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Abstract
The accurate, robust and efficient transfer of the deformation gradient tensor between meshes of differ-
ent resolution is crucial in cardiac electromechanics simulations. This paper presents a novel method that
combines rescaled localized Radial Basis Function (RBF) interpolation with Singular Value Decomposition
(SVD) to preserve the positivity of the determinant of the deformation gradient tensor. The method in-
volves decomposing the evaluations of the tensor at the quadrature nodes of the source mesh into rotation
matrices and diagonal matrices of singular values; computing the RBF interpolation of the quaternion rep-
resentation of rotation matrices and the singular value logarithms; reassembling the deformation gradient
tensors at quadrature nodes of the destination mesh, to be used in the assembly of the electrophysiology
model equations. The proposed method overcomes limitations of existing interpolation methods, including
nested intergrid interpolation and RBF interpolation of the displacement field, that may lead to the loss of
physical meaningfulness of the mathematical formulation and then to solver failures at the algebraic level,
due to negative determinant values. Furthermore, the proposed method enables the transfer of solution
variables between finite element spaces of different degrees and shapes and without stringent conformity
requirements between different meshes, thus enhancing the flexibility and accuracy of electromechanical
simulations. We show numerical results confirming that the proposed method enables the transfer of the
deformation gradient tensor, allowing to successfully run simulations in cases where existing methods fail.
This work provides an efficient and robust method for the intergrid transfer of the deformation gradient
tensor, thus enabling independent tailoring of mesh discretizations to the particular characteristics of the
individual physical components concurring to the of the multiphysics model.

Keywords: Multiphysics modeling; Positivity preserving; Radial Basis Function interpolation; Singular
Value Decomposition; Cardiac modeling

1. Introduction

The multiple physical models involved in the mathematical representation of cardiac electromechanics [8,
23, 28, 32, 34, 39, 41–43, 48, 53, 58, 59] and electro-fluid-mechanics [15, 31, 55, 66–68, 72] are characterized by
very different spatial and temporal scales. In particular, cardiac electrophysiology [18, 25, 38, 60, 61] features
very fast transients and sharp propagating fronts [14, 36], requiring, upon finite element discretization, very
fine computational meshes to be captured, with a typical size for the mesh elements of around 0.3mm
[5, 33, 64]. Conversely, cardiac mechanics does not require such a fine discretization [39, 48]. Solving
electrophysiology and mechanics using the same spatial resolution (dictated by the accuracy requirements of
the former) entails an excessive computational cost. For this reason, it can be computationally convenient
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to solve the two problems using different spatial discretizations (a fine one for electrophysiology and a coarse
one for mechanics), relying on suitable intergrid operators to transfer variables between the two models
[48, 52]. The intergrid operators must primarily transfer the intracellular calcium concentration from the
electrophysiology model to the active mechanics one. Moreover, when considering mechano-electric feedback
effects [17, 44, 54, 63], the deformation gradient tensor should also be transferred from the mechanics model
back to the electrophysiology one.

A simple approach to intergrid interpolation is based on using the same mesh for electrophysiology
and mechanics, but using higher order polynomials for electrophysiology, as done e.g. in [15, 21], where
quadratic finite elements are used for electrophysiology and linear elements are used for solid mechanics.
Higher polynomial orders may require the introduction of appropriate high-order methods [4, 14, 36], which
in turn may call for significant changes in existing computational pipelines.

Alternatively, the computational framework presented in [39, 48] relies on interpolation between nested
meshes to solve cardiac mechanics on a coarse hexahedral mesh, and electrophysiology on a finer mesh
obtained by subdividing the coarse one. That approach relies on an octree implementation of the mesh data
structures [6, 16], which makes the interpolation efficient for quadrilateral and hexahedral discretizations.
Nested meshes, however, pose significant restrictions. For example, if the solid mechanics mesh is locally
refined to capture geometrical features or material discontinuities, such inhomogeneities are inherited by the
electrophysiology mesh, even though a non-constant mesh resolution may lead to artificial spatial variations
in conduction velocity [33, 35]. Moreover, the geometrical detail captured by the fine mesh is limited by that
of the coarse mesh, partially countering the advantages of mesh refinement.

A more flexible approach is offered by radial basis function (RBF) interpolation [19, 20, 52, 69]. In this
case, the two meshes can be independent, both geometrically and parametrically. RBF interpolation was
applied to cardiac electromechanics in [52], showing that the interpolation allows for an accurate segregated
electromechanical solver significantly faster than its monolithic counterpart [24].

The interpolation of the deformation gradient F = I +∇d, with d being the tissue displacement field,
from the coarse to the fine mesh requires special care. Indeed, if mechano-electrical feedbacks are included
in the model [17, 44, 54, 63], the electrophysiology equations involve the inverse of the deformation gradient
F and its determinant J . For the problem to be well posed and physically meaningful, J should be positive
on the whole domain. However, naive tensor interpolation methods cannot guarantee that this is verified
[56].

In this work, we combine rescaled localized RBF interpolation [20] with singular value decomposition
(SVD), to obtain an interpolation method for the tensor F that preserves the sign of its determinant,
in an approach similar to the one presented in [56]. The interpolation method is applied to ventricular
electromechanical simulations, showing that it improves the robustness of the method over simpler techniques.
We compare the newly introduced method against alternative interpolation methods [48, 52] in terms of
numerical accuracy and computational costs.

Our results show that the proposed method allows to successfully perform simulations where previously
introduced methods would fail. Indeed, previous methods yield negative values for the deformation gradient
determinant J after interpolation, whereas the newly proposed one guarantees by construction its positivity.
This avoids the appearence of highly unphysical values of J , and makes sure that the discrete problem
remains well posed throughout the simulation. Furthermore, we demonstrate that the computational cost
of interpolation remains negligible with respect to the overall cost of the simulation, and is linearly scalable
in a parallel computing framework.

