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Abstract

This works gives an overview of the mathematical treatment of state-of-the-art

techniques for partial differential problems where boundary data are provided only

in terms of averaged quantities. A condition normally indicated as “defective

boundary condition”. We present and analyze several procedures by which this

type of problems can be handled.

1 Introduction

In many applications of practical relevance, it could happen that only average data is

available on a portion of the boundary. For instance the space average of the solution

or of the stress1.

This situation often occurs on the so-called artificial boundaries, i.e. portions of

the boundary introduced by an artificial cut of the physical domain, as it happens, for

instance, in a pipe. On such boundaries, often there are no strong physical arguments

that can be used to devise suitable boundary conditions.

1Here with stress we mean the solution dependent quantity contained in the boundary term emerging

from integration by parts when the weak formulation is derived. Depending on the problem at hand, it

could represent several physical quantities, e.g. a heat flux, the elastic traction, the normal Cauchy stress,

just to provide some examples. These are the quantities that are assigned when a Neumann (also called

natural) boundary condition is prescribed.
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In practical situations one may provide boundary information on artificial bound-

aries by i) the acquisition of some measurements or ii) the coupling with reduced mod-

els (typically based on the solution of another differential problem) able to give a suit-

able description of what happens in the cut region. However, in many contexts both

techniques provide just averaged quantities. An example is hemodynamics, where non-

invasive measurements (like Echo-Color Doppler) of blood velocity or pressure, as well

as the coupling with reduced models, are often used to provide boundary information

to full three-dimensional simulations [33, 11, 4, 34, 3, 32]. For the case of general hy-

draulic networks, see also [25], while another context where the coupling with a lumped

parameter model leads to a defective condition is that of heat transfer in a pipe [16].

From the mathematical viewpoint, defective problems are not well posed since the

data on the artificial boundaries are insufficient to guarantee uniqueness of the solu-

tion. Many approaches have been developed so far to fill this gap: some of them take

inspiration from engineering principles and practices, others have a more mathemati-

cal foundation. In any case, suitable hypotheses are introduced in order to make the

defective problems solvable.

In this review, we describe the main techniques to prescribe defective boundary

conditions. To better highlight the mathematical principles behind them, we first treat

the case of the Poisson equation. Then, we address the case where such strategies were

originally developed, i.e. fluid-dynamics, focussing to the Stokes problem. Finally we

provide some examples taken from real haemodynamic studies.

2 Defective Poisson problem

In this section, we address the simple case of a scalar Poisson problem. This will allow

us to introduce all the key-points at the basis of numerical methods for the prescription

of defective data.

To begin with, we consider the following defective problem on a bounded domain

Ω ⊂ R
d with d = 2 or 3, with Lipshitz boundary:

−∇ · (µ∇u) = f in Ω, (1a)

u = 0 on Γ, (1b)
∫

Σ
udΣ = Q, (1c)

with Σ = ∂Ω \Γ, f ∈ L2(Ω), Q ∈ R, and µ : Ω → R bounded away from zero, i.e.

µ ∈ L∞(Ω) such that 0 < µ0 ≤ µ(x) for almost all x ∈ Ω and for a suitable scalar µ0.

Notice that in (1c) we are prescribing only the average value of u over Σ, thus a

defective condition. Alternatively, we could consider the defective problem obtained

by (1a)-(1b) together with ∫

Σ
µ

∂u

∂n
dΣ = P, (2)

with P ∈R given, n the outward unit vector to Ω, and ∂u
∂n

= ∇u ·n the derivative normal

to the boundary.
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Condition (2) prescribes the average of the stress, thus it is again a defective condi-

tion. In what follows, we will refer to problems given by (1) and (1a),(1b),(2) as mean

solution and mean stress problems, respectively. Of course, in both cases the solution

is not unique. For this reason, suitable hypothesis should be introduced in order to find

a reasonable solution of such problems. This will be discussed in the next sections. To

make the exposition simpler, we will address only the case of one defective condition.

The results may be readily extended to the case where defective conditions are applied

to several non-overlapping parts Σi of ∂Ω.

2.1 Empirical methods

A simplest choice to make problem (1) solvable is to select a-priori a profile of u on Σ

that satisfies (1c). Thus, problem (1) is transformed into a standard Dirichlet problem,

−∇ · (µ∇u) = f in Ω, (3a)

u = 0 on Γ, (3b)

u = g on Σ, (3c)

where g ∈ H
1/2
00 (Σ) satisfies ∫

Σ
gdΣ = Q.

Now, the solution of problem (3) is clearly unique. However, such a solution is heavily

influenced by the choice of the datum g. Let g be an educated guess of the ”real”

solution u = gex on Σ, of which we actually know the average Q. Thus, the error e

committed by solving (3) satisfies

‖e‖H1(Ω) ≤C‖g−gex‖H1/2(Σ),

which of course annihilates only for g = gex. The fact that
∫

Σ(g−gex)dΣ = 0 does not

help so much, since ‖g− gex‖H1/2(Σ) could still be arbitrary large. Thus, in absence of

any further information about the solution at Σ, this method is rather arbitrary.

Analogously, for problem given by (1a),(1b),(2), one could think to prescribe the

following Neumann condition together with (1a),(1b):

µ
∂u

∂n
= h on Σ,

with h satisfying ∫

Σ
hdΣ = P.

Similar conclusions found for the mean solution problem hold as well in this case since

the choice of h is arbitrary.

In the next subsections, we will consider four alternative strategies which are math-

ematically more justified.
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2.2 Lagrange multiplier approach

We note that problem (1) could be equivalently written as the following constrained

minimization problem: find u ∈V = {v ∈ H1(Ω) : v|Γ = 0} such that functional

J(v) =
1

2

∫

Ω
µ (∇v)2

dx−
∫

Ω
f vdx (4)

is minimized in V under the constraint (1c).

This problem can be rewritten as an unconstrained problem by introducing the cor-

responding Lagrangian functional: find u ∈ V and λ ∈ R such that the following La-

grangian functional

L(v,ξ ) = J(v)+ξ

(∫

Σ
vdΣ−Q

)

has a stationary point (in fact a saddle point) in V ×R. The associated variational

problem is: find u ∈V and λ ∈ R such that for all (v,ξ ) ∈V ×R

(µ∇u,∇v)+b(v,λ ) = ( f ,v), (5a)

b(u,ξ ) = ξ Q, (5b)

where b(v,ξ ) = ξ
∫

Σ vdΣ and (v,w) =
∫

Ω vwdΩ denotes the L2(Ω) inner product.

This formulation is the Lagrange multiplier formulation of the mean solution prob-

lem (1), and is in fact the extension to the defective case of the Lagrange multiplier

technique to enforce Dirichlet boundary conditions proposed and analyzed, for instance,

in [2].

