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Abstract

We consider the mixed formulation for Darcy’s flow in fractured media. We give a well-
posedness result that does not rely on the imposition of pressure in part of the boundary
of the fracture network, thus including a fully immersed fracture network. We present and
analyze a mimetic finite difference formulation for the problem, providing convergence results
and numerical tests.

Introduction

It is well known that flow in porous media, in particular in the case of geophysical applications,
is often characterized by very strong heterogeneities. In particular fractures, interfaces between
different materials and faults have a major impact on the flow at all spatial scales. Due to the
permeability contrasts indeed fractures and faults can act either as preferential paths for the flow,
or as barriers forming pressure compartments.

In the past decades flow through fractured porous media has typically been simulated by
means of dual porosity models, [11]. However, this approach has some important limitations [30],
in particular it is not adequate in the case of disconnected networks, or in the case of a small
number of large fractures. For these reasons discrete fracture models, which represent fractures
explicitly, are developing more and more.

Since fractures typically have a small aperture compared to their characteristic length it is
a common choice in the modelling of discrete fracture models to represent fractures as d − 1-
dimensional entities immersed in a d-dimensional domain, for instance, surfaces in three dimen-
sional domains of lines in the two dimensional case. From the mathematical point of view a
suitable geometrically reduced model should be then solved on such manifolds. Following the
existing literature, we assume that fractures are filled by a porous medium with different porosity
and permeability than the surrounding porous matrix, and that flow can be described by Darcy’s
law both in the bulk porous medium and in the fractures. However, we point out that if we
consider fractures with porosity φ = 1, but with small aperture, thanks to the parallel plates
approximation [1] we obtain similar governing equations.

A reduced model for Darcy flow in fractures has been derived in [3] for the case of very
permeable fractures, and later generalized to fractures with low permeability in [32]. More recently
it has been extended to describe transport in fractured media, [25], and two-phase flow, [29] and
[26].
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Even if the use of a geometrically reduced model avoids the need for extremely refined or
anisotropic grids inside the fractures, the construction of a computational grid for realistic cases
is a challenging task ([21]): a fractured oil reservoir, for instance, can be cut by several thousands
of fractures, often intersecting or very close together. A computational grid conforming to the
fractures can thus be characterized by very small elements and low quality, due to high aspect
ratios and small angles. For most numerical methods the quality of the grid has an impact on
the accuracy of the solution. For this reasons methods have been proposed to simplify fracture
networks by means of local modifications of the fractures position and geometry, which are in any
case affected by uncertainty ([31]). Another possible strategy is to avoid geometric conformity,
i.e. to allow fractures to cross the elements of a coarse and regular background grid. In this case,
the presence of the interfaces can be accounted for by suitable enrichments of the finite element
spaces, exploiting the eXtended Finite Element Method, see [28][20].

The approach adopted in this work instead consists in adopting a numerical method that
is robust even with highly distorted computational grids: the Mimetic Finite Difference (MDF)
Method. This method, as well as the Virtual Element Method, which can be regarded as its
evolution, is indeed known to preserve the quality of the solution for very general computational
grids, with polygonal or polyhedral elements and high anisotropy. In recent years the use of MFD
has grown considerably, thanks to their flexibility and ability to preserve important properties
of the physical and mathematical model. MDF has been employed to simulate flow in networks
of fractures, see [12, 13], and flows in fractured porous media [2], [10], with a primal and mixed
formulation respectively. It has been used also for quasilinear elliptic problems [9], as well as
non-linear and control problems [8, 5, 7].

The present work can be considered in continuity with the strategy used in [10], but differs
from the previous literature because a dual mixed formulation, discretized with the MFD method,
is employed in the bulk medium as well as in the fractures. This requires a proper splitting of
the degrees of freedom for the fracture flux at the intersection, and the enforcement of suitable
coupling conditions.

Even if the reduced model for fractures adopted in this work, originally presented in [3, 32],
has already been extensively used with different discretization techniques[20, 26, 27, 15, 22, 6]
some theoretical aspects were still not completely understood. In this work we aim at providing a
proof of the well posedness of the Darcy’s problem in the presence of a fully immersed network of
fracture, i.e. without requiring the imposition of pressure on part of the fracture network boundary.
In this case we the proof differs significantly from existing results, since the role of the coupling
terms becomes fundamental. For the numerical discretization of the problem by means of mixed
mimetic finite differences we will prove well-posedness and convergence. Moreover, as concerns
the discrete problem, we will show how some hypothesis necesssary for the well posedness of the
problem at continuous level can be relaxed, and we will verify this result by means of numerical
experiments.

The paper is organized as follows: in section 1 we present the governing equation for a single-
phase flow in a fractured porous medium introducing some useful notation. In section 2 we
introduce the weak formulation of the problem and prove its well-posedness. Section 3 is dedicated
to the presentation of the numerical method and the proof of it stability and convergence. Some
numerical experiments are shown in section 4, while section 5 is devoted to some concluding
remarks.

1 The mathematical model

We describe the model we are considering for fluid flow in a fractured media.

1.1 The definition of the computational domain

We consider a domain Ω ⊂ Rd, with d = 2 or 3, composed by a fractured porous medium. The
fractures will be described as a collection of one co-dimensional planar manifolds, as shown in
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figure 1 for the two-dimensional case, following the model reduction strategies proposed in [3, 32].
With Γ ∈ Rd−1 and Γ ⊂ Ω we denote a network formed by the union of NΓ fractures γk, for

k = 1, . . . , NΓ. Each γk is an open, bounded, planar d − 1 dimensional orientable manifold and
we have

Γ =

NΓ⋃
k=1

γk.

Fractures can intersect only at their endpoints, i.e.

∀ j 6= k γk ∩ γj = ∂γk ∩ ∂γj = ikj ,

where ikj is either the empty set (no intersections), or a point (in the 2D case) or a straight
segment (in the 3D case). In particular, for the 3D setting we do not consider the case of fractures
intersecting in a point.

We assume that the angle between intersecting fractures is bounded from below, as well as
the angles between fractures and ∂Ω, whenever a fracture touches the boundary. This implies
that the number of fractures joining at an intersection is bounded. We denote by I the set of
all intersection points in the network, i.e. I = ∪ ikj . To complete the definition of the network
we follow the strategy proposed in [15]. We assume that, by suitably extending the fractures
γk, we can partition Ω into a set of Lipschitz subdomains ωα ⊂ ΩΓ, with α = 1, . . . , Nω so that
Ω = ∪Nω1 ωα and for each γk there are exactly two different values α+

k and α−k so that γk ⊂ ∂ωα+
k

and γk ⊂ ∂ωα−k
. This decomposition, shown in figure 2, allows us to identify the normal unitary

vectors n−k and n+
k to γk as those outwardly oriented with respect to ωα−k

and ωα+
k

, respectively.

We define the (unique) normal to the fracture as nk = n+
k = −n−k , while nα will be used to

indicate the outward normal to ∂ωα. In the following nΓ indicates the normal to Γ, i.e. nΓ = nk
on γk, for all k. Analogous definition for n+

Γ and n−Γ . Finally, for each ωα we indicate with ∂±ωα
the portions of ∂ωα ∩ Γ such that nα · nΓ = ±1, respectively. We set ΩΓ = Ω \ Γ and we assume
that its boundary can be partitioned into two measurable subsets ∂Ωp and ∂Ωu, with |∂Ωp| > 0.

Figure 1: A two dimensional fracture network.

We can then subdivide the boundary of the fracture in different subsets (some of which may
be empty). For each γk we define ∂γpk and ∂γuk such that ∂γpk ∪ ∂γuk = ∂γk ∩ ∂Ω. We then define
∂γIk = ∂γk ∩ I and ∂γFk = ∂γk \

⋃
s=p,u,I ∂γ

s
k. For the 3D setting, one assumes that whenever

∂γpk or ∂γuk are not empty sets they have a strictly positive d − 2 measure (in 2D they are just
points).

For s = p,u, F we define Is =
⋃NΓ

k=1 ∂γ
s
k. Therefore, IF contains the part of the boundary of

Γ that is fully immersed in the domain Ω. If Ip = Iu = ∅ we have the case of a fully immersed
network. Given an intersection point i ∈ I we denote with Si the set of fractures γk that join in
i.

