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On the asymptotic optimality of spectral
coarse spaces

Gabriele Ciaramella and Tommaso Vanzan

1 Introduction

The goal of this work is to study the asymptotic optimality of spectral coarse
spaces for two-level iterative methods. In particular, we consider a linear
system Au = f , where A ∈ Rn×n and f ∈ Rn, and a two-level method that,
given an iterate uk, computes the new vector uk+1 as

uk+1/2 = Guk +M−1f , (smoothing step) (1)

uk+1 = uk+1/2 + PA−1
c R(f −Auk+1/2). (coarse correction) (2)

The smoothing step (1) is based on the splitting A = M −N , where M is the
preconditioner, and G = M−1N the iteration matrix. The correction step
(2) is characterized by prolongation and restriction matrices P ∈ Rn×m and
R = P�, and a coarse matrix Ac = RAP . The columns of P are linearly
independent vectors spanning the coarse space Vc := span {p1, . . . ,pm}. The
convergence of the one-level iteration (1) is characterized by the eigenvalues
of G, λj , j = 1, . . . , n (sorted in descending order by magnitude). The con-
vergence of the two-level iteration (1)-(2) depends on the spectrum of the
iteration matrix T , obtained by substituting (1) into (2) and rearranging
terms:

T = [I − P (RAP )−1RA]G. (3)

The goal of this short paper is to answer, though partially, the fundamental
question: given an integer m, what is the coarse space of dimension
m which minimizes the spectral radius ρ(T )? Since step (2) aims at
correcting the error components that the smoothing step (1) is not able to
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reduce (or eliminate), it is intuitive to think that an optimal coarse space
Vc is obtained by defining pj as the eigenvectors of G corresponding to the
m largest (in modulus) eigenvalues. We call such a Vc spectral coarse space.
Following the idea of correcting the ‘badly converging’ modes of G, several
papers proposed new, and in some sense optimal, coarse spaces. In the con-
text of domain decomposition methods, we refer, e.g., to [2, 3, 4], where
efficient coarse spaces have been designed for parallel, restricted additive and
additive Schwarz methods. In the context of multigrid methods, it is worth
mentioning the work [6], where the interpolation weights are optimized us-
ing an approach based on deep-neural networks. Fundamental results are
presented in [7]: for a symmetric A, it is proved that the coarse space of
size m that minimizes the energy norm of T , namely �T�A, is the span of
the m eigenvectors of MA corresponding to the m lowest eigenvalues. Here,
M := M−1 + M−� − M−�AM−1 is symmetric and assumed positive defi-
nite. If M is symmetric, a direct calculation gives MA = 2M−1A−(M−1A)2.
Using that M−1A = I −G, one can show that the m eigenvectors associated
to the lowest m eigenvalues of MA correspond to the m largest modes of G.
Hence, the optimal coarse space proposed in [7] is a spectral coarse space.
The sharp result of [7] provides a concrete optimal choice of Vc minimizing
�T�A. This is generally an upper bound for the asymptotic convergence fac-
tor ρ(T ). As we will see in Section 2, choosing the spectral coarse space, one
gets ρ(T ) = |λm+1|. The goal of this work is to show that this is not neces-
sarily the optimal asymptotic convergence factor. In Section 2, we perform a
detailed optimality analysis for the case m = 1. The asymptotic optimality
of coarse spaces for m ≥ 1 is studied numerically in Section 3. Interestingly,
we will see that by optimizing ρ(T ) one constructs coarse spaces that lead to
preconditioned matrices with better condition numbers.

2 A perturbation approach

Let G be diagonalizable with eigenpairs (λj ,vj), j = 1, . . . , n. Suppose that

vj are also eigenvectors of A: Avj = �λjvj . Concrete examples where these
hypotheses are fulfilled are given in Section 3. Assume that rankP = m
(dimVc = m). For any eigenvector vj , we can write the vector Tvj as

Tvj =
n�

�=1

�tj,�v�, j = 1, . . . , n. (4)

If we denote by �T ∈ Rn×n the matrix of entries �tj,�, and define V :=

[v1, . . . ,vn], then (4) becomes TV = V �T�. Since G is diagonalizable, V

is invertible, and thus T and �T� are similar. Hence, T and �T have the same
spectrum. We can now prove the following lemma.

