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WEIGHTED REDUCED BASIS METHOD FOR STOCHASTIC

OPTIMAL CONTROL PROBLEMS WITH ELLIPTIC PDE

CONSTRAINT

PENG CHEN ∗ AND ALFIO QUARTERONI ∗ †

Abstract. In this paper we develop and analyze an efficient computational method for solving
stochastic optimal control problems constrained by elliptic partial differential equation (PDE) with
random input data. We first prove both existence and uniqueness of the optimal solution. Regularity
of the optimal solution in the stochastic space is studied in view of the analysis of stochastic approx-
imation error. For numerical approximation, we employ finite element method for the discretization
of physical variables and stochastic collocation method for the discretization of random variables. In
order to alleviate the computational effort, we develop a model order reduction strategy based on a
weighted reduced basis method. A global error analysis of the numerical approximation is carried
out and several numerical tests are performed to verify our analysis.
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1. Introduction. Optimal control problems are often associated to partial dif-
ferential equations (PDEs) when modeling physical processes in several fields of ap-
plied sciences. The cost functional to minimize or maximize expresses the discrepancy
between the optimal solution of the PDE model and suitable experimental measure-
ments or observations with a possible additional regularization term of the control
function. In practical applications, uncertainties arising from various sources, for
instance the PDE coefficients, boundary conditions, external loadings, experimental
measurements, may have a significant impact on the optimal solution. Mathematical
theories and computational methods have been developed for many years in dealing
with deterministic optimal control problems without taking the uncertainties into ac-
count [17, 12, 32], while stochastic optimal control problems with PDE constraints and
random inputs have gained substantial attention only recently [14, 13, 27, 16, 31, 7].

When solving stochastic optimal control problems, several challenging issues de-
serve attention. Among those we mention the following that will be addressed in
this work: the well-posedness of the stochastic optimal problem, including proof of
existence, uniqueness and regularity of the stochstic optimal solution, the set up of
efficient approximation methods in both physical space and probability space, espe-
cially when the latter is in high dimensions leading to the “curse-of-dimensionality”,
the ill conditioning and coupled nature of the optimality system derived from the
optimal control problems that make its numerical solution very involved.

About well-posedness, following Lions’ theory [17] for optimal control problems
in deterministic cases [12, 32], existence of optimal solution of stochastic optimal con-
trol problems can be obtained in many different problem settings, see [14, 13, 16].
In addition, Brezzi-Rappaz-Raviart theory (see [14, 13]) has also been invoked to
prove existence of a Lagrangian multiplier for stochastic optimal control problems con-
strained by steady diffusion equations with deterministic distributed control function
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and Neumann boundary control function, respectively. In [7], the authors formulated
the stochastic optimal control problem constrained by an advection-diffusion equation
with a random advection field and boundary control function into a stochastic saddle
point problem and employed Brezzi theorem [4] to obtain both existence and unique-
ness properties of the stochastic optimal solution. We mention that the uniqueness
of optimal solution for stochastic optimal control problems in more general settings,
e.g. with parabolic or nonlinear PDE constraints, boundary or distributive control
functions, various extensions of cost functional [31], are still open.

When it comes to the numerical approximation of the stochastic optimal control
problems, one may directly apply some well developed methods for deterministic ap-
proximation in physical space, for instance finite element method with appropriate
preconditioning techniques [22, 32]. As for stochastic approximation in the probabil-
ity space, besides the application of the fast convergent stochastic Galerkin method
[13, 27], the recent works [27, 31, 16, 7] made use of the stochastic collocation method
[33, 1, 21], which is a non-intrusive method featuring both easy implementation and
fast convergence, thus avoiding solving a tensor-product large algebraic system en-
countered by the intrusive stochastic Galerkin method. Finally, sequential quadratic
programming and trust-region algorithm were applied together with stochastic collo-
cation method in [31] and [16] to alleviate computational cost in solving the optimality
system. However, when the optimality system becomes very expensive to solve, more
efficient techniques are needed in order to solve the optimality system for many times.
In this perspective, model order reduction techniques such as proper orthogonal de-
composition or reduced basis method are promising, see [18, 19] for the application
of the latter method in solving parametrized optimal control problems.

In this paper, we consider the stochastic optimal control problem constrained by
a linear elliptic equation with distributed stochastic control function. We provide an
analysis of well-posedness, that is existence, uniqueness and stability of the stochastic
optimal solution of this stochastic optimal control problem for the first time. We
use finite element method with (optimal) preconditioning techniques for determinis-
tic approximation of the optimal solution in physical space and stochastic collocation
method for stochastic approximation in the probability space. To reduce the com-
putational cost of solving a considerable number of optimality systems, we develop a
model order reduction strategy based on a weighted reduced basis method, leading to
a reduced optimality system that enables many-query solutions with a posteriori error
estimate. Analysis of a global error of the stochastic optimal solution and its statistics
is carried out by studying error contributions from different sources: the finite element
approximation, the stochastic collocation approximation, and the weighted reduced
basis approximation. Convergence results and computational efficiency and accuracy
are verified and illustrated by numerical tests in multi-dimensional probability space.

The paper is organized as follows: in section 2 we state the stochastic optimal
control problems with elliptic PDE constraints and random inputs. Section 3 is de-
voted to the study of the mathematical properties of the stochastic optimal control
problems Analytic regularity of the stochastic optimal solution in probability space
is obtained in section 4 via recursively using Brezzi’s theorem for stability estimate.
In section 5, we present numerical approximation to solve the stochastic optimality
system, followed by section 6 for both separate and global error estimates of the pro-
posed numerical approximations. Numerical tests for verification and illustration of
our method are reported in section 7. We close the paper by drawing some conclusions
and indicating possible future developments in the last section 8.
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2. Problem statement. Let (Ω,F, P ) be a complete probability space, where Ω
is a set of outcomes ω ∈ Ω, F is a σ-algebra of events and P : F → [0, 1], P (Ω) = 1, is a
probability measure. Let D be an open and bounded physical domain in R

d (d = 2, 3)
with Lipschitz continuous boundary ∂D. Let v : D×Ω → R represent a random field,
which is a real-valued random function defined in D for each outcome ω ∈ Ω. We
define the product Hilbert space Hs(D) := L2(Ω)⊗Hs(D), s ∈ R equipped with the
norm

||v||Hs(D) :=

(∫

Ω

||v(·, ω)||2Hs(D)dP (ω)

)1/2

< ∞, (2.1)

where Hs(D) is the Hilbert space of functions defined in the physical domain D
[24, 22]. When s = 0, we denote H0(D) ≡ L2(D), and thus H0(D) ≡ L2(D) by
convention. Similar to its deterministic counterpart, we define the stochastic inner
product

(w, v) =

∫

Ω

∫

D

wvdxdP (ω) ∀w, v ∈ L2(D). (2.2)

2.1. Karhunen-Loève expansion. Suppose that the random field v has a con-
tinuous and bounded covariance function defined as

C[v](x, x′) := E[(v(x, ·)− E[v](x)))(v(x′, ·)− E[v](x′)))], ∀x, x′ ∈ D, (2.3)

where the expectation E[v] of the random field v is given by

E[v](x) :=

∫

Ω

v(x, ω)dP (ω), ∀x ∈ D. (2.4)

Then by Mercer’s theorem [26], for almost every (a.e.) ω ∈ Ω, the following Karhunen-
Loève expansion holds

v(x, ω) = E[v](x) +

∞
∑

n=1

√

λnvn(x)yn(ω), ∀x ∈ D, (2.5)

where 0 < λ1 ≤ λ2 ≤ · · · are the positive eigenvalues of the covariance function
C[v], vn, n = 1, 2, . . . , are the orthonormal eigenfunctions, and yn, n = 1, 2, . . . , are
uncorrelated random variables with zero mean and unit variance. Moreover, the
truncated Karhunen-Loève expansion defined as

vN (x, ω) := E[v](x) +

N
∑

n=1

√

λnvn(x)yn(ω), ∀x ∈ D, (2.6)

represents the best N -term approximation of the random field v in Hs(D). The
associated approximation/truncation error reads

||v − vN ||Hs(D) =

(

∞
∑

n=N+1

λn||vn||2Hs(D)

)1/2

. (2.7)

When s = 0, we have ||vn||H0(D) = 1, n = 1, 2, . . . , and the approximation error
becomes the sum of all the eigenvalues except the first N terms. Provided that the



4 PENG CHEN AND ALFIO QUARTERONI

covariance function is smooth, the eigenvalues decay exponentially fast to zero [30].
In general, we can make the following assumption for a random field of interest.

Assumption 1. The random field v : D × Γ → R depends on finite dimen-
sional independent random variables y := (y1, . . . , yN ) : Ω → R

N with bounded image

Γ :=
∏N

n=1 Γn ⊂ R
N and joint probability density function ρ :=

∏N
n=1 ρn : Γ → R.

Moreover, for the sake of simplicity, we assume

v(x, y) = v0(x) +

N
∑

n=1

vn(x)yn(ω) =

N
∑

n=0

vn(x)yn, (2.8)

where we can identify v0 = E[v], y0 = 1 and vn =
√
λnvn or yn =

√
λnyn, n =

1, . . . , N for a random field with the truncated Karhunen-Loève expansion (2.6).
Under Assumption 1, the product Hilbert space Hs(D) can be rewritten as

Hs(D) := L2
ρ(Γ)⊗Hs(D) with associated norm

||v||Hs(D) :=

(∫

Γ

||v(·, y)||2Hs(D)ρ(y)dy

)1/2

< ∞. (2.9)

2.2. Stochastic elliptic PDEs. We consider the following elliptic homogeneous
Dirichlet boundary value problem

{

−∇ · (a(x, y)∇u(x, y)) = f(x, y) + g(x, y) (x, y) ∈ D × Γ,
u(x, y) = 0 (x, y) ∈ ∂D × Γ,

(2.10)

where a is a random coefficient field, f is a random force field and g is a random
field representing a distributed control. We make the following assumptions for the
random data

Assumption 2. The random coefficient a is uniformly bounded from above and
below, i.e. there exist positive constants 0 < r < R < ∞ such that

P
(

ω ∈ Ω : r||v||2H1(D) ≤ (a(·, y(ω))v, v) ≤ R||v||2H1(D)

)

= 1, ∀v ∈ H1(D). (2.11)

The random force term f and random control function g have bounded second moment
∫

Γ

∫

D

f2(x, y)ρ(y)dxdy < ∞ and

∫

Γ

∫

D

g2(x, y)ρ(y)dxdy < ∞. (2.12)

Moreover, the random fields a and f admit the linear expansion (2.8) as

a(x, y(ω)) = a0(x)+

N
∑

n=1

an(x)yn(ω) and f(x, y(ω)) = f0(x)+

N
∑

n=1

fn(x)yn(ω). (2.13)

Let us denote y0 = 1 for ease of notation. Under Assumption 2, we have the
following weak formulation for problem (2.10): find u ∈ H1

0(D) such that

B(u, v) = F(v) + G(v) ∀v ∈ H1
0(D), (2.14)

where H1
0(D) := {v ∈ H1(D), v = 0 on ∂D}, G(v) = (g, v) and the bilinear form B

and the linear functional F are defined as

B(u, v) =
N
∑

n=0

∫

Γ

(Bn(u, v)yn) ρ(y)dy and F(v) =

N
∑

n=0

∫

Γ

(Fn(v)yn) ρ(y)dy, (2.15)
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with Bn(u, v) = (an∇u,∇v);Fn(v) = (fn, v), n = 0, . . . , N . We denote y0 = 1.
Theorem 2.1. Provided that the data satisfy Assumption 2, there exists a unique

solution u ∈ H1
0(D) of problem (2.14) such that

||u||H1
0
(D) ≤ (1/r)

(

||f ||L2(D) + ||g||L2(D)

)

. (2.16)

Proof. The proof follows directly from that of the deterministic case [24, 22].