In general, for given functions fk defined on each γk we define f =
∏NΓ

k=1 f̂k. We can now
generalize the definition of average and jump of a function f ∈ ΩΓ as

{f} =
1

2
(f+ + f−) and JfK = f+ − f−,
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Figure 2: Decomposition of the domain.

where f± is the trace of f on Γ± =
⋃NΓ

k=1 γ
±
k . With {f}k and JfKk we denote the average and

jump operators restricted to fracture γk.
Each γk is indeed an approximation of the actual fracture, which we assume can be described

as

γ̃k = {y ∈ Rd : y = x+ dnk, x ∈ γk, d ∈ (− lk(x)

2
,
lk(x)

2
)} (1)

where lk is the fracture aperture. We assume that lk is a C1 function and that there is a constant
l∗ > 0 such that lk > l∗, for all k. We denote with lΓ =

∏NΓ

k=1 lk the aperture of the whole
fracture network (note that it is in general discontinuous at the intersections). It is assumed that
lΓ be everywhere much smaller than the diameter of Ω, which justifies the use of a reduced d− 1
dimensional model.

1.2 The model

We assume that the flow in the porous matrix and in the fractures be described by Darcy’s law
and by the mass conservation equation. We consider a single fluid with constant density and we
neglect the effect of gravity. We employ the model that has been derived for a single fracture in
[3, 32], here extended to the case of a network.

We will indicate with u and p the Darcy macroscopic velocity and fluid pressure in the bulk
domain ΩΓ, while K is the permeability tensor in the bulk that, for the sake of simplicity, includes
the dependence on the viscosity µ. The reduced problem for flow in the fracture has been obtained
by integration of the governing equations across the fracture aperture, and by defining reduced
variables for the flux û and the average pressure p̂ in each fracture. More precisely, if ṽk : γk →
Rd and p̃ : γk → R are the velocity and pressure in the actual fracture defined in (1), and
T k = I − nk ⊗ nk the projector on the tangent plane of fracture γk, where I here indicates the
identity operator, we set

ûk =

∫ lk
2

− lk2
T kṽk, and p̂k =

1

lk

∫ lk
2

− lk2
p̃k,

and û =
∏NΓ

k=1 ûk, while p̂ =
∏NΓ

k=1 pk.
We assume that the permeability (scaled by viscosity) in each fracture can be represented by a

diagonal tensor in local (tangent and normal) coordinates, that is for the material in the fracture
K = K̂nn⊗ n+ K̂τT , and we define the following scaled quantities

K̂ = lΓK̂τ and η =
lΓ

K̂n

. (2)

It is understood that when we write an operator on quantities defined on Γ we mean in fact the
product of the corresponding operators on each γk.
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The complete coupled problem consists then of a Darcy problem in the bulk porous medium
and a reduced Darcy problem in the fracture network,


divu = f in ΩΓ

K−1u+∇p = 0 in ΩΓ

p = gP on ∂Ωp

u · n = gu on ∂Ωu

and



divτ û = f̂ + Ju · nΓK in Γ

K̂−1 û+∇τ p̂ = 0 in Γ

û · τ = ĝu on Iu

û · τ = 0 on IF

p̂ = ĝP on Ip

(3)

complemented with the coupling conditions{
η {u · nΓ} = JpK on Γ

η ξ0 Ju · nΓK = {p} − p̂ on Γ
and

p̂k = pi in i ∀ γk ∈ Si, ∀ i ∈ I∑
k: γk∈Si

ûk|i · τ k = 0 in i ∀ i ∈ I

(4)
where p̂k e ûk denote respectively pressure and flux in γk and pi the pressure at the intersection
point i ∈ I. While, τ k is the vector in the tangent plane of γk normal to ∂γk, and divτ and ∇τ
indicate the tangent divergence and gradient operators, respectively.

Note that coupling conditions in (4) depend on a closure parameter ξ0 that accounts for the
assumption made on the pressure profile across the fracture aperture when deriving the reduced
model. The assumption of a parabolic variation of pressure across the fracture leads to the optimal
value ξ0 = 1/8. Its effect on the properties of the problem, and in particular its well posedness,
will be discussed in the next section.

Remark 1.1. We have imposed, on the immersed fracture tips, homogeneous conditions for the
flux. This is quite standard in this type of problems. At the fracture intersection we have enforced
pressure continuity and flux conservation: other possible, more general, conditions can be found in
[23] or in [33]. Moreover, in the 3D setting, one may consider a more complex set of equations,
accounting for flow along the intersection lines, as it has been proposed in [24] in the context of
discrete fracture network simulations.

2 Weak formulation and main analytic results

In this Section we will set up the weak formulation of the differential problem (3) with the coupling
conditions (4). We will the analyze its well-posedness, focusing on the case where Ip = ∅, which
encompasses the situation of a fully immersed network.

2.1 Functional setting

We will use standard notation for Lesbegue and Sobolev spaces. In particular for p ∈ [1,∞),

Lp(ΩΓ) = {f : ΩΓ → R : ‖f‖Lp(ΩΓ) <∞},

with ‖f‖Lp(ΩΓ) =
√∫

ΩΓ
|f |pdΩ, while

L∞(ΩΓ) = {f : ΩΓ → R : f measurable, ‖f‖L∞(ΩΓ) <∞},

with ‖f‖L∞(ΩΓ) = supessx∈ΩΓ
|f(x)|. We note that, being Γ a set of null d-measure, we can

identify an element Lp(ΩΓ) with an element of Lp(Ω), for any p ∈ [1,∞].
We indicate with Hk(ΩΓ), for an integer k > 0, the space of functions whose restriction to any

open and connected subset ω ⊂ ΩΓ is in Hk(ω). Indeed some configuration of the fracture network
Γ can split Ω in disconnected parts. In this case Hk(ΩΓ) is in fact a broken space. However, we
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can still formally write norms and inner products in the usual way. For instance, for any u and v
in H1(ΩΓ)

‖v‖H1(ΩΓ) =
(
‖v‖2L2(ΩΓ) + ‖∇v‖2L2(ΩΓ)

)1/2

and (u, v)H1(ΩΓ) =

∫
ΩΓ

(uv +∇u · ∇v) dΩ.

We define
Hdiv(ΩΓ) = {v : ΩΓ → Rd : ‖v‖[L2(ΩΓ)]d + ‖div v‖L2(ΩΓ) <∞},

which is an Hilbert space equipped with the standard inner product

(u,v)Hdiv(ΩΓ) =

∫
ΩΓ

(u · v + div(u) div(v)) dΩ.

For a full characterization of the spaces Hdiv(ΩΓ) and H1(ΩΓ) the reader may refer, for instance,
to [4].

For p ∈ [1,∞], we define, Lp(Γ) =
∏NΓ

k=1 L
p(γk), with standard norm for product spaces (and

inner product in the case of L2).
We now specify in more details the functional spaces we are adopting for our problem. For the

velocity and pressure in the bulk we set the following spaces

V Ω = {v ∈ Hdiv(ΩΓ) : Jv · nΓK ∈ L2(Γ), {v · nΓ} ∈ L2(Γ),v · n|∂Ωu = 0},
MΩ = L2(Ω).

(5)

Here we have used the short-hand notation v · n|∂Ωu to indicate the trace on ∂Ωu of the normal
component of the velocity. The space V Ω is a Hilbert space when equipped with the norm

‖v‖2V Ω = ‖v‖2L2(Ω) + ‖ div v‖2L2(Ω) + ‖{v · nΓ}‖2L2(Γ) + ‖Jv · nΓK‖2L2(Γ), (6)

and the corresponding inner product

(v,u)V Ω = (v,u)L2(Ω)+(div v,divu)L2(Ω)+({v ·nΓ}, {u·nΓ})L2(Γ)+(Jv ·nΓK, Ju·nΓK)L2(Γ). (7)

Remark 2.1. Our definition of the space for the velocity in the bulk V Ω differs from that used,
for instance, in [32], were the authors introduced the norm

|||v|||2V Ω = ‖v‖2L2(Ω) + ‖div v‖2L2(Ω) + ‖v+ · nΓ‖2L2(Γ) + ‖v− · nΓ‖2L2(Γ).

However, it is immediate to verify that the two norms are equivalent. However, our definition
turns out to be more convenient for the following derivations.

As for the fractures, we first define the spaces

Hdiv(γk) = {v̂ ∈ L2(γk) : divτ v̂ ∈ L2(γk)},

with the corresponding canonical inner product and norm. Then,

V Γ = {v̂ ∈
∏NΓ

k=1Hdiv(γk) :
∑
γk∈Si v̂k · τ k|i = 0, ∀i ∈ I, v̂k · τ k|∂γuk = 0, ∀∂γuk ∈ Iu, }

MΓ = L2(Γ).
(8)

We have adopted again the short hand notation of indicating with v̂k · τ k|∂γuk and v̂k · τ k|i the
trace of the normal components of the fracture velocity at the corresponding fracture boundary
and intersection, respectively.

