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Abstract

We present and analyze in a unified setting two schemes for the numerical dis-
cretization of a Darcy-Forchheimer fluid flow model coupled with an advection-
diffusion equation modeling the temperature distribution in the fluid. The first
approach is based on fully discontinuous Galerkin discretization spaces. In con-
trast, in the second approach, the velocity is approximated in the Raviart-Thomas
space, and the pressure and temperature are still piecewise discontinuous. A fixed-
point linearization strategy, naturally inducing an iterative splitting solution, is
proposed for treating the nonlinearities of the problem. We present a unified
stability analysis and prove the convergence of the iterative algorithm under mild
requirements on the problem data. A wide set of two- and three-dimensional
simulations is presented to assess the error decay and demonstrate the practical
performance of the proposed approaches in physically sound test cases.
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1 Introduction

This research addresses the numerical modeling of temperature distribution in fluids governed by
the Darcy–Forchheimer (DF) law, which relates the fluid velocity vector to the pressure gradient
and is applicable in regimes where the fluid velocity is sufficiently high. In such cases, the classical
Darcy law—where the velocity is linearly proportional to the pressure gradient—fails to capture the
underlying physics accurately. Previous studies [25, 31] have demonstrated that Darcy’s law provides
reliable predictions primarily for low velocities and low-porosity media. However, nonlinear effects
become significant whenever high flow velocities and/or variable porosity are involved, leading to the
need for an additional quadratic velocity term. The DF law incorporates both the Darcy term and
the nonlinear inertial term, the latter scaling with the square of the fluid velocity and arising from
inertial forces. Moreover, in relevant geophysical processes such as geothermal energy extraction and
greenhouse gas sequestration, thermal effects, modeled via an advection–diffusion equation, are also
particularly relevant since temperature variations strongly influence fluid properties. The resulting
model is therefore fully coupled: the velocity field governs thermal advection, while temperature
variations affect fluid density and viscosity, thereby altering the flow field. Moreover, it is nonlinear
due to (i) the temperature-dependent viscosity, (ii) the quadratic Forchheimer term, and (iii) the
nonlinear advection term in the temperature equation.

Extensive research has been conducted on the Forchheimer equation, starting from experimental
investigations [39]. The mathematical analysis of the DF model has been considered in [36]. Concern-
ing the numerical discretization, we refer, e.g., to [33, 35, 38] for mixed finite element discretizations.
Regarding the coupling of flow models with the heat equation, we refer, e.g., to [15, 16], where a
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comprehensive analysis of the Darcy model coupled with the heat equation is presented. Heat convec-
tion in a liquid medium whose motion is described by the Stokes/Navier Stokes equations has been
extensively studied; among others, we mentioned the papers [1, 2, 9, 26, 28]. Recently, there has
been a growing interest in the study of a coupled DF-heat model. In [3, 27, 37] the authors propose
an approximation based on standard finite elements (with the introduction of bubble functions for
treating the velocity field). Moreover, in [3] a singular source term for the heat equation is considered.
In [30] the problem is approximated via a block-centered finite difference scheme.

In this work, we study the coupled Darcy–Forchheimer–heat model and present and analyze
two numerical discretization schemes for its numerical discretization. The first scheme (referred to
as dG-dG-dG) employs an entirely discontinuous finite element formulation for the velocity, pres-
sure, and temperature fields. The second scheme (referred to as RT-dG-dG) adopts a conforming
Raviart–Thomas finite element space for the velocity, combined with discontinuous approximations
for the pressure and temperature fields. The difference between the two approaches lies in the choice
of the discretization space for the velocity field, that is, discontinuous Galerkin [13] for the first case
and Raviart-Thomas [32, 34] for the second one. The two approaches offer complementary advan-
tages. The dG–dG–dG scheme is remarkably versatile, as it supports polytopal meshes (see [4, 14, 22]
for dG schemes on polytopal meshes). We remark that polytopal methods are particularly advan-
tageous in computational geoscience due to their geometric flexibility in the process of mesh design,
efficient handling of highly heterogeneous media, as well as natural support of domain-specific fea-
tures (e.g., fractures) without prohibitive computational costs. In the context of geophysics, PolyDG
methods have been applied to flows in fracture porous media [5], poroelasticity [6], and thermo-hydro-
mechanical models [10, 18]. For heat-type problems discretized using PolyDG methods, we refer, e.g.,
[23]. We refer to [24] for a comprehensive monograph on PolyDG methods, and to [7] for a review of
the current development of PolyDG methods for geophysical applications.

In this work, we propose a robust treatment of the convection term, following the thermo-
poroelasticity framework in [19], with the key distinction that here the temperature field is advected
by the fluid velocity rather than the Darcy velocity. The corresponding nonlinearities are addressed
via an iterative linearization algorithm, which naturally leads to a splitting-based solution strategy.
The main contributions of the proposed numerical framework are: (a) a detailed formulation of the
dG–dG–dG and RT–dG–dG schemes, emphasizing the treatment of the nonlinear advection term and
the corresponding linearization strategy; (b) a unified analysis establishing stability of the discrete
problem and convergence of the fixed-point iteration; and (c) an extensive set of two- and three-
dimensional numerical experiments demonstrating convergence properties and validating the method
in established benchmarks.

The rest of the paper is organized as follows: the model problem and its weak formulation are
presented in Section 2. In Section 3, we present the two discretization schemes together with the
corresponding linearization strategy. In Section 4, we prove, in a unified setting, the stability of the
discrete problem and the convergence of the fixed-point linearization algorithm. Two- and three-
dimensional numerical results assessing the convergence properties and benchmark test cases are
shown discussed in Section 5.

2 Model problem

Let Ω ⊂ Rd, with d ∈ {2; 3}, be an open bounded Lipschitz domain. The non-isothermal DF problem
reads: find (u, p, T ) such that in Ω it holds:

ν(T )K−1 u+ β|u|u+∇p = f , (1a)

∇·u = 0, (1b)

−∇·(Θ∇T ) + (u·∇)T = g, (1c)

where |·| denotes the Euclidean vector norm, namely |u|2 = uT u. In (1), the variables (u, p, T )
represent the velocity, the pressure, and the temperature, respectively. The function f : Ω → Rd

represents an external body force, while g : Ω → R is the heat source. Equations (1a), (1b), and
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(1c) represent the DF fluid flow, the incompressibility of the fluid, and the heat transfer, respectively.
The description of the DF flow is characterized by the Forchheimer coefficient β that represents the
strength of the inertial effects in the porous medium: it is the ratio between the pressure drop caused
by fluid–solid interactions and the one caused by viscous and inertia resistances. If β were null, then
(1a) would reduce to the Darcy equation. We observe that the couplings between (1a) and (1c) are bi-
directional. Namely, we observe that the temperature T influences the kinematic viscosity of the fluid
ν(·); moreover, in the heat transfer equation we have the presence of a convective term of the form
(u ·∇)T , hence the fluid flow affects the temperature field. The kinematic viscosity ν(·) : R → R+

is a bounded C1(R+), globally Lipschitz function. For the numerical investigation, we consider a
particular model function ν(S) = 1 + e−S [27].

Symbol Unit Quantity Symbol Unit Quantity

ν Pa s fluid viscosity β Pa s2/m3 Forchheimer coefficient
K m2 permeability Θ m2/s thermal conductivity

Table 1: Model parameters appearing in (1)

In Table 1 we detail the parameters characterizing problem (1) specifying their physical inter-
pretation and unit of measure. To close problem (1), different types of boundary conditions can be
considered (e.g. Dirichlet, Robin, or Neumann). If a full Neumann condition on the velocity is im-
posed, then the mean value of the pressure must be prescribed. For the sake of simplicity, in the rest
of the article, we consider homogeneous Dirichlet conditions for both the pressure and temperature
fields.

