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Abstract
We study the consistency of the estimator in spatial regression with partial

differential equation (PDE) regularization. This new smoothing technique allows
to accurately estimate spatial fields over complex two-dimensional domains, start-
ing from noisy observations; the regularizing term involves a PDE that formalizes
problem specific information about the phenomenon at hand. Differently from
classical smoothing methods, the solution of the infinite-dimensional estimation
problem cannot be computed analytically. An approximation is obtained via the
finite element method, considering a suitable triangulation of the spatial domain.
We first consider the consistency of the estimator in the infinite-dimensional set-
ting. We then study the consistency of the finite element estimator, resulting from
the approximated PDE. We study the bias and variance of the estimators, with re-
spect to the sample size and to the value of the smoothing parameter. Some final
simulation studies provide numerical evidence of the rates derived for the bias,
variance and mean square error.

1 Introduction

In this work we study the consistency of Spatial Regression with Partial Differential
Equation regularization (SR-PDE) [see, e.g., 3, 4]. This regularized least-square method
defines a new class of bivariate smoothers that has a number of important advantages
with respect to classical smoothers, such as smoothing splines and thin-plate-splines,
whose properties have been thoroughly studied in a well established literature [see, e.g.,
15, and references therein]. The regularizing term in SR-PDE enables the inclusion of
problem-specific information, appropriately formalized in terms of a partial differen-
tial equation (PDE), that describes to some extent the phenomenon under study. PDEs
are a very powerful tool to model complex phenomena behaviors, and they are exten-
sively used in most fields of sciences and engineering. This makes SR-PDE broadly
applicable to the analysis of spatially distributed data in varied contexts [see, e.g., the
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applications in 3, 5]. In particular, the regularizing term in SR-PDE can include gen-
eral linear second-order PDEs, involving space-varying second, first and zero order
differential operators (instead of the simple differential operators, constant over space,
typically considered by classical smoothers), as well as space-varying forcing terms.
This highly flexible and rich modelling of the space variation enables the analysis of a
huge variety of anisotropic and non-stationary phenomena. Furthermore, SR-PDE effi-
ciently handles data distributed over domains having complex shapes, such as domains
with strong concavities or holes [see, e.g., 30, 31]; this is a crucial feature whenever the
shape of the domain influences the problem at hand. Another important advantage of
SR-PDE over the classical smoothers is the possibility of imposing conditions that the
field must satisfy at the boundaries of the domain of interest, concerning the value of
the field and/or of its normal derivative [31, 4, 3]; this feature is fundamental in many
applications to obtain meaningful estimates [see, e.g., 3, 31].

Such high flexibility comes at the price of a higher analytic complexity of these
smoothers. The solution to the estimation problem cannot be computed analytically,
but can only be characterized in a variational form. An approximated solution can be
obtained via a mixed finite element approach, after introducing a suitable triangulation
of the spatial domain of interest.

Unfortunately, when considering the consistency of such estimators, because of the
unavailability of an explicit closed form solution of the infinite-dimensional estimation
problem, it is not possible to leverage on the arguments used to prove the consistency
of thin-plate-splines and of smoothing splines [see, e.g., 9, 10, 11, 19, 22].

It should be pointed out that the problem of analyzing data spatially distributed over
irregularly shaped two-dimensional domains has recently attracted an increasing inter-
est, and other regularized least-square smoothers have been proposed that can tackle
this issue, such as bivariate splines over triangulations [see, e.g., 24, 18, 13, 25], soap
film smoothing [36], and low-rank thin-plate spline approximations [34, 32]. All these
methods have isotropic and stationary regularizing terms; bivariate splines over triangu-
lations can include high order derivatives. With the exception of soap film smoothing,
that can comply with some simple types of boundary conditions, the remaining methods
do not possess this ability. The asymptotic properties of bivariate splines over triangu-
lations are investigated in [25], but differently from SR-PDE, the finite-dimensional
estimator, based on bivariate splines, is directly considered. To the best of our knowl-
edge, no results on large sample properties is available for any of the other methods.

We here aim at proving the consistency of SR-PDE estimators, addressing both
the case of the estimator solution of the infinite-dimensional estimation problem and
the case of the finite element estimator. The paper is organized as follows. Section 2
briefly reviews the SR-PDE infinite-dimensional estimation problem, introduced in [4]
and [3], and Section 4 outlines its discretized version. Sections 3 and 5 contain the
main contributions of this work. In particular, in Section 3, we study the bias of the
infinite-dimensional estimator in the L2 and H2 spatial norms; we moreover investigate
the convergence of the variance of the infinite-dimensional SR-PDE estimator, when
n goes to infinity. Thanks to the rates obtained for the bias and the variance, we can
prove the consistency of the estimator. Furthermore, we show that the Mean Square
Error (MSE) of the estimator achieves near-optimal rates of convergence. In Section
5 we then focus on the finite element estimator. Unfortunately, because of the non-
conforming discretization approach used, it is not possible to derive the consistency of
the finite element estimator from the one of the infinite-dimensional estimator. Nev-
ertheless, we are able to prove the consistency of the finite element estimator, in the
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discrete `2 norm over the data locations, when the triangulation vertices coincide with
the data locations, under some simplifying hypotheses. Moreover, we show that the
finite element estimator achieves optimal rates of convergence. Section 6 provides nu-
merical evidence for the convergence rates obtained in the previous sections. Finally,
Section 7 outlines future research directions.

2 Spatial regression with partial differential equation regu-
larization:
infinite-dimensional estimation problem

We briefly review the SR-PDE infinite-dimensional estimation problem, introduced in
[4] and [3]. Consider a bounded domain Ω ⊂ R2, with boundary ∂Ω ∈C2(R2). Con-
sider n observations zi ∈ R, for i = 1, . . . ,n, located at points pi = (xi,yi) ∈Ω. Assume
that:

zi = f0(pi)+ εi

where f0 : Ω→ R is the field we wish to estimate, and εi are independent errors with
zero mean and finite variance σ2. Assume that partial problem-specific information is
available, which can be formalized in terms of a PDE L f = u modeling to some extents
the phenomenon under study. Specifically, relying on the problem-specific information,
we can assume that the misfit ‖L f0−u‖L2 is small, though we do not require it to be
0. Here, L is a general linear second order differential operator, that can for instance
include second, first and zero order differential terms:

L(p) f =−div (K(p)∇ f )+b(p) ·∇ f + c(p) f

where K(·) : Ω→ R2×2 is a space-varying symmetric and positive-definite diffusion
tensor, b(·) : Ω→R2 is a space-varying transport vector, and c(·) : Ω→R+ is a space-
varying reaction coefficient. The forcing term u(·) ∈ L2(Ω) can either be the null func-
tion u = 0 (so-called homogeneous case), or u 6= 0 (non-homogeneous case). Assume
that the problem-specific knowledge concerns as well the behavior of the field f0 at
the boundary of the domain. Various types of boundary conditions may be considered,
involving the value of the field, and/or of its normal derivatives, at the boundary ∂Ω of
the domain of interest. In this work, we shall focus on Dirichlet boundary conditions.
Specifically, we assume to know the value of the field at the boundary: f0 |∂Ω= γ,
where γ(·) can either be the null function γ = 0 (homogeneous condition) or γ 6= 0
(non-homogeneous condition).