We have the following result.

Proposition 1 Assume that f ∈ L2(Ω). Then, the problem given by (5) admits a unique

solution (u,λ ) ∈V ×R.

Proof. We can use the theory illustrated, for instance, in [5]. In the case |Γ| 6= 0, thanks

to bounds on µ , the bilinear form (µ∇v,∇w) is coercive and continuous with respect to the

H1-seminorm |v|H1(Ω) = ‖∇v‖L2(Ω), which is in this case equivalent to the H1 norm thanks to

Poincaré inequality. The b term is a bilinear and continous form on V ×R, indeed

|b(v,ξ )| ≤ |ξ |
∫

Σ
|v|dΣ ≤CΣ

√
|Σ||ξ |‖v‖V , ∀(v,ξ ) ∈V ×R,

where CΣ is the constant in the trace inequality ‖v‖L2(Σ) ≤CΣ‖v‖V .

To prove that it satisfies the inf-sup condition it is sufficient to note that it is possible to

construct a function φ ∈ H
1/2
00 (Σ) so that

∫
Σ φdΣ = 1. For a given ξ ∈ R we set φξ = ξ φ and

find uξ solution of

−∇ ·
(
µ∇uξ

)
= 0 in Ω,

uξ = 0 on Γ,

uξ = φξ on Σ.

(6)
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We have that b(uξ ,ξ ) = ξ 2 and, by standard regularity results, ‖uξ‖V ≤ C|ξ | for a constant C

independent of ξ . Therefore, by combining the two previous relations and taking β = 1/C > 0,

we can state that for all ξ ∈ R, there exists uξ ∈V satisfying

b(uξ ,ξ )≥ β |ξ |‖uξ‖V .

The case Γ = /0, i.e. Σ = ∂Ω, can also be treated in a standard way, by proving that the

bilinear form a(u,v) = (µ∇u,∇v) is coercive on the space

V̂ = {v ∈V = H1(Ω) : b(v,ξ ) = 0, ∀ξ ∈ R}.

Indeed, for all v∈ V̂ we may write a(v,v)≥ µ0‖∇v‖2
L2(Ω)

= |||v|||2, where |||v|||=
(
‖∇v‖2

L2(Ω)
+ |∫∂Ω vdΩ|2

)1/2

is a norm equivalent to ‖v‖H1(Ω). Indeed, |||v||| ≤C‖v‖H1(Ω), thanks to trace inequality, so we

are left to prove that there exists a constant C > 0 so that |||v||| ≥C‖v‖H1(Ω). To show it we pro-

ceed by contradiction. Negating the statement is equivalent to say that there exists a sequence

vn ∈ H1(Ω) such that ‖vn‖H1(Ω) = 1 while |||vn||| → 0. Since vn is bounded in H1(Ω) there

exists a subsequence vnk
weakly converging to a v ∈ H1(Ω) and such that vnk

→ v in L2(Ω).
For the sake of simplicity, in the sequel we will use the subscript n for the subsequence. Weak

convergence implies that ‖∇v‖2
L2(Ω)

= limn→∞(∇vn,∇v)L2(Ω) ≤ limn→∞ ‖∇vn‖L2(Ω)‖∇v‖L2(Ω).

By which

‖∇v‖L2(Ω) ≤ lim
n→∞

‖∇vn‖L2(Ω). (7)

The hypothesis |||vn||| → 0 implies that ‖∇vn‖L2(Ω) → 0 thus, by (7), ‖∇v‖L2(Ω) = 0, i.e.

‖v‖H1(Ω) = ‖v‖L2(Ω). The hypothesis on the norm of the elements of the sequence, the strong

convergence of the subsequence in L2(Ω) and the previous result imply ‖v‖L2(Ω)= limn→∞ ‖vn‖L2(Ω)=

1. Now, ‖∇v‖L2(Ω) = 0, then v = c where c is a constant, which is different from zero since

‖v‖L2(Ω) = 1. But then, since |||vn||| → 0 also implies limn→∞ (
∫

∂Ω vn)
2 = (

∫
∂Ω v)2 = 0, we have

a contradiction because (
∫

∂Ω v)2 = |∂Ω|2c2 > 0. �

From (5), it is easy to show that the Lagrange multiplier λ plays the role of a

constant stress on Σ, i.e. the solutions u and λ satisfy

λ =−µ
∂u

∂n
on Σ.

Thus, this approach implicitly implies that the stress is constant on Σ. In other words,

among all the possible solutions of problem (1), this technique selects the (unique) one

with constant stress on Σ. We thus expect a great accuracy in those scenarios when the

stress is almost constant over Σ. If we do not have further information, this technique is

anyway optimal in the sense that it is the one that minimizes the energy functional (4)

associated to the problem.

If we consider now a finite dimensional subspace Vh = span(ϕ1, . . . ,ϕNh
) approxi-

mating V , h being the mesh size, for instance a finite element space corresponding to

a triangulation Th of Ω [9], the Galerkin approximation of (5) leads to the following

algebraic problem [
A b

bT 0

][
U

λh

]
=

[
f

Q

]
, (8)

where Ai j =
∫

Ω µ∇ϕ j ·∇ϕidΩ, bi =
∫

Σ ϕidΣ, fi =
∫

Ω f ϕidΩ, for i = 1, . . . ,Nh, and j =
1, . . . ,Nh, while Ui, i = 1, . . . ,Nh, are the unknown coefficients (degrees of freedom) of
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the linear expansion of the Galerkin solution by means of the basis functions ϕi, and λh

the discrete Lagrange multiplier.

For the numerical solution of (8), we can consider a monolithic approach where the

linear system is solved e.g. by a direct or an iterative method. However, this strategy

is not modular in the sense that we cannot exploit pre-existing codes we may have at

disposal for the numerical solution of the Poisson problem. Alternatively, if |Γ| 6= 0

then A is non-singular and one could consider, like it is done in [11] for a defective

Stokes problem, the Schur complement equation related to (8), which reads

bT A−1bλ = Q−bT A−1f. (9)

Notice that it is, in this very simple case, just a scalar equation, whose solution requires

to solve two linear systems in A. In particular, we have the following algorithm:

1. Solve the linear system AU1 = f;

2. Compute λ1 = Q−bT U1;

3. Solve the linear system AU2 = b;

4. Compute λ2 = bT U2;

5. Compute λ from (9): λ = λ1/λ2;

6. Compute U from the first of (8): U = U1 −λU2.

The previous strategy may seem more expensive than the monolithic one (we need

to solve 2 linear problems instead of 1), yet, not only the matrix in (8) is of larger size,

but it is also indefinite, while A is, in this case, symmetric positive definite, so more

suited for efficient solvers. Moreover, with the proposed algorithm we can exploit pre-

existing solvers for the Poisson problem. In particular, the first linear system (point 1.)

corresponds to (1a)-(1b) with a homogeneous Neumann condition on Σ, whereas the

second one (point 3.) corresponds to (1a)-(1b) with f = 0 and

µ
∂u

∂n
= 1 on Σ.