Lemma 1 (Characterization of �T )
Given an index �m ≥ m and assume that Vc := span {p1, . . . ,pm} satisfies

Vc ⊆ span {vj}�m
j=1 and Vc ∩ {vj}nj=�m+1 = {0}. (5)
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Then, it holds that

�T =

� �T�m 0
X Λ�m

�
,

Λ�m = diag (λ�m+1, . . . ,λn),

�T�m ∈ R�m×�m, X ∈ R(n−�m)×�m.
(6)

Proof The hypothesis (5) guarantees that span {vj}�m
j=1 is invariant under

the action of T . Hence, Tvj ∈ span {vj}�m
j=1 for j = 1, . . . , �m, and, using

(4), one gets that �tj,� = 0 for j = 1, . . . , �m and � = �m + 1, . . . , n. Now,
consider any j > �m. A direct calculation using (4) reveals that Tvj = Gvj −
P (RAP )−1RAGvj = λjvj −

��m
�=1 xj−�m,�v�, where xi,k are the elements of

X ∈ R(n−�m)×�m. Hence, the structure (6) follows. �

Notice that, if (5) holds, then Lemma 1 allows us to study the properties

of T using the matrix �T and its structure (6), and hence �T�m.
Let us now turn to the questions posed in Section 1. Assume that pj = vj ,

j = 1, . . . ,m, namely Vc = span {vj}mj=1. In this case, (5) holds with �m = m,

and a simple argument1 leads to �T�m = 0, �T =

�
0 0
X Λ�m

�
. The spectrum of

�T is {0,λm+1, . . . ,λn}. This means that Vc ⊂ kernT and ρ(T ) = |λm+1|.
Let us now perturb the coarse space Vc using the eigenvector vm+1, that is
Vc(ε) := span {vj + εvm+1}mj=1. Clearly, dimVc(ε) = m for any ε ∈ R. In
this case, (5) holds with �m = m+ 1 and �T becomes

�T (ε) =
� �T�m(ε) 0
X(ε) Λ�m

�
, (7)

where we make explicit the dependence on ε. Notice that ε = 0 clearly leads
to �T�m(0) = diag (0, . . . , 0,λm+1) ∈ R�m×�m, and we are back to the unper-

turbed case with �T (0) = �T having spectrum {0,λm+1, . . . ,λn}. Now, no-

tice that minε∈R ρ( �T (ε)) ≤ ρ( �T (0)) = |λm+1|. Thus, it is natural to ask
the question: is this inequality strict? Can one find an �ε �= 0 such that
ρ( �T (�ε)) = minε∈R ρ( �T (ε)) < ρ( �T (0)) holds? If the answer is positive, then
we can conclude that choosing the coarse vectors equal to the dominating
eigenvectors of G is not an optimal choice. The next key result shows that,
in the case m = 1, the answer is positive.

Theorem 1 (Perturbation of Vc)

Let (v1,λ1), (v2,λ2) and (v3,λ3) be three real eigenpairs of G, Gvj = λjvj

such that with 0 < |λ3| < |λ2| ≤ |λ1| and �vj�2 = 1, j = 1, 2. Denote by
�λj ∈ R the eigenvalues of A corresponding to vj, and assume that �λ1

�λ2 > 0.
Define Vc := span {v1 + εv2} with ε ∈ R, and γ := v�

1 v2 ∈ [−1, 1]. Then

1 Let vj be an eigenvector of A with j ∈ {1, . . . ,m}. Denote by ej ∈ Rn the jth
canonical vector. Since Pej = vj , RAPej = RAvj . This is equivalent to ej =
(RAP )−1RAvj , which gives Tvj = λj(vj −P (RAP )−1RAvj) = λj(vj −Pej) = 0.
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(A)The spectral radius of �T (ε) is ρ( �T (ε)) = max{|λ(ε, γ)|, |λ3|}, where

λ(ε, γ) =
λ1

�λ2ε
2 + γ(λ1

�λ2 + λ2
�λ1)ε+ λ2

�λ1

�λ2ε2 + γ(�λ1 + �λ2)ε+ �λ1

. (8)

(B) Let γ = 0. If λ1 > λ2 > 0 or 0 > λ2 > λ1, then min
ε∈R

ρ( �T (ε)) = ρ( �T (0)).
(C) Let γ = 0, If λ2 > 0 > λ1 or λ1 > 0 > λ2, then there exists an �ε �= 0

such that ρ( �T (�ε)) = |λ3| = min
ε∈R

ρ( �T (ε)) < ρ( �T (0)).
(D)Let γ �= 0. If λ1 > λ2 > 0 or 0 > λ2 > λ1, then there exists an �ε �= 0 such

that |λ(�ε, γ)| < |λ2| and hence ρ( �T (�ε)) = max{|λ(�ε, γ)|, |λ3|} < ρ( �T (0)).
(E) Let γ �= 0. If λ2 > 0 > λ1 or λ1 > 0 > λ2, then there exists an �ε �= 0

such that ρ( �T (�ε)) = |λ3| = min
ε∈R

ρ( �T (ε)) < ρ( �T (0)).