The rest of the paper is structured as follows. Section 2 briefly reviews the models used for cardiac
electromechanics. In Section 3, we recall the rescaled localized RBF interpolation method, and describe
the interpolation procedure based on SVD. Section 4 describes the discretization strategy used for the
electromechanical model, and Section 5 presents some numerical experiments highlighting the properties of
the proposed method. Finally, in Section 6, we draw some conclusive remarks.

2



ionic activity
action potential 

propagation

fine mesh

ionic current

transmembrane potential

active force 
generation

elastodynamics

coarse mesh

active tension

fiber stretch

calcium 
concentration

deformation 
gradient tensor

blood 
circulation

pressure

volume

same mesh interactions

fine-to-coarse interpolation

coarse-to-fine interpolation

3D-0D interactions

Figure 1: Cardiac electromechanical model and its subsystems. The large shaded areas enclose models that are
discretized using the same computational mesh. Arrows denote the variables that realize the coupling between the
subsystems. Solid lines correspond to quantities that are defined on the same computational mesh; dashed and
dot-dashed lines correspond to quantities that need to be transferred from one mesh to another; the dotted line
corresponds to quantities associated with the coupling between the 3D electromechanical model and the 0D model
(i.e. lumped-parameter model) of blood circulation.

2. Electromechanical modeling of the heart

The sketch of the electromechanics model used in this work is displayed in Figure 1. We refer the
interested reader to [48] for further details on the model and its numerical solution.

Let Ω ⊂ R3 be an open, bounded domain representing a left ventricle (shown in Figure 2), and let
T > 0. We consider a coupled problem involving cardiac electrophysiology, active force generation, muscular
mechanics and the circulatory system, with the following unknowns:

v : Ω× (0, T )→ R transmembrane potential ,
w : Ω× (0, T )→ RNion ionic variables ,
s : Ω× (0, T )→ RNact activation variables ,
d : Ω× (0, T )→ R3 solid displacement ,
c : (0, T )→ RNcirc circulation state variables .

We model the evolution of the transmembrane potential v with the monodomain equation [18, 60],
including geometry-mediated mechano-electrical feedback effects [17, 54, 63]:

JχCm
∂v

∂t
−∇ ·

(
JF−1DmF

−T∇v
)
+ JχIion(v,w) = JχIapp in Ω× (0, T ) ,

JF−1DmF
−T∇v · n = 0 on ∂Ω× (0, T ) ,

v = v0 in Ω× {0} .

(1)

In the above, F = I+∇d is the deformation gradient associated with the displacement of the cardiac muscle,
and J = detF is its determinant. Their presence in (1) accounts for the effect of the deformation onto the
propagation of the electrical activation. The tensor Dm accounts for the anisotropic conductivity of the
cardiac muscle, and it is defined as

Dm = σf
Ff0 ⊗ Ff0
∥Ff0∥2

+ σs
Fs0 ⊗ Fs0
∥Fs0∥2

+ σn
Fn0 ⊗ Fn0

∥Fn0∥2
, (2)

wherein {f0, s0,n0} is a space-dependent orthonormal triplet that represents the local direction of fibers,
fiber sheets and cross-fibers, respectively [10, 38, 50]. The evolution of ionic variables is prescribed by a
suitable ionic model, in the general form

∂w

∂t
= Fion(v,w) in Ω× (0, T ) ,

w = w0 in Ω× {0} .
(3)
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Figure 2: Computational domain Ω and its boundaries Γepi, Γbase and Γendo.

We consider the ventricular ionic model by ten Tusscher and Panfilov [62].

Remark 1. Although not considered in this work, the system (1) can be endowed with additional reactive
terms that account for other sources of mechano-electrical feedbacks, including e.g. stretch-activated currents
[54]. Although they have a minor effect in sinus rhythm, they may become extremely relevant in pathological
scenarios involving arrhythmias [54], so that an accurate evaluation of F can become extremely important.

One of the ionic variables w represents the intracellular calcium concentration [Ca2+]i, which is used
as input to the force generation model describing the evolution of the contraction state s. To this end, we
consider the RDQ18 [45], that can be expressed as a system of ordinary differential equations (ODEs):

∂s

∂t
= Fact

(
s, [Ca2+]i, SL

)
in Ω× (0, T ) ,

s = s0 in Ω× {0} .
(4)

In the above, SL is the sarcomere length, defined as SL = SL0

√
I4f, where I4f = Ff0 · Ff0. The contraction

state is then used to compute an active stress tensor through

Pact(d, s) = Tmax
act Pact(s)

Ff0 ⊗ Ff0√
I4f

,

where Tmax
act is the maximum active tension and Pact(s) ∈ [0, 1] is the permissivity. We refer to [45] for the

precise definition of Fact and Pact. Due to the complexity of the model, we consider a surrogate version
obtained through artificial neural networks, as presented in [46, 47].

The displacement of the muscle is modeled by the elastodynamics equation in the hyperelastic framework:

ρ
∂2d

∂t2
−∇ ·P(d, s) = 0 in Ω× (0, T ) ,

P(d, s)n+Kepid+Cepi
∂d

∂t
= 0 on Γepi × (0, T ) ,

P(d, s)n = pLV(t)|JF−Tn|
∫
Γendo

JF−Tn dΓ∫
Γbase

|JF−Tn| dΓ
on Γbase × (0, T ) ,

P(d, s)n = −pLV(t)JF
−Tn on Γendo × (0, T ) ,

(5)

where P(d, s) = Pact(d, s) + Ppas(d) is the first Piola-Kirchhoff stress tensor, decomposed into the sum of
the active stress Pact and the passive stress Ppas. The latter is obtained as the derivative of a suitable strain
energy density function representing the constitutive law of the solid:

Ppas =
∂W
∂F

.
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Figure 3: (a) Plot of the C2 Wendland basis function ϕ(t, 3). (b) Selection of the adaptive RBF radius rj for point
xsrc
j . The radius is such that the support encloses M = 4 interpolation points (indicated by the red void circles),

with α = 1.2 (see (9)).