Remark 2.1 The previous algorithm can be extended to the case of more than one flow

rate conditions (let say m), and requires the solution of m+ 1 ”classical” problems

[11].

In the case |Γ|= 0 matrix A is singular and the standard Shur-complement procedure

does not apply. However, since in this case V = H1(Ω), we can take v = 1 in (5) to get

λ = |∂Ω|−1
∫

Ω
f dΣ. (10)

We can then decompose the solution as u = ů+ u, where u is a constant and ů is the

unique solution in H1(Ω)\R= {ẘ ∈ H1(Ω) :
∫

Ω ẘdΩ = 0} of

(µ∇ů,∇v) = ( f ,v)− (λ ,v) ∀v ∈ H1(Ω)\R. (11)
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Then, u = |∂Ω|−1 (Q− ∫
∂Ω ůdΣ).

Note that since in standard finite element approximation for this class of problems

1 ∈ Vh, also λh can be computed by (10), while (11) can be approximated by standard

means.

We now give an alternative proof for the well posedness of (5) which gives some

useful insights for the next Section. First of all we rewrite the definition of V̂ as V̂ :

{w ∈ V :
∫

Σ w = 0}. We have shown in the proof of Proposition 1 that for v ∈ V̂ the

seminorm |v|H1(Ω) = ‖∇v‖L2(Ω) is equivalent to ‖∇v‖H1(Ω). Indeed, for a v ∈ V̂ we have

|v|H1(Ω) = |||v|||. We can then consider the following problem: find u ∈ V such that∫
Σ u = Q and

(µ∇u,∇v) = ( f ,v) ∀v ∈ V̂ . (12)

This problem can be found to be equivalent to the following differential problem: find

(u,λ ) ∈ V̂ ×R such that

−∇ · (µ∇u) = f in Ω,

u = 0 on Γ,
∫

Σ
udΣ = Q,

−µ
∂u

∂n
= λ on Σ.

(13)

That is, problem (12) forces (in a weak sense) the conormal derivative µ ∂u
∂n

to be con-

stant on Σ. If we have a solution of (12) we can recover λ as

λ = ( f ,v)− (µ∇u,∇v) (14)

for any v ∈V with
∫

Γ v = 1.

Proposition 2 Problem (12) is well posed, and the couple (u,λ ), where λ is obtained

by (14), is the unique solution of (5). Moreover, ‖u‖H1(Ω) ≤C
(
‖ f‖L2(Ω)+ |Q|

)
.

Proof. First of all V̂ is an Hilbert subspace of H1(Ω) and equipped with the same topology.

Let a(z,v) = (µ∇z,∇v). We have already seen in the proof of Proposition 1 that the form a

is bilinear, continuous and coercive V̂ × V̂ . It is always possible to find a w ∈ V such that∫
Σ w = Q and ‖w‖H1(Ω) ≤C|Q|. We the consider the problem: find û ∈ V̂ so that a(û,v) = F(v)

for all v ∈ V̂ , where F(v) = ( f ,v)− a(w,v). This is a classical elliptic problem by which well

posedness is proved by standard application of Lax-Milgram Lemma and we have

‖û‖H1(Ω) ≤C(‖ f‖L2(Ω)+‖w‖H1(Ω))≤C(‖ f‖L2(Ω)+ |Q|).

We then set u = û+w and it is immediate to verify that u is a solution of (12), it satisfies∫
Γ udΓ = Q, and it does not depend on the choice of w. Moreover,

‖u‖H1(Ω) ≤ ‖û‖H1(Ω)+‖w‖H1(Ω) ≤C(‖ f‖L2(Ω)+ |Q|).

It is unique since if we have two solutions u1 and u2 of (12) and we set y = u1 − u2 we have

y ∈ V̂ and a(y,v) = 0 for all v ∈ V̂ , and this implies y = 0, thus u1 = u2. Now, by construction
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u satisfies (5b), while, since any v ∈ V may be written as v = v̂+ cṽ, with v̂ ∈ V̂ and ṽ ∈ Ṽ and

c =
∫

Γ vdΓ, we have that

a(u,v)+b(v,λ )− ( f ,v) = a(u, v̂)− ( f , v̂)+ c
(
b(ṽ,λ )+a(u, ṽ)− ( f , ṽ)

)
=

c
(
b(ṽ,λ )+a(u, ṽ)− ( f , ṽ)

)
,

which is zero ∀v ∈ V if and only if b(ṽ,λ )+ a(u, ṽ)− ( f , ṽ) = 0. Since b(ṽ,λ ) = λ we ob-

tain (14). So the couple (u,λ ) given by the solution of (12) and λ given by (14) are solutions of

problem (5).

With analogous arguments we may verify that (u,λ ) solution of (5) satisfies (12) and (14).

�

Remark 2.2 One could think to apply the Lagrange multiplier approach also to the

mean stress problem (1a)-(1b)-(2) by devising the following augmented problem

(µ∇u,∇v)+λ
∫

Σ
µ

∂v

∂n
dΣ = ( f ,v) ∀v ∈V,

ξ
∫

Σ
µ

∂u

∂n
dΣ = ξ P ∀ξ ∈ R.

However, the term
∫

Σ λ µ ∂v
∂n

is not well defined for v ∈ V ⊂ H1(Ω) and λ ∈ R (unless

Σ = ∂Ω), so this formulation is, in general, not feasible. Indeed the integral should

reinterpreted as a duality pairing < λ ,µ ∂v
∂n

> between H1
00(Γ) and its dual. Yet a non-

zero constant function on Γ does not belong to H
1/2
00 (Σ). In practice, solving the stated

problem numerically by means, for instance, finite elements, will give a solution that

has an unwanted oscillations near the boundary of Σ, whose amplitude increases as

the mesh is refined. We have similar difficulties for the mean stress problem in the the

context of Stokes equations, see for instance [11].

