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Abstract

The discretization of fluid-poromechanics systems is typically highly de-
manding in terms of computational effort. This is particularly true for
models of multiphysics flows in the brain, due to the geometrical complex-
ity of the cerebral anatomy — requiring a very fine computational mesh
for finite element discretization — and to the high number of variables in-
volved. Indeed, this kind of problems can be modeled by a coupled system
encompassing the Stokes equations for the cerebrospinal fluid in the brain
ventricles and Multiple-network Poro-Elasticity (MPE) equations describ-
ing the brain tissue, the interstitial fluid, and the blood vascular networks
at different space scales. The present work aims to rigorously derive a
posteriori error estimates for the coupled Stokes-MPE problem, as a first
step towards the design of adaptive refinement strategies or reduced order
models to decrease the computational demand of the problem. Through
numerical experiments, we verify the reliability and optimal efficiency of
the proposed a posteriori estimator and identify the role of the different
solution variables in its composition.

1 Introduction

The numerical modeling of multiphysics flows in the human brain poses several
difficulties, due to the complexity of the brain’s geometry and the computa-
tional cost of handling several coupled physical systems. This modeling is of
paramount importance in the investigation of the Cerebrospinal Fluid (CSF),
whose main functions are to wash out the waste products of cerebral activity
and protect the brain from impact with the skull [21],[33]. The CSF is generated
in the cerebral tissue by mass exchange through the walls of capillary blood
vessels and permeates the whole organ in its interstitial space: the interaction
between these fluid networks and the elastic tissue can be modeled by Multiple-
network Poro-Elasticity (MPE) equations [13| [14] 20} 25]. This system is then



coupled with the CSF flowing in the hollow cavities of the cerebral ventricles
and the subarachnoid spaces, where the CSF flow can be modeled by Stokes
equations [I8] [19] 27].

The large number of variables encompassed by fluid-poromechanics mod-
els and the geometrical complexity of the brain and fluid-tissue interface make
the numerical simulation of the problem particularly demanding. To reduce the
computational effort, different strategies can be considered: adaptive refinement
allows for retaining geometric accuracy while decreasing the computational de-
mands, while reduced-order models provide an efficient means to approximate
the solution of complex problems for different values of the model parameters
[23, B0, BT, 36]. Both these strategies are classically based on a posteriori error
estimates, which have been derived for several single-physics problems, including
single-fluid Biot equations [2, 26} [32] or (Navier-)Stokes equations [3}, [8 22} [35].
An a posteriori analysis of coupled Biot-Stokes system has been carried out in
[6, 24], B7], but the case of multiple interacting fluids is scarcely covered by the
a posteriori literature: the MPE problem alone has been addressed only in [2§]
for a particular case and in the recent work [15], but the coupled MPE-Stokes
problem with time-dependent pressure equations seems to be missing.

The present work aims at filling this gap, providing rigorous a posteriori esti-
mates for the coupled MPE-Stokes problem with time-dependent pressure equa-
tions. Specifically, we provide reliable residual-based estimators in the abstract
framework of [I6], enhanced to account for multi-domain problems. Moreover,
through numerical experiments, we analyze the efficiency of these estimators
and assess their main components.

Starting from Section [2] we introduce the MPE-Stokes problem and its dis-
cretization by finite elements in space and the implicit Euler scheme in time.
Then, Section [3] is devoted to the derivation of a posteriori error estimates for
the solution to the problem. In Section[d]we analyze the reliability and efficiency
of the estimators and discuss the relevance of their main components.

2 The coupled Stokes-MPE system

Let us consider a polyhedral ®-dimensional domain @ < R® (D = 2,3),
schematically represented in Fig.[l] partitioned into a poroelastic region 2e; and
a fluid region Q¢ by an interface ¥ = 0Q¢ N 0 composed of a finite number of
flat polygons. Stokes equations are set in ()¢, with 4 and p denoting the fluid’s
velocity and pressure, while g is filled with a linear poroelastic medium subject
to the MPE equations, with solid displacement d and network pressures p;j € J,
where J is a set of #J indices. The external boundaries T’y = 00\, T =
00¢\X are partitioned in Dirichlet and Neumann portions for the different vari-
ables, with clear notation: Fel = FD,d v FN,d = FD“] U FN7J, Ff = rD,u U FN,u;
notice that, for simplicity, we consider the same Dirichlet/Neumann splitting of
the boundaries for all fluid networks j € J. We consider the Stokes and linear
elasticity equations to be steady, while the time dependence of the porous flow



Figure 1: Domain scheme: poroelastic domain €. (light grey), Stokes’ domain
Q¢ (blue), interface ¥ (red), and external boundaries I'qq = I'pg U I'ng =
FD,] () ].—‘N’J and Ff = FD,'u, v FN,u-

is accounted for in the porous fluid momentum equations, as follows:

[~V oa(d) + >} Vi = fa, in Qg x (0,77, (1a)
keJ
cjétpj +V- (aj(?td — %ij) (1b)
J
+ 3 By — ) + B5p = g5, In Qa x (0,T], VjelJ, (1c)
keJ
_V'Tf(u)"i'Vp:ffa in Qf x (OaT]’ (1d)
V-u=0, in Q¢ x (0,77, (Le)
) d= do, Pj = Dj,0, in Qel X {0}, VJ € J, (].f)
u = up, in Q¢ x {0}, (1g)
*x =0, onI'p, x (0,7T], for € {d,u} (1h)
Pj = Pjo, on FD,J X (O7T]7 VJ eJ (11)
Uel(d)n + Z axpgn = 0 on FN,d X (07 T]? (1.])
keJ
%ij’n =0 on Ty x (0,T], VjeJ (1k)
J

Tt(un +pn =0 on I'ng x (0,77, (11)
| interface conditions (see below), on X x (0,71, (1Im)

where oei(d) = 2pee(d) + Adivdl is the Cauchy stress tensor of the elastic
medium and 7¢(u) = 2ure(u) is the viscous stress tensor of the fluid — with
e(@) = 1(Vo + V¢"). We assume that, among all the fluid networks indexed
in J, only one exchanges mass at the interface ¥ with the Stokes domain €

and we denote it by E: the others exchange mass only among themselves and
with E (cf. the terms with S in and Remark 1] below). Accordingly, the



following interface conditions are imposed on X:

( Ucl(d)ncl - Z QkPkTel + 7_f(’u')ln‘f —png = 07 on ¥ x (07 T]v (28“)
keJ
pE = p — 7t(u)ns - ng, on ¥ x (0,77, (2b)
) BVp g =0, Vie J\(E}, on Y x (0,T],,  (2)
Hj
u-ng + <0td — ZEVpE> e = 0, on ¥ x (0,77, (2d)
E
L (Tt (u)ng) =0, on ¥ x (0,77, (2e)

where (@) = ¢ — (¢ - nf)n; is the tangential component of ¢ along ¥.

Remark 1 (Specifics of brain modeling). In the case of brain multiphysics flow,
the fluid networks index set J = {A, V, C,E} contains the arterial (A), venous
(V) and capillary (C) blood flow and the extracellular/interstitial cerebrospinal
fluid (E). Due to the brain-blood barrier [1], no direct flow of the blood compart-
ments A, V, C occurs through the interface X: only the interstitial CSF pours
into the CSF domain ¢. Regarding the choice of considering a quasi-static ap-
prozimation for the elasticity and Stokes equations in , the resulting system
can be employed to study different conditions:

o the development of pathologies like hydrocephalus, with time scales of days
or weeks that are significantly longer than the tissue relazation times [3]|];

o the pulsatile CSF flow in the scale of seconds, if a slight overestimation of

the ventricular wall displacements and intracranial pressure is admissible
13].
;

2.1 Variational formulation

We introduce the following Sobolev spaces, with j € J:

Vi=Hp, (Qa) Va=[Hp, ()], Vau=[H, ()],
Ly = L*(Qa),  La=[L*Qa)]°,  Lu=[L*(Q)]°, (3)
vy =[], Ly = [L;]*, Ly = L*(%).

To simplify the notation, we employ the notation p; = [pj]ies to indicate the
elements of V; and L ;: these functions are vector fields of dimension #J having
pE as their last component. To account for the time dependence of the system
variables, we set up our problem in the Bochner spaces H'(0,T; %), where ¥
is any Hilbert space introduced in . With analogous notation, we will also
consider the spaces L2(0,T; %), L*(0,T; %), L*(0,T; V).

The variational formulation of problem reads as follows:



Find (d,p,;,u,p) € H(0,T; Vg x Vj x Vy x L) such that, for a.e. t € [0,T],

aa(d,d) +by(p;,d) + Ja(pe,d) = Fu(d) (4a)

m(0py,Py) +as(®;,B;) —bs(B,, 0id) (4b)
— Jei (P, 0ed) — 3¢ (PE,u) = Fs(D;)

ag(u,0) + be(p,u) + It (P, u) = Fr(D) (4c)

be(p,u) =0 (4d)

for all d e Va,py e Vy,ueVy,pe L, where

te(d,d) = (0a1(d), (d))o, a(u,v) = (7i(u), £(@))o
my(0py,Py) = Z (¢;0py, Dy, »
jeJ
~ o Kj o e v o
as(pypy) =, (J_ijvaj) + (B3 i) + O, Bia(ps — ) B | »
jeJ J Qe keJ
bs(B,.d) = — Y. (P, divd)a,, be (P, ) = — (7, divid)g,,

jeJ
3*(5E,¢)=f Pob-n., e el f},
>

Fa(d) = (fard)o.,  GiBy) = D0 5)e.,  Fi@) = (fr.d)o,.

jeJ

In these definitions, (-,-)p denotes the L? product over a domain D. Analo-
gously, | - |p will denote the norm of L?(D).