The norm for V Γ and MΓ are given by

‖v̂‖2V Γ =

NΓ∑
k=1

‖v̂‖2L2(γk) +

NΓ∑
k=1

‖divτ v̂‖2L2(γk), ‖q̂‖MΓ =

NΓ∑
k=1

‖q̂‖2L2(γk).
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Finally we define the global spaces for velocity and pressure as follows,

W = V Ω × V Γ, M = MΩ ×MΓ, (9)

and equip them with the canonical inner products and norms for product spaces. It is useful to
introduce the affine spaces

V Ω
g = lg + V Ω, V Γ

g = l̂g + V Γ,

where lg ∈ Hdiv(ΩΓ) and l̂g ∈ Hdiv(Γ) are lifting of the velocity boundary data gu and ĝu, assumed
regular enough. We then set W g = V Ω

g × V Γ
g .

2.2 Conditions on the data

We make the following assumption on the data.

- K is uniformly elliptic, i.e. there exists 0 ≤ K∗ ≤ K∗ so that, for all t ∈ Rd.

K∗‖t‖2 ≤ tTK(x)t ≤ K∗‖t‖2 a.e. in ΩΓ. (10)

Here ‖ · ‖ denotes the Euclidean norm.

- There exists positive constant η∗, η
∗, K̂∗, K̂

∗ such that

η∗ ≤ η(x) ≤ η∗, K̂∗ ≤ K̂(x) ≤ K̂∗ (11)

for almost all x in Γ.

- f ∈ L2(ΩΓ) and f̂ ∈ L2(Γ).

- There is a value γ∗ > 0 so that |γk| > γ∗ for all k. This implies that the ratio maxk(|γk|)
mink(|γk|) is

bounded from above.

- Boundary data are sufficiently regular to allow the following derivations.

2.3 Weak form

We are now in the position of writing the weak form of Problem (3)-(4) and study its properties.
Find (u, û) ∈W g and (p, p̂) ∈M such that{

A
(
(u, û), (v, v̂)

)
+B

(
(v, v̂), (p, p̂)

)
= Fu

(
(v, v̂)

)
,

B
(
(u, û), (q, q̂)

)
= F p

(
(q, q̂)

)
,

(12)

for all (v, v̂) ∈W and (q, q̂) ∈M . Here,

A
(
(u, û), (v, v̂)

)
= a(u,v) + â(û, v̂), (13)

where

a(u,v) = m(u,v)+c(u,v) =

∫
ΩΓ

(K−1u) ·v dΩ+

∫
Γ

η ({u · nΓ}{u · nΓ}+ ξ0Ju · nΓKJu · nΓK) dγ,

(14)

â(û, v̂) =

∫
Γ

K̂−1
τ û · v̂ dγ, (15)

and
B
(
(v, v̂), (q, q̂)

)
= b(v, q) + b̂(v̂, q̂) + d(v, q̂), (16)

where

b(v, q) = −
∫

Ω

div vq dΩ, b̂(v̂, q̂) = −
∫

Γ

divτ v̂q̂ dγ, d(v, q̂) =

∫
Γ

Jv · nΓKq̂ dγ. (17)
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The functionals at the right hand side collect the contributions of boundary and source terms,
namely

Fu
(
(v, v̂)

)
= −

∫
∂Ωp

gpv · n dγ −
∫
Ip
ĝpv̂ · τ dγ, F p

(
(q, q̂)

)
= −

∫
Ω

fq dΩ−
∫

Γ

f̂ q̂ dγ. (18)

The hypothesis on the data imply that gp ∈ H1/2(∂Ωp), ĝp ∈ H1/2(Ip).

Remark 2.2. For generality, we are writing our formulation referring to the 3D case. However,
the previous expressions are valid also in the 2D setting provided some terms be interpreted cor-
rectly. For instance,

∫
Ip
ĝpv̂ · τ dγ in the 2D setting has to be interpreted as ĝp(x)v̂(x) · τ (x) for

x ∈ Ip, since in the 2D setting elements of Ip are points.

2.4 Well-posedness result

We state now the main result of this Section.

Theorem 2.1. Under the given assuptions on the data, problem (12) is well posed if Ω is a convex
polygon or has a boundary of class C1 and under the condition ξ0 > 0.

Well posedness of problem (12) has been established for the case of a single fracture in [32]
and in [15] for the case of networks. Yet, in both cases the authors made the hypothesis that
Ip 6= ∅, i.e. that pressure be imposed on a portion of the fracture network boundary. Here
we want to extend the proof to the case Ip = ∅, which is of interest for applications and more
complex to handle. Therefore, we restrict the proof to the case where Ip = ∅, which implies
Fu
(
(v, v̂)

)
= −

∫
∂Ωp

gpv · n, and V Γ
g = V Γ. We also consider the case of homogeneous condition

for the normal component of velocity in the bulk, i.e. V Ω
g = V Ω, since the more general case is

recovered by standard lifting techniques. In this context the boundary data involves only gP . We
wish to note that in following we indicate with a . b the existence of a positive constant C so
that a ≤ Cb.

The proof of Theorem 2.1 relies on a series of lemmas.

Lemma 2.1. Forms A and B are bilinear and continuous on W ×W and W ×M , respectively.
Fu and F p are linear and continuous functionals on W and M , respectively.

Proof. Linearity is an immediate consequence of the definition. Moreover, standard application
of Cauchy-Schwarz inequalities show that

|A
(
(u, û), (v, v̂)

)
| ≤ max(K−1

∗ , K̂−1
∗ , η∗, ξ0η

∗)‖(u, û)‖W ‖(v, v̂)‖W
|B
(
(v, v̂), (q, q̂)

)
| ≤ ‖(v, v̂)‖W ‖(q, q̂)‖M ,

while, by standard application of the Cauchy-Schwarz inequality,

|Fu
(
(v, v̂)

)
| ≤ ‖gp‖L2(Ω)‖(v, v̂)‖W , |F p

(
(q, q̂)

)
| . (‖f‖L2(Ω) + ‖f̂‖L2(Γ))‖(q, q̂)‖M .

Lemma 2.2. If ξ0 > 0 form A is coercive on the space W 0 = {(v, v̂) ∈ W : B
(
(v, v̂), (q, q̂) =

0, ∀(q, q̂) ∈M}.

Proof. The proof follows the technique illustrated in [32]. First of all we note that for elements
of W 0 we have div v = 0 in L2(Ω) and divτ v̂ = Jv · nΓK in L2(Γ). Consequently, ‖(v, v̂)‖W is
equivalent to ‖v‖L2(Ω) + ‖v̂‖L2(Γ) + ‖{v · nΓ}‖L2(Γ) + ‖Jv · nΓK‖L2(Γ). Thus, by exploiting the
properties of the problem parameters, we immediately have

A
(
(v, v̂), (v, v̂)

)
& min(

1

K∗
,

1

K̂∗
, η∗, ξ0η∗)‖(v, v̂)‖2W , ∀(v, v̂) ∈W 0 (19)
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Remark 2.3. It may be proved that the condition ξ0 > 0 is in fact also necessary for coercivity.

Lemma 2.3. Form B is inf-sup stable. In particular, there exist a constant β > 0 such that

inf
(q,q̂)∈M

sup
(v,v̂)∈W

B
(
(v, v̂), (q, q̂)

)
≥ β‖(v, v̂)‖W ‖(q, q̂)‖M

It is here where the demonstration for the case of a fully immersed fracture (or in general
Ip = ∅) differs substantially from that provided, for instance in [32] for a fracture with pressure
imposed at the boundary. Indeed, here the role of the coupling term d is fundamental.

Proof. The inf-sup stability is equivalent to establish that there is a constant β so that, for any
(q, q̂) ∈M it is possible to find (v, v̂) ∈W so that

B
(
(v, v̂), (q, q̂)

)
= ‖(q, q̂)‖2M ,

‖(v, v̂)‖W ≤
1

β
‖(q, q̂)‖M ,

(20)

Given (q, q̂) ∈M the proof consists of three steps.
Step one. We look for ψ ∈ H2(Ω) weak solution of

−4ψ = q in Ω,

ψ = 0 on ∂Ωp,
∂ψ
∂n = 0 on ∂Ωu.

(21)

The existence of the solution is guaranteed by the assumption of regularity on the domain Ω.
We set v1 = ∇ψ and v̂ = 0. Now, the restriction of v1 in ΩΓ is clearly in V Ω with Jv1 ·nK = 0

on Γ and we have
B
(
(v1,0), (q, q̂)

)
= ‖q‖2L2(Ω), (22)

while
‖(v1,0)‖2W = ‖∇ψ‖2L2(Ω) + ‖4ψ‖2L2(Ω) + ‖{v1 · nΓ}‖2L2(Γ).

Now, ‖∇ψ‖2L2(Ω) . ‖q‖L2(Ω) because of standard regularity result, ‖4ψ‖2L2(Ω) = ‖q‖L2(Ω) by

construction, while elliptic regularity and trace inequality for functions in H2(Ω) allow us to state
that ‖{v1 · nΓ}‖L2(Γ) . ‖q‖L2(Ω).