2.3 Penalization methods

We start by observing that a way to overcome the introduction of the further unknown

given by the Lagrange multiplier is to prescribe the flow rate condition (1c) not as a

constrain but as a penalization. Let us consider a finite element space Vh ⊂ V . We

propose to minimize at the discrete level the following functional

J(vh) =
1

2
(µ∇vh,∇vh)− ( f ,vh)+

1

2
γ

(∫

Σ
uh dΣ−Q

)2

, (16)

over Vh ⊂ V and where γ > 0 is a penalization parameter. This leads to the following

penalization formulation: find uh ∈Vh such that

(µ∇uh,∇vh)+ γ
∫

Σ
uh dΣ

∫

Σ
vh dΣ = ( f ,vh)+ γQ

∫

Σ
vh dΣ ∀vh ∈ Vh. (17)

However, (17) is not consistent with (1a). It is easy to show that the truncation error is

τ(vh) =
∫

Σ µ ∂u
∂n

vh dΣ, which of course does not go to zero when h → 0.
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To overcome this limitation, we adapt to the mean solution problem (1) the Nitsche

penalization method introduced and analyzed in [30] for a standard Dirichlet problem,

following the ideas in [42]. We remember that the Nitsche method is a strongly consis-

tent penalization method, featuring an optimal convergence error. It consists in adding

to the penalization term a consistency and, possibly, a symmetry term. The former is,

as the name says, required to recover a consistent scheme, the latter is not strictly nec-

essary but it maintains the symmetry of the original problem. To make the expressions

more compact we use the notations: a(u,v) = (µ∇u,∇v), < u,v >Σ = |Σ|−1
∫

Σ u
∫

Σ v

and |u|Σ =
√
< u,u >Σ = |Σ|−1/2 |∫Σ u|. It is evident that we have a Cauchy-Schwarz

type inequality < u,v >Σ ≤ |u|Σ|v|Σ.

The Nitsche approximation of defective problem (1) is then: find uh ∈Vh such that

a(uh,vh)+ γh−1< uh,vh >Σ −< µ
∂uh

∂n
,vh >Σ −< µ

∂vh

∂n
,uh >Σ =

( f ,vh)+ γh−1< Q,vh >Σ −< Q,µ
∂vh

∂n
>Σ ∀vh ∈ Vh. (18)

We can write it in a more compact form by introducing

ah(uh,vh) = a(uh,vh)+ γh−1< uh,vh >Σ −< µ
∂uh

∂n
,vh >Σ −< µ

∂vh

∂n
,uh >Σ

and

Fh(vh) = ( f ,vh)+ γh−1< Q,vh >Σ −< Q,µ
∂vh

∂n
>Σ,

as: find uh ∈Vh such that

ah(uh,vh) = Fh(vh) ∀vh ∈Vh. (19)

Proposition 3 Problem (19) is strongly consistent with the solution provided by the

Lagrange multiplier approach in (5).

Proof. The solution of the Lagrange multiplier approach satisfies (using the new nota-

tion) a(u,v)+< λ ,v >Σ − ( f ,v) = 0 and < u,v >Σ = < Q,v >Σ for all v ∈ V , thus a(u,vh)+
< λ ,vh >Σ − ( f ,vh) = 0 and < u,vh >Σ = < Q,vh >Σ for all vh ∈ Vh. Moreover, we have that

< λ ,vh >Σ =−< ∂u
∂n
,vh >Σ, for all vh ∈Vh.

Consequently, ah(u,vh)−Fh(vh) = 0 for all vh ∈Vh, since

ah(u,vh)−Fh(vh) = a(u,vh)+ γh−1< u,vh >Σ −< µ
∂u

∂n
,vh >Σ −< µ

∂vh

∂n
,u >Σ

− ( f ,vh)− γh−1< Q,vh >Σ +< Q,µ
∂vh

∂n
>Σ =

−< λ −µ
∂vh

∂n
,vh >Σ + γh−1< Q−u,vh >Σ −< µ

∂vh

∂n
,Q−u >Σ = 0.

� In particular, we have the following “orhogonality property”: ah(u−uh,vh) = 0 for

all vh ∈Vh.
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Now, consider the following mesh dependent norm

‖vh‖2
h = ‖√µ∇vh‖2

L2(Ω)+ γh−1|vh|Σ2 = a(vh,vh)+ γh−1|vh|Σ. (20)

We give, without proof, the following result

Proposition 4 There exist two positive constants C∗ and C∗ such that, for any v ∈V

C∗‖v‖H1(Ω) ≤ ‖vh‖h ≤C∗h−1/2‖v‖H1(Ω).

Moreover, it is immediate to verify that |v|Σ ≤ ‖v‖L2(Ω). We now assume that the fol-

lowing inverse inequalities holds, which is true, for instance, for standard Lagrangian

finite elements, see, for instance [9].

Assumption 1 There are two positive constants CΩ and CΣ such that for any vh ∈Vh

h‖∇vh‖L2(Ω) ≤CΩ‖vh‖L2(Ω) and h1/2‖vh‖L2(Σ) ≤CΣ‖vh‖L2(Ω), (21)

and, consequently, since µ is bounded away from zero,

h

∣∣∣∣µ
∂vh

∂n

∣∣∣∣
2

Γ

≤ ‖µ
∂vh

∂n
‖2

L2(Σ) ≤C2
ΣµΣ(µ∇vh,∇vh)

1/2, (22)

where µΣ = ‖µ‖L∞(Σ).

Thus, we have the following result.

Proposition 5 If γ >C2
ΣµΣ problem (18) is well posed.

Proof. We can use Lax-Milgram Lemma. Bilinearity and continuity of ah as well as linearity

and continuity of functional Fh are easily found thanks to standard inequalities. We now prove

coercivity of ah with respect to the norm ‖vh‖h given by (20). For any vh ∈Vh, we have that

ah(vh,vh)≥ (µ∇vh,∇vh)
2
L2(Ω)+ γh−1|vh|Σ2 −2< µ

∂vh

∂n
,vh >Σ.

Now, for any ε > 0, using Young’s inequality and (22),

2< µ∂vh/∂n,vh >Σ ≤ εh|µ∂vh/∂n|Σ2 +
1

εh
|vh|Σ2 ≤ εC2

ΣµΣ(µ∇vh,∇vh) +
1

εh
|vh|Σ2,

that is

ah(vh,vh)≥ (1− εC2
ΣµΣ)(µ∇vh,∇vh)+h−1(γ − 1

ε
)|vh|Σ2.

The desired result is obtained if 1−εC2
ΣµΣ > 0 and γ− 1

ε > 0. If γ >C2
ΣµΣ, the latter inequality is

satisfied by taking ε < 1

µΣC2
Σ

and, consequently, we may find a constant α > 0 so that ah(vh,vh)≥
α‖vh‖2

h. �

10



Proposition 6 If u is the solution of (5) and uh the solution of (19), under the same

conditions of Proposition 5, we have that

‖u−uh‖h ≤
M

α
inf

vh∈Vh

‖u− vh‖h,

where M and α are the continuity and coercivity constants of ah.