We consider the orthotropic constitutive law of [26, 65], with an additional penalization term imposing near-
incompressibility as presented in [48]. Γepi, Γbase and Γendo are subsets of ∂Ω, shown in Figure 2, and n is
the outward-directed normal unit vector. The boundary condition on Γepi expresses the interaction of the
heart with the pericardium and the surrounding tissue [37, 59]. The tensors Kepi and Cepi are defined as

Kepi = K⊥
epi(n⊗ n) +K

∥
epi(I− n⊗ n) ,

Cepi = C⊥
epi(n⊗ n) + C

∥
epi(I− n⊗ n) .

The condition on Γbase is known as energy-consistent boundary condition, and it surrogates the portion of
ventricle that has been cut from the computational domain at the base [47, 48].

The intracardiac pressure pLV is obtained by solving a lumped-parameter model for the circulatory system
[12, 29, 48]. The model can be expressed as a system of algebraic-differential equations:Fcirc

(
dc

dt
, c, t

)
= 0 in (0, T ) ,

c(0) = c0 .
(6)

Two of the variables of the circulation state c are the left ventricular pressure pLV and the left ventricular
volume VLV. The coupling of the mechanics equations (5) and of the circulation system (6) is obtained by
imposing the pressure condition on Γendo in (5), together with the constraint VLV = V 3D

LV , where V 3D
LV is the

volume enclosed by Γendo in the deformed configuration, computed as described in [48].

3. Intergrid interpolation for electromechanics

In the following sections, we recall the RBF interpolation method, and present the algorithm used in this
work for interpolating the deformation gradient F from the mesh of the mechanics problem to that of the
electrophysiology problem.

3.1. Rescaled localized radial basis function interpolation
Let {xsrc

i }N
src

i=1 , with xsrc
i ∈ R3, be a set of distinct points. Let f : R3 → R be a function, and let

f src
i = f(xsrc

i ). The RBF interpolant of f at the points xsrc
i is a function Πf : R3 → R in the form

Πf (x) =

Nsrc∑
j=1

γj ϕ
(
∥x− xsrc

j ∥, rj
)
, (7)
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where γj are the interpolation coefficients, ϕ is the RBF and rj is the RBF support radius associated with
each point xsrc

j . Following [20, 52], we consider the compactly supported C2 Wendland basis function [70],
shown in Figure 3a and defined as

ϕ(t, r) = max

{
1− t

r
, 0

}4 (
1 + 4

t

r

)
.

The coefficients γi in (7) are determined by imposing the interpolation condition Πf (x
src
i ) = f src

i for all
i = 1, 2, . . . , N src. This gives rise to the linear system

Φintγ = f src , (8)

where Φint ∈ RNsrc×Nsrc
is a matrix whose entries are

(Φint)ij = ϕ(∥xsrc
i − xsrc

j ∥, rj) ,

with γ = (γ1, γ2, . . . , γNsrc)T ∈ RNsrc
and f src = (f src

1 , f src
2 , . . . , f src

Nsrc)T ∈ RNsrc
.

Assume now that the interpolant must be evaluated on a new set of points {xdst
i }N

dst

i=1 . Let fdst
i =

Πf (x
dst
i ). There holds, for all i = 1, 2, . . . , Ndst:

fdst
i =

Nsrc∑
j=1

γjϕ(∥xdst
i − xsrc

j ∥, rj) ,

which can be expressed compactly as
fdst = Φevalγ ,

where Φeval ∈ RNdst×Nsrc
is a matrix whose entries are

(Φeval)ij = ϕ(∥xdst
i − xsrc

j ∥, rj) ,

and fdst = (fdst
1 , fdst

2 , . . . , fdst
Ndst)

T ∈ RNdst
.

The interpolation radii rj are selected adaptively. Intuitively, the radius should be smaller in regions
of space where the interpolation points xsrc

j are more densely clustered. In [20], the authors select the
radius based on the connectivity of the mesh where the interpolated data is defined. In a parallel computing
context, where the mesh is distributed across several processors, the connectivity may not be easily accessible.
Moreover, this notion does not generalize to the case where the interpolation and evaluation points are not
the nodes of a mesh (as considered in Section 3.3.2). For this reason, we follow an approach similar to the
one used in [69], and choose

rj = αrj , (9)

where rj is the smallest value such that the sphere centered at xsrc
j with radius rj contains at least M other

interpolation points. This procedure is represented in Figure 3b.
As discussed in [20], the RBF interpolation procedure described above may yield large oscillations in the

interpolant, and is very sensitive to the choice of the interpolation radius. To avoid this issue, we consider
the following rescaled interpolant, introduced in [20]:

Πres
f (x) =

Πf (x)

Πg(x)
,

where Πg is the RBF interpolant of the constant function g(x) = 1 at the nodes xsrc
i . All the results presented

in this paper make use of the rescaled interpolant.
The interpolation of vector fields is obtained by separately interpolating each component.
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Algorithm 1 Construction of the preconditioner P for system (8).
Input: interpolation matrix Φint
Output: preconditioner matrix P

1: initialize P = 0
2: for i = 0, 1, . . . , N src do
3: Si ← {j ∈ N : (Φint)ij ̸= 0}, and let sim be its elements, with m = 0, 1, . . . , ni

4:
5: compute the matrix Li ∈ Rni×ni , with entries Li

lm = ϕ(∥xsrc
sl
− xsrc

sm∥, rsm)

6: compute the vector ri ∈ Rni , with entries ril = δisil
7: solve the system Liλi = ri with the GMRES method
8:
9: for m = 0, 1, . . . , ni do

10:
(
P−1

)
sim,i
← λi

m

11: end for
12: end for

3.2. Preconditioning of the interpolation system by means of approximate cardinal functions
The matrix Φint is sparse due to the RBF ϕ having compact support. We solve system (8) by means

of the preconditioned GMRES method [51]. The choice of a suitable preconditioner is crucial towards the
efficient construction of the interpolant.