2.2 Time and space discretization

We introduce a simplicial mesh 7 partitioning the whole domain 2, and we
split it into two submeshes 7, Z;, corresponding to the subdomains g, ¢ and
conforming with the interface ¥. The sets of codimension-1 internal facets are
denoted by .71, Z! (triangles for ® = 3, line segments for ® = 2). Analogously,
we denote by %5, the facets lying on the interface ¥ and by #p 4 the facets lying
on the corresponding Dirichlet boundary I'p ¢, ¢ € {d,p;,u}. In the following,
we will denote by hg the characteristic size of an element K € 7.

On this partitioning, we introduce the following conforming finite element

spaces:
X ={¢peC’'(U%): ¢nlx eP(K) VK € T}, %€ {el,f},
Van =Van [X5T°, Vi =Vyn [X5T1#7,
Laj = La 0 [X57°, Lyn =Ly [X5H#,
Ve = Vo 0 [X5TH°, Lupn = Ly 0 [ X577, Lpn =Ly, n X3



We denote by Id,ht Vd — Vd,h7—[],h: VJ — Vj’h,Iu’h: Vu — Vu,h suitable
interpolation operators onto the discrete spaces introduced above, such that the
following interpolation estimate holds:

O [ha21d — andl + hitd - Tapdlde | < 1A, vdevVa,  (6)
Keo
and analogous ones for I, I, . For example, Clément interpolators can be
employed [16]. We anticipate that no interpolation operator is needed over the
Stokes pressure space L.

Regarding time discretization, we consider an implicit Euler scheme on a
uniform time grid made of N7 subintervals I" = [t"~! ¢t"],n = 1,..., Np, of
length At, with t° = 0, Ny = T/At. All the a posteriori results presented
hereafter can be easily extended to nonuniform time discretization, as done,
e.g., in [I6] [15] [35].

In the following, for any function ¢(t,x) we will use the notation ¢} to
indicate its full space-time discretization evaluated at time ¢", whereas ¢,, will
denote the continuous piecewise linear (in time) function such that ¢, ,|i— =
#7. We also introduce the projector ¥ onto piecewise constant functions in
time, such that 7T0¢ht|t€(tn717tn] = ¢p.

Therefore, the fully discrete problem approximating reads as follows:
Find (dy,1s P pes Wips Pre) € CO([0,T]; Vg x Vi x Vyy x Ly,), piecewise linear in time,
such that, for a.e. t € [0,T],

aer(dpydn) + by @ pedn) + JaPe e dn) = Fanedn)on  (Ta)
mJ(ath,hﬁﬁJ,h) + 51(7TOPJ,htaIV’J,h) - bJ(I)J,hJ Ordy,) (7b)

—Jel(PE,h» Otdpy) — It (PE R, Upe) = (Woght7ﬁJ,h)Qel (7c)
as(Upg, Un) + bs(Ppys @n) + It (Pp pes @) = (Fone Un)ay (7d)
be(Phyupy) = 0 (Te)

for all d, € Van.Byp € Vi 8n € Vaun.Br € Ly n, and dyli=o = do, pj pyle=0 =
pio Vj € J,uy,li=0 = uo,. Notice that yp;,, = 0P s, and 0idy, = 6;'dy, ae. in
(0,T), where
n _ Jn—1
o = M_
At

3 A posteriori error analysis

Throughout this section, the notation a < b means that there exists a constant
C > 0, independent of discretization parameters (but possibly dependent on
data and on the final time T'), such that a < Cb.

The a posteriori analysis that we present is based on the following properties
of the continuous problem , inspired by the abstract framework of [I6]:

Proposition 1. Under the definitions of Section |2.1, and assuming that each
of the Dirichlet boundaries I'p »,x = d,u,p;,Vj € J, is not empty, the following
properties hold:



1. The forms ael : Vg x Vg - R, a5 : Vy xVy; > R, ar : Vo x V, — R,
J:Ljyx Ly — R are bilinear, symmetric, coercive, and continuous in
their spaces of definition.

2. The norms ||+ |v, and | - |, are equivalent for each » = d,u, J,j€ J.

3. The source terms fq, [gilies, fr are square-integrable and they fulfill the
following inequalities:

”fel”QLl < ael(fers for): 2 HQJ”Qd < W([gjlies Lglier), ||ff”?zf < ae(fe. fr)

jeJ
4. The coupling form by : Ly x Vg — R is bilinear, continuous, and
b5 (Fers Lgilie )] S | ferllaci ILgilie s lm -

5. The Stokes operator L([u,p]; [&,P]) := as(u,@) + b(p, &) + b(P,u) satisfies
the following inf-sup inequality: 36, > 0 s.t.

v s £((u.p)i . 7)

(wp)eVaxLy (& pevaxL, ([ulve + [Pl )([@lv, +[5]z,)
uZ0,pZ£0 UE0,5Z0

Z Be.

Therefore, we can consider the spaces Vg, Vy, Ly, Vy as endowed with the norms
induced by ae, @y, my,as, respectively.

Moreover, the properties of points 1, 2, 4, and 5 also hold at the discrete level,
with a discrete inf-sup constant Bz, € (0, Bz) in point 5.