Proof. The result is rather classical and exploits the Galerkin orhogonality proved in Proposi-

tion 3 and the results of Proposition 5. Indeed, for any vh ∈Vh we have

‖u−uh‖2
h ≤ α−1ah(u−uh,u−uh) = α−1ah(u−uh,u− vh)≤ α−1M‖u−uh‖h‖u− vh‖h.

� This result allows us to exploit interpolation inequalities to obtain optimal

convergence rate of finite element approximations.

We consider now the defective mean stress problem (1a),(1b) and (2). In this case,

in analogy with (16), we can consider the following functional to be minimized over

Vh:

J(vh) =
1

2
(µ∇vh,∇vh)− ( f ,vh)+

1

2
γ

(∫

Σ

∂vh

∂n
dΣ−P

)2

.

This leads to the following problem: find uh ∈Vh such that

(µ∇uh,∇vh)+ γ
∫

Σ

∂uh

∂n
dΣ

∫

Σ

∂vh

∂n
dΣ = ( f ,vh)+ γ

h

|Γ|P
∫

Σ

∂vh

∂n
dΣ ∀vh ∈ Vh.

Like formulation (17), the previous one is not consistent. Indeed, the truncation error

is again τ(vh) =
∫

Σ µ ∂uh

∂n
vh dΣ. If one assumes that the normal stress is constant over Σ,

and thus equal to P, consistency is recovered by adding the term P
∫

Σ vh dΣ to the right

hand side of the previous formulation. For convergence one should again take γ large

enough, see [22, 39].

2.4 Augmented Lagrangian formulation

It is quite natural now to consider an augmented Lagrangian formulation for the solu-

tion of (1). This is obtained by finding a stationary point in Vh ×R of the following

functional:

Lγ(vh,ξ ) =
1

2

∫

Ω
µ |∇vh|2 dx− ( f ,vh)+ξ

(∫

Σ
vh dΣ−Q

)
+

1

2
γ

(∫

Σ
vh dΣ−Q

)2

,

which is equivalent to the following discrete formulation: find uh ∈Vh and λh ∈R such

that ∀vh ∈ Vh and ∀ξ ∈ R

(µ∇uh,∇vh)+λh

∫

Σ
vh dΣ+ γ

∫

Σ
uh dΣ

∫

Σ
vh dΣ = ( f ,vh)+ γQ

∫

Σ
vh dΣ,

ξ
∫

Σ
udΣ = ξ Q.

11



Again, the Lagrange multiplier λh has the physical meaning of a (constant) stress on Σ.

For its numerical solution, we can consider the following Uzawa method:

Given γ > 0, a stopping tolerance τ > 0, a parameter ρ > 0, and λ
(0)
h ∈ R, for k =

1,2, . . .:

1. Find u
(k)
h solution of

(
µ∇u

(k)
h ,∇vh

)
+λ

(k)
h

∫

Σ
vh dΣ+γ

∫

Σ
u
(k)
h dΣ

∫

Σ
vh dΣ=( f ,vh)+γQ

∫

Σ
vh dΣ, ∀vh ∈Vh;

2. Update the Lagrange multiplier:

λ
(k+1)
h = λ

(k)
h +ρ

(
Q−

∫

Σ
u
(k)
h dΣ

)
;

3. Stop if |λ (k+1)
h = λ

(k)
h | ≤ τ .

The convergence of the previous method is guaranteed for 0 < ρ0 ≤ ρ ≤ 2γ , for a

suitable ρ0, see [15].

The previous method allows, unlike the penalization ones, to prescribe condition

(1c) strongly, for any γ > 0. The presence of the penalization term improves conver-

gence of the Uzawa method with respect to when it is applied to the classical Lagrange

multiplier approach. Of course, this method is not of particular interest in case of a sin-

gle flow rate, since, as highlighted in Section 2.2, the solution in this case is achieved

in two steps with the Schur complement approach. However, in the case of defective

conditions applied to several portion of the boundary, the algorithm based on the Schur

complement requires m+1 solutions of a Poisson problem, see Remark 2.1. Thus, the

Uzawa algorithm could be competitive if it allows a satisfactory convergence in less

than m+ 1 iterations. We do not report here the extension of the algorithm to the case

of more than one flow rate conditions, since it is straightforward.

2.5 Methods based on control theory

The last strategy we present could be considered as the dual of the Lagrange multiplier

approach. Indeed, in this case the flow rate condition (1c) is used to build the functional

to be minimized, while the differential problem (1a),(1b) defines the constraint. This

gives rise to the following optimal control problem: given α ≥ 0, find z ∈ R such that

z = argmins∈R J(v(s),s) =
1

2

(∫

Σ
v(s)dΣ−Q

)2

+
α

2
(s− z0)

2 , (24)

where v = v(s) ∈V satisfies

(µ∇v(s),∇ψ) = ( f ,ψ)+
∫

Σ
sψ dΣ ∀ψ ∈V. (25)

12



This corresponds to the weak form of the following differential problem

−∇ · (µ∇v) = f in Ω, (26a)

v = 0 on Γ, (26b)

µ
∂v

∂n
= s on Σ. (26c)

The solution u is then recovered by setting u = v(z). The term involving the parameter

α is a Tikhonov regularization term [8] and z0 a reference value. Notice also that z

assumes the same meaning of the Lagrange multiplier λ . This is a control problem

with control on the Neumann boundary and boundary observations on the same portion

of the boundary.

If |Γ|> 0, α > 0, f ∈ L2(Ω) and for ∂Ω with Liptshitz boundary, the map s → v(s) :

R→V is linear and continuous and the functional J : C →R defined in (24) is convex,

coercive and differentiable. This implies that the previous constrained minimization

problem admits a unique solution.

Proceeding us usual in control theory for PDEs [27, 36, 19], problem (24)-(26) is

equivalent to the following first order optimality conditions (also referred to as Karush-

Kuhn-Tucker (KKT) conditions): find z ∈ R, u ∈V and λu ∈V such that

State pbl : (µ∇u,∇v)+ z

∫

Σ
vdΣ = ( f ,v), (27a)

Adj pbl : (µ∇v,∇λu)+
∫

Σ
udΣ

∫

Σ
vdΣ = Q

∫

Σ
vdΣ, (27b)

Opt. cond :

∫

Σ
λu dΣ+α(z− z0) = 0, (27c)

for all v ∈V and where λu is the solution of the adjoint problem. The optimality condi-

tion corresponds to setting to zero the Frechèt derivative of J′(s).
For the numerical solutions of the previous problem, a monolithic approach could

be considered, which corresponds to solve a linear system of the form




Auu 0 auz

Auλ Aλλ 0

0 Azλ α






U

Λ

zh


=




Fu

Fλ

αz0


 ,

where the various term derive, for instance, from a Galerkin discretization of (27).