2.1 Weak formulation

In this section, we present the weak formulation of problem (1). To this aim, we first introduce some
notation and assumptions.

For X ⊆ Ω, we denote by Lp(X) the standard Lebesgue space of index p ∈ [1,∞] and by Hq(X)
the Sobolev space of index q ≥ 0 of real-valued functions defined on X, with the convention that
H0(X) = L2(X). The notation Lp(X) and Hq(X) is adopted in place of [Lp(X)]d and [Hq(X)]d,
respectively. In addition, we denote by H(div, X) the space of L2(X) vector fields whose divergence
is square integrable. These spaces are equipped with natural inner products and norms denoted by
(·, ·)X = (·, ·)L2(X) and || · ||X = || · ||L2(X), respectively, with the convention that the subscript can be
omitted in the caseX = Ω. For the sake of brevity, we make use of the symbol x ≲ y to denote x ≤ Cy,
where C is a positive constant independent of the discretization parameters. We also introduce the
following assumptions on the problem data.

Assumption 2.1 (Regularity assumptions on the problem data). We assume that the problem data
satisfy the following regularity conditions.

1. The permeability K = (K)di,j=1 and thermal conductivity Θ = (Θ)di,j=1 are symmetric tensor
fields which, for strictly positive real numbers kM > km and θM > θm, satisfy for a.e. x ∈ Ω:

km|ζ|2 ≤ ζTK(x)ζ ≤ kM |ζ|2 and θm|ζ|2 ≤ ζTΘ(x)ζ ≤ θM |ζ|2 ∀ζ ∈ Rd.

2. The fluid viscosity ν and the Forchheimer coefficient β are scalar fields such that ν : Ω → [νm, νM ]
and β : Ω → [0, βM ] with 0 < νm ≤ νM and 0 ≤ βM .

3. The forcing terms satisfy f ∈ L2(Ω) and g ∈ L2(Ω).

We can now introduce the weak formulation of problem (1). Let Z = {z ∈ L3(Ω) : ∇·z ∈ L2(Ω)},
W = L2(Ω), W = L2(Ω), and V = H1

0 (Ω), the weak formulation formulation reads: find (u, p, T ) ∈
Z×W × V such that:

Mν(T,u,v) +Mβ(u,u,v)− (p,∇·v) + (q,∇·u)
+ (Θ∇T,∇S) + ((u ·∇)T, S) = (f ,v) + (g, S) ∀(v, q, S) ∈ Z×W × V,

(2)
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where the trilinear forms Mν : V × Z× Z → R and Mβ : Z× Z× Z → R are given by

Mν(T,u,v) = (ν(T )K−1 u,v), Mβ(w,u,v) = (β|w|u,v).

Remark 2.1. The choice of the Banach space Z follows from the derivation of the weak formulation.
Indeed, applying the Hölder inequality, we observe that the regularity we need for correctly defining
the non-linear term Mβ(·, ·) is L3(Ω). The space Z,endowed with the norm ∥v∥2Z = ∥v∥2L3 +∥∇·v∥2L2,
is a subspace of H(div,Ω).

3 Discretization

This section introduces the dG–dG–dG and RT–dG–dG discretizations of problem (2). In both
approaches, discontinuous elements are employed for the pressure and temperature unknowns. For
the velocity, the first approach uses dG schemes, while the second employs RT elements.

3.1 Preliminaries

We start by introducing a subdivision Th of the computational domain Ω made of disjoint open
polytopal elements. We remark that, in the general case, the dG method supports general polytopal
meshes, cf. e.g., [4, 14, 22, 24]). We define an interface as the intersection of the (d− 1) -dimensional
facets of two neighbouring elements. If d = 3, we further assume that each interface consists of a
general polygon, which may be decomposed into a set of co-planar triangles. We denote with F ,
FI , and FB the set of faces, interior faces, and boundary faces, respectively. Following [22, 24], we
introduce the following definition.

Definition 3.1 (Polytopal regular mesh [22, 24]). A mesh Th is said to be polytopal regular if ∀κ ∈ Th,
there exist a set of non-overlapping d-dimensional simplices contained in κ – denoted by {SF

κ }F⊂∂κ –
such that, for any face F ⊂ ∂κ, the following condition holds: hκ ≲ d |SF

κ | |F |−1.

We next introduce the mesh assumptions.

Assumption 3.1. Given {Th}h, h > 0, we assume that the following properties are uniformly satisfied:

A.1 Th is polytopal-regular in the sense of Defintion 3.1;

A.2 For neighbouring elements κ+, κ− ∈ Th, hp-local bounded variation property holds, i.e. hκ+ ≲
hκ− ≲ hκ+ , pκ+ ≲ pκ− ≲ pκ+ .

Note that the bounded variation hypothesis A.2 is introduced to avoid technicalities. Under A.1
the following inequality (trace-inverse inequality) holds [23]:

∥v∥Lq(∂κ) ≲ h
− 1

q
κ ℓ

2
q
κ ∥v∥Lq(κ) ∀v ∈ Pℓ(κ), (3)

where Pℓ(κ) is the space of polynomials of maximum degree equal to ℓ in κ and the hidden constant
is independent of ℓ, h, the number of faces per element, and the relative size of a face compared to
the diameter of the element it belongs to.

We also introduce the average and jump operators. We start by defining them on each interface
F ∈ FI shared by the elements κ± as in [13]:

[[a]] = a+n+ + a−n−, [[a]] = a+ ⊙ n+ + a− ⊙ n−, [[a]]n = a+ · n+ + a− · n−,

{{a}} =
a+ + a−

2
, {{a}} =

a+ + a−

2
, {{A}} =

A+ +A−

2
,

where a⊙ n = anT , and a, a, A are scalar-, vector-, and tensor-valued functions, respectively. The
notation (·)± is used for the trace on F taken within the interior of κ± and n± is the outer normal
vector to ∂κ±. On boundary faces F ∈ FB, we set

[[a]] = an, {{a}} = a, [[a]] = a⊙ n, {{a}} = a, [[a]]n = a · n, {{A}} = A.
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We introduce some further notation for the RT discretization space [17]. Let us now assume that Th
is made of a conforming, shape-regular simplicial elements. We start by considering PPPℓ(κ) =

(
Pℓ(κ)

)d
the space of piecewise polynomial vectors of degree ℓ defined on κ. The local RT space RTℓ(κ) [34] is
defined as

RTℓ(κ) =
{
v ∈

(
PPPℓ(κ) + xPℓ(κ)

)
: v · n ∈ Rℓ(∂κ)

}
,

with x = (x1, x2, . . . , xd) and Rℓ(∂κ) being the space of L2(∂κ) functions which are piecewise poly-
nomials of degree ℓ on each of the faces of κ.

Finally, for the sake of simplicity, we assume that the heat conductivity Θ and the permeability K

are element-wise constant. Then, we can introduce the following quantity: Θκ =
(
|
√

Θ|κ|22
)
, where

| · |2 is the ℓ2-norm in Rd×d. This assumption is reasonable in the context of geophysics, e.g. for
groundwater flow models, where the data are obtained via local measurements.

3.2 The dG-dG-dG discrete formulation

In this section, we introduce the dG-dG-dG scheme. Given ℓ,m ≥ 1 such that ℓ+ 1 ≥ m, we define:

V ℓ
h =

{
S ∈ L2(Ω) : S|κ ∈ Pℓ(κ) ∀κ ∈ Th

}
, Vℓ

h =
[
V ℓ
h

]d
,

Wm
h =

{
q ∈ L2(Ω) : q|κ ∈ Pm(κ) ∀κ ∈ Th

}
.

