Abstract. For a given positive measure μ on \mathbb{R}^n , we consider integral functionals of the kind

$$F(u) = \int_{\mathbb{R}^n} f(x, \nabla u, \nabla^2 u) \, d\mu \,, \qquad u \in \mathcal{C}^\infty_0(\mathbb{R}^n) \,,$$

and we study their relaxation with respect to the L^p_{μ} topology, being p the growth exponent of f. To obtain the relaxed energy \overline{F} , we develop a suitable theory of second order μ -intrinsic operators, related to a Cosserat vector field and to a curvature tensor. Our main theorem shows that the functional \overline{F} is in general a non-local one; this unexpected feature occurs even in very simple examples, when μ is the one-dimensional Hausdorff measure over a closed Lipschitz curve in the plane.