2.3. Constrained optimal control problems. Optimal control problems con-
strained by stochastic elliptic PDEs consist in finding a stochastic optimal control
function g∗ ∈ L2(D) that minimizes a cost functional J (u, g) under an elliptic PDE
constraint: find (u∗, g∗) ∈ U such that

J (u∗, g∗) = min
(u,g)∈U

J (u, g) subject to problem (2.14), (2.17)

where U is an admissible solution space defined without loss of generality as U =
H1

0(D)⊗ L2(D), and the quadratic cost functional is defined as [13, 7]

J (u, g) = E

[

1

2

∫

D

|u− ud|2dx+
α

2

∫

D

|g|2dx
]

, (2.18)

in which ud ∈ L2(D) is provided as an observation function, e.g. the mean of a
sequence of experimental measures, α is a positive regularization parameter.

Theorem 2.2. There exists an optimal solution (u∗, g∗) ∈ U to problem (2.17).
Proof. The proof is straightforward by following Lions’ argument for deterministic

optimal control problems [17], see also similar proof in [13] for stochastic cases.
Remark 2.1. When higher moments, e.g. variance, of the observational data

ud or the control function g, or the probability distribution of ud are incorporated into
the cost functional in more general settings as considered in [31], we face essentially
nonlinear and fully coupled stochastic problems, which will be addressed in [8].

3. Saddle point formulation. In this section, we introduce the stochastic op-
timality system and derive a saddle point formulation of the optimal control problem
(2.17). By establishing the equivalence between the optimality system and saddle
point problem, we shall prove that there exists a unique solution to both the optimal-
ity system and the optimal control problem.

3.1. Stochastic optimality system. Let us first derive the stochastic optimal-
ity system to the optimal control problem (2.17) by Lagrangian approach [32]. Define
the following stochastic Lagrangian functional associated to problem (2.17) as

L(u, g, p; y) = J (u, g) + B(u, p)−F(p)− G(p), (3.1)

where p ∈ H1
0(D) is named the adjoint variable or Lagrangian parameter [32]. By

taking Gâteaux derivative of the Lagrangian functional (3.1) with respect to the
variables p, g, u evaluated at q, h, v, we obtain the first order necessary optimality
conditions of the stochastic optimal control problem (2.17) - the stochastic optimality
system:







B(u, q)− G(q) = F(q) ∀q ∈ H1
0(D),

(αg − p, h) = 0 ∀h ∈ L2(D),
B′(p, v) + (u, v) = (ud, v) ∀v ∈ H1

0(D),
(3.2)
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where B′ is the adjoint bilinear form of B, B′(p, v) = B(v, p). As a consequence
of Theorem 2.2, it has been proven in [14, 13] that there exists an adjoint variable
p∗ ∈ H1

0(D) associated to the optimal solution (u∗, g∗) such that (u∗, g∗, p∗) is a
solution of the stochastic optimal system (3.2). In the following, we will show that
(u∗, g∗, p∗) is the unique solution to system (3.2); moreover, (u∗, g∗) is also the unique
solution of the stochastic optimal control problem (2.17).

3.2. Saddle point formulation. Define the following bilinear form

A(u, v) := (u, v) + α(g, h) ∀u, v ∈ U , (3.3)

where the new variables u, v are given by u = (u, g) ∈ U and v = (v, h) ∈ U ; A and
the cost functional J are related as

J (u, g) =
1

2
A(u, u)− (ud, u) +

1

2
(ud, ud). (3.4)

By defining the new observation function ud = (ud, 0) ∈ U , we introduce the following
cost functional (for ease of notation, we still use J )

J (u) :=
1

2
A(u, u)− (ud, u), (3.5)

which is different from the original cost functional (3.4) because of the constant
(ud, ud)/2. Similarly, let the bilinear form B in the optimality system (3.2) be re-
defined as

B(u, q) := B(u, q)− G(q) ∀u ∈ U , q ∈ H1
0(D). (3.6)

In the following, the definition of B will be identified by its first argument. To this
end, we can rewrite the optimal control problem (2.17) equivalently as

min
u∈U

J (u) subject to B(u, q) = F(q), ∀q ∈ H1
0(D). (3.7)

The following proposition establishes the equivalence of the stochastic optimal
control problem (3.7) and the stochastic saddle point problem (3.12) [4, 3, 19]. Its
proof follows directly from its deterministic counterpart, see [4].

Proposition 3.1. Suppose that the bilinear form A is symmetric, non-negative
and continuous, i.e. there exists a constant γ > 0 such that

A(u, v) = A(v, u),A(u, u) ≥ 0 and A(u, v) ≤ γ||u||U ||v||U , ∀u, v ∈ U , (3.8)

Moreover, suppose that A is strongly coercive on the kernel space U0 := {u ∈ U :
B(u, q) = 0, ∀q ∈ H1

0(D)}, i.e. there exists constant ς > 0 such that

A(u, u) ≥ ς||u||2U , ∀u ∈ U0. (3.9)

Suppose also that the bilinear form B is continuous, i.e. there exists constant δ > 0
such that

B(u, q) ≤ δ||u||U ||q||H1
0
(D), ∀u ∈ U , q ∈ H1

0(D), (3.10)

and satisfies the compatibility (inf-sup) condition, i.e. there exists constant β > 0
such that

inf
q∈H1

0
(D)

sup
v∈U

B(v, q)
||v||U ||q||H1

0
(D)

≥ β. (3.11)
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Then the optimal control problem (3.7) is equivalent to the following saddle point
problem: find (u, p) ∈ U ⊗H1

0(D) such that

{

A(u, v) + B(v, p) = (ud, v) ∀v ∈ U ,
B(u, q) = F(q) ∀q ∈ H1

0(D).
(3.12)

3.3. Equivalence, uniqueness and existence. We provide our main results
in the section. The first result is about equivalence, stated in the following lemmas.

Lemma 3.2. Under the definition (3.3) for A and (3.6) for B, the stochastic
optimal control problem (2.17) admits an equivalent saddle point formulation (3.12).

Proof. By Proposition 3.1, we only need to verify all the properties for the bilinear
forms A and B specified in the assumption of Proposition 3.1. Let us begin with A.

Properties of A: From the definition (3.3), we have that A is symmetric and
non-negative. As for the continuity property, we have

A(u, v) ≤ ||u||L2(D)||v||L2(D) + α||g||L2(D)||h||L2(D)

≤ ||u||U ||v||U , ∀u, v ∈ U , (3.13)

where the first inequality is due to Cauchy-Schwarz inequality [24] and the second
one is a result of ||v||L2(D) ≤ ||v||H1

0
(D) := ||v||L2(D) + ||∇v||L2(D), ∀v ∈ H1

0(D) and

the definition of the norm ||v||U = ||v||H1
0
(D) +

√
α||h||L2(D). To show that A is

strongly coercive in U0, we have B(u, q) = 0, ∀q ∈ H1
0(D) when u ∈ U0, thus B(u, q) =

(g, q), ∀q ∈ H1
0(D), and Theorem 2.1 holds with f = 0. Consequently, we obtain

A(u, u) = ||u||2L2(D) + α||g||2L2(D)

≥ αr2

2
||u||2H1

0
(D) +

α

2
||g||2L2(D)

≥ min

{

αr2

4
,
1

4

}

(

||u||H1
0
(D) +

√
α||g||L2(D)

)2

= min

{

αr2

4
,
1

4

}

||u||2U , ∀u ∈ U0,

(3.14)

where we split the second term into two equal parts and used the estimate (2.16) for
the first inequality, the second inequality is a result of Cauchy-Schwarz inequality.
Therefore, the strong coercivity of the bilinear form A holds by the estimate (3.14).

Properties of B: The continuity of the bilinear form B : U⊗H1
0(D) → R defined

in (3.6) is shown by

B(u, q) ≤ R||u||H1
0
(D)||q||H1

0
(D) + ||g||L2(D)||q||L2(D)

≤ max

{

R,
1√
α

}

||u||U ||q||H1
0
(D), ∀u ∈ U , q ∈ H1

0(D),
(3.15)

where the first inequality comes from Assumption 2 with R defined in (2.11) and
Cauchy-Schwarz inequality, and the second one is a result of the definition of the
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norms || · ||U and || · ||H1
0
(D). As for the compatibility (inf-sup) condition of B, we have

inf
q∈H1

0
(D)

sup
v∈U

B(v, q)
||v||U ||q||H1

0
(D)

= inf
q∈H1

0
(D)

sup
v∈U

B(v, q)− (h, q)

(||v||H1
0
(D) +

√
α||h||L2(D))||q||H1

0
(D)

≥ inf
q∈H1

0
(D)

sup
(v,0)∈U

B(v, q)
||v||H1

0
(D)||q||H1

0
(D)

≥ r,

(3.16)

where we set h = 0 in the first inequality and the second one holds by Assumption 2
with coercivity constant r > 0. Hence, the inf-sup condition is verified for B.

Lemma 3.3. The stochastic saddle point problem (3.12) is equivalent to the
stochastic optimality system (3.2).

Proof. Let us first rewrite the saddle point formulation (3.12) more explicitly as:
find (u, g, p) ∈ H1

0(D)⊗ L2(D)⊗H1
0(D) such that

{

(u, v) + α(g, h) + B(v, p)− (h, p) = (ud, v) ∀v ∈ H1
0(D), ∀h ∈ L2(D),

B(u, q)− (g, q) = F(q) ∀q ∈ H1
0(D).

