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Abstract

In this paper, we propose a monolithic algorithm for the numerical solution of an
electromechanics model of the left ventricle in the human heart. We consider the
monodomain equation together with the Bueno–Orovio minimal ionic model for the
description of the electrophysiology and the Holzapfel–Ogden strain energy function
within the active strain framework for the mechanics of the myocardium. For the lat-
ter, we use for the first time in the context of electromechanics a transmurally variable
active strain formulation. The Finite Element Method is used for the space discretiza-
tion, while Backward Differentiation Formulas are used for the time discretization.
Both implicit and semi–implicit schemes are addressed in this paper: the Newton
method is used to solve the nonlinear system arising in the implicit scheme, while the
semi–implicit scheme (corresponding to extrapolation of nonlinear terms from previ-
ous timesteps) yields a linear problem at each timestep. In the latter case, stability
constraints may pose limitations in the timestep size. Much emphasis is laid into on
the preconditioning strategy, which is based on the factorization of a block Gauss–
Seidel preconditioner combined with the use of parallel preconditioners for each of the
single core models composing the full electromechanics model. This monolithic pre-
conditioner can be easily extended to cases where other ionic models are adopted and,
besides heart models, to other integrated problems arising in different multiphysics ap-
plications in engineering and applied sciences. Several numerical simulations are carried
out in a high performance computing framework for both idealized and patient–specific
left ventricle geometries. The latter are obtained from medical MRI images through
suitable segmentation procedures to generate the computational mesh. Personalized
pressure–volume loops are produced by means of the computational procedure and
used to synthetically interpret and analyze the outputs of the electromechanics model.
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rithm; finite element method; preconditioner.
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1 Introduction

The heart plays the crucial role of pushing the blood to flow through the circulatory sys-
tem to provide all sort of vital substances to the cells. Moreover, cardiovascular related
diseases represent the leading causes of death in the whole world [59]. While advancements
in medical practice are continuously improving patients conditions and diseases outcomes,
recent progresses in mathematical modeling and computational mechanics allow to per-
form realistic cardiovascular numerical simulations [37, 64, 75, 76, 83, 96, 104, 106], thus
potentially providing medical doctors and clinicians with valuable diagnostic and predic-
tive tools. Moreover, clinical data and the application of image segmentation techniques
to Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scans feed, as
inputs, the mathematical models, thus allowing numerical simulations in a patient–specific
framework [23, 54]; in addition, uncertainty quantification techniques allow to estimate the
models parameters and data, and to cope with their variability [30, 58].

The mathematical modeling of the heart involves several challenges intrinsically related
to the complexity of its function [17, 20, 33]. A satisfactory model must be able to describe
a wide range of different processes, such as the evolution of the transmembrane potential
in the myocardium, the deformation caused by the muscles contraction, and the dynamics
of the blood inside the heart chambers and flowing through the valves [31, 70, 75, 76, 95,
97, 98]. All these processes feature different temporal and spatial scales, yielding the so–
called tyranny of scales [8]. A satisfactory knowledge of the models for isolated processes
(the electrophysiology, the active and the passive mechanics), which we refer to as “single
core models”, is nowadays quite established; however, further theoretical and numerical
studies are necessary to better understand their mutual interactions [18, 22, 30, 81]. In this
work, we use state–of–the–art models in passive myocardial tissue modeling (the Holzapfel–
Ogden model [45]) together with the active strain approach [2, 3] in combination with a
recently proposed model for the transmurally heterogeneous thickening of the myocardium
[7]; the latter is for the first time used in the integrated electromechanics context for the left
ventricle (LV). Once established, the active mechanics is coupled with the electrophysiology
through a model describing the shortening of the myocardial fibers [87], which is in turn
triggered by a change in the ionic concentrations in the cardiac cells.

From the numerical viewpoint, we discretize in space the continuous models by means
of the Finite Element Method (FEM) with both linear and quadratic elements, while the
time discretization is carried on using Backward Differentiation Formulas (BDFs) of order
1 and 2 [77]. BDFs are used both within an implicit and a semi–implicit approach, the
latter consisting in the partial evaluation of the nonlinear terms with an approximation of
the unknowns of the same order of the BDF scheme [16, 36]. However, the semi–implicit
approach poses strong limitations on the choice of the timestep size with respect to the
implicit approach. We then formulate a monolithic algebraic coupled problem to enforce
the coupling and interface conditions among the single core cardiac models, contrarily to
several works where the electrophysiology and the mechanics problems are solved with
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a staggered approach [4, 5, 18, 37, 53, 83, 106]. It is however known that, in general,
staggered approaches do not guarantee unconditional stability, similarly to the case of
segregated algorithms [15]. Monolithic schemes for the electromechanics of the heart were
proposed and analyzed first in [24, 25], where only the contraction phase is simulated and
the blood pressure at the endocardium (the LV inner wall) is neglected. In a more recent
work [43], a monolithic scheme including a reduced–order 0D closed–loop vascular system,
heart valve, and atrial chamber model is proposed. However, in these works the active stress
approach is used instead of the active strain one and only simplified ventricle geometries
are considered. In this paper, on the other hand, we successfully use a monolithic scheme
for the simulation of a full heartbeat by realizing pressure–volume loops, for both idealized
and patient–specific geometries. The FSI at the endocardium is addressed through a basic
0D (spatially independent) model for the pressure variable tailored for the different phases
of the heartbeat [30, 83, 106]; a prestress technique is also applied to the patient–specific
LV in order to estimate the internal stresses of the myocardium at the initial time [46, 99].
We solve the large, sparse block monolithic linear system arising from the approximation
of the continuous model by means of the GMRES method [88] and, in order to speed–up
the convergence of the linear solver, we employ a novel right preconditioner [88] based
on the one proposed in [27] for FSI problems. Our preconditioning strategy is based on
the factorization of a block Gauss–Seidel preconditioner which exposes the multiphysics
nature of the integrated problem, thus allowing to adapt its action on each single factor of
the preconditioner. As we show, this strategy can be easily extended to a wide range of
integrated multiphysics problems: the factors are indeed independently preconditioned by
using algebraic multigrid [11] or domain decomposition [14, 103] preconditioners tailored
by exploiting physics–specific information (such as the number of equations) for each block.
We remark that this local information would be lost if a global monolithic preconditioner
were to be used instead.

The paper is organized as follows: in Section 2 we introduce the mathematical models
for the electrophysiology, the mechanics and the activation of the myocardium; we then
integrate them thus obtaining a continuous integrated model. In Section 3 we carry on
the space and time numerical approximations of the single core models; in Section 4 we
introduce the preconditioner used to solve the monolithic linear system arising after the
time and space discretizations. In Section 5 we report and discuss the numerical results
obtained with the proposed methods, and we finally draw our conclusions in Section 7.

2 Mathematical models

The myocardium is a complex tissue composed of cardiomyocytes, organized in fibers and
laminar collagen sheets [93], characterising the LV orthotropic internal structure. There-
fore, the material properties of the LV are strongly dependent on the direction of fibers and
sheets. First, the electrical conductivity of the cardiomyocytes is much larger in the longi-
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Figure 1: Fibers and sheets in the myocardium. The fiber orientation f0 varies transmurally,
while the sheets direction s0 direction (which is oriented as the normal to the collagene
sheets) is orthogonal to the LV walls. The n0 direction is orthogonal to both f0 and s0.

tudinal direction than transversally [51, 74]; hence, at the macroscopic level, the transmem-
brane electric potential travels faster along the fibers. Secondly, it has been experimentally
observed in [45] that the response of internal stresses to an external load significantly varies
when measured among different directions since the myocardium is stiffer along the fibers.
Finally, the contraction of the LV is made possible thanks to an active force stretching
the cardiomyocytes lined up along the fibers direction [85]. In order to mathematically
define fibers and sheets, we identify a local frame of reference by defining the mutually
orthonormal vector fields f0 (fibers), s0 (sheets) and n0 (aka normals), where n0 is such
that n0, f0, and n0 are mutually orthogonal, as depicted in Fig. 1.