The dG-dG-dG discretization of problem (2) reads: find (uh, ph, Th) ∈ Vℓ
h × Wm

h × V ℓ
h such that

∀(vh, qh, Sh) ∈ Vℓ
h ×Wm

h × V ℓ
h it holds:

Mν(Th,uh,vh) +Mβ(uh,uh,vh)− Bh(ph,vh) + Bh(qh,uh) +Ah(Th, Sh)

+ Ch(uh, Th, Sh) +Du(uh,vh) +Dp(ph, qh) = ((f , g), (vh, Sh)),
(4)

where the discrete bilinear and trilinear forms are defined by:

Ah(T, S) = (Θ∇hT,∇hS)−
∑
F∈F

∫
F
({{Θ∇hT}}·[[S]] + [[T ]]·{{Θ∇hS}} − σ[[T ]]·[[S]]) ,

Bh(q,v) = −(q,∇h ·v) +
∑
F∈FI

∫
F
{{q}}·[[v]]n,

Ch(u, T, S) = (u · ∇hT, S) +
1

2
(∇h ·uT, S)

−
∑
F∈FI

∫
F
({{u}} · [[T ]]) {{S}} − 1

2

∑
F∈FI

∫
F
[[u]]n · {{T S}}

+
1

2

∑
F∈F

∫
F

|{{u}} · n| [[T ]]·[[S]]− 1

2

∑
F∈FB

∫
F
(u · n)T S

Du(u,v) =
∑
F∈FI

∫
F
ξ [[u]]n · [[v]]n,

Dp(p, q) =
∑
F∈FI

∫
F
ϱ [[p]] [[v]].

(5)

For all w ∈ V ℓ
h and w ∈ Vℓ

h, ∇hw and ∇h·w denote the broken differential operators whose restrictions
to each element κ ∈ Th are defined as ∇w|κ and ∇·w|κ, respectively. The stabilization functions
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σ, ξ, ϱ ∈ L∞(Fh) appearing in (5) are defined according to [12, 23, 29, 40] as:

σ =


α1 max

κ∈{κ+,κ−}

(
Θκ ℓ

2

hκ

)
F ∈ FI ,

α1Θκ
ℓ2

hκ
F ∈ FB,

ξ =


α2 max

κ∈{κ+,κ−}

(
ℓ2

hκ

)
F ∈ FI ,

α2
ℓ2

hκ
F ∈ FB,

ϱ =


α3 min

κ∈{κ+,κ−}

(
hκ
m

)
F ∈ FI ,

α3
hκ
m

F ∈ FB,

(6)

where α1, α2, α3 ∈ R are positive constants to be properly defined and hκ is the diameter of the
element κ ∈ Th.

To handle the non-linear convective term in the temperature equation, we consider the so-called
Temam’s modification of the trilinear form that classically models the non-linear advection term.
This modification aims to recover the skew-symmetry property of the trilinear form that, in the
semi-discrete framework, is generally lost. Indeed, in this framework, the convective velocity is not
divergence-free, but only weakly divergence-free. To this aim, we add two consistent terms to the
trilinear form. Indeed, we can see the trilinear form C appearing in (5) as:

Ch(u, T, S) = C̃h(u, T, S) +
1

2
(∇h ·uT, S)− 1

2

∑
F∈FI

∫
F
[[u]]n · {{T S}},

where C̃h(u, T, S) is the dG-form that discretizes the convection operator with upwind and inflow
stabilizations [19]. At the same time, the last two terms are two consistent terms of Temam’s modi-
fication. We recall the following result.

Lemma 3.1. For all v ∈ Vℓ
h, for all S ∈ V ℓ

h it holds:

Ch(v, S, S) =
1

2

∑
F∈FI

∫
F
|{{v}} · n| [[S]]2 + 1

2

∑
F∈FB

∫
F
(|v · n| − v · n)S2 ≥ 0.

We remark that in Lemma 3.1 we do not recover the skew-symmetry of the trilinear form due to
the presence of the stabilization terms. However, thanks to the Temam trick, we can control the sign
of Ch.

Remark 3.1. In the discrete formulation above, we consider the same polynomial degree for Vℓ
h and

V ℓ
h , because we are interested in approximation schemes yielding the same accuracy for the velocity

and temperature. To ensure inf-sup stability of the discrete system, we need the pressure field ph to
belong to Wm

h , with ℓ+ 1 ≥ m.

Remark 3.2. In the bilinear forms Bh and Du, the interface terms are summed only on the set of
internal faces FI of the mesh. This is due to the choice of the boundary conditions (i.e., Dirichlet
boundary conditions for the pressure field).

Remark 3.3. In the trilinear form Ch, we have added two stabilization terms in the spirit of [19] for
making the scheme robust to the advection-dominated regime. We highlight that this configuration is
relevant in this context, as – with the DF law – we intend to describe phenomena in which the velocity
of the flow is high.

3.3 The RT-dG-dG discrete problem

In this section, we introduce the RT-dG-dG discretization, highlighting the differences with respect
to the RT-dG-dG one. Given the polynomial degrees of approximation ℓ, m, and the discrete spaces
Wm

h , V ℓ
h defined as before, we introduce the following discrete space for the velocity field:

Zm
h = {v ∈ Z : v|κ ∈ RTm(κ) ∀κ ∈ Th} .
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Then, the RT-dG-dG discretization of problem (2) reads: find (uh, ph, Th) ∈ Zm
h ×Wm

h ×V ℓ
h such that

∀(vh, qh, Sh) ∈ Zm
h ×Wm

h × V ℓ
h it holds:

Mν(Th,uh,vh) +Mβ(uh,uh,vh)− B̂h(ph,vh) + B̂h(qh,uh)

+Ah(Th, Sh) + Ĉh(uh, Th, Sh) = ((f , g), (vh, Sh)),
(7)

with
B̂h(φ,v) = −(φ,∇h ·v) = Bh(φ,v),

Ĉh(v, T, S) = (v · ∇hT, S) +
1

2
(∇h ·v T, S)−

∑
F∈FI

∫
F
(v · [[T ]]) {{S}}

+
1

2

∑
F∈F

∫
F

|v · n| [[T ]]· [[S]]− 1

2

∑
F∈FB

∫
F
(v · n)T S = Ch(v, T, S)

for all v ∈ Zm
h , φ ∈ Wm

h , and T, S ∈ V ℓ
h , and where the remaining bilinear and trilinear forms are

defined as before. Notice that [[z]]n = 0 for z ∈ Zm
h , which implies that some interface terms vanish.

For ensuring the inf-sup stability, we take Wm
h as discrete space for the pressure, where m is the

degree of the RT space of the velocity.

Remark 3.4. We observe that the discrete space Zm
h is a subspace of Vℓ

h for ℓ ≥ m + 1. Following
this observation, in Section 4, the stability analysis is carried out for the dG-dG-dG formulation, and
all the results, naturally hold for the RT-dG-dG scheme as well. Moreover, the Brezzi-Douglas-Marini
(BDM) discrete spaces [17, 21] can be seen as subspaces of dG-discrete spaces as well. Then, all the
results presented in this article can be extended to a BDM-dG-dG scheme.

3.4 Linearization

For tackling the non-linear terms appearing in (4) (and in (7)), we introduce a fixed-point iterative
algorithm. Let k ≥ 1 be the iteration step and let uk−1

h , T k−1
h be the approximated velocity and

temperature fields computed at the (k − 1)th iteration, respectively. Then, at the kth step we solve:
find (uk

h, p
k
h, T

k
h ) ∈ Vℓ

h ×Wm
h × V ℓ

h such that ∀(vh, qh, Sh) ∈ Vℓ
h ×Wm

h × V ℓ
h it holds:

Mν(T
k−1
h ,uk

h,vh) +Mβ(u
k−1
h ,uk

h,vh)− Bh(p
k
h,vh) + Bh(qh,u

k
h) +Ah(T

k
h , Sh)

+ Ch(uk−1
h , T k

h , Sh) +Du(u
k
h,vh) +Dp(p

k
h, qh) = ((f , g), (vh, Sh)).

