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Summary

We present a two phase model for microcirculation that describes the interaction of plasma with red blood cells.

The model takes into account of typical effects characterizing the microcirculation, such as the Fahraeus-Lindqvist

effect and plasma skimming. Besides these features, the model describes the interaction of capillaries with the

surrounding tissue. More precisely, the model accounts for the interaction of capillary transmural flow with the

surrounding interstitial pressure. Furthermore, the capillaries are represented as one-dimensional channels with

arbitrary, possibly curved configuration. The latter two features rely on the unique ability of the model to account

for variations of flow rate and pressure along the axis of the capillary, according to a local differential formulation of

mass and momentum conservation. Indeed, the model stands on a solid mathematical foundation, which is also

addressed in this work. In particular, we present the model derivation, the variational formulation and its

approximation using the finite element method. Finally, we conclude the work with a comparative computational

study of the importance of the Fahraeus-Lindqvist, plasma skimming and capillary leakage effects on the

distribution of flow in a microvascular network.
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1 Introduction

Mathematical modeling is a well accepted tool of investigation in microcirculation (35), because it complements

experimental investigation by facilitating the formulation of hypotheses to be tested against real data. Mathematical

models for microcirculation have evolved over the last three decades (at least), with the attempt to advance the

state of art from phenomenological models to predictive ones (56). Now, there is a fairly good agreement about the

fundamental traits of models for blood flow in the microcirculation. More precisely, the importance of nonlinear blood

rheology depending on hematocrit (18, 22, 23, 38, 39, 58), the role of the microvascular morphology (4, 19, 20, 52),

and of the extravascular pressure gradient (15, 16), is well accepted. However, how the interaction of these essential

factors determine the main features of blood flow at the microvascular level still presents some unresolved questions.

For this reason, the development of mathematical and computational models able to address the complexity of these

phenomena is still up to date.

From the computational standpoint, the panorama looks more scattered. This may be due to the intrinsic difficulty

to solve the microcirculation problem, because it involves differential and nonlinear governing equations defined on

networks of complex shape. Even though it is out of the scope of this work to provide a comprehensive review, we

mention here some representative approaches, such as the one of (13, 14, 22), the method of Green’s functions (28,

57), and also the approaches that look at the microvascular bed as a porous medium (8, 45, 63).

The objective of this work is to derive a model of microcirculation and its interaction with the interstitial volume,

where the effect of pressure gradients is taken into account. As mentioned before, the model does also include a

nonlinear blood rheology, dependent of the vessel diameter and the hematocrit, as well as it is able to account for

complex vascular geometries. To include complex geometries, we adopt a mesoscale approach conceptually similar

to the method of Green’s functions. The unique feature of this model is to be rigorously derived from the governing

equation of flow, such as mass and momentum balance in a network of leaky channels. For example, we can naturally

account for the role of capillary permeability and we determine how to modify the equations in accordance to

curvature of the channels. The enforcement of mass conservation at the junctions of capillary branches also emerges

directly from the derivation of the model. This allows us to embed plasma skimming effects in the model. According

to the classification proposed in (56), the model belongs to the category of quantitative conceptual models, with the

ambition to facilitate the migration of the state of art towards predictive models. The resulting mathematical problem

consists of coupled partial differential equations (PDEs) on manifolds with heterogeneous dimensionality. Namely, it

couples a flow and transport problem in one-dimension (1D) with a porous media flow problem in three-dimensions

(3D). This approach was originally proposed in (9–11). Besides its relevance to applications, it has recently attracted

the attention of several researchers from the perspective of mathematics. Indeed, it requires particular attention to

prove existence of a solution in the weak (or variational) sense (31, 32, 44, 62).
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This study is organized as follows. In the first section we present the derivation of the governing equations of

flow through a vascular network of one-dimensional channels from the general three-dimensional formulation of the

Navier-Stokes equations for incompressible fluids. Once the general framework is developed, we make it specific to

microcirculation by introducing an additional transport equation for hematocrit, (defined as a continuum quantity, as

red blood cells can not be described as individual particles at this level of detail) in virtue of which the model becomes

genuinely two-phase. Also the Fahraeus-Lindqvist and plasma skimming effects are embedded into the governing

principles. In the third section, we rigorously address the variational formulation of the problem, in preparation of

the numerical discretization based on the finite element method. Finally, this section is concluded with the study of a

numerical solution strategy to address the nonlinearity arising from the complex blood rheology. The work ends with

an extended series of numerical tests with increasing level of complexity. For validation purposes, we begin from the

analysis of a single vascular branch, for which the analytical solution is known. Then, we consider the flow through

a Y-shaped bifurcation, to investigate the role of curvature and radius on the flow split. Finally we address a more

complex network, built on the basis of a biomimetic principle related to Voronoi tassellations (54, 55).

In perspective, this work proposes a quantitative tool for the investigation of many pathologies related to microcir-

culation. Ongoing applications to nephrology (precisely the study of perturbed fluid homeostasis in uremic patients

(47)), neurology (see for example recently published works (37, 61)) and oncology (for better understanding the

microenvironment of vascularized tumors (42, 43)) are already in progress.

2 A two phase model of microcirculation coupled with interstitial flow

We define a mathematical model for fluid transport in a permeable biological tissue perfused by a capillary network.

We consider a domain Ω that is composed by two parts, Ωv and Ωt, the capillaries and the tissue interstitium,

respectively. Assuming that the capillaries can be described as cylindrical vessels, we denote with Γ the outer surface

of Ωv, with R its radius and with Λ the centerline of the capillary network. Any physical quantity of interest, such

as the blood pressure p and the blood velocity u, is a function of space (being x ∈ Ω the spatial coordinates). We

consider steady-state flow conditions, as a result all variables are independent of time. The flow model in the vascular

domain Ωv reads as follows: 

∇ · ut = 0 in Ωt

ut +
K

µt
∇pt = 0 in Ωt

ρ
∂uv
∂t

+ ρ(uv · ∇)uv = ∇ · σ in Ωv

∇ · uv = 0 in Ωv

(1)
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where σ(uv, pv) = 1/2µv(∇uv +∇Tuv)−∇pv is the Cauchy stress in the blood and µv is the apparent (or effective)

blood viscosity. In addition, µt and K denote the dynamic fluid viscosity and the hydraulic permeability of the

interstitial tissue, respectively, and ρ is the blood density. The viscosity of the interstitial fluid, µt, is taken from (60).

It is comparable to the one of blood plasma at body temperature of 37o, which will be later denoted by µref (we

remand to Table 1 for the values of the parameters and corresponding references). At the interface Γ = ∂Ωv ∩ ∂Ωt

we impose continuity of the flow:

uv · n = ut · n = f(pt, pv) with f(pt, pv) = Lp
(
(pv − pt)− (πv − πt)

)
, ut · τ k = 0, on Γ (2)

where n is the outward unit vector normal to the capillary surface and τ k, k = 1, 2 are the tangential and binormal

vectors. The fluid flux across the capillary wall can be obtained on the basis of linear non-equilibrium thermodynamic

arguments, originally developed by Kedem and Katchalsky. In particular Lp is the hydraulic conductivity of the vessel

wall, Rg is the universal gas constant and T is the absolute temperature. In (2) πv and πt determine the osmotic (or

oncotic) pressure gradient across the capillary wall, namely δπ = πv − πt, due to the difference in the concentration

of proteins (for example albumin), (33). In what follows, we assume that δπ is given and is independent of x.

2.1 Derivation of the governing flow equations in a capillary with arbitrary geometry

The one dimensional model that governs the bulk flow in each branch of a generic microcirculation network is

obtained as follows. Let us define a local cylindrical coordinate system x = (r, θ, s) at each point of the centerline of

the capillaries. We denote with er, eθ, es the radial, circumferential and axial unit vectors. The model is based on

the following, geometric, kinematic and dynamic assumptions:

Circular section For each value of the arc length s along a network branch, the intersection between the orthogonal

plan to es and the vessel is circular.

Dominance of axial velocity The radial and circumferential velocity components are negligible compared to the

axial component, namely uv = [0, 0, uv(r, θ, s)]
T .

Body forces We neglect the effect of gravity and other possible types of body forces (inertia, Coriolis).

Steady flow We neglect transient phenomena. Microcirculation is characterized by negligible fluctuations of the

blood pressure due to the heartbeat, namely the Womersley numbers at the level of capillary circulation are negligible

(24). For this reasons, we just aim to determine the steady flow conditions.
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Dominance of viscous forces Microcirculation is also characterized by the dominance of viscous forces over

inertial forces acting on infinitesimal fluid particles, namely the Reynolds number characterizing the flow is low.

Viscosity We assume that the apparent viscosity of blood, µv is independent of the local deformation rate con-

ditions. However, the viscosity is not a constant parameter but it depends on the hematocrit and on the vessel

radius.

Under these assumptions the mass balance and momentum equations governing an incompressible flow, such as

blood, reduce to the following form,

ur = uθ = 0, ∂rpv = 0, ∂θpv = 0, ∂suv = 0, −µv∆uv + ∂sp = 0, (3)

for any (r, θ, s) ∈ Ωv where ∆ denotes the Laplace operator with respect to cylindrical coordinates ∆u =

1/r∂r(r∂ru) + 1/r2∂2
θu + ∂2

su. We now aim to transform equation (3) into a simpler one that is defined on the

centerline of the capillary, solely. To this purpose, we introduce a parametrization of each curvilinear branch. Let

Ψ : R → R3 be the parametric arc length, such that Ψ ∈ C3(R) and ‖dzΨ(z)‖ = 1 for any z ∈ [0, L] being L the

length of a generic branch of the capillary network. Note that s =
∫ z

0
‖dζΨ(ζ)‖dζ = z. The curvature of the arc at

a specific location, is κ = ‖dzzΨ(z)‖; the centripetal unitary direction is N = dzzΨ(z)/κ and the center C0 of the

osculating circle is the point in the direction N(z) with distance 1/κ from Ψ(z).