2.1 Electrophysiology

Electrophysiology models take into account the electrochemical reactions occuring in the
myocardium [21] triggered by an electric impulse originated at the sino-atrial node and
then conveyed through the Purkinje fibers [20]. Such signal causes a quick depolarization
of the LV cardiomyocytes, meaning that the transmembrane potential (i.e. the difference
in electric potential between the interior and the exterior of a cell) changes sign in few
microseconds. The potential drives a change in the concentration of different ionic species
flowing through the so–called ionic gates located on the cellular membrane; the concen-
tration of these ionic species, in turn, influences the potential thus slowly repolarizing the
cells. The continuous interaction between the ions concentration and the potential causes
a cascade effect for which a fast traveling wave known as action potential propagates in the
whole myocardium [56].

In this work, we consider the monodomain equation for the description of the evolution
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of the cellular transmembrane potential V , a nonlinear diffusion-reaction equation obtained
by homogenization of the bidomain equations [20, 47, 74, 91]. The latter is indeed a
richer, but more complicated model than the monodomain equation which is required for
pathological conditions. In physiological conditions, the monodomain model is adequate
and reads:

χ

(
Cm

∂V

∂t
+ Iion(V,w)

)
= ∇ · (JF−1DmF−T∇V ) + Iapp(t) in Ω0 × (0, T ),

(JF−1DmF−T∇V ) ·N = 0 on ∂Ω0 × (0, T ),

V = V0 in Ω0 × {0}.

(1)

Here, Ω0 is the reference computational domain (represented e.g. by the configuration of
the LV at the end of the diastolic phase) and T > 0 is the final time. The parameters
χ and Cm ∈ R+ are the ratio of membrane surface with respect to the volume and the
membrane capacitance, respectively. In order to take into account the anisotropic electrical
conductance [89], we define the diffusion tensor as

Dm = σt I + (σl − σt) f0 ⊗ f0,

where σt, σl ∈ R+ are the electric conductivities in the directions transversal and longitudi-
nal with respect to the fibers, respectively. The current geometry displacement d = X−x

also influences the diffusive term, since F = I +
∂d

∂X
and J = det(F), where X and x

are the reference and deformed coordinates, respectively. The function Iapp(t) represents
an externally applied current, which stands for the electric stimulus injected at the endo-
cardium by the terminal fibers of the Purkinje network; for our purposes, we consider it as a
source term which triggers the electrophysiological activity. The nonlinear term Iion(V,w)
is peculiar of the ionic model which, in the Hodgkin-Huxley formalism [44], takes the form:

dwi
dt

= αi(V )(w∞i (V )− wi) + βi(V )wi in (0, T ),

wi(0) = wi,0, at t = 0,
for i = 1, . . . , NI , (2)

where the unknowns wi ∈ [0, 1] represent the ions concentration and/or the fraction of open
ionic channels on the cellular membrane. Among the manychoices proposed in literature –
see e.g. [1, 56, 57, 63, 101] – we use the Bueno-Orovio minimal model [12] for its simplicity
(for which NI = 3); nonetheless, this model is capable of capturing the main features of
the electrophysiology in healthy myocardial tissues. The system of differential equations
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modeling the electrophysiology hence reads:

∂V

∂t
+
∑

q∈{fi,so,si}

Iq(V,w) = ∇ · (JF−1DmF−T∇V ) + Iapp(t) in Ω0 × (0, T ),

(JF−1DmF−T∇V ) ·N = 0 on ∂Ω0 × (0, T ),

∂w

∂t
= α(V )(w∞(V )−w) + β(V )w in Ω0 × (0, T ),

V = V0, w = (1, 1, 0)T in Ω0 × {0},

(3)

since χ = Cm = 1 as prescribed in [12], where the monodomain equation is presented in

dimensionless form; moreover, Iion(V,w) =
∑

q∈{fi,so,si}

Iq(V,w). Albeit a system of ODEs, the

ionic model is defined in Ω0 × (0, T ) since the dependence on V indirectly introduces a
dependence on the space independent variable. The terms of the chosen ionic model are
defined as:

α(V ) = diag

(
1−HV1(V )

τ−1 (V )
,
1−HV2(V )

τ−2 (V )
,

1

τ3(V )

)
, β(V ) = diag

(
−HV1(V )

τ+
1

,−HV2(V )

τ+
2

, 0

)
,

w∞(V ) =

(
1−HV −1

(V ), HVo(V )

(
w∞∗ − 1 +

V

τ∞2

)
+ 1− V

τ∞2
, Hk3

V3
(V )

)T
,

Ifi(V,w1) = −HV1(V )(V − V1)(V̂ − V )

τfi
w1, Iso(V ) =

(1−HV2(V ))(V − Vo)
τo(V )

+
HV2(V )

τso(V )
,

Isi(V,w2, w3) = −HV2(V )

τsi
w2w3,

while the characteristic time functions read:

τ−1 (V ) = HV −1
(V )(τ ′′1 − τ ′1) + τ ′1, τ−2 (V ) = Hk2

V −2
(V )(τ ′′2 − τ ′2) + τ ′2,

τ3(V ) = HV2(V )(τ ′′3 − τ ′3) + τ ′3, τo(V ) = HVo(V )(τ ′′o − τ ′o) + τ ′o,

τso(V ) = Hkso
Vso

(V )(τ ′′so − τ ′so) + τ ′so.

Here Ha(z) is the Heaviside function centered in a ∈ R, while Hε
a(z) =

(1 + tanh(ε(z − a)))

2
stands for its smooth approximation depending on a constant parameter ε ∈ R+.

2.2 Tissue passive mechanics

An adequate mechanical model for the description of the myocardium’s displacement must
account for the tissue’s complex behavior. Firstly, the internal stresses induced by a pre-
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scribed deformation are highly anisotropic [40] and in our formulation depend on the di-
rections f0, s0, and n0. We model the compressibility of the tissue through a nearly–
incompressible formulation by weakly penalizing large volumetric variations [94] since with
this approach small volumetric changes are allowed. Finally, the contraction of the muscle
due to the electrophysiological activity must be taken into account: with this aim, we
introduce the auxiliary dimensionless variable γf , which represents the relative stretching
(or elongation) of the fibers. The model that we use to describe the evolution of γf will
be detailed in Sec. 2.3 as it constitutes the link between the electrophysiology and the
mechanics.

We recall the momentum conservation equation in the reference configuration Ω0, en-
dowed with boundary and initial conditions, in the unknown displacement variable d [65]:

ρ
∂2d

∂t2
−∇0 ·P(d, γf ) = 0 in Ω0 × (0, T ),

(N⊗N)

(
Kη
⊥d + Cη⊥

∂d

∂t

)
+ (I−N⊗N)

(
Kη
‖d + Cη‖

∂d

∂t

)
+ P(d, γf ) N = 0 on Γη0 × (0, T ),

P(d, γf ) N = pendo(t)N on Γendo0 × (0, T ),

d = d0,
∂d

∂t
= ḋ0 in Ω0 × {0}.

(4)

Here, Γη0 with η = {epi, base} represent the subsets of the boundary corresponding to
the epicardium and the base of the myocardium as depicted in Fig. 2. We denote by
Kη
⊥,K

η
‖ , C

η
⊥, C

η
‖ ∈ R+ the parameters of generalized Robin conditions on each of these

boundary subsets: the symbols ⊥ and ‖ identify either a parameter relative to the normal
or the tangential direction, respectively. pendo(t) is the external load applied by the fluid
at the endocardium wall which, at this stage of the model description only, we assume to
be prescribed. N is the outward directed unit vector normal to the boundary; d0 and ḋ0

are the initial data. The information related to the mechanical behaviour is embedded in
the nonlinear Piola–Kirchhoff strain tensor P = P(d, γf ), which also must incorporate the
active properties of the muscle. In order to characterize P, we first define the right Cauchy–
Green tensor as C = FTF, where F = I +∇0d is the strain tensor, and we introduce the
strain energy function W(C) : R3×3 −→ R which relates the strain energy of the material
to the strain tensor. The tissue mechanical properties are taken into account through the
strain energy function: under the hyperelasticity assumption, the latter is differentiated
with respect to the deformation tensor in order to obtain the Piola-Kirchhoff strain tensor,
i.e.:

P(d) =
∂W(C)

∂F
.