Denote by Hk(Ω) the Sobolev space of functions in L2(Ω) with derivatives up to
the k-th order in L2(Ω), equipped with the norm ‖v‖Hk = (∑|α|≤k ‖Dαv‖2

L2)
1
2 . Define

the affine space
Vγ = {v ∈ H2(Ω) : v|∂Ω = γ}.

SR-PDE solves the following estimation problem:

f̂ = argmin
f∈Vγ

1
n

n

∑
i=1

( f (pi)− zi)
2 +λn

∫
Ω

(L f −u)2 . (1)

The estimation functional in (1) trades off a data fidelity criterion, the sum of square
errors, and a model fidelity criterion, the differential regularization, defined as the L2-
norm, over the spatial domain of interest, of the misfit with respect to the governing
PDE. The smoothing parameter λn > 0 controls the relative weight of these two criteria.
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The methodology is very flexible. The three terms in the differential operator L
enable the modeling of various forms of anisotropy and non-stationarity in the field.
The diffusion term −div(K∇ f ) induces a smoothing in all the directions. If the diffu-
sion matrix K is a multiple of the identity matrix I, the diffusion term has an isotropic
smoothing effect, otherwise it implies an anisotropic smoothing with a preferential di-
rection that corresponds to the first eigenvector of the diffusion tensor K. The degree of
anisotropy induced by the diffusion tensor K is controlled by the ratio between its first
and second eigenvalue. The transport term b ·∇ f induces a smoothing only in the di-
rection specified by the transport vector b, with an intensity that depends on the length
of b. The reaction term c f has a shrinkage effect, since penalization of the L2 norm of f
induces a shrinkage of the field to zero. Moreover, since K, b and c can vary over space,
the effects here described are non-stationary. Such flexibility is even further increased
by the presence of possibly non-homogeneous forcing terms u ∈ L2(Ω). SR-PDE can
be seen as an extension of the more classical smoothing techniques to the anisotropic
and non-stationary case. In particular, it includes as a special case the isotropic and
stationary regularization of the Laplacian of the field considered in [30] and [31], when
no problem-specific information is available (setting K to the the identity matrix, b = 0,
c = 0, so that L = ∆, and a null forcing term u = 0).

It should be stressed that, in the estimation problem (1), the estimator f̂ is searched
in a general Sobolev space of functions (with boundary conditions). Specifically, the
search is not restricted to the space of the solutions of the differential equation L f = u.
Indeed, as described above, we do not assume that the true f0 satisfies the PDE in the
regularization. Rather, we assume that PDE carries partial information about the true
f0, and hence we use the PDE to regularize the estimate. As a consequence, we are not
interested in searching for the solution of the PDE that is closest to the data. In fact, in
the following sections, we study the asymptotic properties of the estimators letting the
smoothing parameter λn go to zero when n goes to infinity. That is, the influence of the
regularizing term decreases as n increases. This is a natural setting to consider for the
models here considered, since, the more the observations, the less the need to regularize
the estimate.

2.1 Illustrative problem

Transport

0

10

20

30

40

Data SR-PDE Estimate Diffusion

Figure 1: From left to right: ECD data on the artery cross-section; corresponding esti-
mate of the blood-flow velocity field obtained by SR-PDE; non-stationary anisotropic
diffusion tensor field K used in SR-PDE estimate; non-stationary transport field b used
in SR-PDE estimate.

As an illustrative example, [3] considers the problem of estimating the blood-flow
velocity field in a cross-section of a human carotid artery, starting from eco-color
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doppler data and magnetic resonance imaging data. Figure 1, top row, left panel, shows
the reconstruction of the cross-section of the common carotid artery of one of the pa-
tients in the study; this quasi-circular section is obtained from segmentation of magnetic
resonance imaging data. The same figure also displays the spatial locations of seven
beams where the blood-flow velocity is measured, via eco-color doppler acquisitions.
The color of the beam refers to the mean blood velocity measured over the beam at sys-
tolic peak. Starting from the observations over the seven beams, the field f0 of the blood
flow velocity at systolic peak, over the entire cross-section of the carotid, must be esti-
mated. In this applied problem, there are known conditions that the field must satisfy at
the boundaries of the domain of interest, i.e., at the arterial wall. In fact, the physics of
the problem implies that blood flow velocity is zero at the arterial wall, due to the fric-
tion between blood cells and the arterial wall. The influence of the shape of the domain,
and the presence of specific boundary conditions, hinder the applicability of classical
smoothing methods, and more generally, of classical methods for spatial data analysis.
In fact, as mentioned in the Introduction, classical techniques for field estimation nat-
urally work on tensorized domains and do not accurately deal with bounded domains,
when the shape of the domain is important for the behavior of the phenomenon under
study; moreover, classical techniques cannot naturally comply with specific conditions
at the boundary of the domain of interest, such as those here specified. Furthermore,
[4] shows that isotropic and stationary smoothers return non-physiological estimates of
the blood flow velocity field, due to the cross shaped pattern of the observations. On
the other hand, we can here profit of a detailed problem-specific information about the
phenomenon under study. There is in fact a vast literature devoted to the study of fluid
dynamics and hemodynamics; see, e.g., [17]. This information can be conveniently
translated into a PDE, that describes, in a idealized setting, the main features of the
velocity field. In particular, as detailed in [3], we can here consider the operator L that
includes a nonstationary anisotropic diffusion tensor that smooths the observations in
the tangential direction of concentric circles (see Figure 1, third panel) and a nonsta-
tionary transport field that smooths the observations in the radial direction, from the
center of the section to the boundary (Figure 1, forth panel); the reaction term and the
forcing term are instead not required by this application. The second panel of Figure
1, displays the corresponding estimate of the blood-flow velocity field. Suitably incor-
porating the problem-specific information on the phenomenon under study, SR-PDE
returns a realistic estimate of the blood flow, that is not affected by the cross-shaped
pattern of the observations and displays physiological and smooth isolines.

2.2 Well-posedness of SR-PDE estimation problem and linearity of the
estimator

[3] and [4] show that, under regularity conditions on L, u and γ , the estimator f̂ in (1)
is unique. The required regularity conditions on the parameters are such that the oper-
ator L has so-called H2-smoothing properties, i.e., L is such that for all u ∈ L2(Ω) the
solution of the problem L f = u with Dirichlet boundary conditions belongs to H2(Ω).