Proof Since m = 1, a direct calculation allows us to compute the matrix

�T�m(ε) =

�
λ1 − λ1

�λ1(1+εγ)
g −ελ1

�λ1(1+εγ)
g

−λ2
�λ2(ε+γ)

g λ2 − (ελ2
�λ2)(ε+γ)
g

�
,

where g = �λ1+εγ[�λ1+�λ2]+ε2�λ2. The spectrum of this matrix is {0,λ(ε, γ)},
with λ(ε, γ) given in (8). Hence, point (A) follows recalling (7).

To prove points (B), (C), (D) and (E) we use some properties of the map
ε �→ λ(ε, γ). First, we notice that

λ(0, γ) = λ2, lim
ε→±∞

λ(ε, γ) = λ1, λ(ε, γ) = λ(−ε,−γ). (9)

Second, the derivative of λ(ε, γ) with respect to ε is

dλ(ε, γ)

dε
=

(λ1 − λ2)�λ1
�λ2(ε

2 + 2ε/γ + 1)γ

(�λ2ε2 + γ(�λ1 + �λ2)ε+ �λ1)2
. (10)

Because of λ(ε, γ) = λ(−ε,−γ) in (9), we can assume without loss of gener-
ality that γ ≥ 0.

Let us now consider the case γ = 0. In this case, the derivative (10)

becomes dλ(ε,0)
dε = (λ1−λ2)�λ1

�λ22ε

(�λ2ε2+�λ2
1)

2
. Moreover, since λ(ε, 0) = λ(−ε, 0) we can

assume that ε ≥ 0.
Case (B). If λ1 > λ2 > 0, then dλ(ε,0)

dε > 0 for all ε > 0. Hence, ε �→ λ(ε, 0)
is monotonically increasing, λ(ε, 0) ≥ 0 for all ε > 0 and, thus, the minimum
of ε �→ |λ(ε, 0)| is attained at ε = 0 with |λ(0, 0)| = |λ2| > |λ3|, and the result

follows. Analogously, if 0 > λ2 > λ1, then
dλ(ε,0)

dε < 0 for all ε > 0. Hence,
ε �→ λ(ε, 0) is monotonically decreasing, λ(ε, 0) < 0 for all ε > 0 and the
minimum of ε �→ |λ(ε, 0)| is attained at ε = 0.

Case (C). If λ1 > 0 > λ2, then dλ(ε,0)
dε > 0 for all ε > 0. Hence,

ε �→ λ(ε, 0) is monotonically increasing and such that λ(0, 0) = λ2 < 0
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and limε→∞ λ(ε, 0) = λ1 > 0. Thus, the continuity of the map ε �→ λ(ε, 0)
guarantees the existence of an �ε > 0 such that λ(�ε, 0) = 0. Analogously, if

λ2 > 0 > λ1, then
dλ(ε,0)

dε < 0 for all ε > 0 and the result follows by the
continuity of ε �→ λ(ε, 0).

Let us now consider the case γ > 0. The sign of dλ(ε,γ)
dε is affected by the

term f(ε) := ε2+2ε/γ+1, which appears at the numerator of (10). The func-
tion f(ε) is strictly convex, attains its minimum at ε = − 1

γ , and is negative

in (ε̄1, ε̄2) and positive in (−∞, ε̄1) ∪ (ε̄2,∞), with ε̄1, ε̄2 = − 1∓
√

1−γ2

γ .

Case (D). If λ1 > λ2 > 0, then dλ(ε,γ)
dε > 0 for all ε > ε̄2. Hence, dλ(0,γ)

dε > 0,
which means that there exists an �ε < 0 such that |λ(�ε, γ)| < |λ(0, γ)| = |λ2|.
The case 0 > λ2 > λ1 follows analogously.