However, this implies loss of modularity and the need to solve a relatively large

system. Alternatively, one could consider a descent algorithm, the simplest one being a

steepest descent, which gives rise to:

Given z
(0)
h ∈ R, a suitable relaxation parameter βk > 0, and a tolerance τ > 0, for k =

1, . . .:

1. Solve

AuuU(k) = Fu −auzz
(k−1)
h ;

13



2. Solve

Aλλ Λ(k) = Fλ −AλuU(k);

3. Update the control variable

z
(k)
h = z

(k−1)
h −βk

(
Azλ Λ(k)+αz

(k)
h

)
;

4. Stop if |z(k)− z(k−1)| ≤ τ .

The first step is equivalent to solve the Poisson problem with Neumann data z(k−1), the

second problem is again a Poisson problem with Neumann data
∫

Σ u(k) dΣ. Therefore,

they can be both tackled with standard solvers. Other, more efficient solvers for the

control problem may be found, for instance in [31].

It may seem that this method is less efficient than the other ones, yet it has the

advantage of being rather flexible for more general problems. For instance, it may

be used to implement defective Robin conditions
∫

Σ (u+β µ∂u/∂n) dΣ = Q (which

however may be implemented also by the Nitsche’s penalization approach, see [14]).

3 Defective boundary condition for Stokes/Navier Stokes

We now briefly describe some extensions of the proposed techniques to the Stokes

equations, which form the basis for the application to Navier-Stokes. Indeed, defective

boundary problems have been originally studied in the context of fluid-dynamics [7,

21], in particular in hemodynamics where often the measures or the coupling with re-

duced models provide only average data on the artificial sections [11].

For the sake of exposition we consider the following steady Stokes problem (all

the strategies reported can be extended to the case of unsteady Navier-Stokes). Let the

velocity u and pressure p be solution of:

−µ△u+∇p = f in Ω, (28a)

∇ ·u = 0 in Ω, (28b)

u = 0 on Γ, (28c)
∫

Σ
u ·ndΣ = Q, (28d)

where the notation introduced Section 2 has been used. The previous is a flow rate de-

fective problem, where only the average of normal component of the velocity is known.

This is a typical situation when clinical measures are known in hemodynamics or geo-

metrically reduced models are coupled at the artificial sections [34].

Alternative to the flow rate (28d), the following mean stress condition could be

prescribed on the artificial sections:

∫

Σ
(−pn+µ∇un)dΣ =−|Σ|P, (29)

14



We refer to the defective problem give by (28a)-(28b)-(28c)-(29) as mean stress prob-

lem. Often, the viscosity term is neglected in condition (29) since it is negligible on

artificial section with respect to the pressure. In this case we have
∫

Σ
pdΣ = |Σ|P, (30)

and we refer to the corresponding defective condition as mean pressure condition.

In the following subsections, we review the most classical approaches proposed so

far for the two defective problems introduced above.

3.1 Empirical methods

The most used strategy in the engineering community to prescribe the flow rate con-

dition (28d) is to select a priori a velocity profile g such that
∫

Σ g ·ndΣ = Q and then

prescribe the Dirichlet condition

u = g on Σ.

Classical choices for circular sections are the parabolic one, which works well for ex-

ample in the carotids [6], the flat one, which is quite often used in the aorta [28], and the

one based on the Womersley solution [20]. However, in practical situations the artificial

sections are not circular, and a suitable morphing is needed [20]. In any case, the choice

of the velocity profile in general influences the numerical solution and introduces an er-

ror inside the computational domain. In particular, it is known from the computational

practice that the flow fully develops after a characteristic distance from the section.

This means that inside the region identified by this length, an error due to the wrong

choice of the velocity profile is associated to the solution, whereas outside this region

the solution could be considered accettable. This is the reason why in the engineering

practice, the computational domain is extended at the section at hand of a length which

is comparable with the characteristic length needed to the flow to fully develop. This

characteristic length is known to increase for increasing Reynolds number Re [35]. In

particular, for steady flows in a cylindrical domain, its value can be approximated by

0.058DRe (D being the diameter of the inlet section) [41]. In [38], it has been proved

that the error features an exponential decay with respect to the distance from the section

where the arbitrary profile is prescribed, with a constant which increases with Re.

Regarding the mean stress problem (28a)-(28b)-(28c)-(29), a classical empirical

approach consists in selecting a constant stress aligned with the normal direction [14],

i.e.

−pn+µ∇un =−Pn.

This assumption is in general acceptable for example in hemodynamics, where the

pressure mainly changes along the axial direction. The previous Neumann condition

has been proposed also to treat the mean pressure problem (28a)-(28b)-(28c)-(30) [21].

However, in this case the corresponding weak formulation is not consistent with the de-

fective condition [14]. To recover a consistent approximation, the curl-curl formulation

of the Stokes problem should be considered since the corresponding natural condition

is the pressure [7, 37].
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3.2 Lagrange multiplier approach

The Lagrange multiplier approach for the flow rate problem (28) has been introduced in

[11]. Following the idea reported in Section 2.2, the following augmented formulation

is obtained: find u ∈ [V ]d, p ∈ Q = L2(Ω) and λ ∈ R such that for all (v,q,ξ ) ∈ [V ]d ×
Q×R,

(µ∇u,∇v)− (p,∇ ·v)+b(v ·n,λ ) = (f,v) (31a)

(q,∇ ·u) = 0 (31b)

b(u ·n,ξ ) = ξ Q, (31c)

where the notation is the same of Section 2.2. An inf-sup condition holds true for

the previous augmented Stokes problem [37]. Again, the Lagrange multiplier has the

physical meaning of constant normal stress on Σ [11].

Notice that the flow rate condition (28d) does not provide any information (neither

defective) on the tangential velocity. To close the augmented problem, boundary condi-

tions on the tangential velocity or stress should be considered. This choice is given by

the choice of the functional space [V ]d . In particular, if its functions are not constrained

in the tangential direction on Σ, a homogeneous Neumann condition is implicitely as-

sumed for the tangential stress; otherwise, if they vanish in the tangential direction, they

imply Dirichlet condition on the tangential velocity.

For its numerical solution, we can consider either a monolithic approach or an algo-

rithm similar to that presented in Section 2.2 based on the Schur complement equation

[11]. Analogously to the Poisson case, this algorithm is modular and consists in the

solution of two Stokes problems with Neumann conditions on Σ. The extension to the

Navier-Stokes case has been obtained in [37]. In both the cases, for m flow rate condi-

tions this algorithm relies on the solution of m+1 Stokes/Navier-Stokes problems. For

this reason, in [38] an inexact splitting algorithm has been proposed to save computa-

tional time, consisting in the solution of just 1 Stokes/Navier-Stokes problem, where

however an error near to Σ is introduced. The authors noticed that since the error is

introduced by solving a null flow rate problem arising from the splitting by means of a

homogeneous Dirichlet condition, the error is the smallest one provided by any empir-

ical approach, since the Reynolds number at the section at hand is zero.