A very popular model for the myocardial tissue is the Holzapfel–Ogden [45] one. This is
obtained by considering different contributions and by taking into account the anisotropic
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Figure 2: A patient–specific LV geometry with the Γepi0 , Γendo0 , and Γbase0 boundary subsets
highlighted.

nature of the muscle:

W̃(C) =W1(I1) +W4f (I4f ) +W4s(I4s) +W8fs(I8fs)

=
a

2b
eb(I1−3) +

∑
i∈{f,s}

ai
2bi

[
eb〈I4i−1〉2 − 1

]
+

afs
2bfs

[
ebI

2
8fs − 1

]
,

where

I1 = tr C, I4f = C : f0 ⊗ f0 = f · f ,
I4s = C : s0 ⊗ s0 = s · s, I8fs = C : f0 ⊗ s0 = f · s

are the invariants of the tensor C and the parameters ak, bk are fitted from experimental
data [45]. The function 〈y〉 = y H0(y) indicates the positive part of y and its role consists
in switching off the contributions to the stresses of the fibers and sheets when the material
is under compression along their directions.

The mechanical model should also account for the volumetric change to which the
myocardium undergoes during the cardiac cycle. It has been observed in [19, 112] that
albeit this change is moderate, still it significantly ranges from 2% to 15%. For these rea-
sons we use a nearly-incompressible formulation, which allows for small volume variations
[28]. We multiplicatively decompose the deformation gradient F into the isochoric and the
volumetric parts as:

F = FvF, Fv = J
1
3 I, (5)

where J = det(Fv) = det(F), being det(F) = 1, and we weakly enforce the incompressibil-

ity constraint by adding to the strain energy function W̃ a convex term Wvol(J) such that
J = 1 is its global minimum; in this manner, large variations in volume are penalized. We
choose:

Wvol(J) =
B

2
(J + J log J − 1), (6)
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Figure 3: The active strain decomposition of the strain tensor F.

such that the larger is the bulk modulus B ∈ R+, the “stronger” is the enforcement of
the incompressibility constraint. Following [92], we evaluate the isotropic term W1 in

I1 = tr(F
T
F) = J−

2
3I1 (instead of I1). The energy function hence reads:

W = W̃ +Wvol =W1(J−
2
3I1) +W4f (I4f ) +W4s(I4s) +W8fs(I8fs) +Wvol(J).

We now proceed by modeling the active behavior of the myocardium driven by the stretch-
ing of the fibers. By means of the active strain approach [2, 3, 62, 85]. A virtual intermedi-
ate state Ω̂, representing the active part of the deformation, between the reference domain
Ω0 and the deformed one Ω (see Fig. 3) is introduced. The domain Ω̂ is reached from Ω0

by applying a prescribed active transformation (which we will specify later) represented by
the tensor FA. On the other hand, the material’s elastic response to the prescribed active
transformation is embedded in the tensor FE and finally transforms Ω̂ into Ω. Mathemat-
ically, this approach requires a decomposition in the form

F = FEFA = FvFEFA = J
1
3 FEFA, (7)

where we also take into account the factorization (5) for the term FE . Finally, we define
P in Ω0 with respect to the total displacement d of the tissue by applying a pull-back to
the stress computed in the intermediate state Ω̂, i.e.:

P = det(FA)PEF−TA , PE =
∂W(CE , J)

∂FE
.

In Section 2.3, we will provide the explicit form of the tensor FA under the requirement of
symmetry and identity of its determinant. Under these assumptions, the final form of the
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tensor P reads:

P(d,FA) = ae
b
(
J−

2
3 IE1 −3

)
J−

2
3

(
FEF−1

A −
IE1
3

(FEFA)−T
)

+ 2afe
bf〈IE4f−1〉2 〈IE4f − 1

〉
(fE ⊗ fA)

+ 2ase
bs〈IE4s−1〉2 〈IE4s − 1

〉
(sE ⊗ sA)

+ afse
bfs(IE8fs)

2

IE8fs (fE ⊗ sA + sE ⊗ fA)

+
B

2
J

(
1 + log(J)− 1

J

)
(FEFA)−T ,

(8)

where fE = FEf0, fA = F−1
A f0 and analogously sE = FEs0, sA = F−1

A s0.

2.3 Mechanical activation

The activation model of the myocardium represents the link between the electrophysiology
and the tissue (passive) mechanics. Instead of cellular models describing the complex
dynamic taking place inside the sarcomeres [80], we exploit a phenomenological model for
the local shortening of the fibers γf at the macroscopic level. This model has been proposed
in [87] and further developed in [83], and assumes that the evolution of γf is due to the
concentration of calcium ions [Ca2+] and by a feedback from the mechanics (through the
variable d): 

g(c)
∂γf
∂t
− ε∆γf = Φ(c, γf ,d) in Ω0 × (0, T ),

∇γf ·N = 0 on ∂Ω0 × (0, T ),

γf = 0 in Ω0 × {0}.

(9)

Here, g(c) = µ̂Ac
2, while the active force Φ(c, γf ,d) is defined as follows:

Φ(c, γf ,d) = Hc0(c)α(c− c0)2RFL(I4f ) +
5∑
j=1

(−1)j(j + 1)(j + 2)I4fγ
j
f .

With respect to the formulation [83] we added the diffusive term ε∆γf in (9) to yield a
model in the form of a PDE. While this is not strictly motivated by physical considerations,
it can be interpreted as the upscaling of the microscopic activation at the macroscopic
continuum level of the tissue. Moreover, this choice yields a more regular solution γf in
terms of the space variable X, from which the numerical approximation will also benefit.

The contraction of the tissue is triggered by the calcium concentration exceeding a
threshold value c0. The parameters α and µ̂A represent quantities to be properly tuned for
the case under consideration, while RFL is the sarcomere force-length relationship [38] of
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cardiac cells which we represent as truncated Fourier series:

RFL(z) =

(
d0

2
+

3∑
n=1

[
dnsin(nl0z

1/2) + encos(nl0z
1/2)

])
χ[SLmin,SLmax](z

1/2).

The calcium concentration is not explicitly represented in the set of variables w in the
Bueno-Orovio model; however, the variable w3 acts as a generic ion concentration, for
which it can be interpreted as c = [Ca2+]; this choice has been already made in literature
e.g. in [83, 84].

Being γf the solution of (9), we choose the following orthotropic form for the tensor
FA [3, 6, 72, 83, 84]:

FA = I + γf f0 ⊗ f0 + γss0 ⊗ s0 + γnn0 ⊗ n0,

which is symmetric and we set γn = γn(γf ), γs = γs(γf , γn). In analogy with γf , these
functions represent the local shortening (or elongation) of the tissue in the directions s0

and n0, respectively. Following [7], we define γn such that, according to experimental
observations [66], the thickening of the ventricle’s walls is transversely non-homogeneous:

γn = k′(λ)

(
1√

1 + γf
− 1

)
.

Indeed, the latter depends on an independent variable λ which represents the transmural
coordinate, taking the value λendo at the endocardium and the value λepi at the epicardium.
As detailed in [7] - where the results of numerical simulations are compared and validated
against experimental data for strains in the canine LV provided in [66] - this model is able
to capture the transmural heterogeneity of the thickening of the LV. The function k′(λ) is
defined as:

k′(λ) = k
′
(
kendo

λ− λepi
λendo − λepi

+ kepi
λ− λendo
λepi − λendo

)
. (10)

Finally, as anticipated, we set:

γs =
1

(1 + γf )(1 + γn)
− 1.

In this way the condition det (FA) = 1 is fulfilled.

2.4 The coupled model: electromechanics

Writing together Eqs.(3), (4), and (9), the coupled electromechanics problem finally reads:
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

∂V

∂t
+
∑

q∈{fi,so,si}

Iq(V,w) = ∇ · (JF−1DmF−T∇V )− Iapp(t) in Ω0 × (0, T ),

∂w

∂t
= α(V )(w∞(V )−w) + β(V )w in Ω0 × (0, T ),

ρ
∂2d

∂t2
−∇0 ·P(d, γf ) = 0 in Ω0 × (0, T ),

g(w3)
∂γf
∂t
− ε∆γf = Φ(w3, γf ,d) in Ω0 × (0, T ),

(JF−1DmF−T∇V ) ·N = 0 on ∂Ω0 × (0, T ),

(N⊗N)

(
Kη
⊥d + Cη⊥

∂d

∂t

)
+ (I−N⊗N)

(
Kη
‖d + Cη‖

∂d

∂t

)
+ P(d) N = 0 on Γη0 × (0, T ),

P(d) N = pendo(t)N on Γendo0 × (0, T ),

∇γf ·N = 0 on ∂Ω0 × (0, T ),

V = V0, w = (1, 1, 0)T , γf = 0 in Ω0 × {0},

d = d0,
∂d

∂t
= ḋ0 in Ω0 × {0}.