In conclusion,
‖(v1,0)‖W . ‖q‖L2(ΩΓ). (23)

Step 2. For each fracture in the network we look of the function φ̂k ∈ H1(γk) \ R that solves
−4τ φ̂k = q̂k − qk in γk,

∂φ̂k
∂τγk

= 0 on ∂γk,
(24)

where qk = |γk|−1
∫
γk
q̂k and

∂φ̂k
∂τγk

= ∇τ φ̂k · τ k, where we recall that τ k is the vector in the

tangent plane of γk normal to ∂γk. We take v̂k = ∇τ φk. We note that, thanks to standard
regularity results,

‖v̂k‖2Hdiv(γk) = ‖∇τφk‖2L2(γk
+ ‖4τφk‖2L2(γk) . ‖q̂k − qk‖

2
L2(γk) ≤ ‖q̂k‖

2
L2(γk) + |γk|q2

k.

Since |γk|q2
k = |γk|−1(

∫
γk
q̂k)2 ≤ ‖q̂k‖2L2(γk), we conclude that

‖v̂k‖Hdiv(γk) . ‖q̂k‖L2(γk) (25)
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Figure 3: Definition of the flux carriers.

We now set v̂ =
∏NΓ

k=1 v̂k, it is immediate to verify that it belongs to V Γ and that ‖v̂‖V Γ .
‖q̂‖MΓ , and thus

‖(0, v̂)‖W . ‖(q, q̂)‖M . (26)

Furthermore, we have

B
(
(0, v̂), (q, q̂)

)
= ‖q̂‖2L2(Γ) −

NΓ∑
k=1

|γk|q2
k. (27)

Step 3. We define on each fracture γk two “flux carriers” z+
k and z−k (see figure 3) so that

JzkKk = z+
k − z

−
k = qk, (28)

while the averages {zk} =
z+
k +z−k

2 minimize

J =

NΓ∑
k=1

|γk|2{zk}2

under the condition that for all ωα such that ∂ωα ∩ ∂Ωp = ∅ we have∑
γk⊂∂+ωα

|γk|z+
k −

∑
γk⊂∂−ωα

|γk|z−k = 0. (29)

We note that the problem admits a solution, because of the Euler formula connecting the
number of faces in a polyhedral mesh, and the fact that there is at least a ωα such that ∂ωα∩∂Ωp 6=
∅. Furthermore, since

z+
k = {zk}k +

1

2
JzkKk, and z−k = {zk}k −

1

2
JzkKk, (30)

equation (29) may be rewritten as∑
γk⊂∂+ωα

|γk|{zk}k −
∑

γk⊂∂−ωα

|γk|{zk}k = −1

2

∑
γk⊂∂ωα

|γk|JzkKk,

and, as we are looking for the minimum of J , the solution satisfies

NΓ∑
k=1

|γk|2{zk}2k .
NΓ∑
k=1

|γk|2JzkK2
k =

NΓ∑
k=1

|γk|2q2 ≤
NΓ∑
k=1

|γk|‖q̂k‖2L2(γk) ≤ max
k

(|γk|)‖q̂‖2L2(Γ),

and, consequently,
NΓ∑
k=1

|γk|{zk}2 .
maxk(|γk|)
mink(|γk|)

‖q̂‖2L2(Γ). (31)
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Condition (29) is necessary to equilibrate the fluxes in the ωα that do not have part pressure
is imposed on the part of the boundary. Indeed, we now define the spaces

Vα =

{
H1(ωα) if ∂ωα ∩ ∂Ωp 6= ∅,
H1(ωα) \ R if ∂ωα ∩ ∂Ωp = ∅,

and consider the following problems:
For each ωα find ψα ∈ Vα solution of

−4ψα = 0 in ωα

∂ψα
∂n

= z+
k on ∂+ωα ∩ γk,

∂ψα
∂n

= −z−k on ∂−ωα ∩ γk,
∂ψα
∂n

= 0 on ∂ωα \ ∂Ωp,

ψα = 0 on ∂ωα ∩ ∂Ωp.

(32)

Note that some of the boundary sets may be empty. We then set vα = ∇ψα and v2 =
∏Nω
α=1 vα.

We have that on each γk

Jv2 · nΓKk = ∇ψα+
k
|γk · nΓ −∇ψα+

k
|γk · nΓ = ∇ψα+

k
|γk · nα+

k
+∇ψα+

k
|γk · nα−k = JzkK = qk,

because of the definition of ω±αk and of z±k . While, {v2 · nΓ}k = {zk}k. Thus,

‖Jv2 · nΓK‖2L2(Γ) =

NΓ∑
k=1

|γk|Jv2 · nΓK2
k =

NΓ∑
k=1

|γk|q2
k ≤ ‖q̂‖2L2(Γ) (33)

while, by exploiting (31), we have

‖{v2 · nΓ}‖2L2(Γ) =

NΓ∑
k=1

|γk|{v2 · nΓ}2k =

NΓ∑
k=1

|γk|{zk}2k =.
maxk(|γk|)
mink(|γk|)

‖q̂‖2L2(Γ). (34)

A standard regularity result for problems (32) allows us to write

‖∇ψα‖2L2(ωα) .
∑

γk⊂∂+ωα

|γk|(z+
k )2 +

∑
γk⊂∂−ωα

|γk|(z−k )2,

and by summing over all α, using (30) and (31) as well the results implied in (33) and (34) we
obtain

Nω∑
α=1

‖∇ψα‖2L2(ωα) .
maxk(|γk|)
mink(|γk|)

‖q̂‖2L2(Γ).

and therefore we can conclude that

B
(
(v2,0), (q, q̂)

)
=

NΓ∑
k=1

|γk|q2
k,

‖(v2,0)‖2W = ‖v2‖2V Ω =

Nω∑
α=1

‖∇ψα‖2L2(ωα) +

Nω∑
α=1

‖4ψα‖2L2(ωα) +

NΓ∑
k=1

|γk|{zk}2k +

NΓ∑
k=1

|γk|JzkK2
k . ‖q̂‖2L2(Γ),

(35)

where the hidden constant in the inequality depends also on the ratio of the maximum and
minimum fracture measure.

The proof is concluded by taking (v, v̂) = (v1+v2, v̂) and noting that by collecting (22),(23),(26),(27)
and (35), using the bilinearity of B and the subadditive property of norms, we obtain (20), where
the positive constant β depends on the ratio mink(|γk|)/maxk(|γk|).
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Proof of Theorem 2.1. Thanks to Lemmas 2.1, 2.2 and 2.3, the proof is a standard result of saddle
point problems, see for instance [14].

Remark 2.4. Note that the construction of the flux carriers is not necessary if pressure is imposed
on part of the fracture boundary, since it is possible to construct a coercive Poisson problem in
the fracture network where the right hand side consists only of q̂, using the strategy illustrated, for
instance, in [23]. Yet, the given proof can be readily extended also to cover this case.

3 Mimetic discretization

We present the mimetic discretization of problem (12). As done in the continuous setting, for
generality we present for the case of Ω ⊂ Rd, d being equal to 3 or 2, even if the numerical
experiments in this work have been carried out only for the 2D case. The terminology is that of
the three-dimensional setting both in the bulk and in the fracture. For instance, in 3D a face of the
bulk mesh is a two dimensional planar surface, while a face in the mesh for the fracture network
is a 1D segment. In the two dimensional setting, the term face indicates a particular line segment
in the bulk mesh and a point in the fracture mesh. Some of the terms used in the following have
to be “reinterpreted” in the 2D case, where the fracture network is in fact one-dimensional.

3.1 Mesh entities

We consider a partition of ΩΓ into a grid of d-dimensional polyhedral cells CΩ = {c1, . . . , cNΩ}.
We assume that this partition is conforming to the fracture Γ, i.e. it induces a mesh of d − 1-
dimensional polyhedral cells, CΓ = {ĉ1, . . . , ĉNΓ}, on Γ. This is not a major limitation.

We assume that both meshes satisfy the requirements stated in [19], which we recall for com-
pleteness. First of all we indicate with h the diameter of the largest element in CΩ. If hc and hĉ
are the diameters of c ∈ CΩ and ĉ ∈ CΓ respectively then, since the fracture mesh conforms to
that in the bulk, we have hc ≤ h and hĉ ≤ h.

