that there are no weights in
front of the control norms in (1a). This is because of the regularization param-
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eter ε, which is also used to tune the magnitude of the controls u and w. For
example, the smaller is ε, the larger is �w�U . In contrast to classical optimal
control problems, where the goal is to reach a precise target configuration, the
focus of (1) is to find minimum-energy feasible controls such that the state so-
lution to (1b) satisfies the bounds (1c). This difference is particularly evident
in the cost functional J in (1a), where only the norm squared of the controls
are considered, instead of typical tracking-type terms. For these reasons, prob-
lems of the type (1) are called economic optimal control problems. A typical
example is the optimal heating and cooling of residual buildings [8]. Note that,
for any given u ∈ U , the state equation (1b) admits a unique (weak) solution
y = y(u) ∈ W (0, T ) :=

�
ϕ ∈ L2(0, T ;H1(Ω))

��ϕt ∈ L2(0, T ;H−1(Ω))
�
; see,

e.g., [10, 9]. We assume that the admissible set Uε
ad has non-empty interior,

where Uε
ad :=

�
(u,w) ∈ U × U

��u and y(u) + εw satisfies (1c)
�
⊂ U × U . This

guarantees that (1) admits a unique solution (ū, w̄) ∈ Uε
ad [10]. The first-order

necessary and sufficient optimality system [9, 10] of problem (1) is

yt(t, x)−Δy(t, x) = P(q(t, x)) + f(t, x), in (0, T )×Ω,

y(t,−1) = y(t, 1) = 0, in (0, T ),

y(0, x) = y◦(x), in Ω,

qt(t, x) +Δq(t, x) = Qε(y(t, x)), in (0, T )×Ω,

q(t,−1) = q(t, 1) = 0, in (0, T ),

q(T, x) = 0, in Ω,

(2)

where Qε(y(t, x)) := 1
ε2 (max{y(t, x)− cy(t), 0}+min{y(t, x) + cy(t), 0}) and

P(q(t, x)) := max{−cu,min{cu, q(t, x)}}, for all (t, x) ∈ (0, T ) × Ω, with q
the so-called adjoint variable. The pair (ȳ, q̄) is the solution to (2) if and only
if (ū(t, x), w̄(t, x)) = (P(q̄(t, x)),−εQε(ȳ(t, x))), for (t, x) ∈ (0, T )×Ω, is the
optimal solution to (1). System (2) can be rewritten in the form

F(y, q) = 0 (3)

and thus solved by using a semismooth Newton method; see, e.g., [9, 5].
As shown in [8], the semismooth Newton method lacks of convergence if

the parameter ε is not sufficiently large. This is, however, in contrast with
typical applications, where a sufficiently small ε is required [8, 6]. The goal
of this paper is to tackle this problem by using a nonlinear preconditioning
technique based on an overlapping optimized waveform-relaxation method
(WRM) characterized by Robin transmission conditions [2, 3]. To the best
of our knowledge, nonlinear preconditioning techniques have never been used
for economic control problems. Therefore, this work aims to provide a first
concrete study in order to show the applicability of WRM-based nonlinear
preconditioners for this class of optimization problems. In particular, our goal
is to assess the convergence behavior of the WRM nonlinear preconditioned
Newton and its robustness against the regularization parameter ε. Our studies
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show that appropriate choices of the overlap L and of the Robin parameter
p lead to a preconditioned Newton method with a robust convergence with
respect to ε. Let us also mention that for elliptic optimal control problems,
it is possible to consider different transmission conditions; see, e.g., [1, 4].

The paper is organized as follows. In Section 2, we introduce the WRM and
present the algorithm for the proposed preconditioned generalized Newton.
In Section 3, we report two numerical experiments that show the conver-
gence behavior of the proposed computational framework in relation of the
parameters characterizing problem (1) and the optimized WRM.