Solving (1) is equivalent to finding f̂ such that

λ

∫
Ω

(L f̂ −u)Lv+
1
n

n

∑
i=1

f̂ (pi)v(pi) =
1
n

n

∑
i=1

ziv(pi) ∀v ∈V0. (2)

This formulation highlights the linearity of the estimator f̂ in the observations zi. Thanks
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to the linearity of equation (2) in f̂ , we can write f̂ as

f̂ = f̂ ∗+ ŵ

where f̂ ∗ and ŵ solve, respectively,

λ

∫
Ω

(L f̂ ∗−u)Lv+
1
n

n

∑
i=1

f̂ ∗(pi)v(pi) =
1
n

n

∑
i=1

f0(pi)v(pi) ∀v ∈V0

λ

∫
Ω

LŵLv+
1
n

n

∑
i=1

ŵ(pi)v(pi) =
1
n

n

∑
i=1

εiv(pi) ∀v ∈V0;

equivalently,

f̂ ∗ = argmin
f∈Vγ

[
1
n

n

∑
i=1

( f (pi)− f0(pi))
2 +λn

∫
Ω

(L f −u)2

]
(3)

ŵ = argmin
w∈V0

[
1
n

n

∑
i=1

(w(pi)− εi)
2 +λn

∫
Ω

(Lw)2

]
. (4)

The minimization problem (3) involves the true values of the field without any obser-
vational noise, f0(pi), and the non-homogeneous regularization term (i.e., with forcing
term u) with non-homogeneous boundary conditions. The minimization problem (4) in-
stead involves pure noise data, εi, and an homogeneous regularization term (i.e, with no
forcing term) with homogeneous boundary conditions. The minimizer f̂ ∗ is determinis-
tic, while the minimizer ŵ is such that E[ŵ] = 0. Consequently we have that: E[ f̂ ] = f̂ ∗

and Var( f̂ ) = Var(ŵ). Thanks to this fact, we can split the analysis of the bias and the
variance of the estimator: when studying the bias we can focus on the minimization
problem (3), while when studying the variance we focus on the minimization problem
(4).

3 Consistency of SR-PDE estimator: infinite-dimensional
problem

As in [9, 10], in order to prove the consistency of the estimator, we make some assump-
tions on how the points pi fill in the domain Ω as n goes to infinity. Denote by Fn(p) the
bivariate cumulative distribution function of the probability measure that assigns mass
n−1 to each point pi. Let F be the limiting distribution of the sequence {Fn}. Define
dn = supp∈Ω |F(p)−Fn(p)| . Note that when Ω = [0,1]d and F is the uniform measure,
dn is the so-called star-discrepancy [see, e.g., 28].

Assumption 1. The sequence {Fn} converges uniformly to a cumulative distribution
function F having density f ∈C∞(Ω̄), with respect to the d-dimensional Lebesgue mea-
sure, such that, for all p ∈Ω, 0 < κ1 ≤ f(p)≤ κ2 < ∞, for some constants κ1, κ2.

Assumption 2. λn is such that limn→∞ dnλ−1
n = limn→∞ λn = 0.

The following result holds [see 10].

Lemma 1. Under Assumption 1, if ∂Ω∈C2, for all h,g∈H2(Ω) there exists a constant
c > 0 such that∣∣∣∣∫

Ω

hgfdp− 1
n

n

∑
i=1

h(pi)g(pi)

∣∣∣∣= ∣∣∣∣∫
Ω

hgd(F−Fn)

∣∣∣∣≤ cdn ‖h‖H2 ‖g‖H2 . (5)

The proof of this Lemma is rather involved. It is based on results from functional
analysis and measure theory. We refer the reader to the original paper for the details.
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3.1 Convergence of the bias term: infinite-dimensional estimator

In this section we study the bias of the estimator

B = f0−E
[

f̂
]
= f0− f̂ ∗

with respect to the number of observations n and the smoothing parameter λn. Theorem
1 gives the rates for the bias, when f0 has different Sobolev regularities, f0 ∈ H2(Ω)
and f0 ∈ H4(Ω). In the proof of the theorem we make use of fractional Sobolev spaces
Hθ (Ω), with non-integer θ > 0; the space Hθ (Ω) can be defined as the interpolation
space between Hk(Ω) and L2(Ω) with k an integer larger than θ [see, e.g., 26]. More-
over, we consider the L∗, the adjoint operator of L, defined as

L∗ĝ =−div(K∇ĝ)−b ·∇ĝ+(c−div(b))ĝ. (6)

Theorem 1. Under Assumptions 1 and 2, for n sufficiently large, if f0 ∈ H2(Ω) and
f0 |∂Ω= γ, then

‖B‖L2 ≤C
√

λn, (7)

with C independent of n and λn. Moreover, if L f0−u ∈ H2(Ω), then

‖B‖L2 = O(λ
5/8
n ) and ‖B‖H2 = O(λ

1/8
n ). (8)

Finally, if in addition (L f0−u)|∂Ω = 0, then

‖B‖L2 = O(λn) and ‖B‖H2 = O(
√

λn). (9)

Proof. To lighten the notation we write λ = λn. Solving the minimization problem 3 is
equivalent to finding f̂ ∗ such that

λ

∫
Ω

(L f̂ ∗−u)Lv+
1
n

n

∑
i=1

f̂ ∗(pi)v(pi) =
1
n

n

∑
i=1

f0(pi)v(pi) ∀v ∈V0. (10)

Let us rewrite equation (10) in terms of B. To this aim we subtract the quantity
λ
∫

L f0Lv on both sides of (10), getting

λ

∫
Ω

LBLv = λ

∫
Ω

(L f0−u)Lv− 1
n

n

∑
i=1

B(pi)v(pi),

then we add
∫

BvdF on both sides obtaining

λ

∫
Ω

LBLv+
∫

Ω

BvdF = λ

∫
Ω

(L f0−u)Lv+
∫

Ω

BvdF− 1
n

n

∑
i=1

B(pi)v(pi).

The equation above holds for all v ∈ V0; in particular we can set v = B. Thanks to
Assumption 1, we hence get:

λ ‖LB‖2
L2 +κ1 ‖B‖2

L2 ≤ λ

∫
Ω

(L f0−u)LB+

{∫
Ω

B2d(F−Fn)

}
. (11)

Now, thanks to (5), we can write
∣∣∫

Ω
B2d(F−Fn)

∣∣≤ cdn ‖B‖2
H2 . Moreover, thanks to

the H2-regularity, we have that the norm ‖Lv‖L2(Ω) is equivalent to the norm ‖v‖H2(Ω)
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for any v ∈V0 [see, e.g., 16]. Since b ∈V0, being f0 ∈Vγ , there exists a constant cL, de-
pending only on Ω and L, such that cL ‖B‖2

H2 ≤ ‖LB‖2
L2 . Using these two inequalities

in (11), we obtain

cLλ ‖B‖2
H2 +κ1 ‖B‖2

L2 ≤ λ

∫
Ω

(L f0−u)LB+ cdn ‖B‖2
H2 .