In order to proceed with the one-dimensional model derivation, we set the following ansatz: the axial velocity

profile can be decomposed as uv(r, θ, s) = uv(s)Φ(r, θ) where uv represents the mean or bulk velocity of the blood

stream on the cross section identified by the arc length s, denoted by Σ(s). More precisely, in what follows we will

use the notation

uv(s) =
1

πR2

∫
Σ(s)

uv dσ , pv(s) =
1

πR2

∫
Σ(s)

pv dσ , pt(s) =
1

2πR

∫
∂Σ(s)

pt dσ ,

where pt is the mean interstitial pressure on the boundary of a section Σ. The function φ(r, θ) is a shape factor that

is represented as

Φ(r, θ) = φ(r/R)(1 + arcos θ + brsin θ + cr2cos θsin θ + dr2cos 2θ + er2sin 2θ) , (4)
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where a, b, c, d, e are parameters to be determined in what follows. The radially symmetric part of the profile, namely

φ(r/R) is usually modeled as,

φ(ρ) =
γ + 2

γ
(1− ργ) ,

which coincides with the classic Poiseuille parabolic flow profile (observed in straight cylindrical channels) for γ = 2.

We aim to find a suitable expression for the parameters a, b, c, d, e in terms of the geometry of the centerline,

namely Ψ, such that the shape factor coincides with the classic parabolic Poiseuille profile when the centerline is

rectilinear, while it deviates from this pattern when the centerline is curved. To this purpose, we set the following

additional assumptions:

Choice of θ We assume that on each cross section the axis θ = 0 is colinear with the vector N.

Symmetry of the profile We require that the velocity profile in each section is such that Φ(r, θ, ψ) =

Φ(r,−θ, ψ) ∀r, θ, ψ. As a result of that the coefficient b, c must vanish, namely b = c = 0.

Linear dependence We assume that the correction factor of the velocity profile at any point s, namely (1 +

arcos θ + brsin θ + cr2cos θsin θ + dr2cos 2θ + er2sin 2θ) is linearly dependent of the distance from the center of the

osculating circle relative to this point.

We are now able to determine the coefficients a, d, e which satisfy these assumptions. For the linear dependence of

the velocity with the distance from the center of the osculating circle, our profile must be zero in C0 = (r = 1/κ, θ =

0, ψ), that is (1 + a/κ+ d/κ2) = 0→ d = −aκ− κ2. Furthermore, since the velocity profile is linearly dependent to

the distance from the center of the osculating circle, we have that all the points with distance 1/κ from it must have

the same velocity. The set of points of each cross section with distance 1/κ from the point C0 are:

ϕ = {(r, θ) : r =
2cos θ

κ
, θ ∈ [−π

2
; +

π

2
]}.

Moreover we have that Φ(r = 0, θ, ψ) = φ(0) and so ∀(r, θ) ∈ φ then Φ(r, θ, ψ) = φ(r/R). It follows that ∀(r, θ) ∈ ϕ:

0 = arcos θ + dr2cos 2θ + er2sin 2θ = 2
a

κ
cos 2θ + 4

d

κ2
cos 4θ + 4

e

κ2
cos 2θsin 2θ.

Now for θ = ±π2 the equation is verified. In the other cases we can divide all by 2cos 2θ/κ2, to obtain:

0 = aκ+ 2dcos 2θ + 2esin 2θ ∀θ ∈
(
−π

2
,+

π

2

)
.
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Figure 1: Visualization of the dimensionless velocity profile for a curved pipe obtained using expression (5). The
shape parameter is γ = 2 and the curvature is such that κR = 0.11 as in the numerical simulations.

To find the value of the parameters we need two more equations. Thus, we test it on two particular cases: θ =

π/4, θ = π/3. For θ = π/4, using d = −aκ− κ2 we obtain:

0 = aκ+ 2d(
1

2
) + 2e(

1

2
) = aκ+ d+ e = aκ− κ2 − aκ+ e = e− κ2.

For that e = κ2. Finally for θ = π/3, using the previous result we have:

0 = aκ+ 2d(
1

4
) + 2e(

3

4
) = aκ+

d

2
+

3e

2
= aκ− κ2

2
− aκ

2
+

3κ2

2
=
aκ

2
+ κ2

So we obtain a = −2κ and d = κ2. In a general configuration the curvature is dependent on the arc length κ = κ(s).

In conclusion, the velocity profile is of the form:

Φ(r, θ, ψ) = φ(rR−1)(1 + r2κ2(ψ)− 2κ(ψ)rcos θ). (5)

A visualization of such profile is provided in Figure 1

Now we derive the reduced model for flow in curved vessels by replacing the velocity profile (5) into the mass and

momentum balance equations (3) and we integrate these equations on a portion of vessel, P delimited by two cross
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sections Σ(s1),Σ(s2), s2 > s1. In this way, we obtain simplified equations that depend only on the arc length s. We

start first from the continuity equation, using the fact that n = es on Σ(s1) and Σ(s2) we obtain:

0 =

∫
P

∇ · uvdΩ =

∫
∂P

uv · n dσ =

∫
Σ(s1)

uv · ndσ +

∫
Σ(s2)

uv · n dσ +

∫
Γ

uv · n dσ

= −
∫

Σ(s1)

uv dσ +

∫
Σ(s2)

uv dσ +

∫
Γ

f(pt, pv) dσ ' −uv(s1)πR2(s1) + uv(s2)πR2(s2) +

s2∫
s1

f(pt, pv)dz

=

s2∫
s1

[f(pt, pv) + ∂s(πR
2uv)]dz .

(6)

According to (3), in particular ∂rpv = ∂θpv = 0, we notice that pv(r, s, θ) = pv(s). Furthermore, in equation (6) we

have adopted the assumption that the radius of the capillary is small if compared to the domain Ω. More precisely,

we have set that

∫
Γ

f(pt, pv) dσ =

s2∫
s1

2π∫
0

f(pt, pv)R(s)dθ ds =

s2∫
s1

2π∫
0

f(pt, pv)R(s)dθ ds =

s2∫
s1

2πR(s)f(pt, pv) ds ,

where the last step holds true because f(pt, pv) is a linear function of its arguments.

Let us now apply the averaging technique to the momentum balance equation, that is the last of (3). We have:

∫
P

∆uv dΩ =

∫
∂P

∇uv · n dσ = −
∫

Σ(s1)

∂suv dσ +

∫
Σ(s2)

∂suv dσ +

∫
Γ

∇uv · n dσ =

∫
Γ

∇uv · er dσ

=

∫
Γ

∂ruvdσ =

∫
Γ

uv(s)∂rΦ(r, θ)dσ =

∫
Γ

uv(s)R
−1φ′(rR−1)(1− 2κrcos θ + κ2r2) + φ(rR−1)(2κ2r − 2κcos θ) dσ

=

s2∫
s1

2π∫
0

uv(s)
(
R−1φ′(1)(1− κcos θ + κ2R2) + φ(1)(2κ2R− 2κcos θ)

)
Rdθds.

Now using the fact that φ(1) = 0, the periodicity of cos θ, we obtain:

∫
P

∆uv dΩ =

s2∫
s1

2πφ′(1)(1 + κ2R2)uv(s) ds,

such that the averaged/one-dimensional form of the momentum equation becomes

−2πµv(s)φ
′(1)
(
1 + κ2(s)R2

)
uv(s) + πR2∂spv(s) = 0.
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2.2 Extension to a network of capillaries

Now that we have derived the 1D model equations we need to generalize them to a more complex topology. To

this purpose, we decompose the network in Λi branches, i = 1, ..., N . The branches are parametrized by the arc

length si; a tangent unit vector λi is also defined over each branch, accounting for an arbitrary branch orientation.

Differentiation over the branches is defined using the tangent unit vector, namely ∂si := λi ·∇ on Λi, i.e. ∂si represents

the projection of ∇ along λi. So far, the equations that govern the flow in each branch of the network are uncoupled.

In order to make the flow problem fully coupled we need to enforce constraints at the junctions of the branches.

Junctions are defined as the points y such that

yj = Ψi(s
∗
i ) = Ψı̂(s

∗
ı̂ ), s

∗
i ∈ {0, Li} ∀i, ı̂ = 1, . . . , N

Let us count the junctions with the index j = 1, 2, . . . ,M and let us denote with Kj the set of indices i such that

Ψi(s
∗
i ) = yj . These are the branches that join at the j-th junction. There may be branches that end inside or at the

boundary of the domain Ω. The former are said dead ends and are denoted with z. The indices of branches featuring

a dead end are i ∈ E . The latter points are called boundary ends and are identified by the symbol x. The set of

branches intersecting the outer boundary is i ∈ B.

The branches that merge at the j-th junction can be subdivided according to different criteria. We present here

two options, both useful later on. Let λi be the orientation of a given branch of the network and let es be the

outgoing tangential unit vector at the each of the two endpoints of the branch, identified respectively by the arc

length coordinates si = 0 and si = L.

The ingoing points are identified by the following conditions: λi · es(si) < 0 for si = 0 and si = L. The outgoing

points are obviously the ones such that λi · es(si) > 0. The indices i that correspond to ingoing branches at the j-th

junction are denoted with K−j , while the indices of the outgoing branches at the junction are collected in K+
j .

If we add the orientation of the flow to this classification we obtain that the inflow points are identified by the

following condition that involves the orientation of the flow: uv(si)λi · es(si) < 0 for si = 0 and si = L. The outflow

points are obviously the ones such that uv(si)λi · es(si) > 0. The corresponding indices are collected in the sets

Kinj , Koutj , respectively. We classify similarly the boundary ends, subdividing the points x into ingoing or outgoing,

namely x−,x+, or into inflow and outflow xin,xout. At these points, we set the vascular pressure equal to a prescribed

value pv(xi) = gv(xi), i ∈ B, while the value of hematocrit will be enforced at the inflow points solely, xin.
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We enforce balance of flow rates and continuity of pressure at each junction, namely,

∑
i∈Kj

πR2
kuv,i = 0, j = 1, 2, . . . ,M , pv,i = pv,̂ı, i, ı̂ ∈ Kj , j = 1, 2, . . . ,M .

At dead ends of the network we set no-flow conditions πR2uv|zi = 0, i ∈ E , where |zi is a shorthand notation for

the evaluation of a function (or better the whole term) in the point zi.

In conclusion, the coupled model of blood flow in the network is the following,



∂s
(
πR2

i (s)uv,i(s)
)

+ 2πRi(s)f(pt(s), pv(s)) = 0 on Λi, i = 1, . . . , N ,

−2µv,i(s)φ
′(1)
(
1 + κ2

i (s)R
2
i (s)

)
uv,i(s) +R2

i (s)∂spv,i(s) = 0 on Λi, i = 1, . . . , N ,∑
i∈Kj πR

2
kuv,i|yj = 0 j = 1, 2, . . . ,M ,

pv,i|yj = pv,̂ı|yj i, ı̂ ∈ Kj , j = 1, 2, . . . ,M ,

πR2uv|zi = 0 i ∈ E ,

pv|xi = gv i ∈ B .