(11)

We remark that at this stage the pressure pendo(t) is still prescribed: however, later in
Section 4.1, we will consider pendo(t) as an additional unknown of the coupled problem,
being the solution of 0D problems (that is, ordinary differential equations) at each of the
phases of the cardiac cycle.

2.5 Prestress

A common problem which has to be considered in biological modeling involving a fluid–
structure interface is that the reference geometry Ω0, acquired from medical images at the
telediastole (the phase immediately before the systole), does not necessarily correspond to
a stress–free configuration. This because the blood exerts a pressure on the endocardium
walls pendo(t) which, at each time instant of the heartbeat, is larger than zero, taking
values ranging approximately from a minimum of 5 mmHg to a maximum of 120 mmHg
in healthy individuals. In turn, this implies that solving problem (4) with a physiological
endocardial pressure pendo > 0 would give rise to non-physiological displacements as the
internal stresses are not in equilibrium with the intraventricular blood’s pressure of LV.
This issue is particularly evident in the case of patient–specific settings since, unlike the
case of idealized geometries, the actual computational geometry is obtained from medical
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images and hence the reference domain Ω0 cannot be arbitrarily chosen. Typically, the LV
geometry is acquired at the so–called telediastole and the electromechanics (or mechanics)
model initiated at this stage. The corresponding pressure is indicated with pendo and the
stressed LV configuration is determined in these conditions. To our knowledge, two strate-
gies have been proposed in literature to address this issue.

Pressure preload [30, 83, 100, 102]: the reference geometry Ω0 is loaded with the prescribed
pressure pendo. This is done by solving the steady variant of the mechanics problem (4)
while gradually incrementing the pressure until the desired value pendo. The displacement
field so obtained is then used as an initial datum d0 for the unsteady problem.

Pressure prestress [46, 99]: we compute an internal stresses distribution such that the refer-
ence geometry is in equilibrium with the blood pressure pendo. An additive decomposition
of the strain tensor P̃ = P(d)+P0 is operated, where the prestress tensor P0 is determined
to ensure a null displacement d0 in correspondance of the assigned pressure pendo.

We adopt the pressure prestress approach since in the preload one the procedure returns
a configuration which might be significantly different with respect to the initial geometry
as shown in [46]. Indeed, we already know the loaded configuration from medical images.
In order to compute P0 according to this approach, we proceed by adapting the method
proposed in [46] to our model by first defining the following mechanical problem:

∇0 ·P(d) = −∇0 ·P0 in Ω0,

(N⊗N)Kη
⊥d + (I−N⊗N)Kη

‖d + P(d) N = 0 on Γη0,

P(d) N = pendo(t)N on Γendo0 .

(12)

Eq. (12) is the steady, passive version of problem (4) with the additive decomposition of
the strain tensor. Moreover, we set

pk =
k

S
pendo, k = 1, . . . , S,

where S ∈ N is the number of steps of the continuation method that we exploit to gradually
increase the pressure value. Then, the fixed point Algorithm 1 is applied to compute P0.
First, we compute the approximation P̃0 =Prestress(100, 10−2, pendo,0) and finally we
set P0 =Prestress(1, 10−5, pendo, P̃0). The additional step is performed to require a
smaller tolerance when the pressure has already reached a closer value of the tensor P̃0 to

the target. We observe that, while
‖P(dmk ,I)‖∞
‖Pm0,k‖∞

−→ 0 for m −→ +∞ in Algorithm 1, the

displacement dm+1
k does not converge to 0 but to a vector which we denote by d̂. However,

we observe that the quantity ‖d̂‖∞ is negligible with respect to the endocardial walls
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thickness, and that this initial displacement ensures that the prestress is in equilibrium
with the pressure at the epicardium. Therefore, we decide to set d0 = d̂ in (11).

Algorithm 1 Prestress computation

function Prestress(S, tol, p, P0,0)

for k = 1, . . . , S do

set m = 1, Pm
0,k = P0,k−1;

repeat

obtain dm+1
k by solving problem (12) with p = pk = k

Sp and P0 = Pm
0,k;

update Pm+1
0,k = Pm

0,k + P
(
dm+1
k , I

)
by means of Eq. (8);

set m = m+ 1;

until
‖P(dmk ,I)‖∞
‖Pm0,k‖∞

< tol

set P0,k = Pm
0,k;

end for

return P0,S

end function

3 Numerical discretization

In this section we describe the numerical approximation of the electromechanics prob-
lem (11). The FEM [77] is used for the space discretization of the PDEs, while BDF [77]
are used for the time discretization.

3.1 Space discretization

We consider a mesh composed of tetrahedrons Th, with h representing the maximum size
of the elements K ∈ Th, such that ∪K∈ThK = Ω0; the mesh elements are pairwise disjoint
and their union Ω0 ⊂ R3 is the region of the space identified by the myocardium in the
telediastolic phase of the heartbeat. In this work, we consider two LV geometries, that
is an idealized prolate ellipsoid (as is often done in literature [30, 39, 83]) and a patient–
specific geometry extracted through a segmentation procedure from 3D MRI images1, as

1The MRI images are provided by Prof. J. Schwitter (Chief physician at the Centre Hospitalier Univer-
sitaire Vaudois CHUV, Lausanne) and Dr. P. Masci in the framework of the collaboration CMCS@EPFL–
CHUV hospital.
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we will describe in Sec. 5.1. We will approximate each of the single core models in the
computational domain with a space discretization based on the FEM. We will denote
by Ndof

V , Ndof
w , Ndof

d , and Ndof
γf

the number of Degrees of Freedom (DoF) (i.e. the size
of the discretized single core model) for the potential, ionic variables, displacement, and
fiber shortening, respectively. The underlying number of nodes determined by the mesh
Th and the degree r is indicated as Nh. Hence, we have that, for scalar PDEs as the
electrophysiology, Ndof

V = Nh.

3.1.1 Monodomain equation

We use the FEM for the spatial approximation of the monodomain equation (1). We
first introduce the finite dimensional space X rh =

{
v ∈ C0(Ω0) : v|K ∈ Pr(K) ∀K ∈ Th

}
,

where Pr(K) is the set of polynomials of degree smaller than or equal to r in the element

K. Moreover, we denote by {ψi}
Ndof
V

i=1 a basis of X rh with Ndof
V = dim (X rh). The projection

of the solution V (t) on X rh can hence be written as Vh(t) =
∑Ndof

V
j=1 Vj(t)ψj and the weak

semidiscrete formulation of the problem reads: given wh(t) and dh(t), find, for all t ∈ (0, T ),
Vh(t) ∈ X rh such that∫

Ω0

V̇hψi dΩ0 +

∫
Ω0

(JF−1
h DmF−Th ∇Vh) · ∇ψi dΩ0

+
∑

q∈{fi,so,si}

∫
Ω0

Iq(Vh,wh)ψi dΩ0 =

∫
Ω0

Iapp(t)ψi dΩ0, ∀ i = 1, . . . , Ndof
V ,

(13)

with Vh(0) =
∑Ndof

V
j=1 (V0, ψj)L2(Ω0) ψj .