Following [11, 13, 27], we consider a preconditioner based on approximated cardinal functions. The
procedure to assemble it is described in Algorithm 1. The idea behind the preconditioner is to construct, for
each point xsrc

i , an approximate cardinal function ψi, such that

ψi(x) =
∑
j∈Si

λij ϕ(∥xsrc
j − x∥, rj) ,

ψi(x
src
i ) = 1 ,

ψi(x
src
j ) = 0 for j ∈ Si, j ̸= i ,

where Si is a set of points that are sufficiently close to xsrc
i . Finding the cardinal function is itself an

interpolation problem over the points specified by Si. The preconditioner matrix P−1 ∈ RNsrc×Nsrc
has

entries (
P−1

)
ji
=

{
λij if j ∈ Si ,

0 otherwise.

We select Si to be the set of indices j such that (Φint)ij ̸= 0. We refer to [11, 13, 27] for further considerations
on this preconditioning strategy.

The construction of the preconditioner can be very costly, requiring the solution of a small yet dense
linear system for each point xsrc

i . However, if the interpolant must be constructed and evaluated several
times, the computational saving in the repeated solution of (8) amortizes the cost of the preconditioner
assembly.

We use a Gauss-Seidel preconditioner to accelerate the convergence of the GMRES method for the linear
system Liλi = ri in Algorithm 1. Due to the approximate nature of the preconditioner, the interpolation
problem to compute ψi can be solved to low accuracy without significantly damaging the effectiveness of P .
In all the tests described in this paper, we use a relative tolerance of 10−1.

Remark 2. With respect to the strategy outlined in [11], our choice of Si allows to compute P by efficiently
reusing data structures and quantities already computed for the construction of Φint. We remark that this
choice is not the only possible one, and alternative options may result in a better preconditioner, at the price
of additional computational overhead for its initialization.
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3.3. RBF interpolation in the finite element framework
In the context of finite elements, let us consider a domain Ω ⊂ R3, and two independent meshes approx-

imating Ω, T src and T dst. Each of the two meshes can be composed of tetrahedral or hexahedral elements
(not necessarily the same on both meshes). On the two meshes, we consider the finite element spaces
V src and V dst, composed of piecewise polynomials of degree psrc and pdst, respectively, spanned by suitable
interpolatory basis functions (such as the Lagrangian basis functions [30, 40]) on meshes T src and T dst.

We consider two different interpolation strategies: interpolation between degrees of freedom (DoFs) and
interpolation between quadrature nodes. Alternative strategies (e.g. interpolation from DoFs to quadrature
nodes, or vice versa) can also be considered, although they are not relevant for our target application.

3.3.1. Interpolation between degrees of freedom
The points xsrc

i are the support points of the DoFs on T src, and the points xdst
i are those on T dst. If

f is a function belonging to the finite element space V src, then the vector f src is the vector of its control
variables. Similarly, fdst is the vector of control variables of the finite element interpolation of Πres

f in V dst.
Therefore, the computation of the interpolant as described in Section 3.1 allows to easily interpolate from the
finite element space V src onto the space V dst. This is the approach we follow to interpolate the intracellular
calcium concentration [Ca2+]i from the mesh used for electrophysiology onto the one used for mechanics.

3.3.2. Interpolation between quadrature nodes
In some instances, one may need to interpolate a function that is not well defined at the DoFs of T src.

That is the case of the interpolation of F from the mechanics to the electrophysiology mesh. Indeed, since
the finite element space is globally continuous but only piecewise differentiable, F is not well defined at those
DoFs that lie on the boundary of a mesh element.

In that case, we choose the points xsrc
i to be internal to the mesh elements, by considering suitable

Gaussian quadrature nodes for each element. We consider a Gaussian quadrature formula with q quadrature
nodes in each coordinate direction.

As typical in finite elements, we approximate the integrals arising from the Galerkin formulation of (1)
by using Gaussian quadrature. Therefore, we need to evaluate F on the quadrature nodes of the elements
of T dst, and it is convenient to select xdst

i to be those quadrature nodes.

Remark 3. The source points xsrc
i do not need to be nodes of a quadrature formula, and any points lying

on the interior of elements can be used. However, Gaussian quadrature points are usually convenient from
an implementation viewpoint, since they can be easily computed in any finite element software, and the
evaluaton of F at those point is easily accessible.

3.4. Interpolation of the deformation gradient
For (1) to be well-posed after discretization, the interpolation of F should be done in a way that pre-

serves the positivity of J = detF > 0: indeed, if negative values of J arise in (1), its numerical solution may
diverge. However, the set of tensors with positive determinant is not a linear space (hence, linear combina-
tions of positive-determinant tensors might have negative determinant), nor it is convex (not even convex
combinations of positive-determinant tensors are guaranteed to preserve the sign of the determinant). This
explains why a naive interpolation of the deformation gradient tensor might yield non-physical results.

In [52], the deformation gradient is evaluated at the quadrature points of the fine mesh by combining
the interpolation between DoFs of the displacement with the Zienkiewicz-Zhu gradient recovery technique
[71]. This approach, however, does not guarantee J > 0 after interpolation, and indeed we observed that
in some situations it results in a breakdown of the numerical solver. To enforce J > 0, we combine RBF
interpolation between quadrature nodes (Section 3.3.2) with SVD, in an approach similar to [56].

Let T M be the mesh used for the mechanics problem, and T EP the one used for the electrophysiology
problem. Let d be the displacement field, defined on T M. We denote by xM

i , with i = 0, 1, . . . , NM
q , the

quadrature nodes on mesh T M, and by xEP
j , with j = 0, 1, . . . , NEP

q , those on mesh T EP. The procedure to
evaluate the interpolation of F onto the quadrature nodes xEP

j , denoted by FEP, consists of decomposing the
tensors to be interpolated into simpler objects, interpolating the latter, and finally recomposing the tensor
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Algorithm 2 Interpolation of the deformation gradient F from the mesh T M to the mesh T EP.
Input: evaluations of ∇d at quadrature nodes xM

i

Output: evaluations of FEP at quadrature nodes xEP
j

1: for i = 0, 1, . . . , NM
q do

2: Fi = F(xM
i )← I +∇d(xM

i )
3: (Ui,Σi,V

T
i )← SVD(Fi) ▷ With the alignment procedure of Section 3.5.