(7)

We notice that in the case of a straight, cylindrical, impermeable pipe, i.e. γ = 2, the coefficient φ′(1) = −4 and

f(pt, pv) = 0, such that these equations coincide with the standard Poiseuille flow.

Finally, we address the coupling of the reduced model (7) with the porous media equation in the surrounding

environment, as described in (1). We follow the approach proposed in (6), where the interaction of the manifold Λ

with the bulk domain Ω is represented by means of the distribution of concentrated sources on Λ. Owing to these

assumptions, we identify Ωt with Ω and we introduce a new term on the left hand side to the first equation of (1).

To guarantee mass conservation, this new term must be opposite to f(pt(s), pv(s)) and be multiplied by δΛi that is

a distribution of Dirac masses along the manifold Λi. As a result of that, the flow model that describes capillaries as
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one-dimensional channels coupled with a porous interstitial tissue reads as follows:



∇ · ut − 2πR(s)f(pt(s), pv(s))δΛ = 0 in Ω

ut + K
µt
∇pt = 0 in Ω

∂s
(
πR2

i (s)uv,i(s)
)

+ 2πRi(s)f(pt(s), pv(s)) = 0 on Λi, i = 1, . . . , N ,

−2µv,i(s)φ
′(1)
(
1 + κ2

i (s)R
2
i (s)

)
uv,i(s) +R2

i (s)∂spv,i(s) = 0 on Λi, i = 1, . . . , N ,∑
i∈Kj πR

2
kuv,i|yj = 0, j = 1, 2, . . . ,M ,

pv,i|yj = pv,̂ı|yj i, ı̂ ∈ Kj , j = 1, 2, . . . ,M ,

πR2uv|zi = 0 i ∈ E ,

pv|xi = gv i ∈ B .

(8)

2.3 Modeling the Fahraeus-Lindqvist and the plasma skimming effects

The apparent (or effective) viscosity of blood flowing through very small channels is not constant. The main factor

that affects the apparent viscosity of blood is the volumetric concentration of red blood cells, namely the hematocrit.

Several phenomenological models are available to quantify this dependence, we refer here to a widely used one,

proposed in (50):

µv
µref

=

[
1 +

(
µ0.45

µref
− 1

)
· (1−H)C − 1

(1− 0.45)C − 1
·
(

D

D − 1.1

)2]
·
(

D

D − 1.1

)2

(9)

where H is the discharge hematocrit, defined such that πR2(s)uv(s)H(s) is the total flow of red blood cells that

crosses a section Σ(s) of a capillary. In the expression (9), C is a parameter depending on the diameter D = 2R of

the capillary:

C = (0.8 + e−0.075D) ·

(
−1 +

1

1 + 10−11D12

)
+

1

1 + 10−11D12
(10)

and µ0.45 is a nominal value viscosity, related to the value at 45% hematocrit,

µ0.45

µref
= 6 · e−0.085D + 3.2− 2.44 · e−0.06D0.645

. (11)



12

Figure 2: Visualization of the effective viscosity (measured in Pa · s), calculated with expression (9), in terms of the
hematorit (H, %) and the capillary diameter (D, measured in microns, µm).

The reference viscosity µref is obtained from the dynamic viscosity of water (H2O, see the IAPWS standards) as

follows

µref = 1.8µH2O = 1.8
µ0

1 + 0.0337T + 0.00022T 2
. (12)

where T is the temperature (measured in Celsius) and µ0 = 1.808 centi-Poise (cP ) is the viscosity of water at 0 Co.

The variation of the apparent viscosity, for a suitable range of hematocrit and capillary diameter is visualized in

Figure 2. The model (9) entails the need to model the dynamics of hematocrit in the microvascular network. To this

purpose, we propose a one-dimensional model for transport of hematocrit that will be coupled to (8). This model is

set on the following assumptions.

Steady flow conditions As we did for the bulk flow model, we study the hematocrit distribution in steady

conditions.

Transport dominated regime Let us analyze the Péclét number that characterizes the hematocrit transport,

Pe =
LU

DRBC
(13)
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where L ' 10−5m is the RBC characteristic scale (also comparable with the capillary diameter), U ' 10−3m/s is

the average velocity of RBC in the capillaries and DRBC ' 10−12m2/s is the diffusivity parameter of RBC in water

(3, 26, 46). As a result we obtain Pe ' 104 that justifies the assumption of advection dominated RBC transport.

Reactions and leak off We assume that the RBC do not leak off from the capillaries and we neglect any effects

involving production or sequestration of RBC from the blood stream.

Absence of trifurcations at network junctions We assume that all the inner junctions of the network can be

classified either as anastomoses or bifurcations.

On the basis of these hypotheses, the dynamics of hematocrit in a capillary network, where each capillary branch is

modeled as a one-dimensional channel, is described by the mass balance equation. Denoting the flow rate of hematocrit

across a single channel as QH , owing to the definition of discharge hematocrit we directly have QH = πR2uvH and

the mass balance equation for hematocrit becomes,

∂s
(
πR2

i uv,iHi

)
= 0 on Λi, i = 1, 2, . . . , N . (14)

Equation (14) will be taken as the governing equation for hematocrit in each branch of the capillary network. We

observe that this equation can be easily combined with the first of (8) to obtain

πR2
i uv,i∂sH − 2πRif(pt, pv)Hi(s) = 0 on Λi, i = 1, 2, . . . , N .

It shows that the hematocrit distribution is not constant along the axis of the branch, despite we neglect RBC

reactions and leak off. However, hematocrit varies because the plasma can leak off and consequently the volumetric

concentration of RBC may vary.

Equation (14) is not sufficient to uniquely determine the value of hematocrit in the network. It must be combined

with suitable conditions for conservation of hematocrit at the junctions and at the boundary of the network. As (14)

is a pure transport equation, it is well known that we have to prescribe a constraint on hematocrit at each inflow

point of the network branches. Let us denote by ∂Λin the inflow points at the boundary of the network. On all these

points we enforce a given value of hematocrit, namely H = H0 on ∂Λin. For the internal junctions we exploit mass

conservation of hematocrit. Let us consider a generic junction with multiple branches joining at a single node. Given

the orientation of the flow, we subdivide the branches into Kout = card(Koutj ) outflow ones and Kin = card(Kinj )

inflow branches. We prescribe as many constraints as the number of inflow branches, namely Kin. Mass conservation
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always provides one constraint that is,

∑
i∈Koutj

πR2
i uv,iHi =

∑
i∈Kinj

πR2
i uv,iHi .

The previous equation is not sufficient to close the problem in the case Kin > 1. The simple case Kin = 1 identifies

anastomoses, where one, two or multiple outflow branches merge into a sigle inflow one. In this case, since all the terms

on the left hand side are known, hematocrit value on the right is uniquely determined. In case of bifurcations, namely

Kin = 2, the problem can be solved by means of the flow split model proposed in (49). Since we exclude the presence

of trifurcations or more complex configurations, this approach will be entirely sufficient to determine the distribution

of hematocrit in the network. Without loss of generality, let us consider the classic Y-shaped configuration, where

one channel divides into two branches. We denote by the subscript f the quantities related to the parent channel

and with α, β the daughter branches. Given the blood flow rates Q∗ = πR2
∗uv,∗ with ∗ = f, α, β and the outflow

hematocrit Hf , we aim to determine Hα and Hβ , which provide hematocrit values at the inflow of the bifurcation

branches. Using the approach of (49) we define,

FQBα =
Qα
Qf

FQEα =
QαHα

QfHf
,

and we calculate these fractions by means of the following model



FQEα = 0 if FQBα ≤ X0

logit(FQEα) = A+Blogit(
FQBα−X0

1−2X0
) if X0 < FQBα < 1−X0

FQEα = 1 if FQBα ≥ 1−X0

where A,B are fixed parameters determined in (50), logit(x) = ln[x/(1−x)] and X0 is the fractional blood flow rate

under which any RBC will flow into the daughter branch α. Finally, the desired hematocrit levels are determined as

Hα = FQEαHfQf/Qα , Hβ = (1− FQEα)HfQf/Qβ .
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3 Mathematical formulation and numerical approximation

3.1 Weak formulation of the two phase flow problem

For the variational formulation of the coupled flow problem (8), we proceed as previously described in (44) for a

similar case. We adopt the standard notation for function spaces, see for example (2, 51). Let’s multiply the Darcy

equations of (8) by test functions qt ∈ Qt = L2(Ω), vt ∈ V t = Hdiv(Ω). Owing to Green’s formula we have

(
∇pt , vt

)
Ω

= −
(
pt , ∇ · vt

)
Ω

+
(
pt , vt · nt

)
∂Ω

= −
(
pt , ∇ · vt

)
Ω

+
(
gt , vt · nt

)
∂Ω

where gt is a prescribed value of the interstitial pressure at the artificial boundaries of the tissue slab, namely ∂Ω.

For the network, we multiply the third equation of (8) by a test function qv ∈ Qv. In general, it is sufficient that

Qv ⊂ L2(Λ), but we require that the pressure is continuous at the junctions, according to the last equation of (8).

Let qv|yj be the uniquely defined value of qv at the location of the j-th junction. We weakly enforce the flow rate

compatibility constraints at the junctions, by multiplying the fifth equation of (8) by qv|yj and we add it to the

third equation. In this way, we obtain the third equation of (15). To derive the last equation of (15), we multiply the

fourth equation of (8) by a test function vv,i ∈ Vv,i ∈ H1(Λi) and by πR2
i . Then, we sum the contribution of each

branch of the network. Moreover, using again Green’s formula, we transfer the spatial derivative from the pressure

to the test function, as follows,

∑
i

(
∂spv,i , πR

2
i vv,i

)
Λi

= −
∑
i

(
pv,i , ∂s(πR

2
i vv,i)

)
Λi

+
∑
i

[
pv,iπR

2
i vv,i|s=L − pv,iπR2

i vv,i|s=0

]
.