The extension of the Lagrange multiplier approach to the case of compliant walls

has been addressed in [13], whereas the case of quasi-Newtonian fluid has been ana-

lyzed in [10], where an error analysis for the numerical approximation is also given.

3.3 Penalization methods

The Nitche’s approach reported in Sect. 2.3 may be extended to the Stokes problem.

In [42], a consistent penalization method for the mean flux problem as been de-
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signed. It reads: find uh ∈ [Vh]
d and ph ∈ Qh, such that for all vh ∈ [Vh]

d and qh ∈ Qh,

(µ∇uh,∇vh)− (ph,∇ ·vh)+ γ
∫

Σ
uh ·ndΣ

∫

Σ
vh ·ndΣ− 1

|Σ|

∫

Σ
µ∇uh ·ndΣ

∫

Σ
vh ·ndΣ

− 1

|Σ|

∫

Σ
uh ·ndΣ

∫

Σ
µ∇vh ·ndΣ+

1

|Σ|

∫

Σ
ph dΣ

∫

Σ
vh ·ndΣ =

(f,vh)+ γQ

∫

Σ
vh ·ndΣ− 1

|Σ|Q
∫

Σ
µ∇vh ·ndΣ,

−(qh,∇ ·uh)+
1

|Σ|

∫

Σ
qh dΣ

∫

Σ
uh ·ndΣ =

1

|Σ|Q
∫

Σ
qh dΣ.

In [42], it has been proved that, if it exists a constant c such that µ∇un− pn = cn on

Σ, then the previous formulation is consistent with (28) and that if γ = γ̂/(h|Σ|) with γ̂
large enough, the solution is unique. The arguments are similar to those illustrated for

the Poisson problem.

Referring to the notation introduced in Section 2, the algebraic problem related to

the Galerkin approximation of the previous Nitsche formulation is
[

AQ (BQ)T

BQ 0

][
U

P

]
=

[
FQ

GQ

]
,

where A
Q
i j =(µ∇ϕ j,ϕi)+γ

∫
Σ ϕ j ·ndΣ

∫
Σ ϕi ·ndΣ− 1

|Σ|
∫

Σ µ∇ϕ j ·ndΣ
∫

Σ ϕi ·ndΣ− 1
|Σ|

∫
Σ ϕi ·

ndΣ
∫

Σ µ∇ϕ j ·ndΣ, B
Q
k j = −(ψk,∇ ·ϕ j)+

1
|Σ|

∫
Σ ψk dΣ

∫
Σ ϕ j ·ndΣ, P collects the pres-

sure unknowns, F
Q

i = (f,ϕi)+ γQ
∫

Σ ϕi ·ndΣ− 1
|Σ|Q

∫
Σ µ∇ϕi ·ndΣ, G

Q
k = 1

|Σ|Q
∫

Σ ψk dΣ

and where ψk are the basis function for the pressure approximation. The previous linear

system preserves the saddle-point nature of the classical Stokes problem.

A Nitsche formulation has been proposed for the mean stress problem in [39]. The

corresponding weak formulation reads: find uh ∈ [Vh]
d and ph ∈ Qh, such that for all

vh ∈ [Vh]
d and qh ∈ Qh,

(µ∇uh,∇vh)− (ph,∇ ·vh)− γ
∫

Σ
µ∇uh ·ndΣ

∫

Σ
µ∇vh ·ndΣ

+
1

|Σ|

∫

Σ
ph dΣ

∫

Σ
∇vh ndΣ = (f,vh)−P

∫

Σ
vh ·ndΣ+ γP|Σ|

∫

Σ
µ∇vh ·ndΣ,

−(qh,∇ ·uh)− γ
∫

Σ
ph dΣ

∫

Σ
qh dΣ+ γ

∫

Σ
∇uh ·ndΣ

∫

Σ
qh dΣ =−γP|Σ|

∫

Σ
qh dΣ.

In [39], it has been proved that, if it exists a constant c such that µ∇un− pn = cn on

Σ, then the previous formulation is consistent with (28a)-(28b)-(28c)-(29) and that if

γ = γ̂h/|Σ| with γ̂ large enough, we have again a unique solution. The corresponding

algebraic problem related to the Galerkin approximation of the Nitsche formulation

reads [
AP (BP)T

BP CP

][
U

P

]
=

[
FP

GP

]
,

where AP
i j =(µ∇ϕ j,∇ϕi)−γ

∫
Σ µ∇ϕ j ·ndΣ

∫
Σ µ∇ϕi ·ndΣ, BP

k j =−(ψk,∇ ·ϕ j)+
1
|Σ|

∫
Σ ψk dΣ

∫
Σ ∇ϕ j ndΣ,

CP
kl =−γ

∫
Σ ψl dΣ

∫
Σ ψk dΣ, FP

j =(f,ϕ j)−P
∫

Σ ϕ j ·ndΣ+γP|Σ|∫Σ µ∇ϕ j ·ndΣ and GP
k =

−γP|Σ|∫Σ ψk dΣ.
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An alternative formulation consistent with the mean pressure problem (28a)-(28b)-

(28c)-(30) has been proposed in [39].

3.4 Augmented Lagrangian formulation

Following the idea reported in Section 2.4, we can introduce also for the flow rate

problem (28) an augmented Lagrangian fomultion where both a Lagrange multiplier

and a penalization term are introduced. This allows to prescribe strongly the flow rate

condition (28d) and to improve the convergence in an Uzawa-like algorithm, see Section

2.4. In particular, this formulation reads: find uh ∈ [Vh]
d, ph ∈ Qh and λh ∈ R such that

∀vh ∈ [Vh]
d, qh ∈ Qh and ξ ∈ R,

(µ∇uh,∇vh)− (ph,∇ ·vh)+λh

∫

Σ
vh ·ndΣ+ γ

∫

Σ
uh ·ndΣ

∫

Σ
vh ·ndΣ

= (f,vh)+ γQ

∫

Σ
vh ·ndΣ,

(qh,∇ ·uh) = 0,

ξ
∫

Σ
uh dΣ = ξ Q.

3.5 Methods based on control

As observed in Section 2.5, these techniques are based on minimizing a functional

related to the flow rate condition (28d) under the constrain given by the Stokes problem.