Proof. The proof of points 1-4 is straightforwardly based on the definition of
coercivity and continuity, and it exploits Korn/Poincaré inequalities. Point 5 is
discussed in classical works on Stokes equations, e.g. [35]. O

We now introduce the following consistency operators, namely the residuals
of problem tested against continuous test functions:

Ga€Vy, GueVy, GyeVy GyeL,=L, defined as
<gda d>vd (fd ht> ) ael(dht’ d) —by (pJ,ht7d) - Gel(pE,hn d)’
<gJ7pJ>VJ = (7‘(‘ ght7pJ)Qe1 - mJ(ath,htvﬁJ) - aJ(7T-OpJ,ht>I\5J) (8)
+ 05D, 0dy;) + Je1(PE, O1dyy) + It (PR, Upy),
<gu7ﬁ>vu = (fu,ht"i/")Qf af(uhtu ) - bf(phw ) :Jf(pE,htﬂ'E)v
gp = _divuht,
and by the usual notation, we denote by G;, 37, Gy, G, their evaluation at time
t".
We are now ready to introduce a preliminary result estimating the discretiza-
tion errors in terms of the consistency operators.



Theorem 1. Let the errors be denoted as ey = d —d; e, = u —uy; e, =
P —Dpps€5 =Py — Py (the latter including e = pp — pg 1, ). Then, under the
assumptions of Proposition[1, the following estimate holds:

2 2 2 2
leallzro,emsvey + l€slznomsr ) + lewlzz,emvey + leslz20,mv))
$ ggata + ggme + 53

(9)

where
Edata = do = doply, + lwo — wonl, + [P0 —Psonl?,
+ g — 7TO.‘]J,ht||2L2(07tn;v§) + [ fu — fu,ht||2L2(0,tn;v,;)
+ (||fd — fantlr=mvy +10(fa — fd,ht)”Ll(O,t";Vd’))2 ;
time = HpJ,ht - WOpJ,htH%Q(O,t";VJ)7 (10)

E2 1= (G, B>y, — (G0 ey, + f (05 eadvy, ds

tm t" "
+ ,[ (Griepy,ds+ f (Gus ey)y, ds + f (Gp, ep>L ds.
0 0 0 P

Proof. Let us introduce also e% = p; — WOpJ’ht (including its component ef, =
PE —WOpE7 ne)- Subtracting the discrete problem from the continuous problem

, both tested against generic continuous test functions ((vl,ﬁ 7, D) € VgxVyx
Vu % Ly, yields the following error problem, holding a.e. in time:

(aci(eq.d) + by (e, d) + ar(ey, @) + be(pyy. @) — be (P, wy,)
+ Jer(eg, d) + Jeleg, 0)
= (Fa—Fane-Dou + (Fu = Fune @)
+ (G, Dy, +Gu By, + Gy B,
my(0e;,By) +as(€],By) + b1y, 0req) — Ja (D, Oreq) — It (Pr; €y)
= (9 — 795D )0n + Grpv, -

We now choose d = Oreq, 4 = €,,p; = e;,p = e, as test functions and
we sum up the equations in , noticing that the terms involving the forms
by, b, Jel, I cancel out for this choice of the test functions. Moreover, we observe
that the following equalities hold:

1d 1d
aci(egq, Oreq) = 5%%1(%76‘1), my(0rey,e;y) = 5@””(?17?1)7
o 1. ~ o
ase],es) = 3 [as(e],e) +as(es,e;) —ds(es —ey el —ey)]
1

= 9 [&J(ej, 63) +ay(es,e;) — aJ(pJ,ht - WOPJ,thJ,ht - WOPJ,ht)]



due to the symmetry of the forms and the definition of e¥. Therefore, we obtain
the following identity:

1d 1d
70’61(6(17 ed) + iam‘](eb eJ) + af(euv 611.)

2dt
1o « 1.
+§a1(eJ,eJ) + iaJ(eJ,eJ)
= (.fd - fd,ht’ aIfed)ﬂel + (fu - fu,ht7eu)ﬂf + (g - 71-Oght’ eJ)Qel (12)
1

+ §5J ®yne — WOPJ,ht»PJ,ht - TFOPJ,ht)
+ <gd7 at6d>Vd + <g’u.a eu>Vu + <g;D7 €p>Lp + <gJ7 €J>VJ .

We integrate in time from 0 to t™ and we use the following integration by
parts formula:

t",
|, [Fa=Fasetrcaans +Gadiepy, ] s
= (f;riL - fg,h7 63)Qel - (fg - fg,h’ 62)991 + <g£’ 62>Vd - <g¢gv 63>Vd

| [@ulta = Sas:caon + @y, | s

0
Then, using the coercivity of the forms ae, @, my,ar (see Proposition [1f) and
employing the Cauchy-Schwarz and the Young inequalities yield the following
inequality:
leg|¥, + eIz, + ||6uH2L2(0,tn;Vu) + HQ?H%%OJ";V;) + H%H%%o,tn;%)