(3.17)

We can see that (3.2)1 is the same as (3.17)2. By setting h = 0 (respectively, v = 0)
in (3.17)1, we can retrieve (3.2)3 (respectively, (3.2)2). On the other hand, by adding
3.2)2 to 3.2)3 and noting that B′(p, v) = B(v, p), we obtain (3.17)1.

Remark 3.1. Lemma 3.2 and Lemma 3.3 imply that to solve the stochastic
optimal control problem (2.17) is equivalent to solve the stochastic optimality system
(3.2), being not only the first order necessary condition but also a sufficient condition.

The main result for existence and uniqueness are stated in the following theorems.
Theorem 3.4. There exists a unique solution (u, p) ∈ U⊗H1

0(D) to the stochastic
saddle point problem (3.12). Moreover, we have the following a-priori estimates

||u||U ≤ α1||ud||L2(D) + β1||f ||L2(D), (3.18)

and

||p||H1
0
(D) ≤ α2||ud||L2(D) + β2||f ||L2(D), (3.19)

where the positive constants α1, α2, β1, β2 are given by

α1 =
1

r′
, α2 =

1

r
(1 +Rα1), β1 =

α1

r
(r′ +R) , β2 =

R

r
β1, (3.20)

being r and R defined in (2.11) and r′ = min{αr2/4, 1/4)} is set according to (3.14)
with regularization parameter α introduced in (3.4).

Proof. The result is due to Brezzi’s theorem [4] in the stochastic setting, whose
proof inherits directly from its deterministic counterpart, see [4] or [24].

Theorem 3.5. There exists a unique solution to the stochastic optimal control
problem (2.17), which is the unique solution of the stochastic optimality system (3.2).

Proof. The result is a consequence of the results in Lemma 3.2 and Lemma 3.3
for the equivalence of the stochastic optimal control problem (2.17), the stochastic
saddle point problem (3.12) and the stochastic optimality system (3.2) as well as the
result in Theorem 3.4 for existence and uniqueness of a solution to (3.12).
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4. Stochastic regularity. In order to derive error estimates for the numerical
approximation of the stochastic optimal control problem (2.17), we first study the
regularity of the optimal solution in the stochastic space. In particular, we consider
the stochastic regularity of the saddle point problem (3.12) in semi-weak formulation,
i.e. weak formulation only in deterministic space: ∀y ∈ Γ, find (u(y), p(y)) ∈ U ⊗ V
(where U := H1

0 (D)⊗ L2(D) and V := H1
0 (D)) such that

{

A(u(y), v) +B(v, p(y); y) = (ud, v) ∀v ∈ U,
B(u(y), q; y) = F (q; y) ∀q ∈ V,

(4.1)

where the semi-weak bilinear forms A and B and linear functional F are the deter-
ministic counterparts (without taking stochastic integral

∫

Γ
·ρ(y)dy) of A, B and F

defined in (3.3), (3.6) and (2.15), respectively. Note that B depends on y also through
the random coefficient a(y) and F through the random force f(y).

Theorem 4.1. For every multi-index ν = (ν1, . . . , νN ) ∈ N
N , with |ν| = ν1 +

· · · + νN , the |ν|-th order partial derivative of the solution of (4.1) with respect to y,

defined as ∂ν
y (·) = ∂|ν|(·)

∂
ν1
y1

···∂
νN
yN

, are bounded by

||∂ν
yu(y)||U + ||∂ν

yp(y)||V ≤C |ν|+1|ν|!||a||ν∞ (||ud||2 + ||f(y)||2)
+ C |ν|

∑

n:νn 6=0

|ν − en|!||a||ν−en
∞ ||fn||2 ∀y ∈ Γ, (4.2)

where || · ||∞ and || · ||2 are shorthand notations standing for || · ||L∞(D) and || · ||L2(D),

||a||ν∞ :=
∏N

n=1 ||an||νn
∞ where an, fn, 1 ≤ n ≤ N are defined in (2.13), en is a N -

dimensional vector with the n-th element equal to 1 and other elements zeros, the
constant C = α1 + α2 + β1 + β2.

Proof. The proof is based on a recursive procedure and the use of Brezzi’s theorem
for stability estimate. When |ν| = 0, by Theorem 3.4 in the deterministic setting we
have

||u(y)||U+||p(y)||V ≤ (α1+α2)||ud||2+(β1+β2)||f(y)||2 ≤ C(||ud||2+||f(y)||2), (4.3)

which satisfies (4.2). For |ν| ≥ 1, by taking |ν|-th order derivative of (4.1) with respect
to y, we obtain


















A(∂ν
yu(y), v) +B(v, ∂ν

yp(y); y) = −
∑

n:νn 6=0

νn(an∇v,∇∂ν−en
y p(y)) ∀v ∈ U,

B(∂ν
yu(y), q; y) = (∂ν

y f(y), q)−
∑

n:νn 6=0

νn(an∇∂ν−en
y u(y),∇q) ∀q ∈ V,

(4.4)

where ∂ν
y f(y) vanishes for all |ν| > 1 due to assumption (2.13). By applying Brezzi’s

theorem 3.4 in the deterministic setting, we obtain the stability estimate for the
solution (∂ν

yu(y), ∂
ν
yp(y)) ∈ U ⊗ V to the problem (4.4) as

||∂ν
yu(y)||U + ||∂ν

yp(y)||V ≤ (β1 + β2)||∂ν
y f(y)||2

+
∑

n:νn 6=0

νn||an||∞
(

(β1 + β2)||∂ν−en
y u(y)||U + (α1 + α2)||∂ν−en

y p(y)||V
)

≤ C||∂ν
y f(y)||2 + C

∑

n:νn 6=0

νn||an||∞
(

||∂ν−en
y u(y)||U + ||∂ν−en

y p(y)||V
)

,

(4.5)
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for which we have summed up the two stability estimates in Theorem 3.4 and used the
inequalities ||∇∂ν−en

y u(y)||2 ≤ ||∂ν−en
y u(y)||U and ||∇∂ν−en

y p(y)||2 ≤ ||∂ν−en
y p(y)||V .

For |ν| = 1, i.e. ν = en, for some 1 ≤ n ≤ N , the result (4.2) can be obtained by
substituting (4.3) into (4.5). For ν ≥ 2, suppose that the result (4.2) holds for ν̃ with
|ν̃| = |ν| − 1, i.e. ν̃ = ν − en for some 1 ≤ n ≤ N , we are about to verify that it also
holds for ν. From (4.5), where the first term vanishes as |ν| ≥ 2, we have by induction

||∂ν
yu(y)||U + ||∂ν

yp(y)||V
≤ C

∑

n:νn 6=0

νn||an||∞
(

||∂ν−en
y u(y)||U + ||∂ν−en

y p(y)||V
)

,

≤ C
∑

n:νn 6=0

νn||an||∞
(

C |ν−en|+1|ν − en|!||a||ν−en
∞

(

||ud||2 + ||f(y)||2
))

+ C
∑

n:νn 6=0

νn||an||∞



C |ν−en|
∑

m:(ν−en)m 6=0

|ν − en − em|!||a||ν−en−em
∞ ||fm||2





= C |ν|+1





∑

n:νn 6=0

νn



 (|ν| − 1)!||a||ν∞ (||ud||2 + ||f(y)||2)

+ C |ν|
∑

m:νm 6=0





∑

n:(ν−em)n 6=0

νn



 (|ν − em| − 1)!||a||ν−em
∞ ||fm||2

= C |ν|+1|ν|!||a||ν∞ (||ud||2 + ||f(y)||2) + C |ν|
∑

m:νm 6=0

|ν − em|!||a||ν−em
∞ ||fm||2,

(4.6)

where we have used |ν − en| = |ν| − 1 for the first equality.

Based on this regularity result, we can prove the following result about the ana-
lytic extension of the solution of problem (4.1) to a complex domain.

Theorem 4.2. The solution of problem (4.1) can be analytically extended to the
complex region

Σ :=

{

z ∈ C
N : ∃ y ∈ Γ such that

N
∑

n=1

C||an||∞|zn − yn| < 1 holds

}

. (4.7)

In particular, we consider the following subregion for error estimates

Σ(Γ; τ) := {z ∈ Σ : ∃ y ∈ Γ such that |zn − yn| ≤ τn, 1 ≤ n ≤ N}, (4.8)

where τ = (τ1, . . . , τN ) is the largest possible vector with positive elements.

Proof. For every y ∈ Γ, the Taylor expansion of the solution (u, p) of the problem
(4.1) about y is given by

u(z) =
∑

ν

∂ν
yu(y)

ν!
(z − y)ν and p(z) =

∑

ν

∂ν
yp(y)

ν!
(z − y)ν , (4.9)

where (z − y)ν =
∏N

n=1(zn − yn)
νn . From the regularity result stated in Theorem
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4.1, we have

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

ν

∂ν
yu(y)

ν!
(z − y)ν

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

U

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

ν

∂ν
yp(y)

ν!
(z − y)ν

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

V

≤
∑

ν

|z − y|ν
ν!

(

||∂ν
yu(y)||U + ||∂ν

yp(y)||V
)

≤
∑

ν

|z − y|ν
ν!

C |ν|+1|ν|!||a||ν∞ (||ud||2 + ||f(y)||2)

+
∑

ν

|z − y|ν
ν!

C |ν|
∑

n:νn 6=0

|ν − en|!||a||ν−en
∞ ||fn||2,

(4.10)

where |z − y| = (|z1 − y1|, . . . , |zN − yN |). To proceed, we need the generalized
Newton binomial formula: for any N -dimensional vector with complex element η =
(η1, . . . , ηN ) ∈ C

N , and for every k = 0, 1, 2, . . . , we have

∑

|ν|=k

k!

ν!
ην =

(

N
∑

n=1

ηn

)k

, (4.11)

by which we can evaluate the first term of (4.10) as

∑

ν

|z − y|ν
ν!

C |ν|+1|ν|!||a||ν∞ (||ud||2 + ||f(y)||2)

= C (||ud||2 + ||f(y)||2)
∑

ν

|ν|!
ν!

(C||a||∞|z − y|)ν

= C (||ud||2 + ||f(y)||2)
∞
∑

k=0

∑

|ν|=k

k!

ν!
(C||a||∞|z − y|)ν

= C (||ud||2 + ||f(y)||2)
∞
∑

k=0

(

N
∑

n=1

C||an||∞|zn − yn|
)k

< ∞,

(4.12)

where ||a||∞|z−y| := (||a1||∞|z1−y1|, . . . , ||aN ||∞|zN−yN |). The first term converges
thanks to the condition satisfied in the complex region (4.7). As for the second term
of (4.10), we have

∑

ν

|z − y|ν
ν!