(8)

Remark 3.5. We observe that the fluid and heat problems are decoupled. Indeed, a splitting of the
two physics is naturally induced by the linearization scheme (8).

The linearization algorithm is initialized by solving the linear flow problem and using the resulting
velocity field in the temperature equation. Finally, the updated velocity and temperature fields are
fed to the next iteration of the scheme. The convergence of algorithm (8) is established in Section 4
under suitable assumptions.

4 Theoretical analysis

The aim of this section is to establish a stability estimate for the non-linear problems (4) and (7),
and to prove the convergence of the iterative algorithm (8).

4.1 Stability estimates

We focus on problem (4) and stress again that these results hold automatically for problem (7).
We start by introducing notation and results that will be used in the analysis. First, the energy

norms are defined ∀(v, q, S) ∈ Vℓ
h ×Wm

h × V ℓ
h as:
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∥|v∥|dG,div = ∥v∥+ ∥v∥L3 + ∥∇h ·v∥+

∑
F∈FI

∥ξ1/2[[v]]n∥2F

1/2

,

∥S∥2dG,T = ∥
√
Θ∇hS∥2 +

∑
F∈F

∥σ1/2[[S]]∥2F ,

∥(v, q, S)∥2E =∥v∥2 + ∥v∥3L3 + ∥∇h ·v∥2 +
∑
F∈FI

∥ξ1/2 [[v]]n∥2F + B2 ∥q∥2 + ∥S∥2dG,T .

(9)

Next, we state the following technical lemmata.

Lemma 4.1. Let Assumptions 2.1 and 3.1 be satisfied and assume that the parameter α1 appearing
in (6) is chosen large enough. Then, the following bounds hold:

Ah(T, S) ≲ ∥T∥dG,T ∥S∥dG,T , Ah(T, T ) ≳ ∥T∥2dG,T ∀ T, S ∈ V ℓ
h ,

where the hidden constants do not depend on the material properties and the discretization parameters.

For all v ∈ Vℓ
h, let ∥v∥dG = ∥∇hv∥2 +

∑
F∈F ∥ξ1/2[[v]]∥2F , we recall the following result and refer

to [8] for the proof.

Lemma 4.2. [8] Let Assumption 3.1 hold and let the polynomial degrees ℓ and m satisfy ℓ+1 ≥ m.
Then, there exists a positive constant B independent of the mesh size h (but possibly dependent on ℓ
and m) such that:

sup
0 ̸=vh∈Vℓ

h

Bh(vh, qh)

∥vh∥dG
+Dp(qh, qh)

1
2 ≥ B∥qh∥ ∀qh ∈ Wm

h . (10)

The following result is an extension of Lemma 4.2 and it is needed for controlling the L2-norm of
the pressure field.

Proposition 4.1. Under the assumptions of Lemma 4.2, there exists a positive constant B indepen-
dent of the mesh size h (but possibly dependent on ℓ and m) such that:

sup
0 ̸=vh∈Vℓ

h

Bh(vh, qh)

∥|vh∥|dG,div
+Dp(qh, qh)

1
2 ≳ B∥qh∥ ∀qh ∈ Wm

h . (11)

Proof. We start the proof by observing that:

∥|v∥|dG,div ≲ ∥v∥dG ∀v ∈ Vℓ
h. (12)

Indeed, the first two terms of ∥|v∥|dG,div are controlled via Poincaré-Sobolev inequalities [20, Theorem
1.6], while the third and the fourth term are trivially controlled by terms of ∥v∥dG. Then, the thesis
directly follows from (10) and (12).

The next result is instrumental for the derivation of an a-priori stability estimate for the non-linear
discrete problem. The target of the Lemma is to obtain and prove two basic estimates.

Lemma 4.3. Let Assumptions 2.1 and 3.1 be satisfied and assume that the parameter α1 appearing
in (6) is chosen large enough. Then, the solution (uh, ph, Th) ∈ Vℓ

h×Wm
h ×V ℓ

h to problem (4) satisfies
the following estimates:

(i)

∥∥∥∥√ νm
2kM

uh

∥∥∥∥2 + ∥ 3
√

β uh∥3L3 +
αT

2
∥Th∥2dG,T ≤ kM

2νm
∥f∥2 +

C2
p

2αT θm
∥g∥2, (13a)

(ii)

∥∥∥∥√ νm
2kM

uh

∥∥∥∥2 + ∥ 3
√

β uh∥3L3 +
1

3
∥∇h ·uh∥2 +

1

4

∑
F∈FI

∥ξ1/2 [[uh]]n∥2F

+
αT

2
∥Th∥2dG,T ≤ Mν(Th,uh,uh) +Mβ(uh,uh,uh) +Ah(Th, Th)

+ Ch(uh, Th, Th) +Du(uh,uh).

(13b)

where Cp is the constant of the Poincaré inequality.
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Proof. We start the proof by taking (vh, qh, Sh) = (uh, ph, Th) as test functions in (4). We obtain:

Mν(Th,uh,uh) +Mβ(uh,uh,uh) +Ah(Th, Th) + Ch(uh, Th, Th)

+Du(uh,uh) +Dp(ph, ph) = ((f , g), (uh, Th)).
(14)

Now, we observe that, by using Assumption 2.1, Lemma 4.1, and Lemma 3.1 the following results
hold:

Mν(Th,uh,uh) ≥
∥∥∥√νm/kM uh

∥∥∥2 , Mβ(uh,uh,uh) = ∥ 3
√

β uh∥3L3 ,

Ah(Th, Th) ≥ αT ∥Th∥2dG,T , Ch(uh, Th, Th) ≥ 0,

Du(uh,uh) =
∑
F∈FI

∥ξ1/2 [[uh]]n∥2F ≥ 0, Dp(ph, ph) =
∑
F∈FI

∫
F
ϱ[[ph]]

2 ≥ 0.

(15)

By exploiting (15) and using Cauchy-Schwarz and Young inequalities for the right hand side of (14),
we obtain (13a). For proving (13b), we need to control also the divergence of the discrete velocity
field. To this aim, we test problem (4) with (vh, qh, Sh) = (0,−∇h ·uh, 0) and we find:

Bh(−∇h ·uh,uh) +Dp(ph,uh) = 0.

Now, by using Cauchy-Schwarz, Young, and trace-inverse inequality (cf. (3)), we get:(
1− 1

2ϵ1
− 1

2ϵ2

)
∥∇h ·uh∥2 −

ϵ1
2

∑
F∈FI

∥ξ1/2 [[uh]]n∥2F − ϵ2
2

∑
F∈FI

∫
F
ϱ[[ph]]

2 ≤ 0. (16)

Last, we fix ϵ1 = ϵ2 = 3/2 and we combine (15) and (16) to obtain (13b).

We are now ready to state the main result of this section, establishing the stability estimate for
the non-linear discrete Darcy-Forchheimer flow problem coupled with an advection-diffusion equation
for the temperature.

Theorem 4.1. Let the assumptions of Lemmata 4.1, 4.1, and 4.3 be satisfied. Then, the solution
(uh, ph, Th) ∈ Vℓ

h ×Wm
h × V ℓ

h to (4) satisfies the a-priori bound

∥ (uh, ph, Th) ∥2E ≲ ∥f∥2 + ∥g∥2 +
(
∥f∥2 + ∥g∥2

) 2
3 +

(
∥f∥2 + ∥g∥2

) 4
3 ,

where the hidden constant is independent of the mesh size h.

Proof. The first step of the proof consists in using the inf-sup condition (cf. Lemma 4.1) to find a
bound for the pressure field. Taking (vh, qh, Sh) = (vh, 0, 0) in (4) we have:

Bh(ph,vh) =Mν(Th,uh,vh) +Mβ(uh,uh,vh) +Du(uh,vh)− (f ,vh).