Case (E). If λ1 > 0 > λ2, then dλ(ε,γ)
dε > 0 for all ε > 0. Hence, by

the continuity of ε �→ λ(ε, γ) (for ε ≥ 0) there exists an �ε > 0 such that
λ(�ε, γ) = 0. The case λ2 > 0 > λ1 follows analogously. �

Theorem 1 and its proof say that, if the two eigenvalues λ1 and λ2 have
opposite signs (but they could be equal in modulus), then it is always possible
to find an ε �= 0 such that the coarse space Vc := span{v1 + εv2} leads to a
faster method than Vc := span{v1}, even though both are one-dimensional
subspaces. In addition, if λ3 �= 0 the former leads to a two-level operator T
with a larger kernel than the one corresponding to the latter. The situation
is completely different if λ1 and λ2 have the same sign. In this case, the
orthogonality parameter γ is crucial. If v1 and v2 are orthogonal (γ = 0), then
one cannot improve the effect of Vc := span{v1} by a simple perturbation
using v2. However, if v1 and v2 are not orthogonal (γ �= 0), then one can

still find an ε �= 0 such that ρ( �T (ε)) < ρ( �T (0)).
Notice that, if |λ3| = |λ2|, Theorem 1 shows that one cannot obtain a

ρ(T ) smaller than |λ2| using a one-dimensional perturbation. However, if one
optimizes the entire coarse space Vc (keeping m fixed), then one can find
coarse spaces leading to better contraction factor of the two-level iteration,
even though |λ3| = |λ2|. This is shown in the next section.

3 Optimizing the coarse-space functions

Consider the elliptic problem

−Δu+ c (∂xu+ ∂yu) = f in Ω = (0, 1)2, u = 0 on ∂Ω. (11)

Using a uniform grid of size h, the standard second-order finite-difference
scheme for the Laplace operator and the central difference approximation for
the advection terms, problem (11) becomes Au = f , where A has constant
and positive diagonal entries, D = diag(A) = 4/h2I. A simple calculation
shows that, if c ≥ 0 satisfies c ≤ 2/h, then the eigenvalues of A are real. The
eigenvectors of A are orthogonal if c = 0 and non-orthogonal if c > 0.
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One of the most used smoothers for (11) is the damped Jacobi method:
uk+1 = uk + ωD−1(f −Auk), where ω ∈ (0, 1] is a damping parameter. The
corresponding iteration matrix is G = I − ωD−1A. Since D = 4/h2I, the
matrices A and G have the same eigenvectors. For c = 0, it is possible to
show that, if ω = 1 (classical Jacobi iteration), then the nonzero eigenvalues
of G have positive and negative signs, while if ω = 1/2, the eigenvalues of G
are all positive. Hence, the chosen model problem allows us to work in the
theoretical framework of Section 2.

To validate numerically Theorem 1, we set h = 1/10 and consider Vc :=
{v1 + εv2}. Figure 1 shows the dependence of ρ(T (ε)) and |λ(ε, γ)| on ε and
γ. On the top left panel, we set c = 0 and ω = 1/2 so that the hypotheses
of point (B) of Theorem 1 are satisfied, since γ = 0 and λ1 ≥ λ2 > 0.
As point (B) predicts, we observe that min

ε∈R
ρ(T (ε)) is attained at ε = 0,

i.e. minε∈R ρ(T (ε)) = ρ(T (0)) = λ2. Hence, adding a perturbation does not
improve the coarse space made only by v1. Next, we consider point (C), by
setting c = 0 and ω = 1. Through a direct computation we get λ1 = −0.95,
λ2 = −λ1 and λ3 = 0.90. The top-right panel shows, on the one hand, that
for several values of ε, ρ(T (ε)) = λ3 < λ2, that is with a one-dimensional
perturbed coarse space, we obtain the same contraction factor we would have
with the two-dimensional spectral coarse space Vc = span {v1,v2}. On the
other hand, we observe that there are two values of ε such that λ(ε, γ) = 0,
which (recalling (4) and (6)) implies that T is nilpotent over the span{v1,v2}.
To study point (D), we set c = 10, ω = 1/2, which lead to λ1 = 0.92,
λ2 = λ3 = 0.90. The left-bottom panel confirms there exists an ε∗ < 0 such
that |λ(ε∗, γ)| ≤ λ2, which implies ρ(T (ε∗)) ≤ λ2. Finally, we set c = 10 and
ω = 1. Point (E) is confirmed by the right-bottom panel, which shows that
|λ(ε, γ)| < |λ2|, and thus minε ρ(T (ε)) = |λ3|, for some values of ε.