Using the continuity of the pressure at junction points, the last term in the previous expression can be arranged

junction by junction as follows,

∑
i

[
pv,iπR

2
i vv,i|s=L − pv,iπR2

i vv,i|s=0

]

=
∑
j

pv|yj

∑
i∈K+

j

πR2
i vv,i|yj −

∑
i∈K−

j

πR2
i vv,i|yj

+
∑
i∈E

pv πR
2
i vv|zi +

∑
i∈B

[
pv πR

2
i vv|x+

i
− pv πR

2
i vv|x−

i

]
.

We finally use the last term of the previous expression to enforce pressure boundary conditions at the boundary

points of the network, namely pv|x+
i

= g+
v and pv|x−

i
= g−v for any i ∈ B. Combining all these equations, the weak
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formulation of problem (8) reads as follows:



(
∇ · ut , qt

)
Ω
−
(

2πRf(pt, pv)δΛ , qt
)

Ω
= 0 ∀qt ∈ Qt,

µt
K

(
ut , vt

)
Ω
−
(
pt , ∇ · vt

)
Ω

= −
(
gt , vt · nt

)
∂Ω

∀vt ∈ V t,

∑
i

(
∂s(πR

2
i uv,i , qv

)
Λi

+
∑
i

(
2πRf(pt, pv) , qv

)
Λi
−
∑
i∈E qvπR

2
i uv,i|zi

−
∑
j qv|yj

[∑
i∈K+

j
πR2

i uv,i|yj −
∑
i∈K−

j
πR2

i uv,i|yj
]

= 0 ∀qv ∈ Qv,

∑
i

(
− 2

µv,i
R2
i
φ′(1)

(
1 + κ2

iR
2
i

)
πR2

i uv,i , vv,i
)

Λi
−
∑
i

(
pv , ∂s(πR

2
i vv,i)

)
Λi

+
∑
j pv|yj

[∑
i∈K+

j
πR2

i vv,i|yj −
∑
i∈K−

j
πR2

i vv,i|yj
]

+
∑
i∈E pv πR

2
i vv|zi

= −
∑
i∈B

[
g+
v πR

2
i vv|x+

i
− g−v πR

2
i vv|x−

i

]
∀vv ∈ Vv.

(15)

For the hematocrit, we multiply the governing equation (14) by a test function wi ∈ H1(Λi). Then, we use Green’s

formula to transfer the derivative from Hi to wi and we sum over the branches. In this way we obtain the following

expression,

∑
i

(
∂s(πR

2
i uv,iHi) , wi

)
Λi

= −
∑
i

(
πR2

i uv,iHi , ∂swi
)

Λi
+
∑
i

[
πR2

i uv,iHiwi|s=L − πR2
i uv,iHiwi|s=0

]
.

Then, we rearrange the last term of the previous equation junction by junction, as well as we isolate the terms on

the boundary and on the dead ends,

+
∑
i

[
πR2

i uv,iHiwi|s=L − πR2
i uv,iHiwi|s=0

]
=
∑
j

 ∑
i∈Koutj

πR2
i uv,iHiwi|yj −

∑
i∈Kinj

πR2
i uv,iHiwi|yj



+
∑
i∈B

[
πR2

i uv,iHiwi|xouti
− πR2

i uv,iHiwi|xini
]

+
∑
i∈E

πR2
i uv,iHiwi|zi (16)

Using the previous expression, we enforce the mass balance of hematocrit at the network junctions and the boundary

conditions. For this purpose we define the following quantities for the j-th junction. The blood flow split relative to

all the inflow branches is,

FQB,j,i =
πR2

i uv,i|yj∑
i∈Koutj

πR2
i uv,i|yj

, ∀ i ∈ Kinj ,
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and let FQE,j,i be the corresponding split of hematocrit,



FQE,j,i = 1 if card(Kinj ) = 1;

FQE,j,i = 0 if card(Kinj ) = 2 ∧ FQB,j,i ≤ X0;

logit(FQE,j,i) = A+Blogit(
FQB,j,i−X0

1−2X0
) if card(Kinj ) = 2 ∧ X0 < FQB,j,i < 1−X0;

FQE,j,i = 1 if card(Kinj ) = 2 ∧ FQB,j,i ≥ 1−X0.

(17)

As a consequence of these definitions, the discharge hematocrit entering each branch downstream the j-th junction is,

πR2
i uv,iHi|yj = FQE,j,i

∑
i∈Koutj

πR2
i uv,iHi|yj .

We weakly enforce the hematocrit split conditions in the variational formulation as follows,

∑
i∈Kinj

πR2
i uv,iHiwi|yj =

∑
i∈Kinj

FQE,j,iwi|yj

 ∑
i∈Koutj

πR2
i uv,iHi|yj

 .

We also enforce the boundary conditions for hematocrit at the boundary of the network,

πR2
i uv,iHiwi|xini = πR2

i uv,iH0wi|xini .

Substituting, for clarity, these terms into (16), we obtain,

+
∑
i

[
πR2

i uv,iHiwi|s=L − πR2
i uv,iHiwi|s=0

]
=
∑
j

∑
i∈Kout

πR2
i uv,iHiwi|yj +

∑
i∈B

πR2
i uv,iHiwi|xouti

+
∑
i∈E

πR2
i uv,iHiwi|zi

−
∑
j

∑
i∈Kinj

FQE,j,iwi|yj

 ∑
i∈Koutj

πR2
i uv,iHi|yj

−∑
j

∑
i∈B

πR2
i uv,iH0wi|xini .
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Consequently, the variational formulation of the hematocrit governing equation reads as follows,

−
∑
i

(
πR2

i uv,iHi , ∂swi
)

Λi

+
∑
j

∑
i∈Kout

πR2
i uv,iHiwi|yj +

∑
i∈B

πR2
i uv,iHiwi|xouti

+
∑
i∈E

πR2
i uv,iHiwi|zi

−
∑
j

∑
i∈Kinj

FQE,j,iwi|yj

 ∑
i∈Koutj

πR2
i uv,iHi|yj

 =
∑
j

∑
i∈B

πR2
i uv,iH0wi|xini ∀wi ∈ H1(Λi) . (18)

3.2 Numerical approximation and solution strategy

3.2.1 Finite element approximation

The discretization of problem (15) is achieved by means of the finite element method. One of the main advantages

of our formulation is that the partitions of Ω and Λ are completely independent. For this reason we address the two

approximations separately.

We denote with T ht an admissible family of partitions of Ω̄ into tetrahedrons K

Ω̄ =
⋃

K∈T ht

K,

that satisfies the usual conditions of a conforming triangulation of Ω. Here, h denotes the mesh characteristic size, i.e.

h = maxK∈T ht kK , being hK the diameter of simplex K. Moreover, we are implicitly assuming that Ω is a polygonal

domain. The solutions of (15) are approximated using discontinuous piecewise-polynomial finite elements for pressure

and Hdiv-conforming Raviart-Thomas finite elements (2) for velocity, namely

Y hk := {vh ∈ L2(Ω), vh|K ∈ Pk(K) ∀K ∈ T ht },

RT hk := {wh ∈Hdiv(Ω), wh|K ∈ Pk(K; Rd)⊕ xPk(K) ∀K ∈ T ht },

for every integer k ≥ 0, where Pk indicates the standard space of polynomials of degree ≤ k in the variables

x = (x1, . . . , xd). For the simulations presented later on, the lowest order Raviart-Thomas approximation has been

adopted, corresponding to k = 0 above.

Concerning the capillary network, we adopt the same approach used at the continuous level, namely we split the

network branches in separate sub-domains. Furthermore, each curved branch Λi is approximated by a piecewise linear

1D line, denoted with Λhi . More precisely the latter is a partition of the i-th network branch made by a sufficiently
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large number of segments, named S ⊂ Λhi . In this way, we obtain the following discrete domain:

Λh =

N⋃
i=1

Λhi .

The solution of (15) over a given branch Λhi is approximated using continuous piecewise-polynomial finite element

spaces for both pressure and velocity. Since we want the vessel velocity to be discontinuous at multiple junctions,

we define the related finite element space over the whole network as the collection of the local spaces of the single

branches. Conversely the pressure has been assumed to be continuous over the network, therefore its finite element

approximation is standard. We will use the following families of finite element spaces for pressure and velocity,

respectively:

Xh
k+1 (Λ) := {wh ∈ C0(Λ̄), wh|S ∈ Pk+1 (S) ∀S ∈ Λh},

Wh
k+2 (Λ) :=

N⋃
i=1

Xh
k+2

(
Λhi
)
,

for every integer k ≥ 0. As a result, we use generalized Taylor-Hood elements on each network branch, satisfying in

this way the local stability of the mixed finite element pair for the network. At the same time, we guarantee that

the pressure approximation is continuous over the entire network Λh. In particular, for the numerical experiments

shown later on we have used the lowest order, that is k = 0.

For hematocrit we proceed as for the velocity approximation. In particular, we approximate equation (18) with the

finite element space Wh
k+2 defined on Λhi . For the sake of generality, let us define the families of discrete subspaces

of the functional spaces for k ≥ 0:

V h
t = RT hk(Ω) and Qht = Y hk (Ω) ,

V hv = Wh
k+2(Λh) and Qhv = Xh

k+1(Λh) and Wh
v = Wh

k+2(Λh) .
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Then, the finite element approximation of equations (15) and (18) reads as follows: find uht ∈ Vh
t , p

h
t ∈ Qht , uhv ∈

V hv , p
h
v ∈ Qhv , Hh ∈Wh

v such that



(
∇ · uht , qht

)
Ω
−
(

2πRf(p
h
t , p

h
v )δΛ , q

h
t

)
Ω

= 0 ∀qht ∈ Qht ,

µt
K

(
uht , v

h
t

)
Ω
−
(
pt , ∇ · vht

)
Ω

= −
(
gt , v

h
t · nt

)
∂Ω

∀vht ∈ V
h
t ,

∑
i

(
∂s(πR

2
i u
h
v,i , q

h
v

)
Λhi

+
∑
i

(
2πRf(p

h
t , p

h
v ) , qhv

)
Λhi
−
∑
i∈E q

h
vπR

2
i u
h
v,i|zi

−
∑
j q

h
v |yj

[∑
i∈K+

j
πR2

i u
h
v,i|yj −

∑
i∈K−

j
πR2

i u
h
v,i|yj

]
= 0 ∀qhv ∈ Qhv ,

∑
i

(
− 2

µv,i
R2
i
φ′(1)

(
1 + κ2

iR
2
i

)
πR2

i u
h
v,i , v

h
v,i

)
Λi
−
∑
i

(
phv , ∂s(πR

2
i v
h
v,i)
)

Λhi

+
∑
j p

h
v |yj

[∑
i∈K+

j
πR2

i v
h
v,i|yj −

∑
i∈K−

j
πR2

i v
h
v,i|yj

]
+
∑
i∈E p

h
v πR

2
i v
h
v |zi

= −
∑
i∈B

[
g+
v πR

2
i v
h
v |x+

i
− g−v πR

2
i v
h
v |x−

i

]
∀vhv ∈ V hv ,

−
∑
i

(
πR2

i u
h
v,iH

h
i , ∂sw

h
i

)
Λhi

+
∑
j

∑
i∈Kout πR

2
i u
h
v,iH

h
i w

h
i |yj +

∑
i∈B πR

2
i u
h
v,iH

h
i w

h
i |xouti

+
∑
i∈E πR

2
i u
h
v,iH

h
i w

h
i |zi

−
∑
j

∑
i∈Kinj

FQE,j,iw
h
i |yj

(∑
i∈Koutj

πR2
i u
h
v,iH

h
i |yj

)
=
∑
j

∑
i∈B πR

2
i u
h
v,iH0w

h
i |xini ∀whi ∈Wh

v .