By setting Vh(t) = {Vj(t)}
Ndof
V

j=1 and V0,h =
{

(V0, ψj)H
}Ndof

V

j=1
, we rewrite Eq. (13) as a

system of nonlinear ODEs:{
MV̇h(t) + K(dh(t))Vh(t) + Iion(Vh(t),wh(t)) = Iapp(t) t ∈ (0, T ),

Vh(0) = V0,h,
(14)

where:

Mij =

∫
Ω0

ψjψi dΩ0, Kij(dh) =

∫
Ω0

(JF−1
h DmF−Th ∇ψj) · ∇ψi dΩ0

(Iion(Vh,wh))i =
∑

q∈{fi,so,si}

∫
Ω0

Iq (Vh,wh)ψi dΩ0, (Iapp(t))i =

∫
Ω0

Iapp(t)ψi dΩ0.
(15)

We will discuss in Sec. 3.1.3 two different strategies for the approximation of the nonlinear
term Iion(Vh,wh). Moreover, we will use a lumped mass matrix ML in place of M in
Eq. (14) in order to avoid numerical instabilities, a known numerical issue that may occur
in the case of problems with “traveling waves” due to the dominance of zero order terms
over the second order ones [13].
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3.1.2 Ionic model

The ionic model (2) is a system of ODEs that indirectly depends on the space variable

through the transmembrane potential V . By denoting with {xj}N
dof
w

j=1 the set of the degrees
of freedom, we write the equations of the model evaluated at each of these points and
we denote the value of the l-th ionic variable in xj by wlj(t). Similarly, we write Vj(t) =
Vh(xj , t), and finally rearrange the unknowns in the vector wh(t) in the following fashion:

wh(t) =
{

wl
h(t)

}NI
l=1

and wl
h(t) =

{
wlj(t)

}Ndof
w

j=1
. (16)

The problem thus obtained reads: given Vh(t), find, for all t ∈ (0, T ), wh(t) such that

ẇlj + (αl(Vj)− βl(Vj))wlj = αl(Vj)w
∞
l (Vj), (17)

with wlj(0) = wl0, for l = 1, . . . , NI , j = 1, . . . , Ndof
w .

Following the conventions of Eq. (16), system (17) can be conveniently rewritten in alge-
braic form as {

ẇh(t) + U(Vh(t))wh(t) = Q(Vh(t)), t ∈ (0, T ],

wh(0) = w0,h,

where the block matrix U and the block vector Q are defined as

(Q(Vh))m = αl(Vj)w
∞
l (Vj),

(U(Vh))mm = αl(Vj)− βl(Vj),

where m = l Ndof
w + j, for l = 1, . . . , NI , j = 1, . . . , Ndof

w .

3.1.3 Ionic currents

As anticipated in Section 3.1.1, different choices can be made for the approximation of the

term Iion(Vh,wh) in Eq. (13). By denoting with
{
xKs
}Nq
s=1

and
{
ωKs
}Nq
s=1

the quadrature
nodes and the corresponding weights in a generic mesh element K ∈ Th, we consider two
approaches which are investigated, for instance, in [52, 67, 68, 69].

State Variable Interpolation (SVI): the variables Vh and wh in Eq. (15) are evaluated at
the quadrature nodes

∫
Ω0

Iq(Vh,wh)ψi dΩ0 =
∑
K∈Th

 Nq∑
s=1

Iq

Ndof
V∑
j=1

Vj(t)ψj(x
K
s ),

Ndof
V∑
j=1

wj(t)ψj(x
K
s )

ψi(x
K
s )ωKs

 .

This approach corresponds to the standard FEM approximation.
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Ionic Currents Interpolation (ICI): for each element, Iq is evaluated at the degrees of
freedom of V and its value at the quadrature nodes is obtained by interpolation through
the same Lagrangian polynomial basis of degree r used for the FE space.

∫
Ω0

Iq(Vh,wh)ψi dΩ0 ≈
∑
K∈Th

 Nq∑
s=1

Ndof
V∑
j=1

Iq (Vj(t),wj(t))ψj(x
K
s )ψi(x

K
s )ωKs

 .

The two approaches are equivalent if Iq is linear in Vh and wh. Both the approaches tend
to overestimate the conduction velocities if the computational mesh is not “sufficiently”
fine [61], but yield convergent results under h–refinement. The SVI approach corresponds
to a standard FE approximation, while the ICI one yields a faster assembly of the ionic
currents term [52, 67, 83] but introduces an error in the evaluation of Iion(Vh,wh). In
our case, as we will describe in Section 5, the overall time required for the assembly of the
terms of the system arising from the ful discretization of Eq. (11) is mostly determined
by the construction of the mechanics terms, while the assembly of the ionic currents term
does not represent a computational bottleneck; we hence use the SVI method since the
advantage of using ICI here is negligible.

3.1.4 Active and passive mechanics

As previously done for the monodomain equation, we use the FEM to approximate the
momentum equation (4). We denote by [X rh ]3 the finite dimensional subspace of vector

valued functions and by {ψi}
Ndof

d
i=1 its basis. The Galerkin formulation of Eq. (4) reads:

given γf,h(t), find, for all t ∈ (0, T ), dh(t) ∈ [X rh ]3 such that∫
Ω0

ρs
∂2dh
∂t2

·ψi dΩ0 +

∫
Ω0

P(dh, γf,h) : ∇0ψi dΩ0

+
∑

η∈{epi,base}

∫
Γη0

(
(N⊗N)

(
Kη
⊥dh + Cη⊥

∂dh
∂t

)
+ (I−N⊗N)

(
Kη
‖dh + Cη‖

∂dh
∂t

))
·ψi dΓ0

=

∫
Γendo0

pendo(t)N ·ψi dΓ0, ∀i = 1, . . . , Ndof
d ,

with dh(0) =
∑Ndof

d
η=1

(
d0,ψj

)
[L2(Ω0)]3

ψj and ḋh(0) =
∑Ndof

ḋ
η=1

(
ḋ0,ψj

)
[L2(Ω0)]3

ψj .

We rewrite it in algebraic form as:{
ρsMd̈h(t) + Fḋh(t) + Gdh(t) + S(dh(t), γf,h(t)) = pendo(t) t ∈ (0, T ],

dh(0) = d0,h, ḋh(0) = ḋ0,h,
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where, in particular,

Fij =
∑

η∈{epi,base}

∫
Γη0

(
Cη⊥(N⊗N) + Cη‖ (I−N⊗N)

)
ψj ·ψi dΓ0,

Gij =
∑

η∈{epi,base}

∫
Γη0

(
Kη
⊥(N⊗N) +Kη

‖ (I−N⊗N)
)
ψj ·ψi dΓ0,

and

Si(dh(t), γf,h(t)) =

∫
Ω0

P(dh, γf,h) : ∇0ψi dΩ0.

Finally, we once again use the FEM to discretize in space the equation for the unknown
γf : given ch(t) and dh(t), find, for all t ∈ (0, T ), γf,h(t) ∈ Xh such that∫

Ω0

∂γf,h
∂t

ψi dΩ0 + ε

∫
Ω0

1

g(ch)
∇γf,h · ∇ψi dΩ0

−
∫

Ω0

1

g(ch)
Φ(ch, γf,h,dh)ψi dΩ0 = 0, ∀i = 1, . . . , Ndof

γf
,

with γf,h(0) = 0. We highlight that, with respect to Eq. (9), we divided each term by g(ch)
to avoid the nonlinearity in the time derivative term.

Thus, we obtain the following system of ODEs:{
Mγ̇f,h(t) + εK(c(t))γf,h(t) + Φ(c(t),γf,h(t),d(t)) = 0 t ∈ (0, T ],

γf,h(0) = 0.

3.2 Time discretization

After having applied the space discretization to the single core models, we obtain the
semi–discretized formulation of problem (11) in the form of a nonlinear system of ODEs.
We denote by z = (zw, zV , zγf , zd)T the block vector containing the unknowns of each
semi–discrete single core problem, where the ordering of the unknowns will be motivated
in Section 3.2.2, and we write:

Mz(t) + T(z(t)) = h(t) t ∈ (0, T ],

z(0) = z0,

żd(0) = ḋ0,h,

(18)

where

M = diag

(
d

dt
,

d

dt
,

d

dt
,

d2

dt2

)
,
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is a differential operator which applies a first order time derivative to the ionic variables,
the transmembrane potential and the fibers shortening (motivating the division by g(ch) of
the corresponding equation), while a second order time derivative to the displacement. In
order to obtain a fully discretized formulation, we use the BDF for the time approximation
of Eq. (18). Hence, we write:

żi(t
n+1) ≈ 1

∆t

(
ϑ

(I)
0 zn+1

i − zRHSi

)
, zRHSi =

σ∑
k=1

ϑ
(I)
k z

n−k+1
i ,

z̈i(t
n+1) ≈ 1

(∆t)2

(
ϑ

(II)
0 zn+1

i − zRHSi

)
, zRHSi =

σ+1∑
k=1

ϑ
(II)
k zn−k+1

i ,

where ∆t = T
NT

is the timestep, NT being the number of timesteps, while the parameters

ϑ
(I)
k , ϑ

(II)
k , k = 0, . . . , σ depend on the order σ of the BDF scheme. We will in particular

use BDF of order σ = 1 and 2, and will consider two schemes for the time discretization
of the monolithic problem: a fully implicit and a semi–implicit one.