We have shown both theoretically and numerically that the spectral coarse
space is not necessarily the one-dimensional coarse space minimizing ρ(T ).
Now, we wish to go beyond this one-dimensional analysis and optimize the
entire coarse space Vc keeping its dimension m fixed. This is equivalent to
optimizing the prolongation operator P whose columns span Vc. Thus, we
consider the optimization problem

min
P∈Rn×m

ρ(T (P )). (12)

To solve approximately (12), we follow the approach proposed by [6]. Due
to the Gelfand formula ρ(T ) = limk→∞ k

�
�T k�F , we replace (12) with the

simpler optimization problem minP �T (P )k�2F for some positive k. Here, �·�F
is the Frobenius norm. We then consider the unbiased stochastic estimator
[5]

�T k�2F = trace
�
(T k)�T k

�
= Ez

�
z�(T k)�T kz

�
= Ez

�
�T kz�22

�
,
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Fig. 1 Behavior of |λ(ε, γ)| and ρ(T (ε)) as functions of ε for different c and γ. Top
left panel: c = 0, ω = 1/2; top right panel: c = 0, ω = 1; bottom left panel: c = 10,
ω = 1/2; bottom right panel: c = 10, ω = 1.

where z ∈ Rn is a random vector with Rademacher distribution, i.e. P(zi =
±1) = 1/2. Finally, we rely on a sample average approach, replacing the
unbiased stochastic estimator with its empirical mean such that (12) is ap-
proximated by

min
P∈Rn×m

1

N

N�

i=1

�T (P )kzi�2F , (13)

where zi are a set of independent, Rademacher distributed, random vectors.
The action of T onto the vectors zi can be interpreted as the feed-forward
process of a neural net, where each layer represents one specific step of the
two-level method, that is the smoothing step, the residual computation, the
coarse correction and the prolongation/restriction operations. In our setting,
the weights of most layers are fixed and given, and the optimization is per-
formed only on the weights of the layer representing the prolongation step.
The restriction layer is constrained to have as weights the transpose of the
weights of the prolongation layer. The cost of constructing coarse spaces us-
ing deep neural networks can be very high, and not practical if the problem
needs to be solved only once. However, our interest here is on theoretical as-
pects, and deep neural networks are used only to show the existence of coarse
spaces (asymptotically) better than the spectral ones.

We solve (13) for k = 10 and N = n using Tensorflow [1] and its stochastic
gradient descent algorithm with learning parameter 0.1. The weights of the
prolongation layer are initialized with an uniform distribution. Table 1 reports
both ρ(T (P )) and �T (P )�A using a spectral coarse space and the coarse
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c ω m = 1 m = 5 m = 10 m = 15

ρ
(T

)

0 1/2 0.95 - 0.95 0.90 - 0.90 0.82 - 0.83 0.76 - 0.78

0 1 0.95 - 0.90 0.90 - 0.80 0.80 - 0.65 0.74 - 0.53

10 1/2 0.90 - 0.90 0.85 - 0.82 0.79 - 0.74 0.73 - 0.68

10 1 0.85 - 0.80 0.80 - 0.67 0.71 - 0.55 0.66 - 0.37

�T
� A 0 1/2 0.95 - 0.95 0.90 - 0.90 0.82 - 0.84 0.76 - 0.77

0 1 0.95 - 0.95 0.90 - 0.94 0.80 - 0.88 0.74 - 0.88

κ
2

0 1 46.91 - 29.45 18.48 - 14.40 9.37 - 8.22 6.69 - 8.53

10 1 27.25 - 23.98 22.44 - 12.36 17.34 - 11.35 13.06 - 9.71

Table 1 Values of ρ(T ), �T�A and condition number κ2 of the matrix A precondi-
tioned by the two-level method for different c and ω and using either a spectral coarse
space (left number), or the coarse space obtained solving (13) (right number).

space obtained solving (13). We can clearly see that there exist coarse spaces,
hence matrices P , corresponding to values of the asymptotic convergence
factor ρ(T (P )) much smaller than the ones obtained by spectral coarse spaces.
Hence, Table 1 confirms that a spectral coarse space of dimension m is not
necessarily a (global) minimizer for min

P∈Rn×m
ρ(T (P )). This can be observed

not only in the case c = 0, for which the result of [7, Theorem 5.5] states that
(recall that M is symmetric) the spectral coarse space minimizes �T (P )�A,
but also for c > 0, which corresponds to a nonsymmetric A. Interestingly, the
coarse spaces obtained by our numerical optimizations lead to preconditioned
matrices with better condition numbers, as shown in the last row of Table
1, where the condition number κ2 of the matrix A preconditioned by the
two-level method (and different coarse spaces) is reported.
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