4: (aUi
, bUi

, cUi
, dUi

)← rotationToQuaternion(Ui)
5: (aVi

, bVi
, cVi

, dVi
)← rotationToQuaternion(Vi)

6: end for
7:
8: build the interpolants Πres

aU
, Πres

bU , Πres
cU , Πres

dU
, Πres

aV
, Πres

bV , Πres
cV , Πres

dV
, Πres

log σ1 , Πres
log σ2 , Πres

log σ3

9:
10: for j = 0, 1, . . . , NM

q do
11: UEP

j ← quaternionToRotation
(
Πres

aU
(xEP

j ),Πres
bU (x

EP
j ),Πres

cU(x
EP
j ),Πres

dU
(xEP

j )
)

12: VEP
j ← quaternionToRotation

(
Πres

aV
(xEP

j ),Πres
bV (x

EP
j ),Πres

cV (x
EP
j ),Πres

dV
(xEP

j )
)

13: ΣEP
j ← diag

(
exp

(
Πres

log σ1(xEP
j )

)
, exp

(
Πres

log σ2(xEP
j )

)
, exp

(
Πres

log σ3(xEP
j )

))
14: FEP

j = FEP(xEP
j )← (UEP)Tj Σ

EP
j VEP

j

15: end for

in the quadrature nodes xEP
j . The advantage is that such objects belong to spaces with a more suitable

structure for interpolation than the space of positive-determinant tensors.
The procedure, reported in Algorithm 2, assumes that the following routines exist:

• rotationToQuaternion, to convert rotation matrices into their quaternion representation [57];

• quaternionToRotation, to convert a quaternion into its rotation matrix representation (normalizing
it if necessary) [57];

• SVD, to compute the SVD of a given input matrix, with the alignment procedure of Section 3.5.

Algorithm 2 starts by computing the SVD factorization of the deformation gradient Fi = F(xM
i ) at each

point xM
i , thus expressing it as

Fi = UiΣiV
T
i ,

where Ui and Vi are rotation matrices, and Σi = diag(σ1
i , σ

2
i , σ

3
i ) is a diagonal matrix whose diagonal entries

are the singular values of Fi. The matrices Ui and Vi are converted to the corresponding quaternions qUi

and qVi
, respectively, and RBF interpolation is used to evaluate at the points xEP

j the resulting 11 scalar
fields (the three singular values and the four quaternion components of qUi

and qVi
). Then, the deformation

gradient FEP is reconstructed at every point xEP
j , by converting the quaternions back to rotation matrices

and reassembling the SVD factors. To guarantee that the determinant of FEP remains positive, we interpolate
the logarithm of the singular values, and then take their exponential after interpolation [56]. Indeed, there
holds:

detFEP
j = detΣEP

j = exp
(
Πres

log σ1(xEP
j )

)
exp

(
Πres

log σ2(xEP
j )

)
exp

(
Πres

log σ3(xEP
j )

)
> 0 .

The SVD of the tensor Fi is not unique. The procedure we follow to define a unique decomposition is
described in Section 3.5.

Remark 4. Both the matrices Φint and Φeval, involved in the construction and evaluation of the interpolants
of Algorithm 2, only depend on the location of the points xM

i and xEP
j , which are the same for all interpolants

and do not change over time. Therefore, the matrices are computed only once during the initialization phase.

Remark 5. The procedure described in Algorithm 2 performs linear interpolation between quaternions, as
opposed to spherical interpolation [57], allowing the whole interpolation procedure to be linear.
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Algorithm 3 Reordering procedure for singular values and vectors
Input: singular values and vectors σ̃i, ṽi, ũi, for i = 1, 2, 3, in order of decreasing singular values
Input: reference triplet (w1,w2,w3)
Output: reordered singular values and vectors σi, vi, ui, for i = 1, 2, 3

1: j1 ← argmin
i
|w1 · ṽi|

2: σ1 ← σ̃j1
3: if

(
w1 · vj1

)
< 0 then

4: v1 ← −ṽj1 , u1 ← −ũj1

5: else
6: v1 ← ṽj1 , u1 ← ũj1

7: end if
8:
9: j2 ← argmin

i ̸=j1
|w2 · ṽi|

10: σ2 ← σ̃j2
11: if

(
w2 · ṽj2

)
< 0 then

12: v2 ← −ṽj2 , u2 ← −ũj2

13: else
14: v2 ← ṽj2 , u2 ← ũj2

15: end if
16:
17: j3 ← {1, 2, 3}\{j1, j2}
18: σ3 ← σ̃j3
19: if det(v1,v2, ṽj3) < 0 then
20: v3 ← −ṽj3 , u3 ← −ũj3

21: else
22: v3 ← ṽj3 , u3 ← ũj3

23: end if

3.5. Procedure for the alignment of singular vectors
In this section we describe the procedure (reported in Algorithm 3) we propose in order to deal with the

indeterminacy of the SVD of the tensors to be interpolated. We notice that the SVD of a generic second-order
tensor Fi can be written as follows

Fi = UiΣiV
T
i =

3∑
j=1

σj
iu

j
i ⊗ vj

i , (10)

where uj
i (respectively, vj

i ) is the j-th column of Ui (respectively, Vi), known as left (respectively, right)
singular vector. From (10) it is clear that the decomposition of Fi is unaffected by (i) simultaneous reordering
of the singular values and of the columns of Ui and Vi, and by (ii) change of sign of corresponding columns
of Ui and Vi. Actually, (i) and (ii) are the only sources of indeterminacy [49]. Conventionally, singular
values are ordered in a decreasing manner, consequently defining the ordering of the columns of Ui and
Vi. In this work, however, we adopt a different strategy for (i) ordering singular values/vectors and for (ii)
defining the orientation of singular vectors.