Thanks to Assumption 2, for n large enough that dnλ−1 ≤ cL
2c , we get

cLλ

2
‖B‖2

H2 +κ1 ‖B‖2
L2 ≤ λ

∫
Ω

(L f0−u)LB. (12)

Moreover,

λ

∫
Ω

(L f0−u)LB ≤ λ

2

(
2
cL
‖L f0−u‖2

L2 +
cL

2
‖LB‖2

L2

)
≤ λ

cL
‖L f0−u‖2

L2 +
λcL

4
‖B‖2

H2 .

(13)

The equation above, together with equation (12), leads to (7).
From (12), if L f0− u ∈ H2(Ω), using, in order, the first Green’s identity, Hölder

inequality, trace theorems, interpolation between Sobolev spaces (see [26]), and Young
inequality, we get:

cLλ

2
‖B‖2

H2 +κ1 ‖B‖2
L2 ≤ λ

∫
Ω

L∗(L f0−u)B+λ

∫
∂Ω

(K∇B) ·n(L f0−u) (14)

≤ λ ‖L∗(L f0−u)‖L2 ‖B‖L2 +λ ‖K‖L∞(∂Ω) ‖∇B ·n‖L2(∂Ω) ‖L f0−u‖L2(∂Ω)

≤ λ ‖L∗(L f0−u)‖L2 ‖B‖L2 + cλ ‖B‖H3/2(Ω) ‖L f0−u‖H1(Ω)

≤ λ ‖L∗(L f0−u)‖L2 ‖B‖L2 + cλ ‖B‖1/4
L2 ‖B‖

3/4
H2 ‖L f0−u‖H1(Ω)

≤ λ 2

2κ1
‖L∗(L f0−u)‖2

L2 +
κ1

2
‖B‖2

L2 + (15)

+
κ1

8
‖B‖2

L2 +
3cLλ

8
‖B‖2

H2 +
c2λ 5/4

2κ
1/4
1 c3/4

L

‖L f0−u‖2
H1(Ω)

where c is a constant independent of n and λ and that changes from line to line. From
(15) we can write

cLλ

8
‖B‖2

H2 +
3κ1

8
‖B‖2

L2 ≤
λ 2

2κ1
‖L∗(L f0−u)‖2

L2 +
c2λ 5/4

2κ
1/4
1 c3/4

L

‖L f0−u‖2
H1(Ω) .

Since L f0 ∈H2(Ω) and u∈H2(Ω), both ‖L∗(L f0−u)‖2
L2 and ‖L f0−u‖2

H1(Ω) are finite,
thus we get the rates in (8). Finally, when (L f0−u)|∂Ω = 0, from (14) we get the rates
in (9).

3.2 Convergence of the variance term: infinite-dimensional estimator

We here study the variance of the estimator f̂ with respect to n and λn.

Theorem 2. For all 0 < δ ≤ 1
2 and n sufficiently large

VarL2( f̂ ) = E
(
‖ŵ‖2

L2

)
= O

(
σ2

nλ
1/2+δ
n

)
. (16)

with a constant which diverges to +∞ when δ → 0.

8



Proof. To lighten the notation we write λ = λn. Solving the minimization problem (4)
is equivalent to finding ŵ such that

λ

∫
Ω

LŵLv+
1
n

n

∑
i=1

ŵ(pi)v(pi) =
1
n

n

∑
i=1

εiv(pi) ∀v ∈V0

or equivalently

λ

∫
Ω

LŵLv+
∫

Ω

ŵvdF =
1
n

n

∑
i=1

εiv(pi)+
∫

Ω

ŵvd(F−Fn) ∀v ∈V0 (17)

Define the following inner product on V0

(v1,v2)λ = λ

∫
Ω

Lv1Lv2 +
∫

Ω

v1v2 dF

which is equivalent to the H2 inner product, and denote by ‖·‖
λ

the norm induced by
this inner product (·, ·)λ . Since the norms ‖L ·‖L2 and ‖·‖H2 are equivalent on V0, there
exist a constant cL such that

‖v‖2
H2 ≤

1
cL
‖Lv‖2

L2 ≤
1

cLλ

(
λ ‖Lv‖2

L2 +
∫

Ω

v2 dF
)
=

1
cLλ
‖v‖2

λ
. (18)

Define T , T1 and T2 as follows:

T1(v) =
∫

Ω

ŵvd(F−Fn) T2(v) =
1
n

n

∑
i=1

εiv(pi) T (v) = T1(v)+T2(v).

Thanks to the Sobolev embedding theorems [see, e.g., 26, Theorem 9.8], for each δ > 0,
we have T ∈

(
H1+2δ (Ω)

)∗
, where

(
H1+2δ (Ω)

)∗
denotes the dual space of H1+2δ (Ω).

Therefore we can rewrite equation (17) as

(ŵ,v)λ = T (v) ∀v ∈V0.

We have that

‖ŵ‖
λ
= sup

v∈V0

(ŵ,v)λ

‖v‖
λ

= sup
v∈V0

T (v)
‖v‖

λ

≤ sup
v∈V0

T1(v)
‖v‖

λ

+ sup
v∈V0

T2(v)
‖v‖

λ

. (19)

For the first term on the right hand side of (19), thanks to equations (5) and (18), we
have

sup
v∈V0

T1(v)
‖v‖

λ

≤ cdn sup
v∈V0

‖v‖H2 ‖ŵ‖H2

‖v‖
λ

≤ c̃dnλ
−1 ‖ŵ‖

λ
. (20)

For the second term on the right hand side of (19), setting θ = 1+ 2δ , so that T2 ∈(
Hθ (Ω)

)∗ for 1 < θ ≤ 2, we have

sup
v∈V0

T2(v)
‖v‖

λ

≤ sup
v∈V0

‖T2‖(Hθ )∗ ‖v‖Hθ

‖v‖
λ

≤ c sup
v∈V0

λ−θ/4 ‖T2‖(Hθ )∗

(
λ θ/4 ‖v‖θ/2

H2 ‖v‖
1−θ/2
L2

)
‖v‖

λ

≤ c sup
v∈V0

λ−θ/4 ‖T2‖(Hθ )∗

(
θ

2

√
λ ‖v‖H2 + 2−θ

2 ‖v‖L2

)
‖v‖

λ

= cλ
−θ/4 ‖T2‖(Hθ )∗ sup

v∈V0

(
θ

2

√
λ ‖v‖H2 + 2−θ

2 ‖v‖L2

)
‖v‖

λ

≤ cλ
−θ/4 ‖T2‖(Hθ )∗

9



where the last inequality is true thanks to equation (18) and to the fact that

‖v‖2
L2 ≤

1
κ1

∫
Ω

v2dF ≤ 1
κ1
‖v‖2

λ
.

From equation (20) we have

‖ŵ‖
λ
≤ c1dnλ

−1 ‖ŵ‖
λ
+ c2λ

−θ/4 ‖T2‖(Hθ )∗ .