Let Ns be a positive integer. We assume that both meshes CΩ and CΓ admit conforming
and shape regular sub-partitions TΩ

h and TΓ
h composed by d-dimensional and d − 1 dimensional

simplexes, respectively, so that cells c ∈ CΩ and ĉ ∈ CΓ have the following properties:

A1 they may be decomposed into regular meshes TΩ
c and TΓ

ĉ made of at most Ns simplexes
that contain all vertices of the respective cells. We assume that all elements of those sub-
meshes are shape regular, i.e. the ration of their diameter and the the ration of the maximal
inscribed ball is bounded from above by a positive constant;

A2 they are star shaped with respect to a point in their interior and each face at their boundary
is also star shaped with respect to a point in its interior.

As a consequence of A1 we have that

hc max
f∈∂c

|f | . |c| and hĉ max
f̂∈∂ĉ

|f̂ | . |ĉ| (36)

The set of faces at the boundary of cells in CΩ may be subdivided into the following subsets:

• The set of internal faces FΩ
I , i.e. faces whose interior is contained in ΩΓ. As customary, we

assume that each f ∈ FΩ
I is shared by exactly two cells of CΩ, indicated in the following

by c+(f) and c−(f). Each face f has a unique orientation, defined by the normal nf . The
outward normal of face f at the boundary of cell c is indicated by nc,f . We set αc,f = nc,f ·nf
and, by convention αc±(f),f = ±1.

• The set of faces of cells in CΩ that lay on Γ, here indicated by FΩ
Γ . Since we are using a mesh

conforming on Γ, the set FΩ
Γ is formed by pairs of faces f+ and f− geometrically identical

but with opposite orientation. By convention, we assume that f+ is oriented in accordance
with the normal to the fracture nΓ.
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• The set of faces at the boundary, subdivided into F∂Ωu and F∂Ωp , such that ∪f∈F∂Ωu f =
∂Ωu and ∪f∈F∂Ωp f = ∂Ωp. By convention, those faces are oriented conforming to the
orientation of ∂Ω, i.e. for those faces nf is directed outwards w.r.t Ω.

As for the fracture network Γ we have adopted a discretization conforming to that of the bulk,
thus for each ĉ ∈ CΓ there are exactly two faces, f+(ĉ) and f−(ĉ), of FΩ

Γ geometrically identical
to ĉ, but with opposite orientation. These faces are at the boundary of two cells of the bulk mesh,
which we indicate with c+(ĉ) and c−(ĉ), respectively. Furthermore, for each f ∈ FΩ

Γ there is one
and only one corresponding ĉ = ĉ(f) ∈ CΓ.

The set FΓ is built as the union of the faces at the boundary of the cells in CΓ. The faces on
the fracture intersection are repeated, one for each fracture γk meeting at the intersection. We
can then subdivide FΓ into

• internal faces FΓ
I , shared exactly by two cells, which are indicated by ĉ+(f̂) and ĉ−(f̂);

• intersection faces, i.e. those laying at the intersection among fractures, which, to implement
the interface condition correctly, are grouped as follows. We define the set F#

Γ = {F1, F2, . . .}
whose generic element Fi represents the set of faces of FΓ that are geometrically identical and
belong to the boundary of different fracture cells of the network meeting at an intersection.
For any F ∈ F#

Γ and for each f̂ ∈ F we indicate with ĉ(f̂) the cell such that f̂ ∈ ∂ĉ.

• boundary faces, further subdivided into FIu = {f̂ ∈ FΓ : f̂ ∈ Iu}, FIp = {f̂ ∈ FΓ : f̂ ∈ Ip}
and FIF = {f̂ ∈ FΓ : f̂ ∈ IF }. It is understood that some of these set may be empty, and
that their union covers ∂Γ exactly.

In the case of immersed fractures, FIu = FIp = ∅ and ∪FIF = ∂Γ.
Furthermore, we assume that K, K̂ and η may be approximated by piecewise constant values

on the bulk and fracture cells, respectively, and that the approximated values still satisfy the
conditions stated in Section 2.2. We will constantly use the pedix c, or ĉ to indicate cell values,
and f , or f̂ for face values. Finally, for the sake of notation, we will omit to indicate the Lesbegue
measure in the integrals, e.g.

∫
ΩΓ
fdΩ will be simply written

∫
ΩΓ
f , unless ambiguity may arise.

3.2 Mimetic degrees of freedom and projection operators

As usual in mimetic formulation of differential problems, we need to locate the degrees of freedom
for velocity and pressure in an appropriate way. Since we are planning to adopt a low order
discretization method we will consider for the pressure in the bulk and in the fractures one degree
of freedom for each element in CΩ and CΓ, respectively, While, one degree of freedom is associated
to each element of FΩ and FΓ to approximate velocity in the bulk and in the fracture network.

More precisely, we define the following discrete spaces for velocities

V Ω
h = {vf , f ∈ FΩ}
V Ω
h,g = {vf ∈ V Ω

h : vf = gu,f ∀f ∈ F∂Ωu}
V Ω
h 0 = {vf ∈ V Ω

h : vf = 0∀f ∈ F∂Ωu}
V Γ
h = {v̂f̂ , f̂ ∈ F

Γ, :
∑
f̂∈F v̂f̂αĉ(f̂),f̂ = 0, ∀F ∈ F#

Γ }
V Γ
h,g = {vf̂ ∈ V

Γ
h : vf̂ = ĝû,f̂ ∀f̂ ∈ F

Iu , vf̂ = 0∀f̂ ∈ FIF }
V Γ
h 0 = {vf̂ ∈ V

Γ
h : vf̂ = 0∀f̂ ∈ FIu , vf̂ = 0∀f̂ ∈ FIF }

(37)

where gu,f ∈ R and ĝû,f̂ ∈ R are approximation of the velocity boundary data, as detailed later
on. For the pressure in the bulk and in the fracture, we have

MΩ
h = {vc, c ∈ CΩ}, and MΓ

h = {vĉ, ĉ ∈ CΓ}. (38)

Remark 3.1. The condition
∑
f̂∈F v̂f̂αĉ(f̂),f̂ = 0 enforces the balance of fluxes at the intersections,

and has been introduced in an essential way in the definition of the discrete space for velocity in
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the fracture network. However, its implementation in practice is cumbersome and in the numerical
code the balance of fluxes has been implemented by a Lagrange multiplier technique, which in fact
approximates the value of pressure at the intersection.

We introduce the following global discrete spaces

W h = V Ω
h × V Γ

h and Mh = MΩ
h ×MΓ

h , (39)

and the corresponding W h0 and W hg. The jump and average of discrete bulk velocity across the
fracture are defined as

JvhKh = (JvhKĉ, ĉ ∈ CΓ), {vh}h = ({vh}ĉ, ĉ ∈ CΓ)

where, because of the chosen convention about orientation, we have

JvhKĉ = vf+(ĉ) − vf−(ĉ) and {vh}ĉ =
1

2

(
vf+(ĉ) + vf−(ĉ)

)
.

We equip the given discrete spaces for velocity with the following norms,

‖vh‖2V Ω
h

=
∑
c∈CΩ

|c|
∑
f∈∂c

v2
f +

∑
ĉ∈CΓ

|ĉ|
(
JvhK2

ĉ + {vh}2ĉ
)
, ‖v̂h‖2V Γ

h
=
∑
ĉ∈CΓ

|ĉ|
∑
f̂∈∂ĉ

v̂2
f̂
, (40)

and
‖(vh, v̂h)‖2W h

= ‖vh‖2V Ω
h

+ ‖v̂h‖2V Γ
h
. (41)

Note that we have “strengthened” the norm on V Ω
h by adding the contribution of the jump and

average of velocity across the fracture to the standard definition. This choice is motivated by the
analogy with the continuous case and is convenient for the following analysis. The standard choice
would indeed be [19]

|||vh|||2V Ω
h

=
∑
c∈CΩ

|||vh|||2c =
∑
c∈CΩ

|c|
∑
f∈∂c

v2
f , (42)

where with the c suffix we have indicated the norm operating on the velocity degrees of freedom
of cell c However, we have the following

Lemma 3.1. The discrete norms |||·|||V Ω
h

and ‖ · ‖V Ω
h

are equivalent. More precisely,

|||vh|||V Ω
h
≤ ‖vh‖V Ω

h
≤
√

1 +
C

h
|||vh|||V Ω

h
∀vh ∈ V Ω

h , (43)

for a C > 0.

Proof. Evidently, |||vh|||V Ω
h
≤ ‖vh‖V Ω

h
. Because of the stated property of the polygonal mesh

we have that there exists a C > 0 such that |ĉ| ≤ Ch−1|c+(ĉ)| and |ĉ| ≤ Ch−1|c−(ĉ)|, for all
ĉ ∈ CΓ. Moreover JvhK2

ĉ + {vh}2ĉ ≤ 2(v2
f+(ĉ) + v2

f−(ĉ)). Thus, there exists a C > 0 so that

(1 + C
h )|||vh|||2V Ω

h
≥ ‖vh‖2V Ω

h
.