C |ν|
∑

n:νn 6=0

|ν − en|!||a||ν−en
∞ ||fn||2

≤
N
∑

n=1

||fn||2
||an||∞

∑

ν

|ν|!
ν!

(C||a||∞|z − y|)ν < ∞,

(4.13)

where we have used |ν − en| < |ν|, 1 ≤ n ≤ N, νn 6= 0 for the first inequality.
Assumption 2 for the data a and f , which implies ||an||∞ > 0 and ||fn||2 < ∞, 1 ≤ n ≤
N , together with the estimate (4.12) guarantee the convergence in (4.13). Therefore,
the solution of the problem (4.1) can be analytically extended in Σ defined in (4.7).
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5. Numerical approximation. Thanks to the equivalence of the stochastic op-
timal control problem (2.17) and its saddle point formulation (3.12), it is sufficient
to consider numerical approximation of (3.12) to solve (2.17), which involves both
deterministic approximation of the optimal solution in the physical domain D and
stochastic approximation in the probability domain Γ. In this section, we employ
a finite element method with suitable preconditioning techniques [29, 22] for deter-
ministic approximation and a stochastic collocation method [33, 1, 21] for stochastic
approximation. In order to alleviate the global computational cost, we propose the
model-order reduction strategy empowered by a weighted reduced basis method [10].

5.1. Finite element method. Given a regular triangulation Th of the physical
domain D̄ ⊂ R

d with mesh size h [24, 22], we define the finite element space

Xh = Xk
h := {vh ∈ C0(D̄) : vh|K ∈ Pk ∀K ∈ Th}, k ≥ 1, (5.1)

where C0(D̄) is the space of continuous functions in D̄, Pk, k ≥ 1, is the space of
polynomials of degree less than or equal to k in the variables x1, . . . , xd. Given any
y ∈ Γ, by applying Galerkin projection of the solution (u(y), p(y)) in the finite element
space Uh ⊗Xh ⊂ U ⊗H1

0 (D), where Uh := Xh ⊗Xh, we obtain the semi-weak saddle
point problem (4.1) in finite element formulation as: find (uh(y), ph(y)) ∈ Uh ⊗Xh

{

A(uh(y), vh) +B(vh, ph(y); y) = (ud, vh) ∀vh ∈ Uh,
B(uh(y), qh; y) = F (qh; y) ∀qh ∈ Xh.

(5.2)

All the conditions in Proposition 3.1 are satisfied in the deterministic settings for the
bilinear forms A and B in (5.2) with the choice of finite element space Uh ⊗Xh. In
particular, following the same argument in the proof of the compatibility condition
in (3.16), we have that B satisfies the compatibility condition in Uh ⊗Xh. Therefore,
there exists a unique solution of problem (5.2), expanded on finite element bases as

uh(x, y) =

Nh
∑

i=1

ui(y)φi(x), gh(x, y) =

Nh
∑

i=1

gi(y)φi(x), ph(x, y) =

Nh
∑

i=1

pi(y)φi(x), (5.3)

where φi, 1 ≤ i ≤ Nh are the finite element bases in Xh, Nh is the number of degrees-
of-freedom (d.o.f). The algebraic formulation of (5.2) reads

(

Ah BT
h (y)

Bh(y) 0

)(

uh(y)
ph(y)

)

=

(

udh

fh(y)

)

, (5.4)

which can be written in a more explicit formulation corresponding to the optimality
system (3.2) in the deterministic setting as





Mh 0 CT
h (y)

0 αMh −MT
h

Ch(y) −Mh 0









uh(y)
gh(y)
ph(y)



 =





udh

0
fh(y)



 . (5.5)

Notations have the following meanings: Ah = (Mh, 0Nh×Nh
; 0Nh×Nh

, αMh) with

(Mh)i,j = (φj , φi), (0Nh×Nh
)i,j = 0, 1 ≤ i, j ≤ Nh, (5.6)

Bh(y) = (Ch(y);−Mh) with

(Ch(y))i,j = (a(y)∇φj ,∇φi), 1 ≤ i, j ≤ Nh, (5.7)
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the finite element optimal solution is uh(y) = (uh(y);gh(y)), with

uh(y) = (u1(y), . . . , uNh
(y))T , gh(y) = (g1(y), . . . , gNh

(y))T , (5.8)

the adjoint variable ph(y) is defined as

ph(y) = (p1(y), . . . , pNh
(y))T , (5.9)

the right hand side udh = (udh;0Nh
),udh, fh(y) as

(udh)i = (ud, φi), (0Nh
)i = 0, fh(y) = (f(y), φi), 1 ≤ i ≤ Nh. (5.10)

When α ≪ 1 and Nh ≫ 1, the matrix of the linear system (5.5) is ill-conditioned with
very large condition number, leading to computational challenge for direct solve of
(5.5). We prefer using GMRES iterations with the following (optimal) preconditioner
[29, 23]

P =





M̂h 0 0

0 αM̂h 0

0 0 Ĉh(ȳ)M
−1
h ĈT

h (ȳ)



 , (5.11)

where M̂h is approximated by symmetric Gauss-Seidel method and Ĉh represents an
algebraic multigrid V-cycles approximation for Ch at a reference value ȳ ∈ Γ [25].

5.2. Stochastic collocation method. Stochastic collocation method adopts a
non-intrusive approach for approximating the random solution of stochastic problems
[33, 1, 21]. It features the advantages of fast convergence of the intrusive (usually hard
to implement) stochastic Galerkin method and easy implementation of the slow con-
vergent Monte-Carlo method. In this section, we present the construction of stochastic
collocation method with both tensor-product [1] and sparse-grid structures [33, 21].

5.2.1. Tensor-product structure. Let us define

C(Γ;X) := {v : Γ → X|v is continuously measurable and max
y∈Γ

||v(y)||X < ∞}.
(5.12)

Let Pm(Γ) be a space of polynomials with degree less than or equal to m in every
coordinate y1, . . . , yN , we define the Lagrangian interpolation operator Ii : C(Γ;X) →
Pm(i)−1(Γ)⊗X as

Iiv(y) = (U i1 ⊗ · · · ⊗ U iN )v(y) =

m(i1)
∑

j1=1

· · ·
m(iN )
∑

jN=1

v(yj11 , . . . , yjNN )

N
⊗

n=1

ljnn (yn), (5.13)

where U in : C(Γn;X) → Pm(in)−1(Γn)⊗X is a one-dimensional Lagrangian interpo-

lation operator based on the collocation nodes y1n, . . . , y
m(in)
n , 1 ≤ n ≤ N , reads

U inv(yn) =

m(in)
∑

jn=1

v(yjnn )ljnn (yn) with ljnn (yn) =
∏

1≤k≤m(in):k 6=jn

yn − ykn

yjnn − ykn
, (5.14)

i = (i1, . . . , iN ) ∈ N
N , and m(k) is a function of k depending on the choice of colloca-

tion nodes, e.g. m(k) = 1 when k = 1 and m(k) = 2k+1, 1 ≤ n ≤ N when k > 1 [21].
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With the definition of Lagrangian interpolation operator (5.13) in a tensor product
structure, we can approximate statistics of interest, e.g. expectation, by

E[v] ≈ E[Iiv] =
m(i1)
∑

j1=1

· · ·
m(iN )
∑

jN=1

v(yj11 , . . . , yjNN )

N
∏

n=1

wjn
n , (5.15)

where wjn
n =

∫

Γn
ljnn (yn)ρ(yn)dyn, 0 ≤ jn ≤ m(in), 1 ≤ n ≤ N represent quadrature

weights. Accuracy of stochastic collocation approximation depends on the choice of
the collocation nodes, the most popular of which are Clenshaw-Curtis abscissas, Gauss
abscissas of certain orthogonal polynomials corresponding to the joint probability
density function ρ, e.g. Gauss-Hermite abscissas for normal density function, [21, 5].

5.2.2. Sparse-grid structure. The tensor-product structure of the stochastic
collocation method results in an exponential growth of collocation nodes with respect
to dimensions, which prevent its application in high dimensional problems. In or-
der to alleviate the heavy computational burden, we take advantage of sparse-grid
structure for the stochastic collocation approximation with Smolyak interpolation
Sq : C(Γ;X) → Pm(q−N+1)−1(Γ)⊗X [21]

Sqv(y) =
∑

q−N+1≤|i|≤q

(−1)q−|i|

(

N − 1
q − |i|

)

(

U i1 ⊗ · · · ⊗ U iN
)

v(y), (5.16)

where |i| = i1 + · · ·+ iN with the multivariate index i ≥ 1 and q ≥ N . Thanks to the
difference operator △in = U in − U in−1 with U0 = 0, the Smolyak interpolant admits
the alternative formulation

Sqv(y) =
∑

i∈X(q,N)

(△i1 ⊗ · · · ⊗ △iN )v(y)

= Sq−1v(y) +
∑

|i|=q

(△i1 ⊗ · · · ⊗ △iN )v(y),
(5.17)

with the multivariate index set defined as

X(q,N) :=

{

i ∈ N
N
+ , ∀in ≥ 1 :

N
∑

n=1

in ≤ q

}

, (5.18)

which enables hierarchical sparse-grid construction with nested collocation nodes,
e.g. nested Clenshaw-Curtis nodes and Gauss-Patterson nodes [15]. The number of
collocation nodes of the sparse grid interpolation (5.17) is much less than that of the
interpolation on tensor-product grid but still grows exponentially with respect to the
dimension of the problem. In order to tackle high dimensional problem (in the order
of O(100)), we have to take different importance of each dimension into account by
applying anisotropic sparse grid interpolation formula [20], reading as

Sα
q v(y) =

∑

i∈Xα(q,N)

(△i1 ⊗ · · · ⊗ △iN )v(y), (5.19)

where the anisotropic multivariate index set Xα(q,N) is defined as

Xα(q,N) :=

{

i ∈ N
N
+ , ∀in ≥ 1 :

N
∑

n=1

αnin ≤ min
1≤n≤N

αnq

}

(5.20)
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with a positive multivariate weight α = (α1, . . . , αN ), which can be obtained by
a priori or a posteriori estimate [20], or dimension adaptive algorithm [11]. Note
that the isotropic sparse grid interpolation (5.17) is a particular anisotropic case
as α = 1. Evaluation of statistics based on the isotropic/anisotropic sparse-grid
stochastic collocation method, e.g. expectation, is straightforward by the following
approximation

E[Sα
q v] =

∑

i∈Xα(q,N)

E
[(

(U i1 − U i1−1)⊗ · · · ⊗ (U iN − U iN−1)
)

v(y)
]

. (5.21)

5.2.3. Stochastic approximation. In applying stochastic collocation method
to solve the stochastic optimal control problem (2.17), we first solve the algebraic
optimality system (5.5) at a series of prescribed collocation nodes, or realizations
of the random vector y ∈ Γ, and then evaluate statistics of interest, e.g. the cost
functional (3.4) or the expectation of the solution, by formula (5.15) for tensor-product
quadrature or (5.21) for sparse-grid quadrature.