Moreover, thanks to Assumption 2, we have that dnλ−1 = o(1). Therefore, the first part
in the right hand side of the above equation can be absorbed in the second term in the
right hand sid, so that, for n sufficiently large,

‖ŵ‖
λ
≤ cλ

−θ/4 ‖T2‖(Hθ )∗ .

By squaring and taking the expected values of both terms of the above inequality, we
have

E(‖ŵ‖2
λ
)≤ cλ

−θ/2E(‖T2‖2
(Hθ )∗) (21)

To conclude the proof, it remains to show that E(‖T2‖2
(Hθ )∗) ≤ cσ2

n . From the defi-
nition of T2 we can write

T2 =
1
n

n

∑
i=1

εiδpi

where δpi is the Dirac delta in pi. Thanks to Sobolev embedding theorems, δpi ∈
(Hθ (Ω))∗. We denote with (·, ·)θ ,∗ the inner product in (Hθ (Ω))∗. Recalling that the
errors εi are uncorrelated, with zero mean and constant variance σ2, we have

E
(
‖T2‖2

(Hθ )∗

)
= E((T2,T2)θ ,∗) = E

(
1
n2

n

∑
i, j=1

εiε j(δpi ,δp j)θ ,∗

)

=
1
n2

n

∑
i, j=1

E(εiε j)(δpi ,δp j)θ ,∗

=
1
n2

n

∑
i=1

σ
2 ‖δpi‖

2
(Hθ )∗ ≤

cσ2

n

where c = maxi=1,...,n ‖δpi‖
2
(Hθ )∗ < ∞. From the previous equation and from (21), we

have

E(‖ŵ‖2
λ
)≤ cλ−θ/2σ2

n
.

Finally, thanks to Assumption 1, we have that ‖w‖L2 ≤ κ
−1
1 ‖w‖λ

, where κ1 does not
depend on λ nor on n. This fact and the above equation lead to (16).

3.3 Convergence of the MSE: infinite-dimensional estimator

We finally consider the MSE of the estimator in the L2 norm, i.e.,

MSEL2( f̂ ) =
∥∥bias( f̂ )

∥∥2
L2 +VarL2( f̂ ).

The following theorem shows that the estimator f̂ is consistent and that its MSE nearly
achieves the optimal rate of convergence for non-parametric estimators [33], consid-
ering different Sobolev regularities of the true unknown field, f0 ∈ H2(Ω) and f0 ∈
H4(Ω). Precisely, the theorem shows that the MSE achieves the optimal rates, but for
an infinitesimal δ , as small as desired.

10



Theorem 3. If f0 ∈ H2(Ω) and f0 |∂Ω= γ, setting λn = n−2/3 we have

MSEL2 = O
(

n−
2
3 (1−δ )

)
(22)

for δ as small as desired. If, in addition, L f0−u ∈ H2(Ω) and L f0−u|∂Ω = 0, setting
λn = n−2/5 we have

MSEL2 = O
(

n−
4
5 (1−δ/2)

)
(23)

for δ as small as desired.

Proof. Thanks to Theorems 1 and 2, if f0 ∈ H2(Ω) and f0 |∂Ω= γ, we have

MSEL2( f̂ ) = O(λn)+O

(
σ2

nλ
1/2+δ
n

)

that is minimized when λn = n−2/3, leading to (22). Moreover, thanks to equation (9),
if L f0−u ∈ H2(Ω) and L f0−u|∂Ω = 0, we have

MSEL2( f̂ ) = O
(
λ

2
n
)
+O

(
σ2

nλ
1/2+δ
n

)

that is minimized when λn = n−2/5, leading to (23).

Remark 1. As highlighted in Section 2, we do not assume that the PDE in the regular-
izing term describes perfectly the phenomenon under study. Hence, we do not assume
that the true f0 is a solution of PDE. On the other hand, if our problem knowledge was
indeed complete, and the PDE in the regularizing term offered a perfect description of
the unknown field, being L f0 = u, we would expect to gain both in terms of estimation
error and in terms of rate of convergence of the MSE. Indeed, from equations (12) and
(13), we get

‖B‖2
L2 ≤

λ

cLκ1
‖L f0−u‖2

L2

meaning that the L2-norm of the bias is proportional to ‖L f0−u‖L2 . This means that, as
expected, the closer f0 is to the solution of the PDE, the smaller the bias. In particular,
if ‖L f0−u‖L2 = 0, the L2-norm of the bias is zero. In such case, the best rate for the
MSE of the estimator is achieved for a constant λn = λ for all n, and this rate is the
optimal rate of convergence for parametric estimators:

MSEL2( f̂ ) = O(n−1).

4 Numerical solution of SR-PDE estimation problem

The SR-PDE estimator defined in (1) cannot be computed analytically. [3] shows that
that solving (1) is equivalent to solving the following coupled system of PDEs L f̂ = u+ ĝ in Ω

f̂ = γ on ∂Ω

 L∗ĝ =− 1
λn

∑
n
i=1( f̂ − zi)δpi in Ω

ĝ = 0 on ∂Ω

(24)

where ĝ represents the misfit of the penalized PDE, i.e., ĝ= L f̂ −u, and L∗ is the adjoint
operator of L defined in (6). This reformulation of the problem introduces homogeneous

11



Dirichlet boundary conditions on ĝ, although we do not require that f0 satisfies the
boundary conditions L f0−u|∂Ω = g0|∂Ω = 0. Notice, however, that when L f0−u|∂Ω =
0 we obtain the best rate of convergence in Theorem 1.

The reformulation (24) of the estimation problem (1) is very convenient as it can
be easily discretized by the finite element method. We briefly recall the discretization
[see, e.g. 3, for details]. For simplicity of exposition, assume here that Ω is a convex
polygonal domain. Let Th be a triangulation of the domain Ω, where h is the maximum
length of the edges in the triangulation, and define the finite element space of piecewise
polynomial functions of degree r over the triangulation

V r
h,γ =

{
v ∈C0(Ω̄) : v|∂Ω = γh v|τ ∈ Pr(τ) ∀τ ∈ Th

}
where γh is the interpolant of γ in the space of piecewise continuous polynomial func-
tions of degree r over ∂Ω. Call ξ1, . . . ,ξNh the interior nodes of the triangulation, which
correspond to the interior vertices of the triangulation for linear finite elements. Let
ψ1, . . . ,ψNh be the associated finite element basis, that is ψi ∈ V r

h,0 and ψi(ξ j) = δi j.
Each f ∈V r

h,0 can be written as

f (x,y) = ψψψ(x,y)T f

where ψψψ =(ψ1, . . . ,ψNh)
T is the vector of the basis functions, and f=( f (ξ1), . . . , f (ξNh))

T

is the vector of coefficients. Define the bilinear form a(·, ·), associated to the operator
L, as

a( f̂ ,ψ) =
∫

Ω

(
K∇ f̂ ·∇ψ +b ·∇ f̂ ψ + c f̂ ψ

)
.