For the spaces for pressure we have,

‖qh‖2MΩ
h

=
∑
c∈CΩ

|c|q2
c , ‖q̂h‖2MΓ

h
=
∑
ĉ∈CΓ

|ĉ|q̂2
ĉ , (44)

and
‖(qh, q̂h)‖2Mh

= ‖qh‖2MΩ
h

+ ‖q̂h‖2MΓ
h
. (45)

As customary in mimetic finite differences we define projectors on the discrete spaces. For the
pressure spaces we define ΠMΩ

h : MΩ →MΩ
h and ΠMΓ

h : MΓ →MΓ
h as

ΠMΩ
h q = { 1

|c|

∫
c

q, c ∈ CΩ} and ΠMΓ
h q̂ = { 1

|ĉ|

∫
ĉ

q̂, ĉ ∈ CΓ}. (46)
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As for velocity, the projectors are defined on subspaces of V Ω and V Γ such that the normal
component of the velocity is integrable on each mesh face for the bulk and the fracture, respectively.
More precisely, we define

V Ω
+ = {v ∈ V Ω : v ∈ [Ls(Ω)]d}, V Γ

+ = {v̂ ∈ V Γ : v̂ ∈ [Ls(Γ)]d−1} (47)

for s > 2. We define then ΠV Ω
h : V Ω

+ → V Ω
h and ΠV Γ

h : V Γ
+ → V Γ

h as

ΠV Ω
h v = {ΠV Ω

h

f v, f ∈ FΩ} = { 1

|f |

∫
f

v · nf , f ∈ FΩ},

ΠV Γ
h v̂ = {ΠV Γ

h

f̂
v̂ =, f̂ ∈ FΓ} = { 1

|f̂ |

∫
f̂

v̂ · nf̂ , f̂ ∈ F
Γ},

(48)

where Π
V Ω
h

f and Π
V Γ
h

f̂
are the local projectors on the degree of freedom of face f and f̂ , respectively.

Note that in the 2-dimensional case the fracture is one-dimensional so the fracture mesh faces
reduce to points, and

ΠV Γ
h v̂ = {v̂(f̂) · nf̂ , f̂ ∈ F

Γ},

which is well defined since in 1D elements of V Γ have a continuous representative on each fracture
γk. We will also use the notation

ΠMh = ΠMΩ
h ×ΠMΓ

h and ΠW h = ΠV Ω
h ×ΠV Γ

h .

.
The definition of the projectors allows us to better specify the terms gu,f and ĝû,f̂ in (37) as

the face projection of the corresponding continuous terms, namely

gu,f =
1

|f |

∫
f

gu and ĝû,f̂ =
1

|f̂ |

∫
f̂

ĝû.

3.3 Mimetic inner products in Mh and W h

Since Mh and W h are product spaces it is convenient to separate the contribution of the bulk to
that of the fracture. For MΩ

h and MΓ
h , the inner products are simply

(ph, qh)MΩ
h

=
∑
c∈CΩ

|c|pcqc and (p̂h, q̂h)MΓ
h

=
∑
ĉ∈CΓ

|ĉ|p̂ĉq̂ĉ (49)

and we set (
(ph, p̂h), (qh, q̂h)

)
Mh

= (ph, qh)MΩ
h

+ (p̂h, q̂h)MΓ
h
.

The inner products may be written in matrix form, by identifying the matrices MMΩ
h , MMΓ

h and
MMh , as follows(

(ph, p̂h), (qh, q̂h)
)
Mh

= pTh ,M
MΩ
h qh + p̂ThMMΓ

h q̂h = (ph, p̂h)TMMh(qh, q̂h).

The matrices can be assembled by summing the contributions coming from each bulk and fracture
cell, as standard in mimetic finite difference schemes. It can be noted that the space Mh and
W h are already endowed with scalar products that induce the norms introduced in (45) and (41),
respectively.

Yet, for the discrete velocity space we need to construct a different inner product, called
mimetic inner product, Ah

(
(uh, ûh), (vh, v̂h)

)
, which is in fact the discrete counterpart of the form

A
(
(u, û), (v,v)

)
in (12). The presence of the coupling terms makes the structure of the mimetic

inner product more complex than in the usual mimetic setting. Let MV Ω
h and MV Γ

h be two standard
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MFD matrices that defines the mimetic inner product on CΩ and CΓ, respectively. They are built
by cell-wise contributions,

MV Ω
h =

∑
c

M
V Ω
h
c and MV Γ

h =
∑
ĉ

M
V Γ
h

ĉ ,

whose expression will be detailed later on. In our case we have an additional contribution due to
the presence of the fractures. Let CΓ be the matrix for the coupling term expressed as

CΓ =
∑
ĉ∈CΓ

CΓ
ĉ ,

where the cell contribution CΓ
ĉ is such that

wThCΓ
ĉ vh = ηĉ|ĉ|({vh}ĉ{wh}ĉ + ξ0JvhKĉJwhKĉ).

The mimetic inner product for the discrete velocity space is then defined for any (vh, v̂h) and
(wh, ŵh) in W h as

Ah
(
(vh, v̂h), (wh, ŵh)

)
= ah(vh, wh)V Ω

h
+ âh(v̂h, ŵh), (50)

where
ah(vh, wh) = mh(vh.wh) + ch(vh, wh) = vThMV Ω

h wh + vThCΓwh = vThAV Ω
h wh, (51)

and
âh(v̂h, ŵh) = v̂ThMV Ω

h ŵh.

Here,

mh(vh.wh) = vThMV Ω
h wh, ch(vh, wh) = vThCΓwh, (52)

and, clearly, AV Ω
h = MV Ω

h + CΓ. We give further details on MV Ω
h and MV Γ

h in Section 3.6.

3.4 Discrete divergence

Formulation (12) allows us to identify a global divergence operator DIV : W →M as follows

DIV(v, v̂) = (div v,divτ v̂ − Jv · nΓK), (53)

such that
B
(
(v, v̂), (q, q̂)

)
= −

(
DIV(v, v̂), (q, q̂)

)
M
.

We now define its discrete counterpart DIVh : W h →Mh as

DIVh(vh, v̂h) = (divh vh,divτ ,h v̂h − JvhKh), (54)

where

divh vh = (
1

|c|
∑
f∈∂c

|f |vfαc,f , c ∈ CΩ), divτ ,h v̂h = (
1

|ĉ|
∑
f̂∈∂ĉ

|̂f̂ |vf̂αĉ,f̂ , ĉ ∈ C
Γ), (55)

We will approximate the term B
(
(v, v̂), (q, q̂)

)
with

Bh
(
(vh, v̂h), (qh, q̂h)

)
= −

(
DIVh(vh, v̂h), (qh, q̂h)

)
Mh

. (56)

Lemma 3.2. The divergence and projection operators commute. i.e. DIVh ΠW h(v, v̂) = ΠMh DIV(v, v̂).
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Proof. The existence of the following commuting diagrams

V Ω div−−−−→ MΩyΠV
Ω
h

yΠM
Ω
h

V Ω
h

divh−−−−→ MΩ
h

and

V Γ divτ−−−−→ MΓyΠV
Γ
h

yΠM
Γ
h

V Γ
h

divτ,h−−−−→ MΓ
h

is a standard result of mimetic finite differences, see [19]. Moreover,

JΠV Ω
h vKĉ =

(
1

|f+(ĉ)|

∫
f+(ĉ)

v+ · nf+(ĉ) −
1

|f−(ĉ)|

∫
f−(ĉ)

v− · nf−(ĉ)

)
=

1

|ĉ|

∫
ĉ

Jv·nΓK = Π
MΓ
h

ĉ Jv·nΓK,

since |f+(ĉ)| = |f−(ĉ)| = |ĉ| and nf+(ĉ) = −nf−(ĉ) = nΓ by construction.

3.5 The discrete problem

The discrete problem is: Find (uh, ûh) ∈W hg and (ph, p̂h) ∈Mh so that{
Ah
(
(uh, ûh), (vh, v̂h)

)
+Bh

(
(vh, v̂h, (ph, p̂h)

)
= Fuh

(
(vh, v̂h)

)
,

Bh
(
(uh, ûh), (qh, q̂h)

)
= F ph

(
(qh, q̂h)

)
,

(57)

for all (vh, v̂h) ∈W h0 and (qh, q̂h) ∈Mh. Here, Fuh and F ph are functionals that account for the
forcing and boundary terms, namely

Fuh
(
(vh, v̂h)

)
= −

∑
f∈F∂Ωp

vf

∫
f

gP −
∑
f̂∈FIp

vf̂

∫
f̂

gp̂, (58)

F ph
(
(qh, q̂h)

)
= −

∑
c∈CΩ

qc

∫
c

f −
∑
ĉ∈CΓ

q̂ĉ

∫
ĉ

f̂ . (59)

3.6 Construction and properties of inner product operators

We will construct the elemental matrices M
V Ω
h
c and M

V Γ
h

ĉ using the standard procedure for mimetic
finite differences that we recall for completeness.