In the implicit case, we obtain the following nonlinear system:

A(zn+1) = bn+1 n = σ, . . . , NT − 1, (19)

with zk assigned for k = 0, . . . , σ and we set for simplicity ḋ0,h = 0. Problem (19) is solved
by exploiting the Newton method [77] at each timestep.

In the semi–implicit case, on the other hand, we extrapolate the variables in the non-
linear term A(zn+1) by means of the Newton–Gregory backward polynomials [16] – as is
done, e.g., for the Navier–Stokes equations in [36] – thus yielding a linear system at each
timestep. The extrapolated variables are evaluated as a linear combination of the variables
at previous timesteps, with an approximation of the same order σ of the BDF scheme:

zi(t
n+1) ≈ z∗i =

σ∑
k=1

βkz
n−k+1
i .

We then avoid the nonlinear terms by partially evaluating A in the extrapolated variable
z∗, i.e. we approximate the nonlinear term as

A(zn+1) ≈ A(z∗)zn+1 + gn+1 for n = σ, . . . , NT − 1.

By recalling Eq.(19), we hence obtain a system in the form:

A(z∗)zn+1 = b̃n+1 n = σ, . . . , NT − 1, (20)

with zk assigned for k = 0, . . . , σ and b̃n+1 = hn+1 − gn+1.
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3.2.1 The implicit scheme

By applying the Newton method [77] to (19), we iteratively solve for n = σ, . . . , NT −1 the
linear problem {

Jn+1
k δzn+1

k+1 = −rn+1
k ,

zn+1
k+1 = zn+1

k + δzn+1
k+1 ,

(21)

for k = 0, . . . , until some convergence criterion is met. Jn+1
k is the Jacobian matrix of A

evaluated in the zn+1
k and is endowed with the following block structure:

Jn+1
k =



Jw(Vn+1
k ) JwV(wn+1

k ,Vn+1
k ) 0 0

JVw(wn+1
k ,Vn+1

k ) JV(dn+1
k ) 0 JVd(Vn+1

k ,dn+1
k )

Jγfw(wn+1
k ,γf

n+1

k
,dn+1

k ) 0 Jγf
(wn+1

k ,γf
n+1

k
,dn+1

k ) Jγfd(wn+1
k ,γf

n+1

k
,dn+1

k )

0 0 Jdγf
(γf

n+1

k
,dn+1

k ) Jd(γf
n+1

k
,dn+1

k )


,

while the residual is defined as rn+1
k = bn+1 −A(zn+1

k ).

3.2.2 The semi–implicit scheme

In this case, the block structure of the matrix associated to linear system (20) to be solved
is sparser with respect to the implicit one, as A is a block lower triangular matrix endowed
with only one extra diagonal block for each n = σ, . . . , NT − 1:

A(z∗) =



Aw(V∗) 0 0 0

AVw(w∗,V∗) AV(d∗) 0 0

0 0 Aγf (w∗,γf
∗,d∗) 0

0 0 0 Ad(γf
∗,d∗)


. (22)

The matrix (22) is block lower triangular thanks to the ordering of the variables in the elec-
trophysiology model (18): indeed, by swapping the ionic and the electric blocks we would
have obtained a block upper triangular matrix. The semi-implicit scheme has the clear
advantage of avoiding, at each timestep, the solution of a nonlinear problem. Moreover,
both the assembly of the system matrix A(z∗) and the solution of the linear system (20)
require smaller computational time than in the implicit case.

On the other hand, semi–implicit schemes may impose strong limitations on the timestep
size ∆t to ensure stability. This is indeed what we observe from our numerical tests: the
maximum timestep size that we used in order to ensure stability for the semi–implicit
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scheme is at least one order of magnitude smaller than the one that used for the implicit
one, for which accuracy is the main factor driving the choice of ∆t. This, in turn, makes
the computational cost of the semi–implicit scheme much larger than the implicit one, es-
pecially when considering the simulation of a full heartbeat. By analyzing the behavior of
the linear solver (which we will detail in Section 4) and the residual of the system (20), we
observe that numerical instabilities are driven by the mechanics block: we conclude that
the strong nonlinearity of the Piola–Kirchhoff tensor (8) and the presence of the exponen-
tial terms in particular yield evaluations of the stress tensor P(d∗h, γ

∗
f,h) in the extrapolated

variables that are not “sufficiently” close to P(dn+1
h , γn+1

f,h ), unless the timestep is signifi-
cantly “small”. Indeed, instability does not appear in numerical simulations of the isolated
electrophysiology problem, even using a larger timestep with respect to the one used for
the monolithic problem, thusconfirming that the bottleneck in the choice of ∆t is due to
the mechanics core model.

We will further investigate this issue in the future; however, for the next numerical
simulations of this paper we will consider only the implicit scheme.

4 Linear solver: the preconditioning strategy

We rewrite, for the sake of simplicity, the linear system associated to a single Newton
iteration for the implicit scheme (21) in the following form:

J δz = −r, (23)

where

J =


J11 J12 0 0

J21 J22 0 J24

J31 0 J33 J34

0 0 J43 J44

 .
We use the GMRES method [88] for the solution of the linear problem (23) as J is non-
symmetric and the distribution of the eigenvalues of its spectrum is not known a priori.

The choice of the preconditioner is critical in order to ensure the convergence of the
linear solver; while this is true in general, it is even more relevant in the case of monolithic
multiphysics problems [50]. Indeed, using a black–box algebraic preconditioner for prob-
lem (23) the information related to each differential problem associated to a single core
model would be neglected; we instead consider a strategy exploiting such information at
the block level, that is we create a preconditioner that exploits the “physics” of the coupled
problem at the level of the block structure. Following [26, 27, 34] for FSI problems, we
propose a block Gauss-Seidel preconditioner P obtained by dropping the upper triangular
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blocks of matrix J, i.e. the off–diagonal blocks, thus obtaining:

P =


J11 0 0 0

J21 J22 0 0

J31 0 J33 0

J 0 J43 J44

 .
P can then be factorized into four model–specific nonsingular matrices, namely Pion, Ppot,
Pact, and Pmec corresponding to the ionic, the potential, the activation, and the mechanics
single core models, respectively:

P =


J11 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I


︸ ︷︷ ︸

P1=Pion


I 0 0 0

J21 J22 0 0

0 0 I 0

0 0 0 I


︸ ︷︷ ︸

P2=Ppot


I 0 0 0

0 I 0 0

J31 0 J33 0

0 0 0 I


︸ ︷︷ ︸

P3=Pact


I 0 0 0

0 I 0 0

0 0 I 0

0 0 J43 J44

 .
︸ ︷︷ ︸

P4=Pmec

This decomposition can also be interpreted as an inexact factorization of matrix J. The
preconditioned version of problem (23) then reads:{

JP−1y = −r

Pδz = y.
(24)

Since each diagonal block Jii appears in a distinct factor Pi, for i = 1, . . . , 4, then physics–
specific ad–hoc preconditioners can be efficiently used to approximate its inverse. Indeed,
we define the symbolic operation δz = P−1y in (24) as the application of the following
sequential steps 

δzw = J−1
11 yw,

δzV = J−1
22 (yV − J21δzw),

δzd = J−1
33 (yd − J31δzw),

δzγf = J−1
44 (yγf − J43δzd);

(25)

the solution of each linear system in (25) is carried out by using again the GMRES method
and by exploiting Algebraic Multigrid (AMG) preconditioners [11]. This new precondi-
tioner P can be regarded as a generalization of the FaCSI preconditioner for FSI problems
proposed in [27] (see also [26, 34]).

4.1 Cardiac cycle

For our simulations we will consider a full heartbeat, by taking the conventional duration of
T = 0.8 s. With this aim, we take into account for the interaction of the endocardium with
the blood by modeling the pressure pendo as in Eq. (11). Before introducing the models
used to describe such pressure, we first recall that the heartbeat is conventionally split into
four phases (see Fig. 4):
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Figure 4: The Wiggers diagram [49] of the left heart depicting the aortic, ventricular, and
atrial pressures and the ventricular volume, as well as the four phases of the cardiac cycle.