(19)

The global error of the numerical solution is affected by multiple factors: (i) the approximation properties of the

scheme (19) with respect to the exact equations (15) and (18); (ii) the interpolation properties of the finite element

spaces chosen to represent the unknowns, namely velocity, pressure and hematocrit; (iii) the approximation of the

morphology of the curved network branches by means of piecewise linear segments with nodes located on the exact

geometry. Since the discrete problem is strongly consistent with the exact equations, and all the integral forms are

computed exactly when applied to the discrete functions, we conclude that the contribution (i) is null. For the finite

element spaces, we will use the lowest order formulation defined above, that is k = 0. This choice entails linear

convergence with respect to the mesh characteristic size, for velocity and pressure in Ω and quadratic convergence

for velocity and pressure in Λ. Finally, it can be shown that the third type of approximation, namely the difference

between the network Λ with Λh, introduces an error that scales quadratically with the characteristic size of the mesh

defined on Λh. For the simulations presented in the next section we have derived the analytical solution of the problem

on a single, curved but impermeable capillary, and we have compared it with the numerical solution for different

mesh sizes, see Figure 3 panel C. Even though the data are not explicitly reported, the quadratic convergence rate

for the velocity is confirmed.

We notice that problem (19) is a fully coupled nonlinear problem. Indeed, velocities and pressures on Ω and Λ are

coupled through the linear term f(pt, pv), while the velocity field on Λ is affected by hematocrit through the nonlinear
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viscosity model. More precisely we have µv,i = µv,i(Hi) as prescribed in equation (9). Finally, hematocrit is heavily

affected by the flow field in the network, through transport and also by the flow split at network branches, defined

in (17). In order to solve the problem, we will adopt an iterative splitting strategy, addressed in the next section.

3.2.2 Iterative strategy for the solution of the nonlinear problem

To describe the iterative splitting strategy used to decouple (19) we define a shorthand notation. More precisely, let

us group the first four equations of (19) into the fluid mechanics operator Fh. Given Ω,Λh, the external data gt, gv

and the parameters for the porous medium K,µt the operator Fh takes as input the viscosity of the fluid µv as a

function defined on Λh and gives back the solution of the fluid mechanics problem, namely [uht , u
h
v , p

h
t , p

h
v ] = Fh(µv).

In algebraic terms is a large system of linear and nonlinear equations, presented in the appendix A, see in particular

(A4). Similarly, the last equation of (19) can be represented as the operator Hh, such that given the velocity field in

the network uhv it gives back the hematocrit level at each point of Λh, precisely Hh = Hh(uhv ). This is a large system

of linear equations defined in (A5). Using these operators the iterative method to solve (19) consists of performing

the following steps for any k > 0 until convergence:

0. we initialize the fluid mechanics problem by calculating all the matrices of (A4) that are independent of µv,

namely all except from Mvv. We calculate Mvv using a uniform initial guess of the apparent blood viscosity

µ0
v = µref defined in (12).

1. (if k > 0 we build the matrix Mvv(µ
k−1
v ) and we solve the fluid mechanics problem



Mtt −DTtt O O

Dtt Btt O −Btv

O O Mvv(µ
k−1
v ) −DTvv − JTvv

O −Bvt Dvv + Jvv Bvv





U∗t

P∗t

U∗v

P∗v


=



Ft

−Bttδπ

Fv

Bvvδπ



to determine [uh,∗t , uh,∗v , ph,∗t , ph,∗v ] from the vectors U∗t , P∗t , U∗v, P∗v using expressions (A1), (A2), where ∗

denotes an auxiliary solution to be used in the next step;

2. we apply the relaxation of the velocity and pressure fields to enhance convergence,

namely for a given α ∈ (0, 1] we calculate

uh,kt = αuh,∗t + (1− α)uh,k−1
t , uh,kv = αuh,∗v + (1− α)uh,k−1

v ;

ph,kt = αph,∗t + (1− α)ph,k−1
t , ph,kv = αph,∗v + (1− α)ph,k−1

v ;
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3. we build the matrices defined in (A5), using the velocity field in the network calculated at the previous step,

namely uh,kv . Then, we solve the hematocrit problem

[
Bh(uh,kv ) + Jh(uh,kv ) + Oh(uh,kv )

] [
H∗
]

=

[
Fh

]

to determine Hh,∗ from the vector H∗ using expression (A3);

4. we apply the relaxation Hh,k = βHh,∗ + (1− β)Hh,k−1 with β ∈ (0, 1];

5. we update the apparent viscosity of blood, µkv,i = µv,i(H
h,k
i ) for i = 1, . . . , N using the formula (9).

6. given fixed tolerances εF , εH, we test the convergence by means of the following indicators,

∥∥Uk+1
v −Uk

v

∥∥
‖Uk

v‖
+

∥∥Pk+1
v −Pk

v

∥∥
‖Pk

v‖
+

∥∥Uk+1
t −Uk

t

∥∥∥∥Uk
t

∥∥ +

∥∥Pk+1
t −Pk

t

∥∥∥∥Pk
t

∥∥ < εF ,

∥∥Hk+1 −Hk
∥∥

‖Hk‖
< εH

If the test is satisfied, then we stop the iterations. Otherwise, we go back to point 1.

4 Numerical simulations

In this section we apply the computational model for blood flow and hematocrit transport to various test cases of

increasing complexity. The simplest ones, more precisely a single capillary branch and a bifurcation, are presented

to validate the predictions of the model against analytical solutions and expected behaviors. In this case, we also

elucidate the sensitivity of the outcome with respect to some parameters of the model, such as the curvature of

the capillaries and their permeability. Later on we present a more complex, but still idealized, model for a capillary

network. In this case, we investigate the ability of the model to capture the macroscopic traits of microcirculation.

4.1 Single capillary branch case

We present simulations of blood flow in a single branch of capillary vessel, interacting with the surrounding tissue,

modeled as a homogeneous porous medium. For this idealized experiment we consider a tissue sample represented

by a cube of side D. A single capillary branch crosses the tissue sample from side to side. Different capillary shapes

are considered, namely we simulate a straight segment, a circular arc with intermediate curvature (such that the

dimensionless parameter κR is equal to 0.06) and a circular arc with high curvature (such that κR = 0.11, shown

in Figure 3). When the curvature changes, the dimension of the domain is adjusted such that in all cases the length
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symbol Parameter Unit Value Ref.

d characteristic length m 1× 10−4 (40)

D characteristic length of the domain m 1× 10−4 (40)

R average radius m 4× 10−6 (65)

K tissue hydraulic conductivity m2 1× 10−18 (7)

µt interstitial fluid viscosity cP 1.2 (60)

µv blood viscosity cP Pries formula (50)

Lp wall hydraulic conductivity m2 s kg−1 10−12 (7)

P characteristic pressure Pa 133.32 (7)

U characteristic velocity ms−1 1× 10−3 (49)

δπ oncotic pressure gradient mmHg 25 (59)

σ reflection coefficient [−] 0.95 (36)

Table 1: Physiological parameters used for all the numerical tests (unless differently specified).

of the channel, L, is constant and equal to D. The velocity profile for a curved pipe with κR = 0.11 is visualized

in Figure 1. We observe it looses symmetry with respect to the axis of the channel. The parameters of the model

adopted in the simulations are collected (with description, units and sources) in Table 1.

Concerning the boundary conditions, we apply the pressure at the endpoints of the network, the hematocrit at

the corresponding inflow points and we allow for fluid exchange at the artificial interfaces that separate the tissue

sample with the exterior. The latter effect is described by a condition of type

ut · nt = βt(pt − p0),

where βt is the boundary conductivity of the tissue matrix and p0 denotes a far field pressure. The data and parameters

used for boundary conditions are reported in Table 2. In particular, the value of the pressure drop is determined on

the basis of a prescribed value of the blood flow velocity in small capillaries. Assuming uv ' 1mm/s, the blood flow

rate through a capillary with R = 4µm is

Qb = πR2uv = 5.03× 10−14m3/s. (20)
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Using (20), µv ' 9.33 cP form (50) and Poiseuille’s law, with the hypothesis of no transcapillary flow, the pressure

drop between the inlet and the outlet of the capillary will be equal to,

δpv = Qb
8µvL

πR4
= 3.5mmHg.

Finally, we need to determine inlet and outlet pressures. This choice depends on the position of the capillary segment

in the microvasculature. To this purpose, we define p∗v as the value of pv for which the net filtration pressure is zero

(for an average tissue pressure equal to the far field pressure p0): if pv > p∗v there will be a net fluid filtration, while

if pv < p∗v there will be a net fluid absorption. Considering the parameters in Table 1 and a constant interstitial

pressure pt ' p0 = −1mmHg, we obtain,

p∗v = p0 + σδπ = −1 + 0.95 · 25 = 22.75mmHg.

On the basis of the observation that the microvascular pressure ranges between 32 and 15mmHg (see (59)) this value,

for a vessel near the arteriolar end of the capillary network, we set pinlet = 32mmHg and poutlet = 28.5mmHg, such

that both values are above p∗v. For a portion of capillary near the venular circulation we set pinlet = 18.5mmHg and

poutlet = 15mmHg. In the latter case we expect that the capillary will absorb fluid from the intestitium.

Symbol B.C.s Unit Value Ref.