0 0
< lleall¥, +leSlz, +1fa = fanli, =1 fa— fanli, +<Gi eidv, — <Ga. ey,

tn
+ J; [10:(fa — fan)lalealLa + 1 fu = Funlralealrn + g — 7°gnelz,lleslz, ] ds

t’ﬂ
+ J [HpJ,ht - 7TOI”J,ht”%/J + {0:Ga, €d>vd +(Gu, ey )y, + <Gy, €p>LP +{Gs, €J>VJ] ds.
0
Using the Cauchy-Schwarz and the Young inequalities also in the time integrals
yields
lealv, + €51, + lewlZeqo,emva) + leslzz.emy) (13)
+lps - WOpJ,htH%Q(O,t”;VJ) < Efata T Elime + €5

E3 2 . oy
where ||eJ||L2(O7t,L;VJ) can be removed, being positive, and

~ 2
Edata = Edata — (”fd — fanillr=umvy + 10:(fa — fd,ht)”Ll(O,t”;Vd’)>

2
+ (155 = Fanlv; +10Fa = Fanlpioump) -

Since holds for any n = 1,..., Ny, on the left-hand side we can replace
||e"i‘H%/d + |el7, with HeﬁH%m(Oﬂ;Vd) + He7}||2LT(07tn;LJ), while on the right-hand

side 7, can be substituted by €%,,,. This concludes the proof. O



We remark that in the preliminary estimate of Theorem [I] the estimator
&G is not computable a posteriori as it depends on the errors. In the following
section, we thus address its estimation in terms of local residuals and jumps.
To this aim, we introduce the jump [[@]]F of a generic vector field ¢ : Q — R®
across a face F, defined as follows:

[#lr = ¢* Onj +4”Ony  with  $On=_($@n+nOH)

where the superscripts + and — denote the restriction on either side of the face
F'. This jump operator is employed in the Discontinuous Galerkin community
(see, e.g., [BL18]), yet all the results still hold if the non-symmetric outer product
¢ ®n is used in place of @ On.

3.1 A posteriori estimates of the residual operators

We now address the estimation of the terms of Theorem [I] that involve the
residual operators G,,* = d,u, J, p.

Lemma 1. Under the same assumptions of Theorem[d] the following estimates
hold:

1. ||gd||2L,‘(O)T;Vé) < &= O<su<pN &y where
SNSNT

i = <h%(”Rg,h,K”%(+ >, helSqnplE+ Y hKS%d,mII%),

Ke T FeZ) FeZs
FE(“IS( FecK
n . £ : us 7
dhK = fd,h +divoe (dy|x) — Z aijj,h|Ka
jeJ
n . m
SdnF = —[oaldy)nr]F,
s
S%.dhr = —0el (d)) el + Z Qjpi' el — DE pMel;

jeJ

Nr 2
2. ||@tgd||2Ll(o,T;v;) < &a(0r) := lZ At (53(50)1/2] where

n=1

2

+ Y hk

K FeZl

FedK
2
> )
F

n n—1 |2
d,h,F — Sd,h,F
At

n n—1
Rd,h,K - Rd,h,K
At

EF0) = ), <h§{

KeTe

F

n n—1
SZ,d,h,F - SZ,d,h,F
At

10



”gJ”L2 0,T5V1) Z At £} where

KeTa FeZ)) Fegs
FeeK FecK
n . n n P n
Rypi=[RBinrle,  Sinr=[5nrl,

C; _ i K
Ry, k= gi'n — Kjt(pjrfh _pjn,hl) + div (/;foMK)
J

. Q5 n— e, n n n
—div [ i =i )| = B = X Bue ol = pi),

leJ
SJ,h,F = [[_ij,h 'nF]] )
j F
n . Kj 1 m n—1 n .
S ghF = _Z —=Vpi'p e | + Kt(dh —d;,77) na +uy ng
jeJ /’(’J
Nrp
b 1w s vty S Euni= 2, A E,  where
Emyi= (h%(Rz,h,K”%{ + [[diveug %
KeJ:
+ > helSEn el + D) hK”Sgu,h,F”%>7
FeZ} FeZs
FeeK FeocK
wn i = fun +divTe (uylx) — Vil k,
S'Z,h,F = —[re(up)nr]F,
Sg,u,h,F 1= —7¢ (up) ne + ppng _pg,hnf'

Remark 2. We point out that the local reszdual estzmators Ry eox=4d, Ju,
are the local residuals of the bulk equations (lal . n stmng form, while
the terms Sg , j g, * =d, J,u, are arise fmm combmatzons of the interface con-

11

&y Z ( e L% hKHK+ Z hK”SJhF”F Z hKHSg,J,h,F”%

)



ditions (as highlighted by the arrows):

SSanr=— (Oel(dﬁ)nel = > aipl e + Te(up)ns — pﬁnf) «—— ([2a)
jeJ
— (pB.n — P + (Ui )ne - ng) Nl <« ([2D)
- (Tf(UZ)nf)H ) — (2¢)
"
SEanE = D <?foh ‘”el) — (2¢)
je\{E} J
dy —d ! KE
+up one+ g — VDR, na |, — (2d)
At HE ’
St wnr == (Pl — Ph + Te(uh)ng - ne) Rl — (2p)
+ (7e(up)ng) | - — (22¢)

of Lemma[1 We first observe that the following holds:
<g*a *h>V* =0 V*h € V*,h (Wlth * = dau7pJ) (14)
and in particular, {G,, I*7h;>v* =0 Vx e V,.