Let xβ with β = c, ĉ, f, f̂ indicate the baricenter of the respective entity. For each c and ĉ we
define the matrices

Nc =


nTf1

...
nTf

N∂c

Kc and Nĉ =


nT
f̂1

...
nT
f̂
N∂
ĉ

 K̂c,

where {f1, . . . , fN∂c } and {f̂1, . . . , f̂N∂ĉ } denote the faces at the boundary of c and ĉ respectively.
While,

Rc =

 αc,f1
|f1|(xf1

− xc)T
...

αc,f
N∂c
|fN∂c ||(xfN∂c − xc)

T

 and Rĉ =


|αĉ,f̂

N∂
ĉ

|f̂1|(xf̂1
− xĉ)T

...

αĉ,f̂
N∂
ĉ

|f̂N∂ĉ |(xfN∂ĉ
− xĉ)T

 .
Then, we set

M
V Ω
h
c = Rc(R

T
c Nc)

−1RT +
tr(RcK

−1
c RT

c )

|c|N∂
c

(Ic −Nc(N
T
c Nc)

−1NT
c ), (60)

M
V Γ
h

ĉ = Rĉ(R
T
ĉ Nĉ)

−1RT +
tr(RĉK̂

−1

ĉ RT
ĉ )

|ĉ|N∂
ĉ

(Iĉ −Nĉ(N
T
ĉ Nĉ)

−1NT
ĉ ). (61)
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This is not the only possible construction but it is a quite common one and it allows us to state
the following lemma

Lemma 3.3. Thank to hypothesis A1 and A2 made on the bulk and fracture mesh, we have that

1

K∗c
|c|
∑
f∈∂c

|vf |2 . vThM
V Ω
h
c vh .

1

Kc,∗
|c|
∑
f∈∂c

|vf |2

and
1

K̂∗ĉ
|ĉ|
∑
f̂∈∂ĉ

|vf̂ |
2 . v̂ThM

V Γ
h

ĉ v̂h .
1

K̂ĉ,∗
|ĉ|
∑
f̂∈∂ĉ

|vf̂ |
2,

where the local matrix-vector products involve only the degrees of freedom on ∂c and ∂ĉ, respectively.
As a consequence,

1

K∗
|||vh|||2V Ω

h
. mh(vh, vh) .

1

K∗
|||vh|||2V Ω

h
(62)

and
1

K̂∗
‖v̂h‖2V Γ

h
. âh(v̂h, v̂h) .

1

K̂∗
‖v̂h‖2V Γ

h
. (63)

Proof. The proof is a standard result of mimetic inner products defined with the given matrices.
We omit the details that may be found, for instance, in [17, 19].

This result is sufficient to prove stability for the mimetic norm for the discrete velocity space
in the fracture. For the bulk, however, we have to handle the coupling terms properly. We have
the following

Lemma 3.4. For ξ0 > 0 the form ah(·, ·) is stable with respect to the ‖·‖V Ω
h

norm. More precisely,

min(K∗−1, η∗min(1, ξ0)
)
‖vh‖2V Ω

h
. ah(vh, vh) . max(K−1

∗ , η∗max(1, ξ0)
)
‖vh‖2V Ω

h
, ∀vh ∈ V Ω

h .

(64)
Moreover, Ah(·, ·) is stable with respect to the ‖ · ‖W h

norm: ∀(vh, v̂h) ∈W h we have

min(K̂∗−1,K∗−1, η∗min(1, ξ0)
)
‖(vh, v̂h)‖2W h

. Ah
(
(vh, v̂h), (vh, v̂h)

)
. max(K̂−1

∗ ,K−1
∗ , η∗max(1, ξ0)

)
‖(vh, v̂h)‖2W h

. (65)

Proof. Since ch(vh, vh) =
∑
ĉ∈CΓ |ĉ|ηĉ{vh}2ĉ + ξ0

∑
ĉ∈CΓ |ĉ|ηĉJvhK2

ĉ , we deduce that

min(1, ξ0)η∗
∑
ĉ∈CΓ

|ĉ|
(
{vh}2ĉ + JvhK2

ĉ

)
≤ ch(vh, vh) ≤ max(1, ξ0)η∗

∑
ĉ∈CΓ

|ĉ|
(
{vh}2ĉ + JvhK2

ĉ

)
, (66)

and (64) follow from (62) and the definition of ah in (51). The bounds on Ah are then a consequence
of the previous result, inequalities (63) and the definition of Ah in (50).

3.6.1 The case ξ0 = 0

We have already mentioned that the case ξ0 = 0 is peculiar. Indeed, we will show in the following
that the discrete problem allows to take ξ0 = 0 and in the section devoted to numerical results we
will show that for that value we indeed obtain {ph}h = p̂h, as expected. We have the following

Lemma 3.5. There are two positive constants, here indicated by C∗ and C, so that for any h > 0
and

0 ≥ ξ0 > −
C∗h

2K∗η∗(1 + Ch)
(67)

there is a Cξ0(h) > 0 which depends on ξ0, the mesh size (as well as the problem parameters) with
limh→0+ Cξ0(h) = 0 and such that

Ah
(
(vh, v̂h), (vh, v̂h)

)
≥ Cξ0(h)‖(vh, v̂h)‖2W h

.

Consequently, Ah is stable also for ξ0 = 0, for all h > 0.
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Proof. To extend the previous stability result we need only to examine the lower bound of (65)
for the case ξ0 < 0. Thanks to (43) we have that there exists a constant C∗ > 0 so that

mh(vh, vh) ≥ 1

2

C∗
K∗
|||vh|||2V Ω

h
+

C∗h

2K∗(1 + Ch)
‖vh‖2V Ω

h
≥

1

2

C∗
K∗
|||vh|||2V Ω

h
+

C∗h

2K∗(1 + Ch)

∑
ĉ∈CΓ

|ĉ|({vh}2ĉ + JvhK2
ĉ).

If ξ0 ≤ 0 we have that ch(vh, vh) ≥ ξ0η∗
∑
ĉ∈CΓ |ĉ|

(
{vh}2ĉ + JvhK2

ĉ

)
, and thus

ah(vh, vh) ≥ 1

2

C∗
K∗
|||vh|||2V Ω

h
+ (

C∗h

2K∗(1 + Ch)
+ ξ0η

∗)
∑
ĉ∈CΓ

|ĉ(|{vh}2ĉ + JvhK2
ĉ),

which allows us to get a positive lower bound for ah (and thus Ah) if C∗h
2K∗(1+Ch) + ξ0η

∗ > 0, that

is if ξ0 > − C∗h
2K∗η∗(1+Ch) . The upper bound for Ah remains that of (65).

3.7 Consistency of Ah

Because of the coupling terms we need to consider a more general definition of consistency than
the standard one used for instance in [19]. Let first define some spaces and state some known facts
for readers’ convenience.

For some s > 2, for all c ∈ CΩ and for all ĉ ∈ CΓ let us consider the local cell-based spaces

SΩ
c = {vc ∈ [Ls(c)]d, div vc = const, vc · nf = const,∀f ∈ ∂c},

and
SΓ
ĉ = {v̂ĉ ∈ [Ls(ĉ)]d−1, div v̂ĉ = const, v̂ĉ · nf̂ = const,∀f̂ ∈ ∂c}.

Remark 3.2. The condition s > 2 is a technical requirement needed to guarantee the stability of
the projection operator. However, in the 2D case s = 2 is sufficient for the velocity space in the
fracture cells.

We also define the following cell-based test spaces

τΩ
c = {vτc = Kc∇qc, qc ∈ P1(c)} and τΓ

ĉ = {v̂τĉ = K̂ĉ∇τ q̂ĉ, q̂ĉ ∈ P1(ĉ)},

It is immediate to verify that τΩ
c ⊂ SΩ

c . τΓ
ĉ ⊂ SΓ

ĉ We also define the following global spaces:

SΩ
h = {v ∈ V Ω : v|c ∈ SΩ

c ,v · nf = vf , ∀c ∈ CΩ, ∀f ∈ FΩ},
SΓ
h = {v̂ ∈ V Γ : v̂|ĉ ∈ SΓ

ĉ , v̂ · nf̂ = v̂f̂ , ∀ĉ ∈ C
Γ, ∀f̂ ∈ FΓ}, (68)

where vf and v̂f̂ are constant values taken on the mesh faces. While,

τΩ
h = {vτ ∈ L2(ΩΓ) : vτ |c ∈ τΩ

c } and τΓ
h = {v̂τ ∈ L2(Γ) : v̂τ |ĉ ∈ τΩ

ĉ }. (69)

We also define the global product spaces

Sh = SΩ
h × SΓ

h and τh = τΩ
h × τΓ

h . (70)

The projection operators ΠV Ω
h and ΠV Γ

h are surjective from SΩ
h to V Ω

h and from SΓ
h to V Γ

h ,
respectively.