To better explain our procedure, let us consider the application of a tensor Fi to a generic test vector a:

Fia = UiΣiV
T
i a =

3∑
j=1

σj
i (v

j
i · a)u

j
i . (11)

The application of Fi to the vector a can thus be interpreted as a three-step procedure: (i) we compute the
components of a with respect to the orthonormal basis (v1

i ,v
2
i ,v

3
i ); (ii) we rescale them by the corresponding

10



singular values; (iii) we compute a linear combination of the left singular vectors with coefficients computed
in the previous step. The ordering of the terms at right-hand side of (11) clearly does not impact the result
of the sum. However, it affects the results of the interpolation, as the singular values σj

i (more precisely, their
logarithm) with the same index j are interpolated among points. Since, in (11), the j-th singular value plays
the role of rescaling the product (vj

i · a), in this work we create a correspondence among different points xM
i

(with i = 0, 1, . . . , NM
q ) according to the directions of the right singular vectors vj

i . More precisely, we match
singular values that correspond to right singular vectors that are most closely aligned with each other.

With this aim, we define a reference orthonormal ordered triplet (which can be the canonical basis of
Euclidean space, or the triplet that locally defines the direction of the fibers and sheets), and perform a
reordering of the singular values and vectors, as well as a re-orientation of the latter, so as to maximize
the alignment of the right singular vectors with the reference triplet. In this way, when we interpolate
the singular values associated with different points xM

i (with i = 0, 1, . . . , NM
q ), we match singular values

corresponding to right singular vectors that are as aligned as possible.
More in detail, the alignment procedure is the following. Let us denote by (w1

i ,w
2
i ,w

3
i ) the reference

triplet, possibly depending on the point xM
i . We select as first column of the matrix Vi the right singular

vector that maximizes the quantity |w1
i · v

j
i | over j = 1, 2, 3. If w1

i · v
j
i < 0, that is if the cosine of the angle

between w1
i and vj

i is negative, then we invert the sign of the components of the singular vector. Then, we
select as second column of the matrix Vi the maximizer, between the remaining two right singular vectors,
of |w2

i ·v
j
i |. As before, if w2

i ·v
j
i < 0 we invert the sign of its components. The last column of Vi is assigned

as the remaining singular vector, and its sign is selected so that det(Vi) > 0. Finally, we reorder the singular
values and the left singular vectors, and we change the sign of the latter consistently with what done for the
right singular vectors.

In this work, we consider the reference triplet to be the canonical basis of the Euclidean space, i.e.
wk

i = ek for k ∈ {1, 2, 3} and all i ∈ {0, 1, . . . , NM
q }.

4. Numerical approximation

We employ the finite element method [30, 40] for the spatial discretization of (1) and (5). We consider
either tetrahedral or hexahedral grids, with finite elements of order either 1 or 2 (although the methods
proposed here generalize naturally to elements of higher order).

We discretize in time using finite difference schemes of order 1. The monodomain equation (1) is dis-
cretized in a semi-implicit way, by treating explicitly the ionic current term, thus resulting in a linear problem.
The ionic model is discretized with an implicit-explicit (IMEX) scheme, allowing for its direct solution [48].
The mechanics model (5) is discretized with an implicit formulation, and the circulation model (6) is solved
with an explicit Euler scheme.

The electrophysiology, force generation, mechanics and circulation models are coupled in a segregated
staggered way, that is they are solved independently and sequentially at every time step [48]. The electro-
physiology model is solved with a finer temporal discretization than the other models, to satisfy its stricter
accuracy requirements [21, 48]. Let ∆t be the time discretization step, and ∆tEP = ∆t/nEP be a smaller
discretization step used for mechanics. Then, the time advancing scheme is the following:

1. solve nEP time steps of the electrophysiology model (1) and (3), with time step ∆tEP;
2. interpolate the intracellular calcium concentration from T EP to T M using interpolation between DoFs

(Section 3.3.1);
3. solve the force generation model (4) using time discretization step ∆t;
4. solve the mechanics model (5) coupled with the circulation model (6), using the time discretization

step ∆t;
5. interpolate the deformation gradient F from T M to T EP, using interpolation between quadrature nodes

(Section 3.4 and Algorithm 2).

We refer the interested reader to [48] for more details on the methods for the electrophysiology, force gen-
eration, mechanics and circulation problems (steps 1, 3 and 4 of the procedure above).
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element diameter [mm]
mesh element type # elements # nodes min. avg. max.
T1 hexahedra 140 120 159 443 1.1 2.0 3.5
T2 hexahedra 8 967 680 9 141 953 0.2 0.5 1.4
T3 tetrahedra 3 838 394 762 797 0.4 0.8 1.2

Table 1: Type and number of elements, number of nodes, and element diameter (minimum, average and maximum)
of the meshes used in the numerical experiments.

Remark 6. In principle, we could use interpolation between quadrature nodes to interpolate [Ca2+]i from
the fine mesh T EP to the coarse one T M (step 2 of the procedure above). However, using interpolation
between DoFs is more convenient and computationally efficient, since both the ionic model and the force
generation model are solved on the DoFs of the respective mesh [48].

4.1. Alternative interpolation methods
The interpolation method previously described will be referred to as RBF-F-SVD. For comparison, we

will also consider the following alternative interpolation schemes (each of these approaches replaces step 5
of the procedure described in previous section):

• nested-d: the meshes T EP and T M are one nested into the other (i.e. the finer one is obtained from the
coarser one through one or more refine-by-splitting steps). Then, the displacement field d is transferred
from the coarse to the fine mesh through standard finite element interpolation, and the deformation
gradient F is evaluated on quadrature nodes xEP

j . We refer to [39, 48] for additional details;

• RBF-d: the displacement field d is interpolated from the coarse to the fine mesh, using RBF inter-
polation between DoFs (Section 3.3.1); then, the deformation gradient F is evaluated on quadrature
nodes xEP

j through standard finite element interpolation. We refer to [52] for further details;

• RBF-F-E: we perform interpolation between quadrature nodes (Section 3.3.2) of each cartesian com-
ponent of the deformation gradient F; this is also known as Euclidean interpolation [56].