δp hydrostatic pressure drop mmHg 3.5 (59)

p0 far field pressure mmHg −1 (12)

βt boundary conductivity m2s/kg 5× 10−11 (5)

H0 hematocrit at inlet of capillary − 0.45 (25)

Table 2: Data and parameters for the boundary conditions in the capillary and tissue regions

In Figure 3 (panel C) we compare the computed and analytically determined values of the velocity magnitude. We

observe that in such simple geometry and in case of impermeable capillary walls, the analytical solution is available

for pressure, velocity and hematocrit variation along the axis of the capillary. For example, for a straight pipe the

analytical solution for velocity and pressure is the Poiseuille’s law. According to the 1D model equations, in the case

of a pipe with curvature κ > 0 the analytical solution for the velocity is the following,

uv = − R2

8µv(1 + κ2R2)

δp

L
.
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Figure 3: Panel A shows the geometrical configuration of the test case (highest curvature) with the variation of the
pressure along the capillary and in the bulk. The inlet and outlet pressures are set to model the arteriolar side of
the microvascular network (pinlet = 32mmHg and poutlet = 28.5mmHg). Panel B compares the velocity profile
(constant) and magnitude along the axis of the capillary and in the bulk, for the same test case as before. The
velocity vectors of the interstitial velocity ut are represented on a cross section of the tissue sample, on top of the
contour plot of the velocity magnitude. Panels C and D show the evolution of variables along the axis of a capillary,
being s ∈ (0, 1) the arc-length. Panel C shows the results for a impermeable capillary. For such case the analytical
solution of the problem is available (dashed line) and it is compared with the numerical solution (continuous line),
for different values of the curvature (κR = 0, 0.06, 0.11). Panel D shows the % variation of the velocity magnitude
(continuous line) and hematocrit (dashed line) along the capillary axis for the straight permeable capillary. Blue lines
correspond to the venular end while red lines refer to the arteriolar side of the capillary network. The dots represent
the analytical solution of problem (21) in terms of velocity and hematocrit variations.

In this case, the comparison of computed and analytical solutions is shown in Figure 3 (panel C). The hematocrit

distribution can then be easily determined if an analytical formula for the velocity is known, because the hematocrit

flow rate is constant along the pipe, namely H(s)uv(s) = Hinletuv,inlet. Obviously, since the capillary is impermeable,

the velocity profile is constant along the axis, but the velocity magnitude decreases with the curvature, because

curved vessels oppose higher resistance to flow. We observe that this behavior is correctly captured by the model.

The comparison of the numerical and analytical solution provides a verification of the numerical algorithm as well
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as a preliminary validation of the computational model. When we allow for plasma leakage from the capillary to the

interstitial tissue, the flow and hematocrit axial distribution change in both regions, as shown on panels A and B of

Figure 3. If we consider a capillary segment near the arteriolar side of the capillary network, due to overpressure in

the capillary with respect to the interstitial volume, there is positive leakage and the capillary flow rate decreases

accordingly. As a consequence of reduced plasma flow rate, the hematocrit slightly increases. These effects are

captured by model (8) that in this particular case simplifies to,

∂2pv
∂s2

− 2πRLp
πR4

8µv
(
1 + κ2

i (s)R
2
i

)
pv(s) = −2πRLp

πR4
8µv
(
1 + κ2

i (s)R
2
i

)
[ ¯̄pt + σδπ] , (21)

pv(s = 0) = 32 , pv(s = 1) = 28.5 .

If the interstitial pressure is assumed to be constant, in this case equal to ¯̄pt = −1mmHg, the solution of the problem

above can be determined analytically and it is

pv(s) = Ae−
√

2πRLp

8πR4 µv(1+κ2
iR

2
i ) s +Be

√
2πRLp

8πR4 µv(1+κ2
iR

2
i ) s + C ,

with constants
√

2πRLp
8πR4 µv(1 + κ2

iR
2
i ) = 0.0048296 A = 366.984 and B = −357.734 C = 22.75 for a rectilinear single

branch, k = 0. The velocity magnitude can be determined correspondingly, using equation uv = −(R2)/(8µv(1 +

κ2R2))∂spv that gives uv(s) = 0.506526e−0.0048296s + 0.493758e0.0048296s. The variation of hematocrit is then equal

to H(s) = Hinletuv,inlet/uv(s). The comparison of these analytical results with the computed ones is shown in Figure

3 (panel D) and it confirms the validity of the computational approach. Opposite trends are observed for a capillary

segment closer to the venular end (see Panel D, blue lines, continuous line for velocity, dashed line for hematocrit).

Although these effects are quantitatively small for a little portion of a capillary, they illustrate the ability of the

computational model to accurately capture the interaction of plasma flow, interstitial filtration and hematocrit at

the microscale.

4.2 Y-shaped bifurcations

This test case is useful to evaluate the accuracy of the computational model in the description of the Fahraeus-

Lindqvist effect, that is the variation of apparent viscosity due to rearrangement of red blood cells in the flow, and the

plasma skimming effect, that is the asymmetric distribution of hematocrit when channels downstream a bifurcation

are different. These phenomena mostly depend on the geometrical configuration of the vascular network, while the

permeability of the capillary walls weakly affects them. For this reason, we perform all the computational tests for
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straight curved κR = 0.06 curved κR = 0.11

Branch 0 1 2 0 1 2 0 1 2
uv 0.6559 0.5222 0.5222 0.6542 0.5222 0.5194 0.6509 0.5222 0.5142
H 0.4500 0.4500 0.4500 0.4500 0.4508 0.4492 0.4500 0.4524 0.4475

πR2H uv 1.48 10−5 7.42 10−6 7.42 10−6 1.48 10−5 7.43 10−6 7.37 10−6 1.47 10−5 7.46 10−6 7.26 10−6

Balance −6.34× 10−13 −2.92× 10−13 1.17× 10−13

Table 3: For the text cases of Figure 4 we report the values of velocity (uv), hematocrit (H) and hematocrit flow
rate at the junction, for the parent (0) and the daughter channels (1-top side) and (2-bottom side). The residual of
the hematicrit flux balance (value (0) = value (1) + value (2)) is reported at the bottom row.

bifurcations in the case of impermeable walls, namely we set Lp = 0. All the remaining parameters and boundary

conditions are the ones of Tables 1 and 2.

The geometrical model consists of a Y-shaped bifurcation, where all branches have the same length. The radii

of the daughter branches are calculated on the basis of the Murray’s law, that is R3
0 = R3

1 + R3
2, where index (0)

denotes the parent vessel and (1), (2) are the daughter channels. Unless differently specified, the daughter branches

have equal radius, namely R1 = R2, which allows us to determine R1 = R2 as a function of R0 as in Table 1. The

current model is not sensitive to the angle of the daughter branches.

First, we analyze the role of curvature on the distribution of flow rate, hematocrit and viscosity downstream to

a bifurcation. The results of simulations are collected in Figure 4. We notice that curvature increases the resistance

to flow, which in turn affects the distribution of blood flow rate and hematocrit at the bifurcation. Differences with

respect to the symmetric case are rather small, approximately of 1% for each quantity. However, we remind that we

are considering a small portion of a normal capillary, namely the characteristic length is only 100µm. For the more

extended vasculature models, the difference will be amplified by the geometrical scale factor. Thanks to the fact that

we consider impermeable capillary walls, we observe that mass balance at the bifurcation point is trivially verified by

looking at flow rates and hematocrit flow rate at the endpoints of the network. As it appears from Table 3, the balance

of these quantities at the junctions of the network is satisfied within the tolerance of the numerical discretization.

As regards the viscosity, reported in the bottom row of Figure 4, we first verify that the predictions of the

computational model are coherent with formula (9), also visualized in Figure 2. We observe that viscosity increases

downstream to the bifurcation, even though the hematocrit sightly decreases in the bottom branch (because of

increased resistance to flow). This is however in agreement with the model, because viscosity is highly sensitive to

the variation of the capillary radius. Since this parameter decreases from 4 µm in the parent branch to 3.17 µm in

the daughter branches, viscosity correspondingly increases (see Figure 2 for a visualization of this effect).

In Figure 5, we study the influence of the capillary radii (or diameters) of the daughter branches on the velocity,

hematocrit and viscosity. More precisely, we increase the radius of the upper daughter branch of 5% and 10%, while

we decrease the radius of the lower branch of the same amount. More precisely, Figure 5 gives a general overview of
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Figure 4: The top row (panel marked with A) shows the distribution of velocity in the bifurcation, for increasing
levels of curvature κR = 0.0; 0.06; 0.11, from left to right. We point out that all curved branches have the same
length, such that the variation of resistance is only due to curvature. The middle row (marked with B) shows the
hematocrit. In the bottom row (marked with C), we show the apparent viscosity, which is affected by the hematocrit
and the capillary diameter according to (9), see also Figure 2.

all the cases, while Figure 6 provides a more detailed analysis of the results for the 10% perturbation of the radius

where the differences are more easily visible.

A quantitative analysis of these effects is reported in Table 4. From the analysis of flow rates we see that the ±5%

and ±10% variation of the radius significantly affects the distribution of flow rate downstream to the bifurcation,

because resistance to flow is highly sensitive to the channel diameter at these small scales. Concerning hematocrit,

we observe that its variations are also amplified with respect to the magnitude of the perturbation. More precisely,

because of the plasma skimming effect, red blood cells hardly flow into the daughter branch with smaller radius. For

this reason, hematocrit is lower in the branches where the radius has been decreased than in the ones where it was

increased. The behavior of viscosity is less obvious, but still in line with the model. Indeed, we see that perturbations

of the viscosity are damped with respect to those of the radius. This behavior can be interpreted using Figure 2, where
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Figure 5: Velocities (panel A), hematocrit (penel B) and effective viscosity (panel C) are reported from top to bottom.
In the first column, the daughter branches have equal radii R1 = R2 = 3.17µm. In the second column the radius of
the upper branch is increased of 5% with respect to the nominal value while the one of the lower branch is decreased
of the same amount. In the third column, the perturbation of the radii is ±10%

we see that for small capillary radius, viscosity increases with hematocrit and decreases with capillary diameter. Our

interpretation of Table 4 is that these two effects partially compensate in the variation of viscosity.