Denoting by G the evaluation of G, at time ¢, for each of the points 1-4, we
first estimate the operator norm [|G}'|y; a.e. in time and then we wrap it into
the Bochner space norm appearing in the thesis.

1. We start by estimating the numerator of

<gd,0vl - Id,h(vi>
1551, @ sup HE_HNe (15)

deVy\{0} Id]v,

By the definition of G4 and element-wise integration by parts (i.b.p.), we
obtain

<g§',2 — Id,hé>vd
(1), it

el

—b;(@]p,d— Ia.nd) — Jea1(PE A — 1a,nd)

ib.p. N ~
(p) ) {(Rd,h,Kad_Id,hd)K

KeTy
1 . i S
+5 2 <—[[0e1(dh)n]]F +W7d - Lmd)
FeFl P

FcoK

+ > (Sgydyh’F,El - Id’ha)p}’

FeZs
FcoK

(16)
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where the terms with [[pJ”hnF]]p vanish because Vj; C°(Qq) for all
j € J. Using the Cauchy-Schwarz inequality on each term and multiply-
ing/dividing by appropriate powers of hx yield

Gid—Tapdy, S Y {hKR:;,h,KnKh; ld — Tand]
KeTq

1/2) on —1/2,% ~
+ 3 nL1SE p e b d — L]

FeZ}
FceK
1/2 —1/23 ~
+ > PSR g ple R d—fd,hdp}.
Fe%s
FceK

Hinging upon the discrete Cauchy-Schwarz inequality applied to the sums
over the elements, as well as the inequality (a + b)* < 1 (a® + b%), we can
prove that

~ ~ 2
(G, — Igndyy,

S l > h%RQ’,h,KII%] l > h;—flld—Id,hdll?K]

KeTy KeJa
+ > hKns:zh,Fn%H > hKlnd—fd,hdn%K] (17)
LKeTa Fes] KeT
FeoK
+ Z Z hK||Sg,d7h,F%]l Z h}ld—fd,hdgz(l-
| Ke I, FeEZs KG%l
FedK

Then, using interpolation estimates @ yields

<ggvd—fd,hd>vd < { Z h%(HRg,h,KH%( + Z hKHS:il,h,FH%
KeTq FeZFl
Fcak
1

3
+ ) hK”Sg,d,h,F%‘} ld] v, -

FE?):

FcéK

1

Now, using , we obtain ||gg\|vd, < (53) 2, which yields point 1 of the
thesis after taking the supremum w.r.t. time at both members and noticing
that each €] is constant over (¢"~ 1, ¢").

. Being Gy piecewise linear in time, 0;Gg|(4n—1,¢n) = 0;'Ga is constant on each
time interval (¢!, ¢"]. Employing twice equality (I6), for n and n — 1,

13



yields
opGy.d— Id,hE>Vd

= Z {(5?R3,h,1(73 - Id,hE)K
KeJy
1 Y -
+5 % (0rSippd—1land) (18)
FeZ)
FcoK

+ Z (5?S§,d,h,FvE — Id,htvi)F}.

Fe?x
FcoK

Then, proceeding in the same way as in point 1 of this proof, we can obtain

[N

10:Gallv;le=en < (E4(0))2

from which summing over all the intervals (t"~1,¢"] yields

NT NT 1
M@me=ﬁmmmwﬂszmm@m.

n=1

. Recalling that, for each function ¢,, that is piecewise linear in time,
0P, lt=tr = @ and Oiy,lt=tn = 07'¢};,, we can proceed as in point 1
of this proof and show that

(@3B = Linb .y,

= (Wogj,ht|t:t"71v7J - IJ’hIV)J)Qel - mJ(atPJ,hth:tmIV’J - IJ,hIV’J)
— 41 (7°Pypili=in By = LB ) + 0By — LynB g, Ordyyyli=tn)

+ 3el@] - IJ,hi’]» a1tdht|t:t“') + 3f@/’] - IJ,hﬁJ»'U'Z)

(i-b.p.) n n T n n ~ ~
= Z { (QJ,h — My k6;'Pyp — As kD + Bel ko dp, Dy — IJ,hPJ)K

KE<%1
1 - - - -
+ 3 Z ( S By — IJM’J) + 2 (2 S$ ghs Py — IJM’J) }»
Feﬂll jeJ F FeFs, jeJ F
FcokK FcoK
(19)
where
My k0¢Ppe = [Cjéllpj,ht]jg ) Be,k6;'dy; = [_diV (ajégldht|K)]jeJ )

AJ kP = [—diV (%VP}MK) + Bypi + 2aees Bie(pjy —P?,h)]je]~

Then, we employ the definition of |G[y; on the left-hand side of
and the interpolation estimates @ together with the Cauchy-Schwarz

14



inequality on the right-hand side, thus obtaining |G7[2,, < £7. Again, the
J

second member of this inequality is piecewise constant in time, therefore

we can obtain the desired result.