5. Numerical experiments

All simulations discussed below are performed using lifex, a C++ high-performance library for cardiac
applications [1–3] based on the finite element core deal.II [6, 7]. The computational domain is the left
ventricle of the Zygote Heart Model [73], pre-processed using the techniques described in [22]. We report in
Table 1 details on the meshes (see Figure 4) used throughout the numerical experiments discussed below.

All simulations presented in the following sections are run on the GALILEO100 supercomputer1 from
the CINECA supercomputing center (Italy). Unless otherwise specified, simulations are run in parallel using
192 cores.

5.1. A comparison of interpolation methods
As a first test, we use T1 as a coarse mesh, for mechanics and force generation, and T2 as a fine mesh,

for electrophysiology (see Table 1). The two meshes are one nested within the other, that is the mesh T2 is
obtained by applying a refine-by-splitting procedure to T1 two times (thus subdividing every element into 64
smaller elements, see Figure 4). This choice allows to compare all four interpolation methods described above
(nested-d, RBF-d, RBF-F-E and RBF-F-SVD). We consider bilinear finite elements for all the problems
involved.

1Technical specifications: https://wiki.u-gov.it/confluence/display/SCAIUS/UG3.3%3A+GALILEO100+UserGuide.
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Figure 4: Left: the meshes T1 (red) and T2 (red). Right: the mesh T3.

We perform the simulation of a heartbeat in healthy conditions, setting T = 800ms, ∆t = 1ms and
nEP = 10 (so that ∆tEP = 0.1ms). Table 2a lists the value of the parameters used in setting up the model.
For the sake of brevity, we only report the parameters whose value is different from that used in [48].

For the RBF interpolation of [Ca2+]i, d and F, we manually tuned M and α to minimize oscillations in
the interpolated field, while keeping the RBF support radius as small as possible. For RBF interpolation
between quadrature points, we test both q = 1 (i.e. the interpolation points are the barycenters of each
element) and q = 2 (corresponding to 8 interpolation points per element). The parameters used to select the
adaptive RBF radius for the different interpolation methods in this comparison are reported in Table 2b.

In this setting, the interpolation methods nested-d (used in [39, 48]) and RBF-d (used in [52]) fail to
complete the simulation. Indeed, both yield negative values of J on some of the quadrature nodes of the fine
mesh, and this causes the electrophysiology solver to diverge at times t = 158ms and t = 213ms, respectively.
This can be explained by looking at the spatial distribution of J after interpolation, as reported in Figure 5:
although the overall distribution of J is captured on the fine mesh, spurious oscillations are introduced. It
is our experience that whether or not the solver crashes is extremely sensitive to the physical and numerical
parameters (including the space and time discretizations). Nonetheless, the solver failure in this setting is
exemplar of the unreliability of interpolation methods that transfer the displacement field and then compute
its gradient.

On the contrary, both the RBF-F-E and RBF-F-SVD interpolation methods allow the simulation to reach
the final time. We attribute this difference in behavior to the fact that the interpolation methods nested-d
and RBF-d lead to values of J on the fine mesh that are significantly different from those on the coarse
mesh, including negative values, whereas RBF-F-E and RBF-F-SVD allow a more accurate interpolation
and yield J > 0, ensuring the well-posedness of the discrete monodomain equation.

To quantify this effect, we report in Figures 6 and 7 the histograms of the values of J on the quadrature
nodes of T EP, computed with the different interpolation methods, for a representative time instant during
systolic contraction (t = 155ms). Although all four methods capture the overall distribution of J (as seen in
Figure 6), significant differences are present in the tails of the distributions (as highlighted by the logarithmic
scale of Figure 7). From the plots, we can notice how the evaluations of J with the methods based on the
displacement (nested-d and RBF-d) yield values that fall outside of the range observed on the coarse mesh.
These values are physically unrealistic (given the near-incompressibility of the solid constitutive law), and
occasionally even negative (to which we attribute the failure of the solver). On the contrary, interpolation
methods based on the deformation gradient (RBF-F-E and RBF-F-SVD) yield a range for J that is closer
to the one on the coarse mesh, in particular avoiding negative values and thus preventing the failure of the
solver.
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coarse mesh nested-d RBF-d

Figure 5: For the test of Section 5.1, determinant of the deformation gradient J on the coarse mesh T1 (left) and
on the fine mesh T2 using the interpolation methods nested-d (center) and RBF-d (right). The plots are done at
time t = 155ms.
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Figure 6: Histograms of the evaluation of J at mesh quadrature nodes, at t = 155ms, on the coarse mesh T M

(blue) and on the fine mesh T EP (red), with the different interpolation methods.
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Parameter Value Unit
σf 1.68 m2/s
σs 0.769 m2/s
σn 0.248 m2/s
Tmax

act 600 kPa

(a)

interpolated quantity M α

[Ca2+]i 1 2.5
d 5 3.0

F (Euclidean) 2 2.0
F (SVD) 2 2.0

(b)

Table 2: (a) Physical parameters for the simulations of Section 5.1. Conductivities are calibrated to obtain
conduction velocities along fibers, sheets and cross-fibers of 0.6m/s, 0.4m/s and 0.2m/s on the mesh used for
electrophysiology [9]. We only report parameters whose value is different from that used in [48]. (b) Parameters
controlling the adaptive RBF radius in the tests of Sections 5.1 and 5.3.

We also observe that setting q = 1 in the methods RBF-F-E and RBF-F-SVD has a regularizing effect,
filtering out the most extreme values of J . On the other hand, when setting q = 2, thus increasing the
number of interpolation points, the distribution of J is more accurately recovered. This is especially true
with the RBF-F-SVD scheme, whereas the RBF-F-E scheme yields a small number of points for which J
is close to zero. Seeing as this approach does not provide a theoretical guarantee that J > 0, it is possible
that under different simulation settings (e.g. with a higher contractility, or in pathological conditions) this
may lead to the failure of the solver. Conversely, the RBF-F-SVD method guarantees by construction that
J > 0 after interpolation (regardless of the choice of q), and as such it provides an accurate and robust tool
to implement mechano-electrical feedbacks.