By plugging the previous identity into (11) and by using Cauchy-Schwarz and Hölder inequalities we
obtain:

B2

2
∥ph∥2 ≤

(
sup

0 ̸=vh∈Vℓ
h

Mν(Th,uh,vh) +Mβ(uh,uh,vh) +Du(uh,vh)− (f ,vh)

∥|vh∥|dG,div

)2

+Dp(ph, ph)

≤ ∥(νM/km)uh∥2 + ∥
√
βuh∥4L3 + ∥|uh∥|2dG,div + ∥f∥2 +Dp(ph, ph),

(17)

where the second bound follows observing that

Mβ(uh,uh,vh) = (β|uh|uh,vh) ≤ ∥β |uh|uh ∥L3/2 ∥vh∥L3 ≤ ∥
√
βuh∥2L3 ∥|vh∥|dG,div.

In the second step of the proof, we find a bound for ∥
√
β uh∥4L3 . From (13a), we can easily see that:

∥
√

β uh∥3L3 =
√

β∥ 3
√

β uh∥3L3 ≤ kM
√
β

2νm
∥f∥2 +

C2
p

√
β

2αT θm
∥g∥2,

9



and therefore

∥
√
β uh∥4L3 ≤

(
kM

√
β

2νm
∥f∥2 +

C2
p

√
β

2αT θm
∥g∥2

) 4
3

. (18)

We now consider (13b), we add (ϵB2/2) ∥ph∥2 to the left and right hand side, and we use (17):∥∥∥∥√ νm
2kM

uh

∥∥∥∥2 + ∥ 3
√

β uh∥3L3 +
1

3
∥∇h ·uh∥2 +

1

4

∑
F∈FI

∥ξ1/2 [[uh]]n∥2F +
αT

2
∥Th∥2dG,T

+
ϵB2

2
∥ph∥2 ≤ Mν(Th,uh,uh) +Mβ(uh,uh,uh) +Ah(Th, Th) + Ch(uh, Th, Th)

+Du(uh,uh) +Dp(ph, ph) + ϵ

(∥∥∥∥νMkm uh

∥∥∥∥2 + ∥
√

βuh∥4L3 + ∥|uh∥|2dG,div + ∥f∥2
)
.

We observe that the first six terms at right hand side are equal to ((f , g), (uh, Th)) (cf. (14)), we
apply Cauchy-Schwarz and Young inqualities on it and we exploit (18) for bounding the eighth term
at right hand side:∥∥∥∥√ νm

4kM
uh

∥∥∥∥2 + ∥ 3
√

β uh∥3L3 +
1

3
∥∇h ·uh∥2 +

1

4

∑
F∈FI

∥ξ1/2 [[uh]]n∥2F +
αT

4
∥Th∥2dG,T

+
ϵB2

2
∥ph∥2 ≤

kM
νm

∥f∥2 +
C2
p

αT θm
∥g∥2 + ϵ

(
kM

√
β

2νm
∥f∥2 +

C2
p

√
β

2αT θm
∥g∥2

) 4
3

+ ϵ∥f∥2

+ ϵ

(∥∥∥∥νMkm uh

∥∥∥∥2 + ∥|uh∥|2dG,div

)
.

Finally, we choose the auxiliary parameter ϵ to be:

ϵ =
1

4
min

(
νm k2m
4 kM ν2M

,
1

3
,
1

4

)
,

we bound the ∥uh∥2L3 contribution appearing from the last term of right hand side as done in (18)
and this concludes the proof.

4.2 Convergence of the fixed-point algorithm

The aim of this section is to prove the convergence of the linearization algorithm, cf. Section 3.4. To
this aim, we show that the difference of approximate solutions at two successive iterations defines is a
contracting sequence. Let (uk+1

h , pk+1
h , T k+1

h ) and (uk
h, p

k
h, T

k
h ) be the solutions to (8) at the (k + 1)th

and kth iterations, respectively. For all k ≥ 1, we define:

δku = uk+1 − uk, δkp = pk+1 − pk, δkT = T k+1 − T k.

Then, it can be observed that (δku, δ
k
p , δ

k
T ) solves the problem:

Mν(T
k
h ,u

k+1
h ,vh)−Mν(T

k−1
h ,uk

h,vh) +Mβ(u
k
h,u

k+1
h ,vh)

−Mβ(u
k−1
h ,uk

h,vh)− Bh(δ
k
p ,vh) + Bh(qh, δ

k
u) +Ah(δ

k
T , Sh)

+ Ct
h(u

k
h, T

k+1
h , Sh)− Ct

h(u
k−1
h , T k

h , Sh) +Du(δ
k
u,v) +Dp(δ

k
p , q) = 0.

In the following theorem, we state the conditions under which the fixed-point iterative method con-
verges. We start by observing that, as in this case we are considering the linearized problem instead
of the non-linear one, we want to control the error for the velocity field in the following norm:

∥v∥2dG,div = ∥v∥2 + ∥∇h ·v∥2 +
∑
F∈FI

∥ξ1/2[[v]]n∥2F ∀ v ∈ Vℓ
h,

10



while the norms for the temperature and pressure fields are the same defined in (9). Moreover, we
introduce the auxiliary ∥S∥2dG,3-norm of the functions belonging to V ℓ

h as follows:

∥S∥2dG,3 = ∥S∥2L3(Ω) + ∥∇hS∥2L3(Ω) +max
F∈F

max
κ∈{κ+,κ−}

ℓ2

hκ
∥ [[S]] ∥2L3(F ) ∀ S ∈ V ℓ

h .

Theorem 4.2. Let the assumptions of Theorem 4.1 be satisfied. Additionally, assume that:

∥uk
h∥L∞ ≲ min

(
νm
kMβ

,

√
αT νm k2m
kM L2

ν

)
and ∥T k

h ∥dG,3 ≲

√
νm θM αT

kM
(19)

where αT has been defined in Lemma 4.1. Then, the linearization strategy defined in Section 3.4
converges, namely Vℓ

h ×Wm
h × V ℓ

h ∋ (δku, δ
k
p , δ

k
T ) → 0 as k → ∞.

Proof. We start the proof by adding and subtracting Mν(T
k
h ,u

k
h,vh),

Mβ(u
k
h,u

k
h,vh), and Ch(uk

h, T
k
h , Sh) to (20). Then, expanding the trilinear forms we obtain:(

(ν(T k
h )K

−1 + β|uk
h|) δku,vh

)
− Bh(δ

k
p ,vh) + Bh(qh, δ

k
u) +Ah(δ

k
T , Sh)

+ Ch(uk
h, δ

k
T , Sh) +Du(δ

k
u,v) +Dp(δ

k
p , q) = −Ch(δk−1

u , T k
h , Sh)

+
(
(ν(T k−1

h )K−1 − ν(T k
h )K

−1 + β|uk−1
h | − β|uk

h|)uk
h,vh

)
.

(20)

In the second step of the proof, we focus on the fluid flow and incompressibility equations. We consider
(vh, qh, Sh) = (δku, δ

k
p , 0) as test functions in (20):(

(ν(T k
h )K

−1 + β|uk
h|) δku, δku

)
+Du(δ

k
u, δ

k
u) +Dp(δ

k
p , δ

k
p)

=
(
(ν(T k−1

h )K−1 − ν(T k
h )K

−1 + β|uk−1
h | − β|uk

h|)uk
h, δ

k
u

)
.

We start by noting that
(
(ν(T k

h )K
−1 + β|uk

h|) δ
k
u, δ

k
u

)
≥ νm

kM
∥eku∥2 by Assumption 2.1. Next, we test

problem (20) with (vh, qh, Sh) = (0,−∇h ·δku, 0) and we obtain

Bh(−∇h ·δku, δku) +Dp(δ
k
p ,−∇h ·δku) = 0.