5.3. Weighted reduced basis method. Solving the optimization problem
(5.5) is rather expensive when Nh becomes very large and only a few tens or hundreds
of complete solves of the system (5.5) may become affordable in practice. Then the
stochastic collocation method (even with (anisotropic) sparse-grid structure [21, 20])
can hardly be employed because the number of collocation nodes easily overpasses this
computational constraint, especially for high dimensional problems. The approach
that we propose relies on a weighted reduced basis method [10].

5.3.1. Reduced basis method. For any given choice of y ∈ Γ, e.g. the collo-
cation points used by stochastic collocation method, we seek a reduced basis solution
(ur(y), pr(y)) ∈ UNr

⊗Xp
Nr

such that

{

A(ur(y), vr) +B(vr, pr(y); y) = (ud, vr) ∀vr ∈ UNr
,

B(ur(y), qr; y) = F (qr; y) ∀qr ∈ Xp
Nr

,
(5.22)

where the reduced basis space UNr
= Xe

Nr
⊗ Xg

Nr
and Xp

Nr
are constructed from

“snapshots” - solutions of (5.5) at some selected samples yn, 1 ≤ n ≤ Nr, i.e.

Xu
Nr

= span{uh(y
n), 1 ≤ n ≤ Nr},

Xg
Nr

= span{gh(yn), 1 ≤ n ≤ Nr},
Xp

Nr
= span{ph(yn), 1 ≤ n ≤ Nr}.

(5.23)

Note that in order to guarantee the assumptions in Proposition 3.1 in reduced basis
space, in particular the inf-sup condition for system (5.22), we use an enriched reduced
basis space Xe

Nr
as union of Xu

Nr
and Xp

Nr
[19], i.e.

Xe
Nr

= Xu
Nr

∪Xp
Nr

= span{uh(y
n), ph(y

n), 1 ≤ n ≤ Nr}. (5.24)

For the sake of algebraic stability in assembling the reduced basis matrices and per-
forming Galerking projection [28], we orthonormalize the snapshots in the reduced ba-
sis space Xe

Nr
and Xg

Nr
by Gram-Schmidt process with respect to the inner-products

(a(ȳ)∇·,∇·) (ȳ being a reference value, e.g. the center of Γ) and (·, ·), yielding

Xe
Nr

= {ζen, 1 ≤ n ≤ 2Nr} and Xg
Nr

= {ζgn, 1 ≤ n ≤ Nr}. (5.25)
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Let the reduced basis solution at y ∈ Γ be written as

ur(y) =

2Nr
∑

n=1

un(y)ζ
e
n, gr(y) =

Nr
∑

n=1

gn(y)ζ
g
n, pr(y) =

2Nr
∑

n=1

pn(y)ζ
e
n, (5.26)

and the solution coefficient vector at y ∈ Γ as ur(y) = (u1(y), . . . , u2Nr
(y))T , gr(y) =

(g1(y), . . . , gNr
(y))T , pr(y) = (p1(y), . . . , p2Nr

(y))T , we obtain the reduced algebraic
optimality system corresponding to the full algebraic optimality system (5.5) as





Mr 0 CT
r (y)

0 αDr −ET
r

Cr(y) −Er 0









ur(y)
gr(y)
pr(y)



 =





udr

0
fr(y)



 , (5.27)

being a 5Nr × 5Nr dense system, where the reduced optimality matrix is defined as





Mr 0 CT
r (y)

0 αDr −ET
r

Cr(y) −Er 0



 =





ZT
e MhZe 0 ZT

e C
T
h (y)Ze

0 αZT
g MhZg −ZT

g M
T
h Ze

ZT
e Ch(y)Ze −ZT

e MhZg 0



 ,

(5.28)
and the reduced optimal solution and the right hand side are given by





ur(y)
gr(y)
pr(y)



 =





ZT
e uh(y)

ZT
g gh(y)

ZT
e ph(y)



 and





udr

0
fr(y)



 =





ZT
e udh

0
ZT

e fh(y)



 , (5.29)

where Ze = (ζe1 , . . . , ζ
e
2Nr

) and Zg = (ζg1 , . . . , ζ
g
Nr

) are column vector matrices.

5.3.2. A weighted greedy algorithm. The efficiency of reduced basis method
depends critically on the choice of the samples yn, 1 ≤ n ≤ Nr, for which we turn
to a weighted greedy algorithm [10]. To start, we randomly choose a realization
y1 ∈ Γ (or use the reference value ȳ), and solve the full optimality system (5.5) to
get the solution (uh(y

1), gh(y
1), ph(y

1)). By Gram-Schmidt process, we construct
the first reduced basis space Xe

1 and Xg
1 . For Nr = 2, . . . , Nmax (where Nmax is

a prescribed maximum number of reduced bases), we solve the following weighted
L∞(Γ;Xρ) optimization problem

yNr = arg sup
y∈Γ

||(uh(y), gh(y), ph(y))− (ur(y), gr(y), pr(y))||Xρ
, (5.30)

where Xρ is a weighted Hilbert space (with weight ρ) equipped with the norm

||(v(y), h(y), q(y))||Xρ
=
{(

||v(y)||2X̄ + α||h(y)||2L2(D) + ||q(y)||2X̄
)

ρ(y)
}1/2

, (5.31)

where α is the regularization parameter given in the cost functional (2.18), ρ(y) is
taken as the joint probability density function evaluated at y ∈ Γ and ||v(y)||2

X̄
=

(a(ȳ)∇v(y),∇v(y)) at a reference value ȳ ∈ Γ. However, solving accurately the
infinite-dimensional optimization problem (5.30) is computationally impossible. In-
stead, we replace Γ by a training set Ξtrain, e.g. the collocation nodes used in the
stochastic collocation method. Moreover, instead of using the “truth” error defined
in (5.30), we consider a cheap, sharp and reliable error bound △ρ

Nr
such that

||(uh(y), gh(y), ph(y))− (ur(y), gr(y), pr(y))||Xρ
≤ △ρ

Nr
(ur(y), gr(y), pr(y)). (5.32)
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Upon replacement of Γ and the truth error, we have the weighted greedy algorithm

yNr = arg sup
y∈Ξtrain

△ρ
Nr

(ur(y), gr(y), pr(y)), Nr = 2, . . . , Nmax, (5.33)

based on which, we can hierarchically build the reduced basis spaces Xe
Nr

and Xg
Nr

.
Remark 5.1. The weighted norm || · ||Xρ

is defined with the joint probability
density function ρ in order to assign associated weight or importance in choosing
the samples for construction of the reduced basis space. In this way the a posteriori
error bound and the truth error are kept small, resulting in a more accurate solution,
when the probability at the sample is large. This numerical scheme aims to balance
the accuracy and importance of the stochastic solution, achieving higher accuracy of
statistical moments of interest [10], see illustration in Section 7.1.

5.3.3. A weighted a posteriori error bound. For the purpose of computing
a weighted a posteriori error bound △ρ

Nr
, we reformulate the saddle point problem

(4.1) as a weakly coercive problem at first [3, 34].
For every y ∈ Γ, let u(y) := (u(y), g(y), p(y)) ∈ U := X̄ ⊗ L2(D) ⊗ X̄ ≃ Xρ and

v := (v, h, q) ∈ U, we define the bilinear form B : U⊗U → R as

B(u(y), v; y) := A(u(y), v) +B(v, p(y); y) +B(u(y), q; y), (5.34)

and the linear functional F : U → R as

F(v; y) := (ud, v) + F (q; y). (5.35)

Then the saddle point problem (4.1) is equivalent to the following problem: given
y ∈ Γ, find u ∈ U such that

B(u(y), v; y) = F(v; y) v ∈ U. (5.36)

It can be shown [34] that the bilinear form B is continuous and weakly coercive, i.e.

γ(y) := sup
v∈U

sup
u(y)∈U

B(u(y), v; y)

||u(y)||U||v||U
< ∞ and β(y) := inf

v∈U
sup

u(y)∈U

B(u(y), v; y)

||u(y)||U||v||U
> 0,

(5.37)
where ||v||U := ||v||X̄ +

√
α||h||L2(D)+ ||q||X̄ corresponding to (5.31). Moreover, there

exists a unique solution u(y) ∈ U of problem (5.36) satisfying the stability estimate

||u(y)||U ≤ 1

β(y)
||F(y)||U′ . (5.38)

Consequently, we have similar results (5.37) and (5.38) for the finite element solution
uh(y) of problem (5.5) with constants γh(y), βh(y). Let the residual be defined as

R(vh; y) = F(vh; y)− B(ur(y), vh; y) ∀vh ∈ Uh := Xh ⊗Xh ⊗Xh, (5.39)

then we have that the error between the finite element solution and the reduced basis
solution e(y) = (uh(y), gh(y), ph(y))− (ur(y), gr(y), pr(y)) satisfies

B(e(y), vh; y) = R(vh; y) vh ∈ Uh. (5.40)

which yields, by the stability estimate (5.38), that

||e(y)||Uh
≤ 1

βh(y)
||R(vh; y)||U′

h
. (5.41)
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Therefore, we can define the a weighted posteriori error bound as: for ∀y ∈ Ξtrain

△ρ
Nr

(ur(y)) :=

√

ρ(y)

βLB(y)
||R(y)||U′ ≥

√

ρ(y)||e(y)||U = ||e(y)||Xρ
, (5.42)

where a lower bound βLB(y) ≤ βh(y), ∀y ∈ Ξtrain can be evaluated by a cheap
successive constraint method [28]. As for evaluation of the weighted residual norm
||R(y)||Xρ

, we turn to an efficient offline-online decomposition procedure.
Remark 5.2. In the definition of the compound Hilbert space U, we use the

Hilbert space X̄ equipped with norm || · ||X̄ = (a(ȳ)∇·,∇·) for both the state variable
u(y) and the adjoint variable p(y) in order to obtain good stability of the inf-sup
constant βh(y), ∀y ∈ Γ. In fact, when a(y) is not far from the reference value a(ȳ),
the inf-sup constant βh(y) is also close to βh(ȳ), which enables us to use a uniformly
lower bound βLB ≤ βh(y), ∀y ∈ Γ, for the sake of computational efficiency [10].