Define the (Nh×Nh) matrices Ai j = a(ψ j,ψi) and Mi j =
∫

Ω
ψiψ j, and the (n×Nh)

matrix of the evaluation of the basis functions at the data locations Ψi j = ψ j(pi). In
addition, let ψψψD = (ψD

1 , . . . ,ψ
D
ND

h
)T be the vector of basis functions associated to the

boundary of the domain, and define: AD
i j = a(ψD

j ,ψi), ΨD
i j =ψD

j (pi) and γγγ the evaluation
of the boundary condition γ at the boundary nodes. The coupled system of PDEs (24)
is then discretized as followsΨT Ψ/n λnAT

A −M

 f̂

ĝ

=

ΨT z/n−ΨT ΨDγγγ/n

u−ADγγγ

 . (25)

[4] shows that, under regularity conditions on L, there exists h0 > 0 such that for every
h ≤ h0, the solution of the discretized problem (25) is unique. The required regularity
conditions on the parameters of L are such that for every u ∈ Lp(Ω) there exists a
unique solution of the differential problem L f = u in the Sobolev space W 2,p(Ω), for
some p > 2, where W 2,p(Ω) is the space of functions in Lp(Ω) with derivatives up to
the 2-th order in Lp(Ω).

The finite element SR-PDE estimator is thus obtained as

f̂h = ψψψ
T f̂+(ψψψD)T

γγγ. (26)

The estimator has a penalized regression form. In particular

f̂ =
(
Ψ

T
Ψ+nλnP

)−1
Ψ

T z

12



where P = AT M−1A is a discretization of the regularizing term. The fitted values ẑ can
be obtained as

ẑ = Ψf̂+Ψ
D

γγγ = Sz+ r

where the smoothing matrix S ∈ Rn×n and the vector r are given by

S = Ψ
(
Ψ

T
Ψ+nλnP

)−1
Ψ

T

r = Ψ
(
Ψ

T
Ψ+nλnP

)−1{
nλnPA−1u−

(
Ψ

T
Ψ

D +nλnAT M−1AD)
γγγ
}
.

5 Consistency of SR-PDE estimator: finite element estima-
tion problem

We are now interested in proving the consistency of the finite element SR-PDE esti-
mator. This estimator is not a direct discretization of the infinite-dimensional SR-PDE
estimator, defined in (1). As described above, the finite element estimator is based on
the discretization (25) of the reformulation (24), that consists of a coupled system of
second order differential problems, instead of the original fourth order problem in (1).
Since all the results in Section 3 are based on the forth order problem (1), it is unfor-
tunately not possible to derive the consistency of the finite element SR-PDE estimator
from the consistency of the infinite dimensional SR-PDE estimator.

The consistency of the finite element estimator is studied in the following discrete
semi-norm, defined for any function vh ∈Vh as

‖vh‖2
n =

1
n

n

∑
i=1

v2
h(pi).

This norm is an approximation of the L2-norm, computed at the data locations.
For simplicity, we restrict our attention to the following case.

Assumption 3. The differential operator L is self-adjoint, i.e., L f =−div (K∇ f )+c f .

Assumption 4. The discretization is based on linear finite elements on a constrained
Delaunay triangulation of p1, . . . ,pn.

See [21] for Delaunay triangulations. We also make an additional assumption on how
the data locations fill the domain Ω. This assumption ensures good properties of the
finite element basis. Given a family of triangulations {Th}h>0, let hK and ρK be respec-
tively the diameter (longest edge) and the radius of the inscribed circle of the triangle
K ∈ Th. The family {Th}h>0 is said to be shape regular if there exists σ0 such that
σK = hK

ρK
≤ σ0 for all h and for all K ∈ Th. Moreover, the family {Th}h>0 is said to be

quasi-uniform if it is shape regular and there exists c > 0 such that hK ≥ ch for all h and
for all K ∈ Th.

Assumption 5. The points p1, . . . ,pn are such that the constrained Delaunay triangu-
lation Th on these points is a quasi-uniform triangulation.

5.1 Convergence of the bias term: finite element estimator

In this section we consider the bias of the finite element estimator

Bh = f0−E( f̂h)

and study its n-norm with respect to the number of observations n and the smoothing
parameter λn.
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Theorem 4. Under Assumptions 4 and 5, for n sufficiently large, if f0 ∈W 2,p(Ω) for
p > 2, f0 |∂Ω= γ, g0 = L f0−u ∈ H1(Ω) and g0|∂Ω = 0, then

‖Bh‖2
n ≤C

(1
n +λn

)
. (27)

Proof. [4] shows that, if f0 ∈W 2,p(Ω) for p > 2, f0 |∂Ω= γ, g0 = L f0−u ∈H1(Ω) and
g0|∂Ω = 0, there exists h0 > 0 such that for every h≤ h0

‖Bh‖2
n ≤C

{
h2
[
(1+λn)‖ f0‖2

W 2,p +‖L f0−u‖2
H1

]
+λn ‖L f0−u‖2

L2

}
. (28)

Under Assumption 4, we have that h2 ≈ 1
n . Thus, for n sufficiently large, we obtain

(27).

Note that the result in Theorem 4 is sub-optimal in λn with respect to the rate in
Theorem 1.

5.2 Convergence of the variance term: finite element estimator

Here we focuss on Cov(ẑ) = σ2SST and consider its n-norm

‖Cov(ẑ)‖n =
1
n

n

∑
i=1

Var(zi) =
σ2

n
Tr(SST ). (29)

We are thus interested in studying the eigenvalues of the matrix SST . Under Assumption
4, the matrix Ψ concides with In, the identity matrix in Rn×n, and S = (In +nλnP)−1 .
Therefore, we are interested in studying the eigenvalues of the penalty matrix P. Before
giving the result on the variance of the finite element estimator, we need the following
Lemmas.

Lemma 2. Suppose that H is a n× n positive semi-definite symmetric matrix and C a
n× n matrix. Let `k(A) denote the kth smallest eigenvalue of a positive semi-definite
symmetric matrix A. Then, for each k = 1, . . . ,n,

`1(H)`k(CCT )≤ `k(CHCT )≤ `n(H)`k(CCT ).

Proof. See [27].

Lemma 3. Let {ζk,h}n
k=1 be the eigenvalues of the penalty matrix P, ordered such that

0 < ζ1,h ≤ ·· · ≤ ζn,h. Under Assumptions 3, 4 and 5,

ζk,h = O(k2h2). (30)

Proof. Since P = AT M−1A = AT M−1MM−1A, we can study the eigenvalues of P start-
ing from the eigenvalues of M−1A and M. Denote by {µk,h} the eigenvalues of M and
by {ηk,h} the eigenvalues of M−1A. From Lemma 2 we have

µ1,hη
2
k,h ≤ ζk,h ≤ µn,hη

2
k,h (31)

Consider the problem of finding the eigenfunctions and the eigenvalues ηk of:{
Lv = ηv in Ω⊂ R2

v = γ on ∂Ω
(32)
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For self-adjoint operators L, the eigenvalues ηk are infinite, they belong to (a,+∞) for
some a > 0 and ηk ∼ k [see, e.g., 1, 8].