2 The waveform-relation and the preconditioned
generalized Newton methods

Let Ω be decomposed into two overlapping subdomains Ω1 = (−1, L) and
Ω2 = (−L, 1), where 2L ∈ (0, 1) is the size of the overlap. Moreover, let p > 0
and consider the operator Rj defined as Rj(y) := yx+(−1)3−jpy for j = 1, 2.
The WRM consists in iteratively solving, for n ∈ N, n ≥ 1, the system

yj,nt (t, x)−Δyj,n(t, x) = P(qj,n(t, x)) + f(t, x), in (0, T )×Ωj , (4a)

yj,n(t, (−1)j) = 0, in (0, T ), (4b)

Rj(y
j,n)(t, (−1)3−jL) = Rj(y

3−j,n−1)(t, (−1)3−jL), in (0, T ), (4c)

yj,n(0, x) = y◦(x), in Ωj , (4d)

qj,nt (t, x) +Δqj,n(t, x) = Qε(yj,n(t, x)), in (0, T )×Ωj , (4e)

qj,n(t, (−1)j) = 0, in (0, T ), (4f)

Rj(q
j,n)(t, (−1)3−jL) = Rj(q

3−j,n−1)(t, (−1)3−jL), in (0, T ), (4g)

qj,n(T, x) = 0, in Ωj , (4h)

for j = 1, 2. We show first the well-posedness of the method.

Theorem 1 Let g1y, g
2
y, g

1
q , g

2
q ∈ H1/4(0, T ) be initialization functions for the

WRM, i.e., Rj(y
j,1)(t, (−1)3−jL) = gjy(t) and Rj(q

j,1)(t, (−1)3−jL) = gjq(t)

for t ∈ (0, T ), with compatibility conditions gjy(0) = Rj(y◦)(t, (−1)3−jL) and

gjq(0) = 0 for j = 1, 2. Then the WRM (4) is well-posed.

Proof For j = 1, 2, we define H2,1
j := L2(0, T ;H2(Ωj)) × H1(0, T ;L2(Ωj))

and Uj = L2(0, T ;L2(Ωj)). For given gjy, g
j
q ∈ H1/4(0, T ), system (4) is the

optimality system of an optimal control problem, which seeks to minimize

Jaux(u
j , wj) = 1

2�uj�2Uj
+ 1

2�wj�2Uj
+

� T

0
gjq(t)y

j(t, (−1)3−jL)dt, subject to

the state equation (4a)-(4d). These auxiliary optimal control problems admit
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a unique optimal solution (ūj , w̄j) ∈ Uj ×Uj for j = 1, 2 and their optimality

systems are uniquely solvable by (ȳj , q̄j) ∈ H2,1
j ×H2,1

j such that

(ūj(t, x), w̄j(t, x)) = (P(q̄j(t, x)),−εQε(ȳj(t, x))), in (0, T )×Ωj .

For more details see [10, 7, 3]. This proves well-posedness of the WRM
for n = 1 and j = 1, 2. By iteratively applying the previous arguments
is then easy to show that the WRM is well-posed for n > 1, because
yj,1((−1)jL), yj,1x ((−1)jL), qj,1((−1)jL), qj,1x ((−1)jL) ∈ L2(0, T ). �

Theorem 1 implies that (4) admits a unique solution (yj,n, pj,n) ∈ H2,1
j ×H2,1

j

for j = 1, 2 and n ≥ 1. Note that, at each iteration of the WRM, the solution
at iteration n depends on the one at iteration n−1. Therefore, we can define
the solution mappings Sj : H