5.3.4. Offline-online decomposition. The offline-online decomposition pro-
cedure decomposes the reduced basis method into the expensive offline construction
stage and cheap online evaluation stage. More explicitly, we build the reduced basis
space Xe

Nr
and Xg

Nr
, assemble and store all matrices in (5.28) and the right hand side

vector (5.29) in an offline stage. In particular, the quantities in (5.28) and (5.29) that
depend on the random variable y ∈ Γ are assembled as

ZT
e Ch(y)Ze =

N
∑

n=0

ynZT
e C

n
hZe and ZT

e fh(y) =
N
∑

n=0

ynZT
e f

n
h , (5.43)

where ZT
e C

n
hZe and ZT

e f
n
h , 0 ≤ n ≤ N are assembled offline with the matrices

(Cn
h )i,j = (an∇φj ,∇φi), 0 ≤ n ≤ N, 1 ≤ i, j ≤ Nh and the vectors fnh = (fn, φi), 0 ≤

n ≤ N, 1 ≤ i ≤ Nh. Recall that y0 = 1 and an, fn, 0 ≤ n ≤ N are defined in (2.13).
For a more compact notation, we define

B0
r =





ZT
e MhZe 0 ZT

e (C
0
h)

TZe

0 αZT
g MhZg −ZT

g M
T
h Ze

ZT
e C

0
hZe −ZT

e MhZg 0



 , F0
r =





ZT
e udh

0
ZT

e f
0
h



 , (5.44)

and

Bn
r =





0 0 ZT
e (C

n
h )

TZe

0 0 0
ZT

e C
n
hZe 0 0



 , Fn
r =





0
0

ZT
e f

n
h



 , 1 ≤ n ≤ N. (5.45)

Then the reduced algebraic optimality system (5.27) can be written as

N
∑

n=0

ynB
n
ru

c
r(y) =

N
∑

n=0

ynF
n
r , (5.46)

where uc
r(y) = (ur(y);gr(y);pr(y)) is the coefficient of reduced basis solution at y ∈ Γ.

A direct solver, e.g. by Gauss elimination, can be applied to solve the reduced basis
optimality system (5.46) with complexity O((5Nr)

3), since Nr ≪ Nh in practice.
From the definition of the residual (5.39), we have by Riesz representation theo-

rem [24] that there exists a unique element ê(y) ∈ Uh such that

(ê(y), vh)Uh
= R(vh; y) ∀vh ∈ Uh. (5.47)
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Therefore, we have ||R(y)||U′
h
= ||ê(y)||Uh

, to evaluate which we make the following
definition of bilinear form and linear function corresponding to (5.34) and (5.35):

B0(u(y), v) = A(u(y), v) +B0(v, p(y)) +B0(u(y), q),F0(v) = (ud, v) + F 0(q), (5.48)

and

Bn(u(y), v) = Bn(v, p(y)) +Bn(u(y), q), Fn(v) = Fn(q), 1 ≤ n ≤ N, (5.49)

where ∀(v, q) ∈ U, we have B0(v, q) = (a0∇v,∇q) − (h, q), F 0(q) = (f0, q), and
Bn(v, q) = (an∇v,∇q), Fn(q) = (fn, q), 1 ≤ n ≤ N . By the above definition, we
obtain by Riesz representation theorem that there exist fn, b

k
n such that (fn, vr) =

Fn(vr) and (bkn, vr) = −Bn(ζck, vr) for ∀vr ∈ Ur, 0 ≤ n ≤ N, 1 ≤ k ≤ 5Nr,
where ζck = (ζek, 0, 0), 1 ≤ k ≤ 2Nr, ζck = (0, ζgk−2Nr

, 0), 2Nr + 1 ≤ k ≤ 3Nr,
ζck = (0, 0, ζek−3Nr

), 3Nr + 1 ≤ k ≤ 5Nr and the compound reduced basis space
Ur = Xe

Nr
⊗Xg

Nr
⊗Xe

Nr
. To this end, we have by the definition of the residual (5.39)

||ê(y)||2Uh
=

N
∑

n=0

N
∑

n′=0

yn(fn, fn′)yn′ + 2

N
∑

n=0

N
∑

n′=0

5Nr
∑

k=1

yn(fn, b
k
n′)(ur)kyn′

+

N
∑

n=0

N
∑

n′=0

5Nr
∑

k=1

5Nr
∑

k′=1

yn(ur)k(b
k
n, b

k′

n′)(ur)k′yn′ ,

(5.50)

where all the quantities of inner-product are computed and stored in the offline stage,
and only O((N + 1)2 × (5Nr)

2) operations, being N and Nr ≪ Nh very small, are
needed for online evaluation of the a posterior error bound △ρ

Nr
defined in (5.42).

6. Error estimates. In this section, we carry out a global error analysis of
our numerical approximation. We first consider the error contribution from different
sources, including finite element approximation, stochastic collocation approximation
as well as weighted reduced basis approximation separately and then provide a global
error estimate for several quantities of interest, including the stochastic optimal solu-
tion (u(y), p(y)), ∀y ∈ Γ, and its statistical moments, e.g. expectation E[(u, p)].

6.1. Finite element error. Given the finite element solution of the semi-weak
saddle point problem (5.2) (uh(y), ph(y)) ∈ Uh ⊗Xh, ∀y ∈ Γ, we aim to estimate the
finite element error defined as

Eh(y) = ||u(y)− uh(y)||U + ||p(y)− ph(y)||X̄ , (6.1)

where the norm for the first term is given by

||u(y)− uh(y)||U = ||u(y)− uh(y)||X̄ +
√
α||g(y)− gh(y)||L2(D). (6.2)

We remark that the two norms are equivalent ||v||X̄ ≃ ||v||H1
0
(D), ∀v ∈ H1

0 (D), thanks
to the assumption (2.11) and Poincaré inequality [24]. Therefore, all the assumptions
in Proposition 3.1 hold true in the deterministic setting for the bilinear form A and
B with H1

0 (D) replaced by X̄. For ease of notation, we still use the same symbols for
the continuity , coercivity and inf-sup constants of A and B with X̄, i.e.

A(u, v) ≤ γ||u||U ||v||U , B(v, q; y) ≤ δ||v||U ||q||X̄ , ∀u, v ∈ U, ∀q ∈ X̄, ∀y ∈ Γ, (6.3)

where γ is corresponding to the continuity constant 1 of A in (3.13) and δ :=
max{R, 1/

√
α} is the uniform continuity constant corresponding to that of B in (3.15).
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Moreover, in the kernel of B, U0
h := {vh ∈ Uh, B(vh, qh) = 0, ∀qh ∈ Xh}, we have the

finite element coercivity constant ς := min{αr2/4, 1/4} of A corresponding to that of
A in (3.14), i.e.

A(vh, vh) ≥ ς||vh||2U , ∀vh ∈ U0
h . (6.4)

Lastly, the uniform finite element inf-sup constant β̄h of B corresponding to that of
B in (3.16) is given by β̄h := r, i.e.

∀qh ∈ Xh, ∃vh ∈ Uh, vh 6= 0, s.t. B(vh, qh; y) ≥ β̄h||v||U ||qh||X̄ , ∀y ∈ Γ. (6.5)

Under Assumption 2 (Sec 2.2), the conditions (6.3), (6.4) and (6.5) are satisfied in
the finite element space Uh⊗Xh, then ∀y ∈ Γ we have the following error estimate for
the stochastic finite element solution (uh(y), ph(y)) ∈ Uh ⊗Xh, which can be directly
derived from the proof in the deterministic case, see [24]

Eh(y) ≤ Ch
1 inf

vh∈Uh

||u(y)− vh||U + Ch
2 inf

qh∈Xh

||p(y)− qh||X̄

= O(hl)
(

Ch
1 ||u(y)||Hl+1(D) + αCh

1 h||g(y)||Hl+1(D) + Ch
2 ||p(y)||Hl+1(D)

)

,
(6.6)

where l = min{k, s−1}, being k the polynomial degree and s such that u(y), g(y), p(y) ∈
Hs(D), s ≥ 2, ∀y ∈ Γ, and the constants Ch

1 , C
h
2 are given by

Ch
1 =

(

1 +
γ

ς

)(

1 +
γ

β̄h

)(

1 +
δ

β̄h

)

and Ch
2 = 1 +

δ

ς
+

δ

β̄h
+

γδ

ςβ̄h
. (6.7)

Remark 6.1. The above result is obtained based on the finite element formulation
of the saddle point problem (5.2). We remark that a similar result can be achieved
based on a finite element approximation of the weakly coercive problem (5.36).

6.2. Stochastic collocation error. The error arising from the stochastic col-
location approximation depends mainly on the regularity of the stochastic optimal
solution. Thanks to the analytic regularity stated in Theorem 4.2, the stochastic
optimal solution (u, p) can be analytically extended to the complex region Σ(Γ; τ).
Then the error of the tensor-product stochastic collocation approximation (5.13), in
the case that Γ is bounded, satisfies [1]

Es = ||u− Iiu||C(Γ;U) + ||p− Iip||C(Γ;X̄) ≤
N
∑

n=1

Ci

n exp(−(m(in)− 1)rn), (6.8)

where the constants Ci

n, 1 ≤ n ≤ N are bounded by [1, 6]

Ci

n ≤ (1 + Λ(m(in)))
2

ern − 1

(

max
z∈Σ(Γ;τ)

||u(z)||U + max
z∈Σ(Γ;τ)

||p(z)||X̄
)

, (6.9)

with Lebesgue constant Λ(m) ≤ 1 + (2/π) log(m+ 1), and convergence rate

rn = log

(

2τn
|Γn|

+

√

1 +
4τ2n
|Γn|2

)

> 1, 1 ≤ n ≤ N. (6.10)

Moreover, the error of the expectation of the stochastic optimal solution E[(u, p)]
evaluated by the tensor-product quadrature in (5.15) satisfies [1]

Ee
s = ||E[u]− E[Iiu]||U + ||E[p]− E[Iip]||X̄

≤ ||u− Iiu||L2
ρ(Γ;U) + ||p− Iip||L2

ρ(Γ;X̄) ≤
N
∑

n=1

Cn exp(−(m(in)− 1)rn),
(6.11)
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where Cn is a constant that can be upper bounded by the product of the last two
factors in (6.9) (thus independent of i). Similar results have also been obtained for
unbounded Γ in [1].