4. Proceeding as in point 1, by definition of G, and G,, and using the
continuous problem —, we have

(G2 Gp), (i~ Lupdis B, .,

(8 n o~ -~ n nl o~ -~
- (fu,h’u - Iu»hu) Qr ‘C([uhaph]v [u - Iu,hu7]\7/])

- 3f(pg,hv U — Iu,h'lv‘)

i.b.p. . - o
b Z {(Rﬁ,h,mu — Iy pu) g — (divuy, D)k
KeTr (20)

+

>, (—Ir@inlle + [hardr, @ — Lud)

FeZ}
FcoK

+ Z (Sg,%h’F,'l\Z - Iuvh'l\z)F}

FeFs
FceK

N |

where [pinr]|F vanishes because L,;, < C°(€). Now, as in point 1,
we use the definition of [[(G,, G)[lv;xz, on the left-hand side of [20), we
apply integral and discrete Cauchy-Schwarz inequalities to the right-hand
side, as well as the interpolation estimates for the terms tested against
@ — I, p @, thus obtaining

<( '37 gg)a (IE - I“7h’l\1’5)>vu><Lp

{ Z Wil Ry p i + Idivag ||
Ke%;

1
2
+ > hxlSpaplE+ hKSQ,u,h,FI%} |(@, P)lvaxz,-

Feﬂf FEL?z
FceK FcoK

Therefore, ||(G2, QI’})HV, «1, S &up and we conclude the proof by integrat-
ing both sides of the inequahty W.r.t. time and noticing that the right-hand
side is piecewise constant.

O

3.2 A posteriori error estimates

We are now ready to combine the results of the previous sections to prove the
following a posteriori error estimate:
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Theorem 2. Under the assumptions of Theorem[]], the following a posteriori
error estimates hold:

HedH%“ﬁ(O,T;Vd) + HeJHQLﬁ(o,T;L” + Heu||2L2(0,T;vu) + ||6J||2L2(0,T;VJ)
+ H%d(at)“%l(O,T;Vé) + “%J”%,Z(O,T;V}) + ||<@u||2L2(o,T;v,;) (21)

s 2 Nt Nt N~
+ Hle e'uHL2 (0,T;Lp) S 5data + gtime + gspc7

where
%d(ﬁt) = Adated + Bg‘late'] = —div Ue](ated) + Z OzjVé’teJ,
jeJ
H; = Mjore; + BeOreg + Aje; +AJ6J

= | ¢j0re; + div (a0req) — div (?Vq) + (ﬁjeej + Z ﬁjg(ej — ed)] ,
! jeJ

Led
Py = Auey, + Bi'e, = —divTi(e,) + Ve,
ENT = EXT + E4(0)NT + ENT + Exf (with each term defined in Lemma 1))

spc

and ENT and EXT . are the same of .

data time

Proof. We proceed taking inspiration from [16} [I5] 35], in which inequalities like
the one in Theorem [I]are combined with a posteriori estimates of the consistency
operators like those of Lemma [[l We start observing that Theorem [I] implies

”ed”%‘Z(O,T;Vd) + ”eJH%@(O,T;L,]) + ||€uH%2(o,T;vu) + HeJH%Q(O,T;VJ)
+ H%d(at)“%l(O,T;Vd’) + H%J“%?(O,T;V;) + H%u”%?(o,T;V,;) + [|div €u||2L2(0,T;Lp)
N N N
S gdaia + Etirz;c + Eg 5

+ Ht%’d(at)“%l(or;v;) + H‘%J”2L2(O,T;V}) + H‘%u”%’A’(O,T;V‘i) + [|div €u||2L2(o,T;Lp)~

Moreover, a combination of Lemma (1| and the Young inequality yields Sév T <

ESJXE. To estimate the terms involving %, ,* = d, J,u and dive,, we rely on the

following error equations in operator form (holding a.e. in time), that can be
obtained by a subtraction of the discrete problem from the continuous one

(4):
Ageg+ Ble; = fa—fan + Ya in Vg, (22a
Ry = Mjoe; + BeiOreg + Aye; + ZJGJ =95 — 7TOgJ,ht +G; inVjy, (22b
‘@u = Aueu + ngep = fu - f'u,,ht + gu in Vul,a (22C
dive, =G, in L,. (22d

Now, computing the L? norm in time of both members of (22b))-([22d))-([22d)) and
applying Lemma as well as recalling the definition of £}, 1., We can prove

)
)
)
)
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the following estimates:
N
H‘@J||2L?(O,T;V}) S Eaata T €75
N
H‘%uH%Q(O,T;VJ) S Sdaza + 5“?’
|div euH%Q(O,T;LP) < Eup-

Finally, to estimate ||<%’d(6t)||L1(o7T;de), we apply the time derivative 0; to both
sides of (22a]), we compute the Bochner L!-norm, and we apply again Lemma

”‘@d(at)”%ﬂ(O,T;Vé) = [0:(Ageq + B:leJ)Hil(O,T;V‘;)
< 0e(fa— fd,ht)”2L1(0,T;Vé) + ||@tgd||2Ll(o,T;vd')
S ENE, +Ea(0r).