In analogy of what observed in Section 2.5, the control variable z is here the constant

normal component of the normal stress [12]

−pn+∇un = zn on Σ.

Referring to the notation of Section 2, this leads to the following first order opti-

mality conditions: find z ∈ R, u ∈ [V ]d, p ∈ Q, λu ∈ [V ]d and λp ∈ Q such that

State pbl :
(µ∇u,∇v)− (p,∇ ·v)+ z

∫

Σ
v ·ndΣ = (f,v),

(q,∇ ·u) = 0

Adj pbl :
(µ∇v,∇λu)− (λp,∇ ·v)+

∫

Σ
u ·ndΣ

∫

Σ
v ·ndΣ = Q

∫

Σ
v ·ndΣ,

(q,∇ ·λu) = 0

Opt. cond :

∫

Σ
λu ·ndΣ+α(z− z0) = 0,

for all v ∈ [V ]d and q ∈ Q. Existence and unicity of the solution under the constraint

that the normal stress is constant and aligned along the normal component are provided

in [12].

In [24, 17, 18], the complete normal stress is chosen as control variable z

−pn+∇un = z on Σ.
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This allows one to treat also cases where the normal stress is not supposed to be aligned

with the axial direction, e.g. for not orthogonal artificial sections. Existence of a solu-

tion is provided [24]. Alternatively, the value of the velocity u on Σ could be used as

control variables z, see [24].

The optimal control approach has been proposed also for the mean pressure problem

(28a)-(28b)-(28c)-(30) in [12]. In this case, the control variable is set equal to the flow

rate or to the complete normal stress on Σ, see also [24] for the latter case.

The case of fluid problem in compliant vessels has been addressed in [13].

4 Some applications to hemodynamics

We present here two examples of applications in heamodynamics on real geometries re-

constructed from radiological images acquired at Ospedale Ca’ Granda - Policlinico di

Milano, Italy. For both numerical experiments, we have considered the incompressible

Navier-Stokes equations in rigid domains and a flow rate condition (28d) at the inlet.

For the prescription of the flow rate condition, we have used the Lagrange multipliers

approach presented in Section 3.2 and the algorithm based on the Schur complement

equation introduced in [37] for Navier-Stokes equations. We also used P2−P1 Finite

Elements and the Backward Difference Formula of order 2 (BDF2) for the space and

time discretization, respectively.

The results have been obtained with the parallel Finite Element library LIFEV de-

veloped at MOX - Politecnico di Milano, INRIA - Paris, CMCS - EPF Lausanne, and

Emory University - Atlanta (www.lifev.org). The linear system arising at each time step

has been solved with GMRes preconditioned with an Additive Shwartz preconditioner.

4.1 The case of a stenotic carotid

In the first numerical experiment, we consider a stenotic carotid due to the presence

of an atheromasic plaque at the bifurcation. We prescribed the flow rates depicted in

Figure 1, left, at the inlet (Common Carotid Artery, CCA) and at one of the two out-

lets, namely at the Internal Carotid Artery (ICA). As a comparison, we considered also

the case where a parabolic profile fitting the flow rate is used instead of the Lagrange

multipliers approach.

In Figure 2 we observe that the numerical result obtained when a parabolic profile

is prescribed blows up. This is due to the swirling nature of velocity pattern in the ICA,

induced by the stenosis, which is not able to fit the parabolic profile prescribed at the

outlet. Instead, the Lagrange multiplier approach works well, adjusting the velocity

profile at the ICA so that the mathing with the inner velocity is stable.

4.2 The case of an aortic abdominal aneurysm

In the second numerical experiment, we consider a blood flow simulation in an aortic

abdominal aneurysm (AAA). We prescribed the flow rates depicted in Figure 1, right,
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Figure 1: Flow waveforms prescribed at the inlet. Left: carotid simulation. Right: AAA

simulation.

Figure 2: Blood velocity field in the case of a parabolic profile at the ICA (left) and of

Lagrange multiplier approach at the ICA (right). .

at the inlet, and homogeneous Neumann conditions at the two outlets. The specific ge-

ometry related to this pathology, characterized by a sudden change of diameter, allows

transition to turbulence effect to develop [1, 23, 26]. In particular, transitional flow may

appear in AAA during the late systolic and diastolic phases, and are usually localized

in the distal end of the AAA sac.

We consider here a large eddy simulation (LES) model for the description of such

effects. In particular, we consider the eddy viscosity σ - model [29] (see [40] for further

details) and two meshes: mesh I (about 1.1 · 106 dofs for the velocity and 3.7 · 105 for

the pressure) and mesh II (about 2.0 · 106 dofs for the velocity and 6.8 · 105 for the

pressure).

In Figure 3, we report the results at four time instants for three different simula-

tions, namely: i) a no model simulation (i.e. without LES) in mesh I; ii) a LES model

simulation in mesh I; iii) a LES model simulation in mesh II. In Figure 4 we report for

the same specific cases the vorticity patterns.

From these results, we observe some differences between the results obtained with

LES and “no-model” simulations, whereas a good agreement between those obtained

with LES a two different meshes, highlighting that probably LES simulation with mesh
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I is enough to have accurate results. Also in this case we have used the Lagrange

multiplier approach to impose mean conditions at the inlet sections, proving that the

method works well also in presence of turbulent models.

5 Conclusions

With this work we wanted to give an introductory overview of techniques to apply

defective conditions in problems governed by partial differential equations. We have

illustrated various possibilities. We can conclude that for the mean flow problem the

Lagrange multiplier approach has proved to be very effective. The Nitsche type penal-

ization has the advantage of avoiding an additional saddle point problem, and is more

flexible since it can accommodate also mean stress condition (and in fact also defective

conditions of Robin type), and is a valid alternative. The control approach is rather

interesting, but also rather costly, and, so far, has not found much use in practical ap-

plications. However it may be advantageous if the constraints to be imposed are more

complex than the standard ones.
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Figure 3: Velocity pattern at four different instants, from left to right: systole t = 0.16

s, mid-deceleration t = 0.29 s, early diastole t = 0.40 s, late diastole t = 0.49 s. Top:

no-model simulation; Middle: LES simulation; Bottom: LES simulation on a finer

mesh.
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Figure 4: Vorticity pattern at four different instants, from left to right: systole t = 0.16

s, mid-deceleration t = 0.29 s, early diastole t = 0.40 s, late diastole t = 0.49 s. Top:

no-model simulation; Middle: LES simulation; Bottom: LES simulation on a finer

mesh.

23



References

[1] Asbury, C., Ruberti, J., Bluth, E., Peattie, R.: Experimental investigation of steady

flow in rigid models of abdominal aortic aneurysms. Annals of Biomedical Engi-

neering 23(1), 29–39 (1995)
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