Finally, we report in Figure 8 the pressure-volume loops associated with all simulations. We observe that,
regardless of the procedure employed, ventricular pressure and volume are essentially identical. This is in
agreement with the histograms of Figure 6, which show that all the methods yield comparable results for the
overall distribution of J . Thus, the interpolation methods based on F do not introduce perturbations with
respect to the ones based on d and previously used in validated electromechanical simulations [39, 48, 52],
while improving over those in terms of robustness.

5.2. Parallel implementation and scalability
Cardiac electromechanical models are usually implemented in a parallel computing framework, distribut-

ing the computational load across multiple processors to keep the overall time-to-solution small in spite of
the large amount of unknowns. It is therefore important that the chosen intergrid interpolation method is
efficient and scalable in a parallel computing setting.

To quantify the parallel performance of our implementation, we performed a strong scalability test for
the four interpolation methods discussed before, using the same setting as in Section 5.1. The results are
reported in Figure 9, where we separately report the wall time spent in the initialization and the evaluation
of the interpolant. We observe that, while RBF interpolation has a significantly higher initialization cost
than the nested approach (based on intergrid transfer operators implemented in deal.II [6]), the cost for
initialization reduces linearly with the number of processors employed. Moreover, the initialization step
consists in assembling the matrices Φint, Φeval and P−1. Since all of these only depend on the location of
the points xsrc

i and xdst
i , this computation can be performed only once in an offline phase, and subsequently

reused in multiple simulations on the same mesh, thus amortizing the initialization cost.
For all interpolation methods we observe linear scalability of the computational cost associated with the

evaluation of the interpolant (Figure 9, right). We also observe that RBF interpolants exhibit a slightly
better performance than nested interpolation.

Finally, Figure 10 reports a comparison of the computational cost associated with the evaluation of the
interpolant and with the solution of the model equations themselves. The former is negligible with respect
to the solution of the electrophysiology and mechanics equations (which dominate the overall computational
time). We conclude that the proposed intergrid transfer method does not significantly affect the overall
computational cost of the simulation.
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Figure 9: Strong scalability test for the coarse-to-fine interpolation. Left: wall time for the initialization of the
data structures for interpolation. Right: wall time spent in evaluating the interpolant during the simulation (with
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5.3. Flexibility of the interpolation method
To further highlight the flexibility of the proposed interpolation method, we consider a new test using mesh

T1 for mechanics (as done in previous sections), and T3 for electrophysiology (see Table 1 and Figure 4). The
fine mesh is not obtained through a refine-by-splitting procedure from the coarse mesh, as done in previous
examples. Instead, it is a fully independent mesh, composed of tetrahedral elements (whereas the coarse mesh
T1 is composed of hexahedra). The electrophysiology equations are discretized using quadratic finite elements
(for a total of 5 224 245 degrees of freedom). We use the RBF-F-SVD scheme for the interpolation of F,
setting q = 1 and using the same parameters as in Section 5.1 to select the RBF support radius (see Table 2b).
We point out that the element type and the polynomial degree used for mechanics and electrophysiology are
different. We use the same physical parameters as in [48], except for setting Tmax

act = 600 kPa.
We report the pressure-volume loop for this test case, as well as some snapshots of the solution, in

Figure 11. The results are consistent with those of Section 5.1 (as well as with those of [48]), even if using
two entirely independent (not nested) meshes for electrophysiology and mechanics.

This test shows how the proposed interpolation approach allows the transfer of solutions between radically
different finite element spaces. Thus, it provides a useful tool to efficiently tackle the multiphysics nature of
computational models of the heart.

6. Conclusions

We introduced a method to transfer the deformation gradient from a coarse to a fine mesh in elec-
tromechanical simulations. This is a key ingredient when using electromechanical models that account for
mechano-electrical feedback effects (both geometrical and physiological, such as stretch-activated currents).
These models are essential to ensure accurate simulations, especially in pathological scenarios [54]. The
proposed method is based on combining rescaled, localized RBF interpolation with the SVD factorization of
the deformation gradient tensor F.

The proposed method is compared to alternative existing approaches in the literature, based on nested
intergrid interpolation or RBF interpolation of the displacement field. Both these techniques have been
previously applied to physiological simulation of cardiac electromechanics [39, 48, 52]. The numerical exper-
iments carried out in this work highlight the shortcomings of the existing methods, especially in terms of
their robustness, by considering a numerical setting under which they lead to the failure of the electrome-
chanical solver. We attribute this failure to the fact that the existing methods do not preserve the positivity
of J = detF, and indeed we observe points for which J < 0 in our numerical experiments, just before the
solver failure.
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Figure 10: Comparison of the computational cost associated with intergrid interpolation and with the solution of
model equations (with final time T = 10ms). F is interpolated with the RBF-F-SVD method.

Conversely, the proposed method guarantees that, after interpolation, J > 0, and therefore it ensures
the robustness of the solver. Moreover, our results indicate that methods based on interpolating the defor-
mation gradient, rather than the displacement field as previously done, do not introduce artificially (and
unphysically) large or small values for J . We believe that this feature is especially relevant if physiological
mechano-electric feedbacks (such as stretch-activated currents) or pathological scenarios are considered. An
analysis of the performance of the method under pathological conditions will be the subject of future studies.

Finally, we highlighted through a numerical experiment how the proposed method allows to easily transfer
solution variables between finite elements of different degree and even of different element shape (tetrahedral
or hexahedral, in our case). This result indicates that the proposed interpolation method can be a valuable
tool in improving not only the robustness, but also the geometrical and parametric flexibility of electrome-
chanical simulations, allowing to independently tailor the discretization of each core model to its specific
accuracy needs.
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