This analysis confirms that blood velocity, hematocrit and viscosity are subject to a complex interaction at the

bifurcation. More precisely, breaking the symmetry of the daughter vessel branches, generates significant variations

on the blood flow rate, hematocrit and viscosity downstream to the bifurcation. The interaction between radius, flow

rate, hematocrit and viscosity is highly nonlinear and hardly predictable with simple models that do not take into

account their combined effects.

4.3 Comparative studies on a microvascular network

In this section we use the computational model to simulate flow and hematocrit distribution in a fairly complex and

realistic model of microvascular network. The section is subdivided in two parts. First we describe the procedure
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Figure 6: The linear variation along the axial coordinate s of velocity (blue), hematocrit (red) and effective viscosity
(green) is shown from left to right for the particular case of ±10% radial perturbation downstream to the bifurcation.

reference 5% 10%
Branch 0 1 2 0 1 2 0 1 2
R 4.000 3.170 3.170 4.000 3.330 3.020 4.000 3.490 2.860
uv 0.656 0.522 0.522 0.669 0.568 0.483 0.697 0.617 0.446

%uv 2% 9% -8% 6% 18% -15%
H 0.450 0.450 0.450 0.450 0.480 0.407 0.450 0.498 0.351

%H 0% 7% -10% 0% 11% -22%
µ 0.009 0.012 0.012 0.009 0.012 0.012 0.009 0.012 0.011

%µ 0% 0% -3% 0% -2% -8%

Table 4: Quantitative analysis of the simulations illustrated in Figure 5.

developed to generate artificial but realistic networks. Second we discuss the numerical simulations of flow and

hematocrit transport obtained with the computational model.

4.3.1 A generator of artificial vascular networks

The network that we use here satisfies the following criteria:

1. the morphology of the network respects the optimal distribution of a Voronoi tassellation;

2. the aspect ratio of each branch (Li/Ri) is large enough to justify the one-dimensional flow assumption;

3. the radii of branches merging at any junction satisfy Murray’s law;

4. the surface to volume density of the capillaries satisfies the physiologic value of S/V = 7000 m−1 (1);

The generation of such network is a complex (nonlinear) iterative procedure that is summarized below. We consider

a representative cube of D = 500 µm side, because this is the typical length of a capillary vessel from the arteriolar

to the venular ends. We notice that the characteristic size of the cube has increased 5 times with respect to the

previous cases (where it was equal to 100 µm). As we will explain later, this change also influences the boundary

conditions for the vasculature, spanning the entire pressure range of microvasculature from 32 to 15 mmHg.
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The morphology of the network in such representative volume has been obtained by stacking several slabs con-

taining a quasi-planar network. Following previous works (54, 55), each of these networks has been obtained using

a biomimetic design principle based on the Voronoi tassellation model, which defines a partitioning of a plane into

regions, based on the distance to seed points distributed on a subset of the plane. The edges of the Voronoi tassel-

lation are equidistant to the seed points of the neighboring regions. Thanks to this property, the Voronoi partition

may be considered to be a reasonable model for the distribution of capillaries, which should fill a biological tissue in

a way to maintain equal distance to the cells that populate it. The main parameter that influences the morphology of

the network is then the number of seed points. We have screened several network configurations spanning from 5 to

15 seeds and we have decided to use networks arising from random distributions of 8 points on a 500 µm side square.

This number of points is small enough to guarantee an aspect ratio of the channels that is sufficiently high (about

Li/Ri = 4), given an average radius of the branches of 4 µm. By randomly varying the distribution of 8 points, we

have generated 100 different network configurations that satisfy the criterion on aspect ratio.

The second step consists of assigning to each branch a suitable radius that respects the Murray’s law together

with the additional physiological constraints of having a distribution of radii in the range 2− 6 µm with mean value,

defined as
∑
iRiLi/

∑
i Li, equal to 4 µm ±5%. This task is achieved through the following procedure. We initialize

the network with a uniform radius of 4 µm for every branch. Then we iterate among the following steps:

1. calculate the flow along the network, for suitable arteriolar and venular pressures. This step determines the

connectivity of the network with respect of the flow and it allows us to identify bifurcations and anastomoses

among all junctions. Finally, for any bifurcation, we randomly assign a split ratio a, defined below;

2. we apply the Murray’s law:

bifurcation R3
in,0 = R3

out,1 +R3
out,2; for a given split ratio a =

Rin,0
Rout,1

anastomosis R3
in,1 +R3

in,2 = R3
out,0;

and we iterate until the connectivity of the network does not change from one step to the next. Since the split ratio

at bifurcations is a random variable, this procedure is not deterministic and it gives out a different outcome at any

run. This procedure was applied 100 times to each of the 100 networks morphologies obtained before. The procedure

was also repeated with initial radii of 4, 4.5, 5 µm for a total of 3 × 104 possible configurations. Finally, we have

discarded the ones with radii outside the interval 2− 6 µm and with a mean value of radius not equal to 4 µm ±5%,

ending up with about 104 valid configurations.
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Figure 7: Visualization of the the morphology of the network and the distribution of the radii (µm).

In this way, we have obtained a large population of planar networks that satisfy the first three criteria described

above. The three-dimensional network configuration with a physiologic surface to volume density is obtained by

stacking a suitable number of planar networks one above the other. After some preliminary calculations and numerical

verifications, it is apparent that superposing 18 admissible planar networks on top of each other provides a surface

to volume ratio of approximately 7000 m−1, as desired. Every network can be randomly chosen among the database

of ' 104 configurations obtained by means of the previous procedure. To avoid perfect planarity, unlikely to be

observed in reality, we have placed each network on the central plane of a slab that is ∆ = 27.8 µm thick. Then, we

have perturbed the vertical coordinate of the network nodes of a random quantity less equal to ∆/2.

This construction also facilitates the definition of boundary conditions on the network, because 2 of the 6 faces of

the cube, precisely the ones parallel to the network planes, do not intersect the network branches. The remaining 4

faces (called lateral faces of the cube) are subdivided in two neighboring arteriolar faces and two neighboring venular

ones. At the arteriolar endpoints of the network we set 32 mmHg while at the venular ends we have 15 mmHg. The

corresponding pressure drop drives the flow along the network.

In conclusion, this protocol allows for a great variability, but is controlled by a fairly small number of parameters

that we have optimized in order to satisfy the physiological criteria listed above. One of these realistic configurations

is the one used for the simulations discussed in the next section. In particular, we show in Figure 7 the morphology

of the network (made of about 250 branches) and the distribution of the radius.
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4.3.2 Calculation, visualization and analysis of blood flow and hematocrit in a realistic model of

microvasculature

The numerical simulations have been carried out using the finite element solver described in section 3.2. The geo-

metrical model consists of 250 vascular branches with 20 elements on each branch, for a total of 5× 103 nodes in the

network. The interstitial volume is discretized with a uniform tetrahedral mesh obtained by distributing 41 nodes

along each edge of the cube and consisting of approximately 4× 105 tetrahedral elements.

The discrete model is transformed into a system of linear equations for the physical unknowns pv, pt, uv, ut,

corresponding approximately to 5×103, 4×105, 104, 8×105 degrees of freedom, respectively. This is a fully coupled,

block structured linear system that is solved by means of the GMRES iterative solver, accelerated by a block

preconditioner based on the Schur complements of the pressure problems. The solution of the system takes about 30

minutes on a standard desktop PC. However, this is not the total time necessary to perform the simulations shown

below, because the Fahraeus-Lindqvist and plasma skimming effects consist of nonlinear expressions. The iterative

approach described in section 3.2.2 is applied here and the linear system described above is solved once for every

iteration.

Figure 8 shows the main outputs of the model. On the top left panel we see that the pressure in the network

progressively decreases from the arteriolar to the venular ends of the microvasculature, as expected. The blood velocity

(shown in the top right panel), however, is not uniformly distributed and several network branches are crossed by a

flow rate significantly lower than the average (i.e. the dark blue color).

Concerning the interaction of the microvasculature with the interstitial flow, we observe that the variation of

pressure through the capillary bed influences the pressure in the interstitial space. This is shown in the middle left

panel, by the slice of the interstitial pressure field. We see that in proximity of the arteriolar end of the network, an

increased interstitial pressure level is visible, while it decreases below average next to the venules. Then, it is apparent

that the pressure gradient in the vasculature induces a secondary, weaker gradient in the interstitium. This effect

generates a modest flow in the interstitial volume, which is clearly visible in the middle right panel. On the bottom

row of the figure we show the viscosity and the hematocrit. We notice that the hematocrit is characterized by a high

spatial variability, while the changes of apparent viscosity are less spread, in line with the observations of Figure 5.

5 Discussion

The results of Section 4 show that the proposed computational approach is correct if compared to idealized tests

with analytical solutions and it also captures the main traits of microcirculation in more complex cases, such as the

one addressed in 4.3.2. However, performing a detailed validation of the model is a very difficult task.
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Figure 8: Visualization of the flow in a complex network interacting with the interstitial volume. In particular the
panels show: the pressure drop along the network (top left); the velocity magnitude (top right); the pressure variation
along a slice of the interstitial volume combined with the pressure in the network (middle left); the velocity field
along a slice of the interstitial volume (the vectors show the direction and the colors the magnitude, middle right);
the hematocrit distribution in the network (bottom left); and the effective viscosity (bottom right).

Concerning the vascular network, local measurements are very challenging because of the small size of the capillaries

and the intrinsic variability of the network morphology. We refer for example to (30) where capillary flow velocity

measurements in vivo and in situ are provided, and we observe that the reported range of velocities is compatible with

the ones computed in Figure 8. Comparable results with those of Figure 8 are also shown in (57) for the distribution

of velocities. Unfortunately, we are not yet aware of local measurements of hematocrit and viscosity, which could

allow us to validate the predictions of the model for these quantities.
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Concerning the interstitial volume and the fluid balance between this region and the capillary bed, the mean

interstitial pressure is a model output for which measurements are more easily available. For example a detailed study

where the model predictions and measurements available in the literature were compared was recently performed by

the authors in (47). There, the authors have used the model for the analysis of microvascular fluid balance. For this

reason, model was complemented by new specific features addressing the lymphatic drainage. The results of that

study show that the model matches well with the available data in the literature for the interstitial fluid pressure

and net filtration rate. For the first indicator, the values predicted by the model agree with those reported in (12),

where for healthy volunteers an interstitial pressure of −0.9± 1.3 mmHg is observed in vivo. In addition, when the

pathological conditions of uremic patients were simulated, interstitial fluid pressure increased, in agreement with the

range of 4.6 ± 4.2 mmHg reported in (12). Therefore, the variation of interstitial pressure is correctly reproduced

by the model according to physiological evidence. The net filtration rate is the integral along the microvascular

network of the net fluid flow from the capillaries to the interstitial volume, namely
∫

Λ
2πRi(s)f(pt(s), pv(s))ds. For

comparison with available measurements, the result of this formula is rescaled to the whole extra-vascular volume in

the body (25). More precisely, the value reported for the entire body is about 2 ml/min (25), which is in agreement

with the prediction of 1.96 ml/min obtained by the authors in (47).