1. an isovolumic contraction phase in which the endocardial pressure pendo(t) increases
from the End Diastolic Pressure (EDP) to the value measured in the aorta (about
95 mmHg). This increment is driven by the early stages of the LV contraction;

2. an ejection phase characterized by a decrement in the ventricular volume V endo(t)
due to the contraction of the LV forcing the blood to flow through the aortic valve;

3. an isovolumic relaxation phase during which pendo(t) decreases as a consequence of
the LV early relaxation;

4. a filling phase starting with the opening of the mitral valve causing an increment of
V endo(t) until pendo(t) reaches the EDP value.

We compute the volume V endo(t) at time n by exploiting the formula

V endo,n =

∫
Γendo0

J(dnh)ξ · F−T (dnh)N dΓ0, (26)

which is rigorously derived in [83] and where ξ is a vector directed as the centerline of the
LV. We then model the endocardial pressure pendo(t) with different 0D models, following
[30, 83, 106], for each of the aforementioned phases (in the following, we drop the “endo”
superscript for simplicity):
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1. Isovolumic phase I: At each timestep, we iteratively solve problem (11) by updating
at each subiteration the pressure in the following manner:

pn+1
k+1 = pn+1

k +
V n+1
k − V n

Cp
k = 0, . . . (27)

with pn+1
0 = pn, V n+1

0 = V n, until the condition
|V n+1
k −V n|
V n < ε is satisfied. The

parameter Cp < 0 has to be “sufficiently” large in order for the fixed point algorithm
to converge. This phase ends when the pressure pn+1

k+1 reaches the value p = 95 mmHg.

2. Ejection phase: A two-element Windkessel model [109] of the form:
C
dp

dt
= − p

R
− dV

dt
t ∈ (T ′, T ′′]

p(T ′) = p

(28)

is solved in the pressure variable with a BDF scheme of order σ = 1 while the term
dV
dt is approximated at time n+1 as V n−V n−1

∆t , for simplicity. T ′ and T ′′ are the initial
and final time of this phase, respectively, while the parameters C,R > 0 represent the
capacitance and resistance of the equivalent electric circuit. This phase ends when
the (initially negative) term dV

dt changes sign.

3. Isovolumic phase II: Modeled as the first isovolumic phase. This phase ends when
the pressure reaches the minimal value of p = 5 mmHg.

4. Filling phase: The pressure is linearly increased at each timestep so that it reaches
the EDP value at the final time T . We are aware that this is not fully coherent with
the real behavior of the diastolic phase, but a model for the muscle and the function
of the left atrium are not taken into account in this work. Future work should better
address this points to represent the full heartbeat in a detailed fashion.

Even if (28) is strongly coupled with (11) during the ejection phase, we solve the two
problems with a staggered approach, for simplicity.

5 Numerical simulations

We now describe the geometries used for the numerical simulation of the integrated elec-
tromechanics problem. As anticipated in Section 3, we use both an idealized prolate geome-
try and a patient–specific geometry segmented from MRI images as detailed in Section 5.1.
Moreover, in Section 5.2, we outline the procedure that is exploited to define the fibers
and the sheets fields on the different meshes. We conclude this Section by showing and
analyzing the results of the simulations.
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Figure 5: The patient–specific mesh and its projection on three slices of the 3D MRI image
from which it was segmented.

5.1 Patient–specific geometry segmentation

Image segmentation is the process of locating regions of interest (ROI) in the form of a
subset of pixels [41]. In biomedical applications, this accounts to assign different flags
to regions containing different types of tissues and/or fluids. This result, depending on
the properties of the biological material which is to be segmented, can often be achieved
through semi–automatic or automatic procedures (see e.g. [32, 48, 105] for arteries and
blood vessels and [10, 108] for the Purkinje network), exploiting a large set of different
techniques. However, since the development of algorithms for the segmentation of the
chambers of the heart [71, 113, 114] is beyond the scope of this work, we used a manual
procedure based on the brightness of the pixels of the aforementioned 3D MRI images.
We first apply a threshold filter to select the smallest set of pixels containing the whole
myocardium; then, we manually remove artifacts and features that we decide to neglect
such as the papillary muscles and the upper part of the LV. Finally, a Gaussian smoothing
procedure [110] was performed to improve the quality of the mesh. The result is shown in
Figure 5.

The image was taken at the end of the diastolic phase, that is when the LV reaches its
maximum enlargement. The internal volume of the patient–specific myocardium at this
stage of the heartbeat measures approximately 95 ml.

5.2 Fibers and sheets distribution

Unlike the geometry, the fibers and sheets field distribution in the myocardium may not
be extracted from medical images such as MRIs unless special procedures are applied [79].
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Figure 6: Meshes of the ideal prolate LV geometry (left), together with the fibers (center)
and the sheets (right) fields. The finer meshes (b) and (c) are obtained by hierarchical
refinement of the coarsest mesh (a).

For this reason, several mathematically rule–based definition of the fields have been used
in literature [37, 55, 60, 85], which try to approximate their orientation. At the epicardium
and at the endocardium, the fiber direction is tangential to the boundary, while the sheet
direction belongs to the plane identified by the normal and the ventricle centerline. Then,
in the most general case, angles αendo, αepi, βendo, and βepi, representing the inclination
of the fibers and the sheets with respect to the base plane, are assigned. Finally, the
direction of fibers and sheets inside the myocardium is determined by a transmurally linear
mapping. A first study of the influence of the angles on both the conductivity and the
deformation was carried out in [30]. Since this kind of analysis goes beyond the scope of
this work, we will consider for both the idealized and the patient–specific geometries the
algorithm proposed in [111] and further developed in [83], thereforse setting αendo = −60◦,
αepi = +60◦, βendo = βepi = 0◦. In Figure 6, we show the fields obtained by applying the
algorithm to a set of subsequently refined ideal meshes, while in Figure 7 the same is done
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Figure 7: Mesh of the patient–specific mesh (left), together with the fibers (center) and
the sheets (right) fields.

for the patient–specific mesh.

5.3 Numerical results

We setup a total of five numerical simulations, each for a single heartbeat, using the
four meshes shown in Figures 6-7. The monodomain, the activation, and the mechanics
equations are approximated with Pr elements; the ionic model equations, on the other hand,
are solved in the degrees of freedom determined by the discretization of the monodomain
equations (e.g. the vertices of the tetrahedrons if r = 1). We set r = 1 for each mesh in
order to limit the size of the monolithic system and, additionally, r = 2 for the coarse mesh
only. This yields a linear system of size M = 8×Nh. A second order BDF scheme (σ = 2)
is considered for the time discretization in all cases to ensure A-stability while maximizing
the convergence order [77]. The information on the meshes and on the simulations is
summarized in Tables 1 and 2, respectively.

Geometry Mesh h # Vertices # Elements

Idealized
(Fig. 6)

(a) 4.6 mm 1’827 3’010
(b) 2.3 mm 11’658 12’040
(c) 1.2 mm 81’335 416’000

Patient–specific
(Fig. 7)

(d) 0.8 mm 126’031 637’379

Table 1: Information about the three idealized meshes and the patient–specific mesh:
average edge length h, number of vertices and number of elements for each mesh.
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Geometry Mesh r M # CPUs

Idealized

(a) 1 14’616 1
(b) 1 93’264 6
(c) 1 650’680 45
(a) 2 93’264 6

Patient–specific (d) 1 1’008’248 72

Table 2: The meshes, the polynomial degree r of the FEM approximation, the size M of
the monolithic linear system, and the number of threads used for each simulation.

We use LifeV2, an open–source finite element library for the solution of problems de-
scribed by PDEs in a High Performance Computing framework, to implement the numer-
ical methods. All the computations were carried out using Piz Daint, a Cray XC50/XC40
supercomputer installed at the Swiss National Supercomputing Center (CSCS)3.