2,1
3−j ×H2,1

3−j → H2,1
j ×H2,1

j for j = 1, 2 as

(y1, q1) = S1(y
2, q2) solves (4) for j = 1, y2,n−1 = y2 and q2,n−1 = q2,

(y2, q2) = S2(y
1, q1) solves (4) for j = 2, y1,n−1 = y1 and q1,n−1 = q1,

(5)

and the preconditioned form of (3) as

FP (y
1, q1, y2, q2) = (F1(y

1, q1, y2, q2),F2(y
1, q1, y2, q2)) = 0, (6)

where Fj(y
1, q1, y2, q2) = (yj , qj) − Sj(y

3−j , q3−j), for j = 1, 2. To solve
(6), we apply a generalized Newton method. To do so, we assume that the
maps Sj , j = 1, 2, admit derivative1 DSj . This allows us to characterize
the derivative DFP and its application to a direction d3−j = (d3−j

y , d3−j
q ) ∈

H2,1
3−j ×H2,1

3−j , which is needed for the generalized Newton method. Let zj :=

(yj , qj) ∈ H2,1
j × H2,1

j for j = 1, 2. Thus, we have that zj = Sj(z
3−j),

according to the definition of the mapping Sj in (5). Moreover, we have that
Fj(Sj(z

3−j), z3−j) = 0. From this we formally obtain

D1Fj(Sj(z
3−j), z3−j)DSj(z

3−j)(d3−j) +D2Fj(Sj(z
3−j), z3−j)(d3−j) = 0,

which leads to DSj(y
3−j , q3−j)(d3−j) = (�yj , �qj) where (�yj , �qj) solves

�yjt (t, x)−Δ�yj(t, x) = �qj(t, x)χI(qj)(t, x), in (0, T )×Ωj ,

�yj(t, (−1)j) = 0, in (0, T ),

Rj(�yj)(t, (−1)3−jL) = Rj(d
3−j
y )(t, (−1)3−jL), in (0, T ),

�yj(0, x) = 0, in Ωj ,

(7a)

1 Since the functions Sj are implicit functions of semismooth functions, one cannot
directly invoke the implicit function theorem to obtain the desired regularity. Hence,
investigating the existence and regularity of DSj requires a detailed theoretical anal-
ysis, which is beyond the scope of this short manuscript.
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Fig. 1 Test1: Optimal state with bound cy (left) and control (right) for ε = 5×10−4.

�qjt (t, x) +Δ�qj(t, x) = �yj(t, x)
ε2

χA(yj)(t, x), in (0, T )×Ωj ,

�qj(t, (−1)j) = 0, in (0, T ),

Rj(�qj)(t, (−1)3−jL) = Rj(d
3−j
q )(t, (−1)3−jL), in (0, T ),

�qj,n(T, x) = 0, in Ωj ,

(7b)

for j = 1, 2, with χI(qj) and χA(yj) the characteristic functions of the sets

I(qj) := {(t, x) ∈ (0, T )×Ωj

�� ��qj(t, x)
�� ≤ cu},

A(yj) := {(t, x) ∈ (0, T )×Ωj

�� ��yj(t, x)
�� > cy(t)}.

Note that (7) is a linearization of the WRM subproblems (4). Now, we can
resume our preconditioned generalized Newton method in Algorithm 1.

Algorithm 1 WRM-preconditioned generalized Newton method

1: Data: Initial guess yj,0 and qj,0 for j = 1, 2, tolerance τ .
2: Perform one WRM step to compute Sj(y3−j,0, q3−j,0);
3: Assemble FP (y1,0, q1,0, y2,0, q2,0) and set k = 0;
4: while �FP (y1,k, q1,k, y2,k, q2,k)� ≥ τ do
5: Compute d1,d2 solving DFP (y1, q1, y2, q2)(d1,d2) = −FP (y1, q1, y2, q2)

by using a matrix-free Krylov method, e.g., GMRES, and considering that
DFP (y1, q1, y2, q2)(d1,d2) = (d1 − (�y1, �q1),d2 − (�y2, �q2)), with (�yj , �qj) solu-
tion to the linearized subproblems (7) for j = 1, 2;

6: Update (yj,k+1, qj,k+1) = (yj,k, qj,k) + dj and set k = k + 1;
7: Perform one WRM step to compute Sj(y3−j,k, q3−j,k);
8: Assemble FP (y1,k, q1,k, y2,k, q2,k);
9: end while