This concludes the proof. O

4 Numerical results

Bearing in mind the application that motivates the present work, namely brain
multiphysics flow modeling, the geometrical complexity of the domain asks for
adaptive mesh refinement strategies, whereas the benefit of adaptivity in time
would be limited by the relatively slow and regular flow regime [7, [13} [20]. For
this reason, in this section we verify the estimates of Theorem [2| and assess the
efficiency of the estimators with respect to h refinement, whereas At is chosen
sufficiently small not to hinder the convergence order.

We consider problem in ® = 2 dimensions with 1 compartment J = {E}.
In the domain Q@ = Qg U @ = (—0.5,0) x (0,0.5) v (0,0.5) x (0,0.5), with
interface ¥ = {0} x (0,0.5), the following is a solution of for proper values
of the source functions f,gg, f¢:

d(t,z) = (cos(nt) — sin(nt)) 71'% (sin(7x) sin(my) — cos(mx) cos(my)) [_11] ,

el

pE(t,x) = — (cos(nt) — sin(nt)) (ﬂ'a: cos(my) + 271'2,u’ui sin(wy)) ,

u(t, z) = 2008(771&)”& (sin(mx) sin(my) — cos(mx) cos(mwy)) [_11] ’

p(t,z) = — (1.5 cos(nt) — 0.5sin(nt)) (;v cos(my) + 47T2,ui sin(wy)) ,

el

with 7 = Hf(qeia)

on 082, namely I'ng = I'n,y = I'vu = . We simulate the system for 7' =
5-10""s with At = 107"s and choose s = 1 in the finite element spaces
(5), namely quadratic elements for d,u, pg and linear elements for the Stokes
pressure p: this choice ensures that the properties of Proposition [1| hold true.
We set all physical parameters equal to 1, except for ag = 0.5.

. In particular, we enforce fully Dirichlet boundary conditions
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Figure 2: Convergence test w.r.t. space discretization parameter h. Left: energy

error norm ERR. and estimators 5£§,Eg$e. Right: terms in the definitions of

ERR, and EXT (see (23) and Theorem .

spc
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eal?
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—o— £ JERR,
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1072 107t

Figure 3: Efficiency indexes for the estimator Sggg and of its constituting terms,
in the convergence test w.r.t. h.

In the following, we discuss the results for the error energy norm
ERR. = leg| 7 + ey 2 + Jlew|? + ey |7
e dllze(0,1;vy) JIL=(0,7;L ) ull22(0,7;V4) JIL2(0,1;V)s

which includes all the physically relevant terms of . For simplicity, we decide
to neglect the term Sfﬁfa from the a posteriori error estimate (21).
In Fig. [2[ (left) we report the results of a convergence test for the error norms

[23) w.r.t. h and the corresponding values of the estimator £Y¥Z. The estimate

spc *
of Theorem [2] is verified by observing that ERR, < Esfgg for all values of

h. Moreover, we notice the significantly small values obtained for the estimator
ENT . due to the choice of a small value for At. In Fig. [2| (right) we analyze the

time>
contribution of the different terms entering in the space error estimator ESIEZ.
We notice that )7 and £)" seem to be reliable estimators of Heu”%z(o T:V)

and |eg|3 .. (0.7:v,)> Tespectively.
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To analyze the efficiency of the estimator, in Fig. [3] we display the efficiency

Nt
index log = Egg’ﬁ and for completeness, even though not covered by our theory,
we also report the analogous ratios for the single components of the error and

estimator discussed above. First, we notice that the estimator 7 is shown to

be efficient for sufficiently small values of h. Similarly, Sﬁf and & ‘;V T appear to
be efficient estimators of the Stokes and elastic displacement errors, respectively.

5 Conclusions

In the present study, we have rigorously derived — for the first time — residual-
based a posteriori error estimates for the finite element discretization of the
coupled Stokes-MPE system. The associated estimator controls both the error
in the energy norm of the system and additional terms related to the strong
residual of the equations, in dual norms. We have verified the reliability and
efficiency of the estimator by means of numerical experiments in a case with a
manufactured solution.

The present work represents a first step towards the design of adaptive re-
finement algorithms and reduced order models for the efficient solution of fluid-
poromechanics problems. This is particularly relevant in the study of brain mul-
tiphysics flow, in which the complexity of the geometry and fluid-tissue interface
may hinder the feasibility of numerical simulations under limited resources, and
in multi-query problems like model calibration and validation against clinical
data [7, 29]. Further extensions of the analysis presented in this work may
also be considered in the case of advanced numerical methods based on general
mesh elements, such as polytopal discontinuous Galerkin and virtual element
methods, in which the geometrical flexibility of the numerical scheme makes it
particularly suitable for local refinement strategies [4} [9] 10} [TT], 12} [17].
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