By proceeding as in Section 4 (cf. Equation (16)) and using Cauchy-Schwarz and Young inequalities
we get

νm
2kM

∥δku∥2 + ∥∇h ·δku∥2 +
∑
F∈FI

∥
√
ξ[[δku]]n∥2F +Dp(δ

k
p , δ

k
p)

≲
2kM
νm

∥∥∥(ν(T k−1
h )K−1 − ν(T k

h )K
−1 + β|uk−1

h | − β|uk
h|)uk

h

∥∥∥2 . (21)

We are left to control the right hand side of (21). To this aim, we use the Lipschitz-continuity of the
viscosity coefficient ν (we denote by Lν the Lipschitz constant) and the triangle inequality to get:

νm
2kM

∥δku∥2 + ∥∇h ·δku∥2+
∑
F∈FI

∥
√
ξ[[δku]]n∥2F +Dp(δ

k
p , δ

k
p)

≲
4kM
νm

∥uk
h∥2L∞

(
L2
ν

k2m
∥δk−1

T ∥2dG,T + β2∥δk−1
u ∥2

)
Now, in the third step of the proof, we focus on the temperature equation. We consider (vh, qh, Sh) =
(0, 0, δkT ) in (20) and we obtain:

Ah(δ
k
T , δ

k
T ) + Ch(uk

h, δ
k
T , δ

k
T ) = −Ch(δk−1

u , T k
h , δ

k
T ),

where, due to Lemma 3.1, we have that Ch(uk
h, δ

k
T , δ

k
T ) ≥ 0. Then, we are left with:

αT ∥δkT ∥2dG,T ≤ −Ch(δk−1
u , T k

h , δ
k
T ) = I1 + I2 + I3,
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where, by using Hölder, Poincarè, Young, triangle, and trace-inverse inequalities [20], we get:

I1 = − (δk−1
u · ∇T k

h , δ
k
T )−

1

2
(∇h ·δk−1

u T k
h , δ

k
T ),

≤∥∇hT
k
h ∥L3∥δk−1

u ∥∥δkT ∥L6 +
1

2
∥T k

h ∥L3∥∇h ·δk−1
u ∥∥δkT ∥L6

≤ ϵ

2
∥∇hT

k
h ∥2L3∥δk−1

u ∥2 + 1

2ϵ
∥δkT ∥2L6 +

ϵ

2
∥T k

h ∥2L3∥∇h ·δk−1
u ∥2 + 1

4ϵ
∥δkT ∥2L6

≤ ϵ∥T k
h ∥2dG,3∥δk−1

u ∥2dG,div +
3Cp

4ϵ θM
∥δkT ∥2dG,T ,

I2 =
∑
F∈FI

∫
F

(
{{δk−1

u }} · [[T k
h ]]
)
{{δkT }} −

1

2

∑
F∈F

∫
F

∣∣∣{{δk−1
u }} · n

∣∣∣ [[T k
h ]]·[[δkT ]]

+
1

2

∑
F∈FB

∫
F
(δk−1

u · n)T k
h δkT ,

≤
∑
F∈F

∫
F
|{{δk−1

u }}| |[[T k
h ]]|

2|{{δkT }}|+ |[[δkT ]]|
2

≤
∑
F∈F

h1/2κ ∥δk−1
u ∥F h−2/3

κ ∥[[T k
h ]]∥L3(F ) h

1/6
κ ∥δkT ∥L6(F )

≤

∑
κ∈Th

hκ ∥δk−1
u ∥2∂κ

1/2 (∑
F∈F

h−2
κ ∥[[T k

h ]]∥3L3(F )

)1/3 (∑
F∈F

hκ ∥δkT ∥6L6(∂κ)

)1/6

≤C2
tr ∥δk−1

u ∥

(∑
F∈F

h−2
κ ∥[[T k

h ]]∥3L3(F )

)1/3

∥δkT ∥L6

≤ ϵC4
tr∥T k

h ∥2dG,3∥δk−1
u ∥2dG,div +

Cp

4ϵ θM
∥δkT ∥2dG,T ,

I3 =
1

2

∑
F∈FI

∫
F
[[ek−1

u ]]n {{T k
h δkT }}

≤
∑
F∈F

h−1/2
κ ∥[[δk−1

u ]]n∥F h1/3κ ∥T k
h ∥L3(F ) h

1/6
κ ∥δkT ∥L6(F )

≤

(∑
F∈F

h−1
κ ∥[[δk−1

u ]]n∥2F

)1/2 (∑
F∈F

hκ ∥T k
h ∥3L3(∂κ)

)1/3 (∑
F∈F

hκ ∥δkT ∥6L6(∂κ)

)1/6

≤C2
tr

(∑
F∈F

h−1
κ ∥[[δk−1

u ]]n∥2F

)1/2

∥T k
h ∥L3 ∥δkT ∥L6

≤ ϵC4
tr∥T k

h ∥2dG,3∥δk−1
u ∥2dG,div +

Cp

4ϵ θM
∥δkT ∥2dG,T

By grouping all the results together, we obtain:

νm
2kM

∥δku∥2 + ∥∇h ·δku∥2 +
∑
F∈FI

∥
√
ξ[[δku]]n∥2F +Dp(δ

k
p , δ

k
p) + αT ∥δkT ∥2dG,T ≲

4kML2
ν

νmk2m
∥uk

h∥2L∞∥δk−1
T ∥2dG,T +

4kMβ2

νm
∥uk

h∥2L∞∥δk−1
u ∥2

+ ϵ
(
1 + 2C4

tr

)
∥T k

h ∥2dG,3∥δk−1
u ∥2dG,div +

5Cp

4ϵ θM
∥δkT ∥2dG,T
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we set ϵ = 5Cp/(2θMαT ) (cf. (4.1)) and we obtain:

νm
kM

∥δku∥2dG,div + αT ∥δkT ∥2dG,T ≲
kML2

ν

νmk2m
∥uk

h∥2L∞∥δk−1
T ∥2dG,T

+max

(
kMβ2

νm
∥uk

h∥2L∞ ,
1

θM αT
∥T k

h ∥2dG,3

)
∥δk−1

u ∥2dG,div.

Given (19), we infer that the map (δk−1
u , δk−1

p , δk−1
T ) → (δku, δ

k
p , δ

k
T ) is a contraction. Then, by applying

the Banach fixed-point theorem the proof is concluded.

5 Numerical results

This section assesses the performance of the proposed scheme in terms of accuracy and demonstrates its
application to physically relevant test cases. All computations are performed in FEniCS. Convergence
tests are carried out for both the dG–dG–dG and RT–dG–dG schemes, while physically relevant test
cases use only the RT–dG–dG scheme. The two- and three-dimensional meshes consist of triangles
and tetrahedra, respectively. The penalty coefficients α1, α2, and α3 in (6) are set equal to 10. We
denote by ℓ the polynomial degree for the temperature field and by m the degree for the pressure
field. For the velocity field, ℓ is used in the dG–dG–dG scheme and m in the RT–dG–dG scheme,
with m = ℓ − 1 in all tests. With this choice, we expect the same accuracy in the L2-norm for the
pressure and in the energy norms for the velocity and temperature fields. In addition, the dG–dG–dG
scheme gains one order of accuracy in the L2-norm for the velocity field.