3 Numerical experiments

In this section, we study the behavior of the preconditioned generalized New-
ton method (Algorithm 1) and its robustness against the Robin parameter p,
the regularization ε and the overlap L. It is well known that the convergence of
the semismooth Newton method applied to (3) deteriorates fast for decreas-
ing values of ε, since the solution approaches the one of a pure pointwise
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L
p
ε

10−1 5× 10−2 10−2 5× 10−3 10−3 5× 10−4

Δx 10−6 4(5–2) 4(6–2) 5(12–2) 6(13–2) 7(35–2) 8(45–2)
Δx 10−4 4(5–2) 4(6–2) 5(13–2) 6(13–2) 7(34–2) 8(45–2)
Δx 10−2 4(6–2) 4(6–2) 5(11–2) 6(13–2) 7(30–2) 8(43–2)
Δx 100 5(4–2) 5(5–2) 5(9–2) 6(12–2) max(112–2) max(123–3)
Δx 102 6(4–2) 6(5–2) 8(8–2) 9(9–2) 6(22–2) 9(37–2)
Δx 104 6(5–2) 6(5–2) 9(7–2) 9(10–2) 8(23–2) max(65–4)
Δx 106 6(5–2) 6(5–2) 9(7–2) 9(10–2) max(33–2) max(92–3)

2Δx 10−6 4(5–2) 4(7–2) 5(11–2) 6(13–2) 7(39–2) 6(51–2)
2Δx 10−4 4(5–2) 4(7–2) 5(11–2) 6(13–2) 7(41–2) 6(48–2)
2Δx 10−2 4(6–2) 4(7–2) 5(12–2) 5(13–2) 7(23–2) 6(54–2)
2Δx 100 5(4–2) 5(6–2) 5(9–2) 6(11–2) 7(27–2) max(107–3)
2Δx 102 6(4–2) 6(5–2) 8(8–2) 8(10–2) 8(26–2) 9(37–2)
2Δx 104 6(5–2) 6(5–2) 8(8–2) 9(10–2) 8(19–2) 9(41–2)
2Δx 106 6(5–2) 6(5–2) 8(8–2) 9(9–2) 8(19–2) 9(41–2)

4Δx 10−6 4(5–2) 4(7–2) 5(11–2) 6(13–2) 6(30–2) max(126–6)
4Δx 10−4 4(5–2) 4(7–2) 5(11–2) 6(13–2) 6(30–2) max(98–4)
4Δx 10−2 4(5–2) 4(7–2) 5(12–2) 6(13–2) 6(30–2) 11(124–2)
4Δx 100 4(5–2) 4(6–2) 5(9–2) 6(11–2) 6(27–2) max(152− 5)
4Δx 102 6(4–2) 6(5–2) 8(8–2) 8(10–2) 10(23–2) 15(40− 2)
4Δx 104 6(4–2) 6(5–2) 8(8–2) 8(10–2) 9(26–2) max(183–3)
4Δx 106 6(4–2) 6(5–2) 8(8–2) 8(10–2) 9(26–2) max(45–2)

Sem. New. 4 5 10 13 30 44

Table 1 Test1: Number of outer iterations (maximum number - minimum number
of inner iterations) for preconditioned generalized Newton varying L, p and ε and
number of iterations for the semismooth Newton applied to (3) (last row).
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Fig. 2 Test2: Optimal state with bound cy (left) and control (right) for ε = 5×10−4.

state-constrained problem, whose adjoint variable q lacks of L2-regularity;
cf. [10, 8]. The focus is on understanding if the WRM can be a valid (non-
linear) preconditioner and in which cases. We will perform two numerical
experiments. In both tests we discretize the domain Ω with nx = 161 points
and we apply a centered finite-difference scheme. Furthermore, we consider
nt = 21 time discretization points and apply the implicit Euler method. The
initial guesses yj,0 and qj,0 are chosen randomly but feasible, i.e. such that�
P(qj,0(t, x)),−εQε(yj,0(t, x))