As for the isotropic sparse-grid Smolyak interpolation (5.16) with Gauss-abscissas,
we have the following estimate for the worst case scenario error

Es = ||u− Squ||C(Γ;U) + ||p− Sqp||C(Γ;X̄) ≤ CsN
−r
q , (6.12)

where Nq is the number of collocation nodes, Cs is a constant independent of Nq (see
[21, 6] for more explicit expression), r is the algebraic convergence rate given by [6]

r ≥ e log(2)min{rn, 1 ≤ n ≤ N}
3 + log(N)

, (6.13)

being rn, 1 ≤ n ≤ N defined in (6.10). When it comes to anisotropic sparse-grid
stochastic collocation method with Clenshaw-Curtis nodes, we have the following
error estimate

Eα
s = ||u− Sα

q u||C(Γ;U) + ||p− Sα
q p||C(Γ;X̄) ≤ Cα

s N
−r(α)
q , (6.14)

where Cα
s is independent of Nq and the algebraic convergence rate r(α) is defined as

r(α) =

(

ln(2)e− 1

2

)

αmin

ln(2) +
∑N

n=1
αmin

αn

, (6.15)

being αmin = min1≤n≤N αn with the choice αn = rn/2, 1 ≤ n ≤ N , with rn defined
in (6.10). Moreover, the error of the expectation of the stochastic optimal solution
evaluated by isotropic or anisotropic sparse grid Smolyak formula is bounded by [21, 6]

Ee
s = ||E[u]− E[Sα

q u]||U + ||E[p]− E[Sα
q p]||X̄

≤ ||u− Sα
q u||L2

ρ(Γ;U) + ||p− Sα
q p||L2

ρ(Γ;X̄) ≤ Ce
sN

−r(α)
q ,

(6.16)

where Ce
s is a constant independent of Nq, see [6] for its explicit expression.

Remark 6.2. We remark that the error estimate for tensor-product stochastic
collocation approximation is given with respect to the polynomial degree while we use
the number of collocation nodes for the error estimate of the sparse-grid type.

6.3. Reduced basis error. In addition to the a posteriori error estimate for a
weighted reduced basis approximation that has been proved in section 5.3.3, now we
consider the a priori error estimate for the reduced basis solution. In particular, we
provide a direct convergence result for the reduced basis error when Γ ⊂ R, an indirect
result via Kolmogorov N -width [2] regardless of dimension and its comparison with
the stochastic collocation error.

Holding the analytic regularity in Theorem 4.2, we have the following error esti-
mate for reduced basis solution of (5.22) when Γ ⊂ R [10]

Er = ||uh − ur||C(Γ;U) + ||ph − pr||C(Γ;U) ≤ Cr exp(−rNr) (6.17)

where r is defined as in (6.10) for a single dimension, the constant Cr is bounded by

Cr ≤ C

(

max
z∈Σ(Γ;τ)

||uh(z)||U + max
z∈Σ(Γ;τ)

||ph(z)||X̄
)

, (6.18)
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being C a constant independent of the number of reduced bases Nr.
Let dN be the Kolmogorov N -width defined in an abstract Hilbert space X as

dN (Γ;X) := inf
XN⊂X

sup
y∈Γ

inf
wN∈XN

||v(y)− wN ||X , (6.19)

where XN is a N -dimensional subspace of X. We have the following result for Er [2]:
suppose that there exists M > 0 such that d0(Γ) ≤ M ; moreover, suppose that there
exist two positive constants c1 > 0, c2 > 0, such that

if dNr
(Γ;Uh ⊗Xh) ≤ M exp(−c1N

c2
r ) then Er ≤ c5M exp(−c3N

c4
r ), (6.20)

where c4 = c2/(c2 + 1), c3 > 0, c5 > 0 depend only on c1, c2 and c6 > 0, which
measures the sharpness of the reduced basis error bound in (5.42), i.e.

c6△ρ
Nr

(ur(y)) ≤ ||uh(y)− ur(y)||Xρ
. (6.21)

Furthermore, we obtained its direct comparison with that of the stochastic col-
location approximation in [6]: provided that the training set Ξtrain for the weighed
reduced basis approximation is taken the same as or including the collocation set Ξsc

for the stochastic collocation approximation, we have the following error comparison

||uh−ur||C(Γ;U)+ ||ph−pr||C(Γ;U) ≤ C
(

||uh − us||C(Γ;U) + ||ph − ps||C(Γ;X̄)

)

, (6.22)

where the constant C only depends on the constants γ, δ, ς, β̄h defined in (6.3), (6.4)
and (6.5), and us, ps are the optimal solution by stochastic collocation method with
either tensor-product or sparse-grid technique, see [6] for a similar proof.

Remark 6.3. The result (6.20) implies that whenever the error of the best pos-
sible approximation decays exponentially, the reduced basis error also enjoys an expo-
nential decay with rate depending on the sharpness of the greedy algorithm (6.21). The
result (6.22) guarantees that the weighted reduced basis approximation converges no
slower than the stochastic collocation approximation, in fact much faster in practice,
see [6] for detailed comparison based on examples in various test settings.

6.4. Global error estimate. In this section, we provide a global error estimate
by assembling error contribution from the different sources analyzed above.

To start, we consider a pointwise (at certain y ∈ Γ) error estimate for finite
element approximation and weighted reduced basis approximation.

Theorem 6.1. Given any y ∈ Γ, the reduced basis solution (ur(y), pr(y)) of
problem (5.22) satisfies the following mixed error estimate (a priori error for finite
element approximation and a posteriori error for reduced basis approximation)

||u(y)− ur(y)||U + ||p(y)− pr(y)||X̄ ≤ Eh(y) +△Nr
(y), ∀y ∈ Γ, (6.23)

where the finite element error Eh(y) is defined in (6.6), and the reduced basis error
△Nr

(y) is defined similar to (5.42) without multiplying by the weight ρ(y).
Proof. The proof is straightforward by separating the global error into two parts

||u(y)− ur(y)||U + ||p(y)− pr(y)||X̄ ≤ ||u(y)− uh(y)||U + ||uh(y)− ur(y)||U
+ ||p(y)− ph(y)||X̄ + ||ph(y)− pr(y)||X̄ ,

(6.24)

which yields (6.23) by gathering the first and third terms for Eh(y) by finite error
(6.6) and the left terms for △Nr

(y) by reduced basis error (5.42).
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The C(Γ)-error (in worst case scenario) for both stochastic collocation approxi-
mation and weighted reduced basis approximation is stated as follows.

Theorem 6.2. The global C(Γ)-error by the finite element and the stochastic
collocation approximations can be estimated by

||u(y)− us(y)||C(Γ;U) + ||p(y)− ps(y)||C(Γ;X̄) ≤ Eh + Es, (6.25)

where Eh = supy∈Γ Eh(y) and Es is defined in (6.8) for tensor product stochastic
collocation approximation and in (6.12) for sparse-grid type. As for reduced basis and
finite element approximations, we have

||u(y)− ur(y)||C(Γ;U) + ||p(y)− pr(y)||C(Γ;X̄) ≤ Eh + Er, (6.26)

where Er is given in (6.17) or (6.20).

Finally, we present the probability-averaged error (error of expectation) for a
combination of stochastic collocation and weighted reduced basis approximations.

Theorem 6.3. For the approximation of the expectation of the stochastic optimal
solution, we use reduced basis solution at all the collocation nodes Ξsc and quadrature
formula (5.15) or (5.21), with the global error bounded by

||E[u]− E[ur]||U + ||E[p]− E[pr]||X̄ ≤ Eh + Ee
s +

√

|Γ|△ρ
Nr

(yNr ). (6.27)

where |Γ| is the Lebesgue measure of the probability domain Γ, Eh is defined as in
Theorem 6.2, Ee

s is defined in (6.11) or (6.16), and △ρ
Nr

(yNr ) is defined by (5.42)

evaluated at the Nr-th sample yNr ∈ Γ picked by the weighted greedy algorithm.

Proof. The global probability-averaged error can be bounded by

||E[u]− E[ur]||U + ||E[p]− E[pr]||X̄ ≤ ||u− ur||L2
ρ(Γ;U) + ||p− pr||L2

ρ(Γ;X̄)

≤ ||u− uh||L2
ρ(Γ;U) + ||uh − us||L2

ρ(Γ;U) + ||us − ur||L2
ρ(Γ;U)

+ ||p− ph||L2
ρ(Γ;X̄) + ||ph − ps||L2

ρ(Γ;X̄) + ||ps − pr||L2
ρ(Γ;X̄)

≤ Eh + Ee
s +

(∫

Γ

(

△ρ
Nr

(y)
)2

dy

)1/2

≤ Eh + Ee
s +

√

|Γ|△ρ
Nr

(yNr ).

(6.28)

We remark that (us(y), ps(y)) = (uh(y), ph(y)) at the collocation nodes y ∈ Ξsc and
√

|Γ|△ρ
Nr

(yNr ) can be replaced by supy∈Ξsc
△Nr

(y) using the fact that △ρ
Nr

(y) =

△Nr
(y)
√

ρ(y) in the last inequality.

7. Numerical tests. In this section, we carry out several numerical tests to
illustrate the computational efficiency and numerical accuracy of the weighted reduced
basis method compared to the non-weighted reduced basis method and stochastic
collocation method with tensor product grid, isotropic and anisotropic sparse grid.
Theoretical error estimates obtained in the last section are verified by three examples
with different dimensions, ranging from one dimension to moderate dimension (1−10)
and to high dimension (10− 100), and with different probability distributions.

7.1. One dimensional problems. The first example focuses on the demon-
stration of the convergence property of the weighted reduced basis method compared
to other methods with probability density functions of distinct shape. The physical
domain is specified as D = (0, 1)2 with a uniform triangulation mesh of 712 vertices,
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over which we construct finite element space for spatial discretization by continuous
piecewise linear polynomials. We set f = 1 and the coefficient a of problem (2.10) as

a(x, y) =
1

10
(1.1 + sin(2πx1)y), (7.1)

where x = (x1, x2) ∈ D and the random variable y ∼ Beta(µ1, µ2) obeys beta dis-
tribution supported on Γ = [−1, 1] with two shape parameters µ1, µ2 ∈ N+. The
probability density function of y is displayed in Fig. 7.1 when (µ1, µ2) take values
of (1, 1), (10, 10) and (100, 100), featuring very different shapes with distinct weight.
The observation data ud is set as the solution of (2.10) at the reference value ȳ = 0
and control g = sin(πx1)sin(πx2). We define the worst case scenario error as

max
1≤m≤Mtest

(||u(ym)− uN (ym)||U + ||p(ym)− pN (ym)||X̄), (7.2)

where ym, 1 ≤ m ≤ Mtest are testing samples randomly drawn according to its proba-
bility density function, (u, p) is the finite element solution and (uN , pN ) is the solution
by (weighted) reduced basis method or stochastic collocation method with N bases
or collocation nodes. The expectation error is defined in a posteriori way as

∣

∣||El[u]||2U − ||EL[u]||2U
∣

∣+
∣

∣||El[p]||2X̄ − EL[p]||2X̄
∣

∣ (7.3)

for ease of computation, where l, 1 ≤ l ≤ L−1 represents the level of approximation by
quadrature formula. We apply the weighted reduced basis method and reduced basis
method with Mtrain training samples drawn according to the probability distribution,
and also stochastic collocation method based on Gauss-Jacobi quadrature nodes to
solve the stochastic optimal control problem (2.17) with regularization parameter
α = 1. The convergence results are shown in the following few figures Fig. 7.1 - 7.4,
for which we have used Mtrain = 100 training samples and Mtest = 100 test samples.
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Fig. 7.1. Left: Probability density function of Beta(µ1, µ2) distribution with different (µ1, µ2)
and samples selected by weighted reduced basis approximation in order, the bigger the size the earlier
it has been selected; Right: convergence result of the true error and error bound by wRBM.