5.1 Convergence test case in two-dimensions

We set Ω = (0, 1)2 with the following manufactured analytical solution:

u(x, y) =

x2 sin(2πy)
x

π
cos(2πy)

 , p(x, y) = (x2 + 3y − 2xy) sin(2πx),

T (x, y) = (−y2 + 2x) cos(2πx);

the boundary conditions and forcing terms are set accordingly. The model coefficients are reported in
Table 2. We test the convergence of the dG-dG-dG scheme with respect to both the mesh size h and

K [m2] I β [Pa s2/m3] 1 Θ [m2/s] I

Table 2: Convergence tests of Section 5.1 and Section 5.2: model parameters

the polynomial degrees ℓ, m. The convergence of the RT-dG-dG scheme is tested only with respect
to the mesh size h. For the h-convergence, we consider a sequence of successively fined triangular
meshes and we set ℓ = 2 and m = 1. For the p-convergence, we fix a mesh made of N = 64 triangular
elements and we vary the polynomial degrees ℓ = [2, 3, 4, 5, 6], m = [1, 2, 3, 4, 5]. For what concerns the
fixed-point iterative algorithm, a tolerance of 10−8 on the relative difference between two successive
iterations is set. In Figure 1 we show the computed errors versus the mesh-size h (loglog scale).

We observe that the L2-error for the pressure field and the energy-errors for the velocity and temper-
ature fields decrease as h2 for both the schemes. Moreover, as in both the methods the temperature
equation is discretized with the use of dG method, we see that the L2-error for the temperature field
decays as h3. The only difference we can clearly observe between the two schemes is in the L2- error of
the velocity field; indeed, in the dG-dG-dG scheme it decreases as h3, while in the RT-dG-dG scheme
it decreases as h2. Thus, we gain one order of accuracy when using a full-dG discretization. We re-
mark that by choosing ℓ = 2, m = 1, we observe the same accuracy when looking at the energy-norm

13



101 102

10−6

10−4

10−2

3

2

1/h

L
2
-e
rr
o
rs

101 102

10−4

10−2
2

1/h

E
n
er
g
y
-e
rr
o
rs

uh(dG-dG-dG)

uh(RT-dG-dG)

ph(dG-dG-dG)

ph(RT-dG-dG)

Th(dG-dG-dG)

Th(RT-dG-dG)

Figure 1: Test case of Section 5.1. Computed errors in L2-norm (left) and energy-norms (right) versus 1/h (log-log
scale).

of the velocity error, at the L2-norm of the pressure error, and at the dG-norm of the temperature
error. On average, 19 iterations of the fixed-point algorithm are required for achieving convergence
of the dG-dG-dG algorithm and 14 for the RT-dG-dG one. It is worth noting that, apart from the
velocity field errors all computed errors (in absolute value) are very similar.
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Figure 2: Test case of Section 5.1. Computed errors in L2-norm (left) and energy-norms (right) versus the polynomial
approximation degree ℓ (semilog scale).

For the dG-dG-dG scheme we also test the convergence with respect to the polynomial approxima-
tion degree. In Figure 2 we report the computed error versus the polynomial degree (semilog scale).
We observe that the L2-errors and energy-errors for all the three fields decay exponentially ℓ (and m,
consequently).

5.2 Convergence test case in three-dimensions

In this section, we set Ω = (0, 1)3, take the model coefficients as in Table 2, and consider boundary
conditions and forcing terms inferred from the following manufactured solution:

u(x, y, z) =

(
x2 sin(2πy) sin(2πz),−x

π
cos(2πy) sin(2πx),

2x

π
sin(2πy) cos(2πz)

)T

,

p(x, y, z) = (x2 + 3y − 2xy + xz − z2) sin(2πx) sin(2πy) cos(2πz),

T (x, y, z) = (−3x+ 2y2 + 4yz + z) cos(2πx) cos(2πy) sin(2πz).

We consider a sequence of successively refined tetrahedral meshes and set ℓ = 2, m = 1. We have
repeated the previous test case and reported in Figure 3 the computed errors versus 1/h (log-log
scale). We observe that the convergence rates are as expected. In this set of simulations, the fixed-
point iterative algorithm is stopped when the relative difference between two successive iterations
is below 10−8. On average, 17 iterations of the fixed-point algorithm are required for achieving
convergence of the dG-dG-dG method, while 12 iterations are needed for the RT-dG-dG one.
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Figure 3: Test case of Section 5.2. Computed errors in L2-norm (left) and energy-norms (right) versus 1/h (log-log
scale).

5.3 Advection-dominated temperature transport in two-dimensions

In this section we propose a test case, inspired by [9], in which we investigate the transport of
temperature by a flow that is governed by the DF law. We set Ω = (0, 4)× (0, 2) \ (2, 4)× (0, 1), with
Γin = 0× (0, 2) and Γout = 4× (1, 2) and set the following boundary conditions:

u · n = uin on Γin

u · n = uout on Γout

u · n = 0 on ∂Ω \ (Γin ∪ Γout)

T = Tin on Γin

Θ∇T · n+ γ(T − Text) = 0 on Ω \ Γin,

where γ = 0.1, Text = 0.5. The data uin, uout, and Tin takes the following general form

ϕ(x) =



ϕm, if 0 ≤ x < a

ϕm + ϕM−ϕm

2

(
1− cos

(
π x−a

b−a

))
, if a ≤ x < b

ϕM , if b ≤ x < c

ϕm + ϕM−ϕm

2

(
1− cos

(
π x−c

d−c

))
, if c ≤ x < d

ϕm, if d ≤ x ≤ e,

with the following choice of parameters
uin = ϕ(x) with (a, b, c, d, e, ϕm, ϕM ) = (0.5, 0.9, 1.1, 1.5, 2, 0, 1)

uout = ϕ(x) with (a, b, c, d, e, ϕm, ϕM ) = (1.25, 1.45, 1.55, 1.75, 2, 0, 1)

Tin = ϕ(x) with (a, b, c, d, e, ϕmin, ϕmax) = (0.5, 0.9, 1.1, 1.5, 2, 0, 5)

As f = 0 and g = 0, the displacement, pressure, and temperature fields are determined only by the
boundary conditions. The computational domain is discretized via a computational mesh made of 4635
triangles with mesh size h ∼ 0.08m and we set ℓ = 2 for the temperature field andm = ℓ−1 = 1 for the
velocity and pressure fields. We use the RT-dG-dG scheme for solving the problem. In Figure 4 (left)
and Figure 4 (center), we show the results for the velocity and temperature fields, respectively. For
clarity, velocity streamlines are superimposed on both fields. With the chosen boundary conditions,
we mimic the injection of fluid in the central part of the inflow boundary Γin and the extraction of
fluid in the central part of the outflow boundary Γout. The injected fluid is hotter than the reference
temperature of the domain, and a Robin boundary condition is used to model heat exchange with
the surrounding subsoil. In Figure 4 (left), the velocity field is shown; as expected, it is driven by
the inflow and outflow boundary conditions. The streamlines clearly illustrate the flow behavior and
highlight the point of high velocity at the recessed corner of the L-shaped domain. This behavior is
consistent with expectations. Regarding the temperature field (Figure 4 (center)), we observe that,
in this convection-dominated regime, the high temperature is transported by the fluid through the
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Figure 4: Test case of Section 5.3: computed velocity field (left), temperature field (center), and pressure field (right).

domain, and its distribution follows the flow lines. The temperature results also agree with what
expected. Finally, in Figure 4(right), we display the pressure field. The pressure is higher in the fluid
injection zone and then decreases in a manner resembling a linear drop toward the outflow boundary.
To close the problem, we consider the pressure as an L2 function with zero mean. Indeed, Figure 4
(right) shows that the computed pressure field satisfies the zero-mean condition.