�
∈ Uε

ad, since we noticed that choosing feasible



Overlapping WR preconditioner for economic control with state constaints 7

L
p
ε

10−1 5× 10−2 10−2 5× 10−3 10−3 5× 10−4

Δx 10−6 5(5–2) 6(7–2) 10(10–2) max(61–2) max(102–2) max(297–4)
Δx 10−4 5(5–2) 6(7–2) 10(10–2) max(32–2) max(246–2) max(145–2)
Δx 10−2 5(5–2) 6(7–2) 8(10–2) max(25–2) max(max–2) max(max–4)
Δx 100 5(5–2) 6(6–2) 6(10–2) 9(11–2) max(122–4) max(193–2)
Δx 102 6(4–2) 7(5–2) 9(8–2) 9(10–2) 9(20–2) 10(25–2)
Δx 104 6(4–2) 7(5–2) 9(8–2) 9(11–2) 11(20–2) max(32–2)
Δx 106 6(4–2) 7(5–2) 9(8–2) 9(11–2) 11(20–2) max(67–4)

2Δx 10−6 5(6–2) 6(7–2) 12(11–2) max(29–2) max(123–2) max(206–3)
2Δx 10−4 5(6–2) 6(7–2) 12(11–2) max(28–2) max(91–2) max(196–3)
2Δx 10−2 5(6–2) 6(7–2) 11(11–2) max(25–2) max(max–4) max(max–4)
2Δx 100 5(5–2) 6(6–2) 6(9–2) 7(10–2) max(166–5) max(183–2)
2Δx 102 6(4–2) 7(5–2) 8(8–2) 9(11–2) 9(20–2) 10(29–2)
2Δx 104 6(4–2) 7(5–2) 9(7–2) 9(11–2) 10(20–2) 9(26–2)
2Δx 106 6(4–2) 7(5–2) 9(7–2) 9(11–2) 10(19–2) 10(26–2)

4Δx 10−6 5(5–2) 6(7–2) 10(11–2) max(32–2) max(313–4) max(187–4)
4Δx 10−4 5(5–2) 6(7–2) 10(11–2) max(27–2) max(145–4) max(148–4)
4Δx 10−2 6(5–2) 6(7–2) 9(11–2) max(35–3) max(296− 4) max(max− 4)
4Δx 100 5(5–2) 5(6–2) 6(8–2) 8(11–2) max(136− 3) max(max− 3)
4Δx 102 6(4–2) 7(5–2) 6(8–2) 8(11–2) 11(20–2) 14(44–2)
4Δx 104 6(4–2) 7(5–2) 8(8–2) 8(11–2) 10(20–2) 12(26–2)
4Δx 106 6(4–2) 7(5–2) 8(8–2) 8(11–2) 10(20–2) 13(25–2)

Sem. New. 4 6 10 12 23 30

Table 2 Test2: Number of outer iterations (maximum number - minimum number
of inner iterations) for preconditioned generalized Newton varying L, p and ε and
number of iterations for the semismooth Newton applied to (3) (last row).