On the left of Fig. 7.1, the samples selected by weighted reduced basis method are
plotted in sequential order, where the larger the markers are, the earlier the samples
have been selected. The right of Fig. 7.1 shows the convergence of the true error
(error between approximation and true value) and the error bound △N defined in
(5.42) in three different settings. From Fig. 7.1 we can see that the most important
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samples (or samples with large probability) can be efficiently selected by the weighted
reduced basis method, leading to less samples (thus less bases in the reduced basis
space) for the more concentrated probability distribution.
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Fig. 7.2. Comparison of worst case scenario error (left) and expectation error (right) by
(weighted) reduced basis method and stochastic collocation method with (µ1, µ2) = (1, 1).

When (µ1, µ2) = (1, 1), the beta distribution becomes a uniform distribution with
probability density function ρ = 1/2, in which case the weighted reduced basis method
is the same as reduced basis method, as we can see from their convergence results in
Fig. 7.3, from which we can also observe that the reduced basis method converges
faster than stochastic collocation method for worst case scenario error, while for the
expectation error they display quite close convergence rates.
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Fig. 7.3. Comparison of worst case scenario error (left) and expectation error (right) by
(weighted) reduced basis method and stochastic collocation method with (µ1, µ2) = (10, 10).

For (µ1, µ2) = (10, 10), the weighted reduced basis method performs evidently
better than the reduced basis method measured in both errors, and converges faster
than stochastic collocation method as for worst case scenario error and comparable
in expectation error (note that here the Gauss-Jacobi quadrature formula is optimal
for evaluation of expectation), which demonstrates that the weighted reduced basis
method works efficiently for evaluation of statistical moments of the solution. This
conclusion has been further illustrated by the convergence results displayed in Fig.
7.4 for the test with (µ1, µ2) = (100, 100). However, we remark that the computation
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for both offline construction and online evaluation by the (weighted) reduced basis
method is more expensive than that by stochastic collocation method in one dimen-
sional problems, see [6] for more detailed comparison of computational cost between
reduced basis method and stochastic collocation method.
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Fig. 7.4. Comparison of worst case scenario error (left) and expectation error (right) by
(weighted) reduced basis method and stochastic collocation method with (µ1, µ2) = (100, 100).

7.2. Moderate dimensional problems. The example presented in this sec-
tion is devoted to verify the error estimates obtained in Section 6 and demonstrate
the computational efficiency and numerical accuracy of the weighted reduced basis
method. We define a general random field g as a truncation of Karhunen-Loève ex-
pansion of a Gaussian random field with correction length L [21]

g(xi, y) = E[g] +

(√
πL

2

)1/2

y1 +

N
∑

n=1

√

λn (sin(nπxi)y2n + cos(nπxi)y2n+1) , (7.4)

where the random variables yn, 1 ≤ n ≤ 2N + 1 follow standard normal distribution,
the eigenvalues λ1 = 0.4782, λ2 = 0.0752, λ3 = 0.0034, accounting for around 99.5%
uncertainties of the random field truncated with 7 random variables. In order to
guarantee assumption (2.11), we cut off 1 the random variables |yn| ≤ 3, 1 ≤ n ≤ N
(with tail probability less than 0.5%) and set E[g] = 8. For simplicity, we do not
consider the cut-off error and the truncation error. We set a = g(x1, y)/10, f =
g(x2, y), α = 1 and the observation data ud as the solution of (2.10) at the reference
value ȳn = 0, 1 ≤ n ≤ 2N + 1 and control function g(x, y) = sin(πx1)sin(πx2).

To test the finite element error, we set y = ȳ, h = 1/4, 1/8, 1/16, 1/32, 1/64 and
use the optimal solution at h = 1/64 as the “true” value. Fig. 7.5 (left) displays
the linear and quadratic decay of finite element error Eh(ȳ) with P1 and P2 elements,
which verified the results in (6.6). The right of Fig. 7.5 depicts the reduced basis error
Er and the error bound △Nr

of the optimal solution (in fact, we take the worse case
scenario error at 100 test samples), from which we can see that the cheap error bound
is rather sharp and accurate, decaying exponentially fast with respect to the number
of reduced bases. We remark that the error bound depends on the lower bound of the
inf-sup constant βLB(y), y ∈ Γ in (5.42), which falls inside [0.5, 1] in the training set

1Alternative to the necessity of cut-off, we may assume log-normal structure [21] of the random
field and apply weighted empirical interpolation method [9] to obtain an affine decomposition (2.8).
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y ∈ Ξtrain with 1000 samples. For the sake of computational efficiency, we can take a
uniform lower bound βLB = 0.5 for any new y ∈ Γ.
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Fig. 7.5. Left: finite element error of P1 and P2; right: reduced basis error and error bound.

Fig. 7.6 reports the comparison of stochastic approximation errors between the
weighted reduced basis method (RBM) and the stochastic collocation method (SCM)
with Gauss-Hermite collocation nodes in both tensor-product and sparse-grid settings.
The convergence comparison measured by worst case scenario error is depicted on the
left of Fig. 7.6, which shows that the reduced basis approximation converges much
faster than the stochastic collocation approximation, with error reaching 10−7 with
only 50 bases (thus 50 solve of the full optimality system (5.5)), while it requires
78079 ≈ 1562 × 50 collocation nodes (thus 78079 solve) for sparse-grid setting to
attain the same error although it converges faster than the tensor-product setting.
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Fig. 7.6. Comparison between weighted reduced basis method and stochastic collocation method
(tensor-product and sparse-grid) for worst case scenario error (left) and error of expectation (right).

For evaluation of the expectation error, we use the expectation of the optimal
solution by the sparse-grid stochastic collocation method at the deepest level (q −
N = 6) as a “true” value. The weighted reduced basis expectation is evaluated via
formula (5.21) at the deepest level of sparse-grid with the optimal solution computed
by online reduced basis procedure at all the collocation nodes. We can see from
the right of Fig. 7.6 that only 28 bases or solve are needed for weighted reduced
basis method to obtain a more accurate expectation than the stochastic collocation
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method (with 18943 solve in sparse-grid setting and 16384 by tensor-product setting).
Thanks to the cheap online evaluation, the weighted reduced basis method is much
more efficient than the stochastic collocation method to evaluate the statistics of the
solution, especially when a solve of the full optimality system is very expensive.

7.3. High dimensional problems. In this section, we show that the weighted
reduced basis method (wRBM) can be effectively applied to solve high dimensional
problems and its combination with the anisotropic sparse grid stochastic collocation
method (aSCM) are efficient to evaluate statistical moments of the solution.

We assume that the random coefficient a = g(x1, y)/10 with g defined in (7.4)
where L = 1/128, which features a slow decay of the eigenvalues (λ1 = 0.0138, λ50 =
0.0095). Moreover, we assume that the random variables yn, 1 ≤ n ≤ 2N + 1 fol-
low uniform distribution with zero mean and unit variance, supported on [−

√
3,
√
3].

We set f = 10 and E[a] = 20 that satisfy Assumption 2 and ud as for moderate di-
mensional problems in the last section with g(x, y) = sin(πx1)sin(πx2). We apply a
dimensional-adaptive algorithm (see [11] for details) with maximum number of collo-
cation nodes specified as 101, 102, 103, 104, 105 to construct the anisotropic sparse-grid
stochastic collocation approximation. The weighted reduced basis approximation is
constructed with 1000 training samples 2 and tested with 100 test samples. The con-
vergence results are depicted in Fig. 7.7 for 11, 31 and 101 dimensional problems.
In the reduced basis construction, only 30 bases have been used to achieve more ac-
curate approximation (measured in worse case scenario error) than the anisotropic
sparse grid stochastic collocation method with 105 collocation nodes, requiring 105

full solve of the optimality systems.
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Fig. 7.7. Comparison between weighted reduced basis method and stochastic collocation method
(tensor-product and sparse-grid) for worst case scenario error (left) and error of expectation (right).

As for evaluation of the expectation by weighted reduced basis method, we first
compute the reduced basis solution at the collocation nodes in the anisotropic sparse-
grid in the deepest level (with 105 collocation nodes) and then compute the expecta-
tion by Clenshaw-Curtis quadrature formula [21] on the sparse grid. From the right
of Fig. 7.7, we can see that 30 reduced bases are sufficient for the weighted reduced
basis method to achieve comparable accuracy as the stochastic collocation method.

2Instead of using a fixed number of training samples, we can choose adaptively the collocation
nodes on the sparse grid as the training samples or use an adaptive greedy algorithm [35].
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8. Concluding remarks. In this paper we studied stochastic optimal control
problems with elliptic PDE constraint and developed and analyzed an efficient com-
putational method to solve them. An analysis of existence, uniqueness and stochastic
regularity of the optimal solution was carried out by virtue of a saddle point formu-
lation of the optimal control problems. In numerical approximation of the stochastic
optimality system, we applied finite element method with proper preconditioning tech-
niques in the deterministic space and stochastic collocation method in the stochastic
space. In order to alleviate the computational effort, we proposed a model order
reduction approach based on a weighted reduced basis method. A global error anal-
ysis of our computation method was conducted thanks to the stochastic regularity
result of the optimal solution. Numerical tests have well verified and illustrated the
efficiency and accuracy of the computational method proposed in this paper. Gener-
alization and application of the method in stochastic optimal control problems with
more complex constraints, e.g. time-dependent and nonlinear problems, are ongoing.
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[32] F. Tröltzsch. Optimal control of partial differential equations: theory, methods, and applica-
tions, volume 112. American Mathematical Society, 2010.

[33] D. Xiu and J.S. Hesthaven. High-order collocation methods for differential equations with
random inputs. SIAM Journal on Scientific Computing, 27(3):1118–1139, 2005.

[34] J. Xu and L. Zikatanov. Some observations on Babuška and Brezzi theories. Numerische
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