5.4 Advection-dominated temperature transport in three-dimensions

In this section, we extend the test case presented in Section 5.3 to a three-dimensional setting. Then,
we set Ω = (0, 4)× (0, 2)× (0, 2) \ (2, 4)× (0, 1)× (0, 1) and consider a set of boundary conditions that
is similar to the two-dimensional case, where Γin, Γout are defined as Γin = {0} × (0, 2) × (0, 2) and
Γout = {4} × (0, 2)× (0, 2) \ {4} × (0, 1)× (0, 1). The parameters of the functions uin, uout are taken
as in Section 5.3 and they are considered constant along the z-direction. Moreover, as in the previous
test case, we consider the forcing terms to be f = 0, g = 0. The computational domain is discretized
with a mesh consisting of 40544 tetrahedrons with mesh size h ∼ 0.25m; moreover we set ℓ = 2 for
the temperature field and m = ℓ − 1 = 1 for the velocity and pressure fields. The numerical results
have been obtained based on employing the RT-dG-dG scheme. In Figure 5, we show the computed
velocity field. Recall that this test case concerns convection-dominated temperature transport; thus
a full understanding of the velocity field also provides insight into the temperature field. We observe
that the results are consistent with those obtained in the two-dimensional setting, and, as expected,
peaks in the velocity field occur at the inflow and outflow boundaries and along the edges surrounding
the removed corner of the parallelepipedal domain. This is evident in both the slices that highlight
the L-shaped part of the domain, cf. Figure 5 (top-right) and Figure 5 (bottom-right), but it is also
evident by looking at the rectangular slices, cf. Figure 5 (top-left) and Figure 5 (bottom-left). In
Figure 6 we show the results for the temperature field. As in the previous test case, we consider a
convection-dominated pressure; then, as expected, in the behavior of the temperature field we clearly
observe the convective phenomenon that predominates the diffusive one. We observe that, as in the
two dimensional case, the temperature field follows the shape of the L-shaped domain (cf. Figure 6
(top-right)). In the correspondent rectangular part of the domain (cf. Figure 6 (bottom-right)) we
still observe that shape of the field follows the L shape and there is no temperature diffusion in the
bottom-left corner of the domain. When looking at the Figure 6 (top-left) and Figure 6 (bottom-
left) slices we observe that also in this direction, the shape of the temperature follows an L-shaped
pattern, coherent with the velocity field observed in Figure 5. In Figure 7 we display the pressure
field. We observe that the pressure value is higher in the zone of the fluid injection and then decreases
with a behavior similar to a linear decay towards the outflow boundary. We can observe from the
slices Figure 7 (top-right), Figure 7 (bottom-right) that the part of the domain in which we observe
the lowest value of pressure is the outflow boundary of the L-shaped part. In Figure 8 we give a
volumetric representation of the three fields. In Figure 8 (left) it is possible to observe the behavior
of the velocity field; we can observe that the fluid flows from the inflow boundary to the outflow
one following the shape of the domain, with velocity peaks on the edges of the concave part of the
domain, cf. Figure 5 too. In Figure 8 (center) we observe the behavior of the temperature field. By
comparing Figure 8 (left) and Figure 8 (center) it is evident the convection-dominated nature of the
test case, as the regions of high temperature of the fluid follow the flow pattern. In particular, we
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Figure 5: Test case of Section 5.4: computed velocity field. The domain is clipped at x = 0.5 and the four slices are at
y = 0.95 (top-left), y = 1.05 (bottom-left), z = 0.95 (top-right), and z = 1.05 (bottom-right)

Figure 6: Test case of Section 5.4: computed temperature field. The domain is clipped at x = 0.5 and the four slices
are at y = 0.95 (top-left), y = 1.05 (bottom-left), z = 0.95 (top-right), and z = 1.05 (bottom-right)

observe high-temperature regions in the inner corner of the domain.

6 Conclusions

In this work, we presented and analyzed in a unified framework two schemes for the numerical dis-
cretization of a DF fluid flow model coupled with an advection–diffusion equation describing the
temperature distribution inside a fluid. The first approach relied on discontinuous discrete spaces
for velocity, pressure, and temperature fields. In the second approach, the velocity was discretized
in the RT space, with pressure and temperature remaining piecewise discontinuous. A fixed-point
linearization strategy—naturally leading to a splitting solution approach—was employed to address
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Figure 7: Test case of Section 5.4: computed pressure field. The domain is clipped at x = 0.5 and the four slices are at
y = 0.95 (top-left), y = 1.05 (bottom-left), z = 0.95 (top-right), and z = 1.05 (bottom-right)

Figure 8: Test case of Section 5.4: volume representation of the temperature field (left), velocity field (center), and
pressure field (right).

the nonlinearities. We carried out a unified stability analysis and established the convergence of
the fixed-point algorithm under mild assumptions on the problem data. Extensive two- and three-
dimensional numerical experiments confirmed the theoretical results and demonstrated the efficiency
and robustness of the proposed schemes in physically relevant test cases. Future work could address
the implementation of the dG-dG-dG scheme in the lymph software library [11] to fully exploit the
advantages of this formulation and the flexibility offered by polytopal elements. Moreover, for com-
putational efficiency in three-dimensional simulations, proper preconditioning techniques for the two
subproblems have to be developed. Finally, we can include the DF law for the flow field in more
sophisticated models, e.g., in the thermo-poroelasticity theory.
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[7] P. F. Antonietti, C. Facciolà, P. Houston, I. Mazzieri, G. Pennesi, and M. Verani. High–order Dis-
continuous Galerkin Methods on Polyhedral Grids for Geophysical Applications: Seismic Wave
Propagation and Fractured Reservoir Simulations, pages 159–225. Springer International Pub-
lishing, Cham, 2021.

[8] P. F. Antonietti, L. Mascotto, M. Verani, and S. Zonca. Stability analysis of polytopic dis-
continuous Galerkin approximations of the Stokes problem with applications to fluid-structure
interaction problems. J. Sci. Comput., 90(1):23, 2021.

[9] P. F. Antonietti, G. Vacca, and M. Verani. Virtual element method for the Navier–Stokes equation
coupled with the heat equation. IMA J. Numer. Anal., 43(6):3396–3429, 2022.

[10] P. F. Antonietti, S. Bonetti, and M. Botti. Discontinuous Galerkin approximation of the fully
coupled thermo-poroelastic problem. SIAM J. Sci. Comput., 45(2):A621–A645, 2023.

[11] P. F. Antonietti, S. Bonetti, M. Botti, M. Corti, I. Fumagalli, and I. Mazzieri. lymph: discon-
tinuous Polytopal Methods for Multi-Physics Differential Problems. ACM Trans. Math. Softw.,
51(1), 2025.

[12] D. N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM J.
Numer. Anal., 19(4):742–760, 1982.

[13] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of discontinuous
Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39(5):1749–1779, 2002.

19



[14] F. Bassi, L. Botti, A. Colombo, D. Di Pietro, and P. Tesini. On the flexibility of agglomeration
based physical space discontinuous Galerkin discretizations. J. Comput. Phys., 231(1):45–65,
2012.

[15] C. Bernardi, S. Maarouf, and D. Yakoubi. Spectral discretization of Darcy’s equations coupled
with the heat equation. IMA J. Numer. Anal., 36(3):1193–1216, 10 2015.

[16] C. Bernardi, S. Dib, V. Girault, F. Hecht, F. Murat, and T. Sayah. Finite element methods for
Darcy’s problem coupled with the heat equation. Numer. Math., 139(1):315–348, 2018.

[17] D. Boffi, F. Brezzi, M. Fortin, et al. Mixed finite element methods and applications, volume 44.
Springer, 2013.

[18] S. Bonetti, M. Botti, I. Mazzieri, and P. F. Antonietti. Numerical modeling of wave propagation
phenomena in thermo-poroelastic media via discontinuous Galerkin methods. J. Comput. Phys.,
489:112275, 2023.

[19] S. Bonetti, M. Botti, and P. F. Antonietti. Robust discontinuous Galerkin-based scheme for
the fully-coupled nonlinear thermo-hydro-mechanical problem. IMA J. Numer. Anal., 45(3):
1786–1820, 2024.
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