initial guesses improves the convergence of the method. We set the stopping
tolerance τ = 10−10 for the norm of the Newton residual (see Algorithm 1)
and the maximum number of outer (inner) iterations to 200 (500). For the
first test we choose T = 1, y◦(x) = 5 sin(πx), f(t, x) = 20, cu = 30 and
cy(t) = 10(1− t) + 3 for all (t, x) ∈ (0, 1)×Ω. As one can see from Table 1,
for a decreasing ε the number of iterations of the semismooth Newton method
applied to (3) increases and its convergence deteriorates fast. On the contrary,
the number of iterations of Algorithm 1 is almost constant as ε varies (when
it converges). Choosing p = 102 guarantees that the method is convergent for
any choice of ε and L. In particular, for small ε, such as 10−3 and 5× 10−4,
the speed-up in terms of number of iterations is also significant. According
to Table 1, there are some combinations for which Algorithm 1 reaches a
maximum number of iterations (indicated in the tables with max). This issue
can be related to the fact that yj,k and qj,k might become unfeasible during
Algorithm 1 and when traced to the interface of the other subdomain might
cause oscillations. For the second test we choose T = 1, y◦(x) = 5 sin(πx),
f(t, x) = 18, cu = 15 and cy(t) = 2(1 − t) + 3 for (t, x) ∈ (0, 1) × Ω. In
this case, there are more points in the space-time domain for which both
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bounds become active (cf. Figures 1-2). This makes the problem even more
difficult to be solved by the WRM, since its nonlinearities are more strongly
activated. In Table 2, in fact, the number of cases for which Algorithm 1 does
not converge increases with respect to the first numerical experiment, partic-
ularly for ε small. We observe that transmission conditions of Dirichlet type
and large-enough overlap L guarantee that the number of unfeasible points
at the interface is significantly reduced, so that Algorithm 1 converges. This
confirms the previous remark on the importance of having feasible iterations.
As a rule of thumb, if the regularization ε is small, we suggest to choose
a sufficienly large parameter p (e.g., p ≥ 102) so that the Dirichlet part of
the transmission conditions of the WRM dominates the Neumann part. Note
that, also in the second test, there always exists a combination of p and L
for which Algorithm 1 is faster than the semismooth Newton method, in
particular for a small ε.

In conclusion, the WRM is a valid preconditioner for solving (3), although
there are combinations of p and L for which the method may not converge. As
observed, a crucial point for the convergence is to keep the iteration feasible.
Preserving such a feasibility, together with other important aspects (e.g.,
multiple subdomains decomposition and the study of an optimal parameter
p) will be the focus of a future work.
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10. F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods
and Applications. American Mathematical Society, 2010.



MOX Technical Reports, last issues
Dipartimento di Matematica

Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

51/2021 Ciaramella, G.; Kwok, F.; Mueller, G.
Nonlinear optimized Schwarz preconditioner for elliptic optimal control
problems

50/2021 Ciaramella, G.; Vanzan, T.
On the asymptotic optimality of spectral coarse spaces

49/2021 Rea, F.;  Savaré, L; Franchi, M.; Corrao, G; Mancia, G
Adherence to Treatment by Initial Antihypertensive Mono and Combination
Therapies  

50/2021 Rea, F.;  Savaré, L; Franchi, M.; Corrao, G; Mancia, G
Adherence to Treatment by Initial Antihypertensive Mono and Combination
Therapies  

47/2021 Orlando, G; Della Rocca, A; Barbante, P. F.; Bonaventura, L.; Parolini, N.
An efficient and accurate implicit DG solver for the incompressible
Navier-Stokes equations

48/2021 Riccobelli, D.
Active elasticity drives the formation of periodic beading in damaged axons

45/2021 Diquigiovanni, J.; Fontana, M.; Vantini, S.
Distribution-Free Prediction Bands for Multivariate Functional Time Series:
an Application to the Italian Gas Market

46/2021 Diquigiovanni, J.; Fontana, M.; Vantini, F.
Conformal Prediction Bandsfor Multivariate Functional Data

44/2021 Gentili, G.G.; Khosronejad, M.; Bernasconi, G.; Perotto, S.; Micheletti, S.
Efficient Modeling of Multimode Guided Acoustic Wave Propagation in
Deformed Pipelines by Hierarchical Model Reduction

43/2021 Salvador, M.; Fedele, M.; Africa, P.C.; Sung, E.; Dede', L.; Prakosa, A.; Chrispin, J.; Trayanova, N.; Quarteroni, A.
Electromechanical modeling of human ventricles with ischemic
cardiomyopathy: numerical simulations in sinus rhythm and under
arrhythmia