Thanks to the unique ability to model local microvascular flow, combined with fluid balance with the tissue

interstitium, the computational model can be adopted to study various applications where microcirculation plays

a fundamental role. Among these we mention the study of vascularized tumors and in particular the simulation of

the tumor microenvironment. Indeed, authors and co-workers have applied a simplified version of this model, where

blood flow was modeled using a constant viscosity, to simulate and compare different drug delivery therapies, see

(5, 6, 42, 43), based on mass and heat transport superposed to microcirculation. Considering the increasing interest

in the application of sophisticated mathematical models to study the fluid and tissue mechanics in the brain, see

for example (27, 41, 53, 64), we see a significant potential in the application of the proposed model to analyze

the interaction of vasculature and cerebrospinal fluid for metabolic waste clearance in the brain, according to the

mechanisms hypothesized in (29).

Although the computational model seems to be a valuable complementary tool to experimental research in biology

and medicine, it is still affected by several limitations. First of all, working at small space scales, we have to face a

significant variability of the tissue properties and in the morphology of the network. Indeed, the simulation of section

4.3.2, is just a single occurrence of many possibilities characterized by a probability distribution. In this context,

the numerical simulations shall be rather used within a statistical framework, in order to determine the mean values

and the variance of some specific quantities of interest related to microcirculation. If applied to the morphology of

the microvasculature, this becomes a particularly challenging issue. In fact, it is known that morphology of capillary
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networks strongly depends on the host organ and type of tissue (see for example (48)). In some cases, such as the

healthy muscle tissue and particularly when arteriole and venulae are included, a tree like structure is apparent. To

model pathological situations, such as the ones occurring in tumors, a network like configuration of the capillary bed

(such as the one of Figure 7) is preferred instead, as discussed in (18, 21). The proposed computational approach is

completely general with respect to the morphology of the network. In this respect, the simulations of section 4.3.2

are just an example among many other studies that will be performed.

Second, we observe that the interaction of the tissue sample with the surrounding system is described by rather

coarse approximations. Coupling the current model with other ones that account for flow at the systemic level will

be a future direction of improvement. This can be achieved by making the boundary conditions of the model become

dependent of a macroscale approximation of the systemic circulation, based on lumped parameter models inspired

to the analogy between the vascular system and electrical circuits, see for example (66). Furthermore, these models

should be also complemented by equations that describe the mass and heat metabolism at the systemic level (due

to the systemic circulation, the lymphatic system, the bio-heat transfer for temperature regulation etc.)

Finally, despite the model framework is rigorously derived from the governing principles of flow and transport,

the nonlinear blood rheology is still determined by a phenomenological process. However, the model is completely

general with respect to rheology. If a more advanced rheology was available, perhaps by means of a multiscale

approach, the current model could easily be updated to incorporate it. Indeed, a one-way multiscale approach for

blood rheology is currently under development by the research team and co-workers (34). In particular, microscale

effects are incorporated in the model by studying individual red blood cells flowing at different Reynolds numbers

and different levels of hematocrit. In this way, we will replace expression (9) with a new one derived upon mechanistic

principles.

6 Conclusions, limitations and prespectives

We have derived a mathematical model that encompasses nonlinear blood rheology (Fahraeus-Lindqvist and plasma

skimming effects), capillary leakage and flow in the interstitial volume for a microvascular network of possibly curved

vessels. Numerical tests have confirmed that all these features play a role in microcirculation. Furthermore, thanks

to a sophisticated mathematical formulation complemented by advanced numerical solvers that discretize partial

differential equations defined in one-dimension (for the network) and three-dimensions (for the interstitial volume),

we are able to apply the model to fairly complex network configurations. The results obtained by the model are

quantitatively consistent with the physiological values expected for healthy cases.
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Concerning applications, we believe that the model is a flexible tool of investigation to be used in may areas of

research of medicine and biology, such as oncology, neurology and nephrology. For example, the authors and co-

workers have used previous versions of it to study drug delivery to the tumor microenvironment (5, 6, 42, 43). The

current model is being used by the authors to analyze the effect of lymphatic drainage in uremic patients (47).

APPENDIX A The equations solved for flow and hematoctit

For the sake of clarity and to foster the reproducibility and verifiability of the results, we derive here the algebraic

form of the discrete problem. These equations are implemented and solved using a software based on the finite

element library Getfem++ (17).

Let us start by defining some notation for the application of the finite element method. Let us first introduce the

dimension of the finite element spaces:

Nh
t := dim

(
V h
t

)
, Mh

t := dim
(
Qht
)
, Nh

v := dim
(
V hv
)
, Mh

v := dim
(
Qhv
)
, Shv := dim

(
Wh
v

)
.

Since the tissue 3D and the vessel 1D meshes are independent, we define three sets, containing respectively the finite

element basis for V h
t ×Qht , V hv ×Qhv and Wh

v :

{
ϕit
}Nht
i=1
×
{
ψit
}Mh

t

i=1
,

{
ϕiv
}Nhv
i=1
×
{
ψiv
}Mh

v

i=1
,

{
φiv
}Shv
i=1

.

Then, we express our variables as linear combination of the basis elements as follows:

uht (x) =

Nht∑
i=1

U it ϕ
i
t (x) , pht (x) =

Mh
t∑

i=1

P it ψ
i
t (x) , ∀x ∈ Ω, (A1)

uhv (s) =

Nhv∑
i=1

U iv ϕ
i
v (s) , phv (s) =

Mh
v∑

i=1

P iv ψ
i
v (s) , ∀ s ∈ Λ, (A2)

Hh (s) =

Shv∑
i=1

Hi φiv (s) , ∀ s ∈ Λ, (A3)

being Ut =
{
U it
}Nht
i=1

, Pt =
{
P it
}Mh

t

i=1
, Uv =

{
U iv
}Nhv
i=1

, Pv =
{
P iv
}Mh

v

i=1
and H =

{
Hi
}Shv
i=1

the vectors containing the

degrees of freedom of the finite elements approximations. Now using the linearity of the operators, we rewrite (19)
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in algebraic form:



Mtt −DTtt O O

Dtt Btt O −Btv

O O Mvv −DTvv − JTvv

O −Bvt Dvv + Jvv Bvv





Ut

Pt

Uv

Pv


=



Ft

−Bttδπ

Fv

Bvvδπ


(A4)

[
Bh + Jh + Oh

] [
H

]
=

[
Fh

]
(A5)

which correspond to the equations solved for the fluid mechanics problem (previously also represented as

[uht , u
h
v , p

h
t , p

h
v ] = Fh(µv)) and for the hematocrit problem (that was represented as Hh = Hh(uhv )). The matrices

of the previous system are calculated as follows, using suitable numerical integration formulas, starting from the

bilinear forms (more generally, the mathematical operators) of problem (19):
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[Mtt]ij := (
µt
Kt
ϕjt ,ϕ

i
t)Ω Mtt ∈ RN

h
t ×N

h
t ,

[Dtt]ij := (∇ ·ϕjt , ψit)Ω Dtt ∈ RN
h
t ×M

h
t ,

[Btt]ij := (2πRLpψ
j

tδΛh , ψ
i
t)Ω Btt ∈ RM

h
t ×M

h
t ,

[Btv]ij := (2πRLpψ
j

vδΛh , ψ
i
t)Ω Btv ∈ RM

h
t ×M

h
v ,

[Bvt]ij := (2πRLpψ
j

t , ψ
i
v)Λ Bvt ∈ RM

h
v×M

h
t ,

[Bvv]ij := (2πRLpψ
j

v, ψ
i
v)Λ Bvv ∈ RM

h
v×M

h
v ,

[Mvv]ij := (−2πµv,iφ
′(1)
(
1 + κ2

iR
2
i

)
πR2

iϕ
j
v, ϕ

i
v) Mvv ∈ RN

h
v×N

h
v ,

[Dvv]ij := (πR2∂ϕjv, ψ
i
v)Λ Dvv ∈ RN

h
v×M

h
v ,

[Jvv]ij := 〈ϕjv, ψ
i

v〉J Jvv ∈ RN
h
v×M

h
v ,

[Ft]i := −(ght ,ϕ
i
t · n)Γp Ft ∈ RN

h
t ,

[Fv]i := −
∑
i∈B

[
g+
v πR

2
i v
h
v |x+

i
− g−v πR

2
i v
h
v |x−

i

]
Fv ∈ RN

h
v ,

[Bh]i,j :=
(
πR2

i uv,pϕ
pφj , ∂sφi

)
Λ

Bh ∈ RS
h
v ,

[Jh]i,j := 〈〈φjv, φiv〉〉in Jh ∈ RS
h
v ,

[Oh]i,j := 〈〈φjhφ
i
h〉〉out Oh ∈ RS

h
v ,

[Fh]i :=
∑
k∈B

πR2
ku

h
v,kH0w

h
k |xink Fh ∈ RS

h
v .
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For simplicity we have introduced the compact notation 〈·, ·〉J , 〈〈Hh, wh〉〉out , 〈〈Hh, wh〉〉in, to indicate the junction,

inflow and outflow terms of problem (19), respectively,

〈
qhv , u

h
v

〉
J

:=
∑
j

qhv |yj

∑
i∈K+

j

πR2
i u
h
v,i|yj −

∑
i∈K−

j

πR2
i u
h
v,i|yj

 ,
〈〈Hh, wh〉〉out :=

∑
j

∑
i∈Kout

πR2
i u
h
v,iH

h
i w

h
i |yj +

∑
i∈B

πR2
i u
h
v,iH

h
i w

h
i |xouti

+
∑
i∈E

πR2
i u
h
v,iH

h
i w

h
i |zi ,

〈〈Hh, wh〉〉in := −
∑
j

∑
i∈Kinj

FQE,j,iw
h
i |yj

 ∑
i∈Koutj

πR2
i u
h
v,iH

h
i |yj

 .
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