The finite element discretization of (32) on the triangulation Th leads to the follow-
ing generalized eigenvalue problem Avh =ηhMvh. Since M is invertible, this is a classic
eigenvalue problem, and it is equivalent to finding the eigenvalues of M−1A. In particu-
lar we have ηk,h→ ηk for h→ 0 [see, e.g., 7, 23]. More precisely ηk ≤ ηk,h ≤ ηk + ch2

[see 6, Theorem 10.4]. Therefore, for k (and thus n) sufficiently large we have:

ηk,h = O(k). (33)

Regarding the eigenvalues of M, thanks to Assumption 5, we have that for each k in
{1, . . . ,n}

c1h2 ≤ µk,h ≤ c2h2 (34)

[see, e.g., 29, 12].
From (31), (33) and (34) we conclude that {ζk,h} increase with the same rate of {η2

k,h}
with respect to k, leading to (30).

Theorem 5. Under Assumptions 3, 4 and 5, for n sufficiently large

‖Cov(ẑ)‖n = O
(

1
n
√

λn

)
. (35)

Proof. Under Assumption 4, S=(In +nλnP)−1. Thus, S has eigenvalues 1/(1+nλnζi),
where ζi are the eigenvalues of P. The trace of SST is hence given by

Tr(SST ) =
n

∑
i=1

(
1

1+nλnζi

)2

. (36)

From equations (29) and (36), thanks to Lemma 3 we have

‖Cov(ẑ)‖n ≈ σ
2h2

n

∑
k=1

(
1

1+λnk2

)2

≈ σ
2h2

∫ n

1

(
1

1+λnt2

)2

dt = O
(

h2
√

λn

)
.

Recalling in addition that, under Assumption 4, h2 ≈ n−1 we obtain equation (35).

5.3 Convergence of the MSE: finite element estimator

The following theorem shows that the finite element estimator is consistent and its MSE
achieves the optimal rate of convergence for non-parametric estimators for H2(Ω) func-
tions.

Theorem 6. Under Assumptions 3, 4 and 5, for n sufficiently large, setting λn = n−2/3

we have
MSEn( f̂h) = O

(
n−

2
3

)
.

Proof. Thanks to Theorems 4 and 5 we have

MSEL2( f̂h) = O(λn)+O
(

σ2

n
√

λn

)
that is minimized when λn = n−2/3, leading to MSEn( f̂h) = O

(
n−2/3

)
.
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Remark 2. As for the infinite-dimensional estimator, we have studied the properties
of f̂h without assuming that the true f0 satisfies the regularizing PDE. From equation
(28) we see that, if L f0−u = 0 the bias does not vanish, due to the discretization error.
However, when L f0−u = 0,

‖Bh‖2
n ≤ ch2 ≈ cn−1

where c is a constant the does not depend on n nor on λn. In such case, setting λn = λ ,
constant for all n, as for the infinite-dimensional case, we achieve again a parametric
rate of convergence for the MSE: MSE( f̂h) = O(n−1).

6 Numerical simulations

In this section we provide numerical evidence of the convergence rates obtained in
Sections 3 and 5 for the bias and the variance of the estimators, in a simple setting.
We consider the convergence in the L2 and on the discrete n-norm, both with respect
to n and λn. In particular, in Section 6.1 we report some simulations that illustrate the
rate of convergence for the infinite-dimensional estimator, when the discretization size
is small; moreover, in Section 6.2, we report some simulations that illustrate the rate of
convergence for the finite element estimator, when the mesh is constrained to the data
locations.

In all simulations, the domain Ω is a circle with radius R = 1, the differential opera-
tor L is the laplacian, and the forcing term u is equal to zero. All the rates of convergence
are illustrated with a log-log plot with λn or n on the x-axis, and the error on the y-axis.

To illustrate the different convergence rates achieved for functions with different
regularities, we consider three test functions f0. The first test function is

f0,1(x,y) =
[
1− (x2 + y2)

]3
.

This test function vanishes on ∂Ω; moreover, it is such that ∆ f0,1|∂Ω = 0. The second
test function is

f0,2(x,y) =
[
1− (x2 + y2)

]2
.

Alike the previous test function, f0,2 vanishes on ∂Ω, but in this case ∆ f0,2|∂Ω 6= 0. The
third test function is

f0,3(x,y) =
[
1−
√

x2 + y2
]
.

As the previous, f0,3 vanishes on ∂Ω; for such function ∆ f0,3|∂Ω 6= 0 and ∆ f0,3 ∈ L2(Ω),
but f0,3 /∈ H2(Ω).

6.1 Simulations with fine and fixed triangulation

In this section we aim at illustrating the rate of convergence for the infinite-dimensional
estimator. To this aim, we consider a very fine discretization, consisting of a Delaunay
triangulation with N = 123103 nodes; we hence sample n data locations, with n ≤ N,
from the nodes of the mesh.

We first consider the bias term. For this reason, we sample data from the test func-
tions f0,1, f0,2 and f0,3 without adding any noise. We first look at the bias with respect
to the smoothing parameter λn, when the number of observations n is fixed. In this case,
we consider an observation for each interior node in the triangulation. Figures 2a, 3a
and 4a show the bias decay in the three cases corresponding to the three test functions.
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Figure 2: Test function f0,1 without noise; fine and fixed triangulation. (a) Data sampled
at each interior node. Convergence rates of the bias of the estimator with respect to λn.
(b) Data sampled at an increasing number of interior nodes. Convergence rates of the
bias with respect to the number of points n, with λn = n−2/5.

0.003

0.010

0.030

1 3 10 30

b
ia

s

L2

Discrete

f0,2: bias vs 

5/8

(a)

40−e3

30−e1

30−e3

1e+03 1e+04 1e+05

number of locations

b
ia

s

L2

Discrete

f0,2: bias vs n

n
-5/14

(b)

Figure 3: Test function f0,2 without noise; fine and fixed triangulation. (a) Data sampled
at each interior node. Convergence rates of the bias of the estimator with respect to λn.
(b) Data sampled at an increasing number of interior nodes. Convergence rates of the
bias with respect to the number of points n, with λn = n−4/7.
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Figure 4: Test function f0,3 without noise; fine and fixed triangulation. (a) Data sampled
at each interior node. Convergence rates of the bias of the estimator with respect to λn.
(b) Data sampled at an increasing number of interior nodes. Convergence rates of the
bias with respect to the number of points n, with λn = n−2/3.
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Figure 5: Pure gaussian noise; fine and fixed triangulation. (a) Data sampled at each
interior node. Convergence rates of the variance of the estimator with respect to λn.
(b) Data sampled at an increasing number of interior nodes. Convergence rates of the
variance with respect to the number of data locations n, with λn = 1.