As detailed in Section 4 we exploit the Newton method for the solution of the nonlinear
system (19) by setting a maximum number of 5 iterations per timestemp. Moreover we use
the relative residual as stopping criterion, with a tolerance equal to 10−7. At each Newton
iteration (21), as detailed in Section 4, we use the GMRES method for the inversion of
the blocks Jii, i = 1, . . . , 4 together with AMG preconditioners by taking into account the
number of underlying PDEs of each block; we exploit the ML package [35] of the Trilinos
library [42] by performing three sweeps of the Gauss–Seidel algorithm for pre– and post–
smoothing, while the solution on the coarsest level is obtained through an LU factorization.
We consider the relative residual as stopping criterion for the GMRES method, with a
tolerance equal to 10−8.

For simplicity, we initiate the electric signal propagation by applying at the same time
2–milliseconds long stimuli at three distinct points on the endocardium; we remark that,
even if this pacing strategy is not fully realistic since the electrical signal delivered by the
Purkinje network activates asynchronously hundreds of cells [82, 107], it provides physically
meaningful results. The other parameters used for the simulations are reported in Table 3.

We compare in Figure 8 the transmembrane potential obtained using r = 1 elements
on the three idealized meshes at different times. As expected, the conduction velocities
are overestimated when the mesh size is not sufficiently fine [9, 29]. The same conclusion
can be drawn by observing the plots in Figure 9, where the transmembrane potential
sampled at the apex is represented against time: the delay of the action potential (the
quick depolarization of the tissue followed by a slow repolarization [21]) in the finer meshes
is due to the longer time needed for the wave to reach the apex. We display in Figure 10

2https://cmcsforge.epfl.ch
3http://www.cscs.ch
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Figure 8: The transmembrane potential at different times for the idealized geometry with
r = 1. First row: mesh (a); second row: mesh (b); third row: mesh (c).

the transmembrane potential for the patient–specific case at the same instants.
We observe from Figure 9 a difference of several milliseconds in the complete activation

of the myocardium, which is significant in the electrophysiology characteristic time scales.
However, because of the multiscale nature of the integrated problem, the mechanics is
not affected by such delay as can be observed in Figure 11. Here, the only remarkable
difference between the three results is the underestimation of the displacement magnitude
in the simulation with the coarsest mesh (a). In this case, the number of degrees of freedom
is not sufficient to either fullfill the nearly–incompressible constraint nor to represent the
large deformations observable in the other two cases. The deformation of the patient–
specific mesh (d) at the same times is shown in Figure 12. In both the idealized and
the patient–specific cases, a significant thickening of the myocardium walls takes place,
which is in accordance with experimental observations [78]. The model, with the set of
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σt σl λepi λendo kepi kendo k
′

α c0 µ̂1
A µ̂2

A µ̂3
A µ̂4

A ρ

17.61 120.4 0.8 0.5 0.75 1.0 -7.0 -6.0 0.05 2.1 7.0 12 500 10−3

B Kepi
⊥ Kbase

⊥ Kepi
‖ Kbase

‖ Cepi⊥ Cbase⊥ Cepi‖ Cbase‖ CIp CIIp C R

50 10 1500 0 10−4 5 1 0 0 -0.5 -0.09 4.5 0.035

Table 3: Parameters used in the electromechanical model: transversal and longitudinal
conductivities (mm

2

s ) in Eq. (1); transmurally heterogeneous wall thickening model param-
eters in Eq. (10); activation model coefficients α (µM−2), c0, and µ̂A (µM2 · s) in the
four cardiac phases in Eq. (9); density ρ ( g

mm3 ), bulk modulus B (kPa), Robin boundary

condition coefficients (kPamm and kPa·s
mm ) in Eqs. (4) - (6); relaxation parameter for the two

isochoric phases CIp and CIIp ( kPa
mm3 ) in Eq. (27); Windkessel model parameters C and R

(mm
3

kPa and kPa·s
mm ) in Eq. (28).

parameters in Table 3, produces however a significant rotation of the LV: a recent work
[73] suggests that this behavior is related to the choice of the incompressibility constraint,
the bulk modulus B magnitude, and the boundary conditions. As a first step towards the
investigation of this aspect, we report in Figure 13 the muscle obtained with different values
of the bulk modulus B, while all the other parameters are kept unchanged with respect to
Table 3 Larger values of B correspond to a larger torsion, more accentuated and uniform
along the ventricle’s walls; moreover, the thickening of the myocardium is larger when the
bulk modulus is smaller as expected, since the incompressibility condition becomes weaker.
However, the imposition of a stronger volumetric constraint through B negatively affects
the conditioning of the system matrix J in (23), and forces the linear solver to perform
more iterations in order to reach convergence. We will further focus on this issue in future
works.

In order to better evaluate the ability to describe the LV activity of the integrated
numerical model for a full cardiac cycle, pressure–volume (pV) loops are also represented. A
comparison with in–vivo measurements would be pointless in the case of the ideal geometry,
however we stress the fact that the pV–loops reported in Figure 14 are in both qualitative
and quantitative agreement with those observed experimentally as e.g. in [86]; moreover, the
maximal endocardial pressure, which is reached during the ejection phase, is approximately
110 mmHg and hence lays well within the physiological range of average individuals [90].
The difference between the four cases in Figure 14 accounts to a maximum variation of
about 2 % in the minimal ventricle volume during the second isochoric phase.

The pV–loop for the patient–specific case is reported in Figure 15. Experimental mea-
surements of the pressure and of the volume for the patient under study were not available,
therefore we did not carry on a quantitative comparison of our results against patient–
specific data. However, we once again observe that the values of the pV–loop are in line
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Figure 9: The transmembrane potential at the apex of the myocardium over time for the
three ideal meshes, using P1 elements.

with real data [86]. We conclude this section by reporting in Table 4, the timestep used
for each simulation, the average number of Newton iterations, the average number of fixed
point iterations for each of the two isochoric phases, and the average time spent for different
operations during a single timestep. The overall time required for the complete simula-
tions is also reported. Table 4 clearly shows that finer meshes require larger computational
resources for a full heartbeat simulation (T tot), and this is mostly due to the longer time
required for the solution of a single linear system. On the other hand, we notice that the
proposed preconditioner ensures that the convergence of the GMRES method is obtained

with a relatively small number of iterations N
G

even with large linear system sizes.

6 Conclusions

In this work, we proposed a novel monolithic solver for the simulation of the integrated
electromechanics problem for the LV of the human heart. We coupled the monodomain
equation, the ionic minimal model, the activation model for the fibers contraction, and the
myocardial mechanics in the active strain framework; then, we approximated the coupled
problem in a monolithic fashion. The interaction of the myocardium with the blood inside
the ventricle was taken into account by prestressing and by solving additional 0D problems
for the fluid.

We considered both implicit and semi–implicit BDF schemes, however the strong limi-
tations on the timestep size in the semi–implicit case are such that the implicit scheme is
by far more efficient when considering one or multiple heartbeat simulations.

The results obtained by simulating a complete heartbeat with both ideal and patient–
specific geometries are qualitatively in agreement with physiological values measured in
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Figure 10: The transmembrane potential at different times for the patient–specific geome-
try.

healthy patients. Moreover, the comparison of the simulations on the idealized geometry
with different mesh sizes shows that the proposed numerical model is able to capture the
physical solution with satisfactory accuracy even in the case of relatively coarse meshes.
From our simulations we observe that choosing a mesh with maximum size h of about 2 mm
is sufficient to correctly reproduce the contraction of the LV, while negligible differences to
the corresponding pV–loops are observable when using finer meshes.
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[70] M. Pennacchio, G. Savaré, and P. Colli Franzone. Multiscale modeling for the bioelec-
tric activity of the heart. SIAM Journal on Mathematical Analysis, 37(4):1333–1370,
2005.

[71] J. Peters, O. Ecabert, C. Meyer, H. Schramm, R. Kneser, A. Groth, and J. Weese.
Automatic whole heart segmentation in static magnetic resonance image volumes.
Medical Image Computing and Computer-Assisted Intervention–MICCAI, (1):402–
410, 2007.

[72] S. Pezzuto. Mechanics of the heart: constitutive issues and numerical experiments.
PhD thesis, Politecnico di Milano, Italy, 2013.

[73] S. Pezzuto and D. Ambrosi. Active contraction of the cardiac ventricle and distortion
of the microstructural architecture. International Journal for Numerical Methods in
biomedical Engineering, 30(12):1578–1596, 2014.
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