For the first test function f0,1, the bias reaches the expected rate of convergence of λn

for small values of the parameter (see Figure 2a). For f0,2 the bias decays as λ
5/8
n (see

Figure 3a) and for f0,3 as λ
1/2
n (see Figure 4a), as expected.

We then look at the bias when the number of observations n increases (up to the
number of interior nodes of the triangulation) and the smoothing parameter λn varies
as a power of n. In particular, for the three test functions f0,1, f0,2 and f0,3, we set
λn proportional to n−2/5, n−4/7 and n−2/3 respectively, that are the optimal ones in the
minimization of the MSE, according to Theorem 3. Figure 2b, 3b and 4b show that the
theoretical rates are indeed achieved in all three cases.

To illustrate the rate for the variance term in Theorem 2, we consider pure noise
data. Specifically, we sample data as gaussian random noise with variance σ2 = 1
in all the interior nodes of the mesh. We solve the estimation problem with λn =
1,10−1, . . . ,10−5, and we repeat the simulation fifty times to compute the mean of the
error. The results are shown in Figure 5a. As expected, the square of the L2 and of the
discrete norm increase as λ

−1/2
n .

To illustrate the rate for the variance with respect to the number of observations,
we proceed as for the bias, but considering an increasing number of observations n.
We solve the estimation problem with a fixed λn = 1. We compute the mean over fifty
replicates. The results are shown in Figure 5b. As expected, the square of the L2 and of
the discrete norm decay as n−1.

Finally, we want to illustrate the rate for MSE with respect to the number of obser-
vations. To this end, we consider the same simulation setting considered for the bias,
increasing the sample size n and taking λn proportional to n−2/5, n−4/7 and n−2/3, for
the three test functions f0,1, f0,2 and f0,3, respectively. We sample the data adding a
gaussian random noise with variance σ2 = 1. We compute the mean estimate over fifty
simulation replicates. Figures 6a to 6c show the obtained results. As expected from
Theorem 3, the L2 and the discrete norm decay as n−4/5, n−5/7 and n−2/3 respectively,
for the three test functions.

6.2 Simulations with constrained triangulations

We now consider different Delaunay triangulations of Ω with an increasing number of
nodes N, approximately equal to 200, 800, 3000, 12000, 50000, and 200000 interior
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Figure 6: Test function f0,1, f0,2 and f0,3 with gaussian noise; fine and fixed triangula-
tion; data sampled at an increasing number of interior node. Convergence rates of the
MSE with respect to the number of points n.

nodes. We sample the three test functions f0,1, f0,2, f0,3 at all mesh nodes, so that n = N
and the mesh nodes coincide with data locations (constrained triangulation), as in Sec-
tion 5. We want to illustrate the rates derived for the finite element estimator in Section
5, and to show that, unlike for the infinite-dimensional estimator, it is not possible to
improve the rate when the true function f0 has regularity higher than H2.

We first consider the bias with respect to the number of observations n. To this
end, we consider the true data without noise. For all the three test functions we set λn

proportional to n−2/3, as in Theorem 6. Figure 7 shows that the bias is proportional to
n−1/3 (that is, to

√
λn), for all the three functions f0,1, f0,2, f0,3.

We then look at the variance term. We consider pure noise data, sampling a gaussian
random noise with variance σ2 = 1 at each interior mesh node. We solve the estimation
problem with λn = 1. We compute the mean over fifty replicates. The results are shown
in Figure 8. As expected from Theorem 5, both the L2 and the discrete norm decay as
n−1.

To illustrate the result in Theorem 6, we study the MSE with respect to the number
of observations. We sample from f0,1, f0,2, f0,3, adding a gaussian random noise with
variance σ2 = 1 (at the interior nodes). We solve the estimation problem with λ pro-
portional to n−2/3 for all three test functions. The results are shown in Figure 9. As
expected from Theorem 6, both the L2 and the discrete norm decay as n−2/3.

7 Discussion and future work

We proved the consistency of the infinite-dimensional SR-PDE estimator, for a general
differential operator L with H2 regularity, when exact Dirichlet boundary conditions
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ber of data locations. Convergence rates of the variance of the finite element estimator
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Figure 9: Three test functions with Gaussian noise; constrained triangulations (N = n)
of an increasing number of data locations. Convergence rates of the MSE of the finite
element estimator with respect to the number of observations n, with λn = n−2/3. In
green the rate for f0,1, in blue for f0,2, in black for f0,3.

are imposed on ∂Ω. The exact boundary conditions on f are sufficient to prove that
the MSE of the estimator achieves the near-optimal rate of convergence when the true
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function f0 ∈ H2. Moreover, when exact Dirichlet boundary conditions are also avail-
able on g0 = L f0−u, it is possible to improve such rate, achieving the near-optimal rate
of convergence for H4 functions. In future research, we will aim at proving the con-
sistency under more general mixed boundary conditions on the function and possibly
demonstrating that the estimators attain exactly the optimal rate.

We also proved the consistency of the finite element SR-PDE estimator. In this
case we restricted the attention to self-adjoint operators L, i.e., b = 0, meaning that
no unidirectional smoothing is considered. However, based on the results obtained for
the infinite dimensional estimator, we conjecture that the finite element estimator is
consistent also in the case b 6= 0. Moreover, to obtain the rate on the bias, we assumed
exact boundary conditions on g0. However, [4] show numerically that the extra error
incurred if g0 does not satisfy the imposed condition is of the same order of the bias. In
addition, the rate of convergence for the bias of the finite element estimator derived in
Theorem 4, is shown to be suboptimal by the numerical simulation in Section 6. As a
future work, we aim to improve the rate derived in Theorem 4. To derive the rate for the
variance of the finite element estimator we assumed that the triangulation is constrained
to the data locations. We are currently working to relax such assumption. This would
in turn allow us to relax the infill properties required on the data locations.

The infinite dimensional SR-PDE estimation problem could also be solved using
different numerical approaches and bases. In [35], for instance, we use isogeometric
analysis based on Non-Uniform Rational B-Splines (NURBS). The study of the consis-
tency of the corresponding estimators is an interesting direction of future research.

Moreover, we intend to explore the consistency of the SR-PDE estimators for space-
time data defined in [2]. Furthermore, we will also investigate the consistency of
SR-PDE estimators over two-dimensional manifold domains defined in [14], and of
SR-PDE estimators in three-dimensional domains. These studies will require different
arguments then those used in this work. For instance, in the three-dimensional case,
Lemma 1 does not hold, and alternative ways to control the difference between F and
Fn should be sought.

Finally, it would be very interesting to prove the consistency of SR-PDE estimators
in the more complex semi-parametric setting considered in [31], where also space-
varying covariate information is included, following a generalized additive model where
zi = qT

i βββ + f0(pi)+ εi, and qi denotes the covariates observed at pi. In particular, a
very interesting development of this work would consist in proving the consistency and
asymptotic normality of the regression coefficients βββ . A similar problem, in the simpler
case of univariate smoothing splines, was considered by [20].
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