Because of the coupling terms the consistency conditions cannot be written just cell-wise as
usual in the analysis of mimetic schemes. So we first note that the form A is well defined on the
space L × [L2(Γ)]d−1 ⊃W , where L = {v ∈ L2(Ω) : v · nΓ ∈ [L2(Γ)]d−1}. We can also trivially
extend Ah to a broken discrete velocity space W̃ h where the degrees of freedom on the internal
faces are duplicated to account for the (possibly different) values in each cell. Analogously we
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could extend the velocity projection operators from τh onto W̃ h, by computing the projections
cell-wise.

However, to avoid making the notation heavier we will in the following use the symbols Ah,
ΠW h etc. to indicate also their extended counterparts, since the context will not leave ambiguity
on that respect.

Lemma 3.6. We have the following consistency conditions.

• Local consistency conditions. For all c ∈ CΩ, ĉ ∈ CΓ and for all (vτ , v̂τ ) ∈ τΩ
c × τΓ

ĉ and
(w, ŵ) ∈ SΩ

c × SΓ
ĉ we have

mh,c(Π
V Ω
h
c vτ ,Π

V Ω
h
c w) =

∫
c

∇qc ·w, âĉ(Π
V Γ
h

ĉ v̂τ ,Π
V Ω
h

ĉ ŵ) =

∫
ĉ

∇τ q̂ĉ · ŵ, (71)

where mh,c and âĉ denotes restriction to the corresponding cell degrees of freedom of the
forms mh and ah defined in (51) and (52).

• Global consistency condition. For all (vτ , v̂τ ) ∈ τh and for all (w, ŵ) ∈ Sh we have

Ah(
(
ΠV Ω

h vτ ,ΠV Γ
h v̂τ ), (ΠV Ω

h w,ΠV Γ
h ŵ)

)
= A

(
(vτ , v̂τ ), (w, ŵ)

)
=
∑
c∈CΩ

∫
c

∇q·w+
∑
ĉ∈CΓ

∫
ĉ

∇τ q̂·ŵ+c(vτ ,w)

(72)

Proof. The local consistency conditions are standard results because of the given choice of mimetic
matrices. The global consistency is obtained by summing the local contributions and by noting
that

ch(ΠV Ω
h w,ΠV Ω

h vτ ) =
∑
ĉ∈CΓ

ηĉ|ĉ|({ΠV Ω
h w}ĉ{ΠV Ω

h vτ}ĉ + ξ0JΠV Ω
h wKĉJΠV Ω

h vτ Kĉ) = (73)∫
Γ

η ({w · nΓ}{vτ · nΓ}+ ξ0Jw · nΓKJvτ · nΓK) = c(w,vτ ). (74)

We have exploited the fact that η is (by hypothesis) piecewise constant, while functions in SΩ
h and

τΩ
h have constant normal components on cell faces, and thus constant average and jump on each

fracture cell.

We also have the following

Corollary 3.1. For all (vτ , v̂τ ) ∈ τh and for all (w, ŵ) ∈ Sh we have

Ah((ΠV Ω
h vτ ,ΠV Γ

h v̂τ ), (ΠV Ω
h w,ΠV Γ

h ŵ)
)

= −
∫

ΩΓ

q divw −
∫

Γ

q̂divτ w+∑
c∈CΩ

∑
f∈∂c

αc,fw
I
f

∫
f

q +
∑
ĉ∈CΓ

∑
f̂∈∂ĉ

αĉ,f̂ ŵ
I
f̂

∫
f̂

q̂ + c(vτ ,w).

where wIf = w · nf and ŵI
f̂

= ŵ · nf̂ indicate the constant normal components on the respective

faces.
Consequently, by setting (qI , q̂I) = ΠMh(q, q̂), we have that

Ah((ΠV Ω
h vτ ,ΠV Γ

h v̂τ ), (wh, ŵh)
)

= −(divh wh, q
I)MΩ

h
− (divτ,h ŵh, q̂

I)MΓ
h

+∑
c∈CΩ

∑
f∈∂c

αc,fwf

∫
f

q +
∑
ĉ∈CΓ

∑
f̂∈∂ĉ

αĉ,f̂ ŵf̂

∫
f̂

q̂ + ch(ΠV Ω
h vτ , wh), (75)

for any (wh, ŵh) ∈W h.
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Proof. This result is an extension of a classical result for mimetic finite differences, which may
be found in the cited references, and is obtained by integrating by parts the terms in (72) and
treating the terms on the fracture cells separately.

Corollary 3.2. Let (u, û) and (p, p̂) be solution of (12). Let furthermore assume that (p, p̂) ∈
H1(ΩΓ)×H1(Γ). Let us take (vτ , v̂τ ) ∈ τh, (qI , q̂I) = ΠMΩ

h q×ΠMΓ
h q̂, where q and q̂ are the func-

tions defining elements of τh, and (uIh, û
I
h) = ΠV Ω

h (u, û). We further set (vτh, v̂
τ
h) = ΠW h(vτ , v̂τ ).

Then,

c(u,vτ ) = ch(uIh,Π
V Ω
h vτ ) =

∑
ĉ∈CΓ

∫
ĉ

({p}ĉ − p̂)Jvτ · nΓKĉ +

∫
ĉ

JpKĉ{vτ · nΓ}ĉ. (76)

Proof. The first equality in (76) is obtained by noting that in the derivation of (73) it is not
necessary that w ∈ SΩ

h , but it is sufficient that w ∈ V Ω. So I can use (73) with w = u and obtain
the desided result.

Thanks to the regularity assumptions on p and p̂ we can counter-integrate by parts the terms
in the first equation in (12), and deduce by standard means that for any v ∈W 0

c(u,v) =

∫
Γ

Jpv · nΓK−
∫

Γ

p̂Jv · nΓK =

∫
Γ

({p} − p̂)Jv · nΓK +

∫
Γ

JpK{v · nΓ}, (77)

which effectively enforces the coupling conditions. We now note that vτ ·nΓ is piecewise constant
on Γ and thus in L2(Γ). As a consequence, there is a w ∈ V Ω

0 so that w · nΓ = vτ · nΓ on Γ. If
we set v = w in (77) we easily obtain the second equality in (76).

3.8 Inf-sup condition for the discrete spaces

We state the following Lemma.

Lemma 3.7. The form Bh : W h ×Mh → R defined in (56) is inf-sup stable.

Proof. The inf-sup stability for Bh derives directly from the commuting property expressed in
Lemma 3.2. Given a (qh, q̂h) ∈ Mh we construct problems (21), (24) and (32) with (q, q̂) ∈ M
taken such that q|c = qc and q̂|ĉ = q̂ĉ, for all cells in the bulk and the fractures. We indicate with
(v, v̂) ∈W the corresponding velocities. We recall that v = v1 + v2 where v1 is solution of (21),

while v2 =
∏Nα
α=1 vα, each vα being the gradient of the solution of (32).

We set (vh, v̂h) = (ΠV Γ
h v,ΠV Γ

h v̂), v1 = ΠV Γ
h v1, v2 = ΠV Γ

h v2 (clearly vh = v1 + v2). By
construction, Jv · nΓK is constant on each fracture γk and thus is constant on each cell ĉ ∈ CΓ,

consequently Π
MΓ
h

ĉ (Jv ·nΓK) = JvhKĉ and |ĉ|JvhKĉ =
∫
ĉ
Jv ·nΓK. Therefore, by using the commuting

property of projectors,

Bh
(
(vh, v̂h), (qh, q̂h)

)
= −(DIVh(vh, v̂h), (qh, q̂h)

)
Mh

= −(ΠMh DIV(v, v̂), (qh, q̂h)
)
Mh

=

−
∑
c∈CΩ

qc

∫
c

div v1−
∑
ĉ∈CΓ

q̂ĉ

(∫
ĉ

divτ v̂ dΓ− |ĉ|JvhKĉ
)

= −
∫

ΩΓ

q div v−
∫

Γ

q̂ (divτ v̂ − Jv · nΓK) dΓ =

= B
(
(v, v̂), (q, q̂)

)
= ‖(qh, q̂h)

)
‖2Mh

,

where we have exploited the fact that ‖(q, q̂)‖M = ‖(qh, q̂h)‖Mh
.

We now recall (without giving the proof) some known results about mimetic projectors. We
assume some extra regularity on v̂ and the vα (we have already assumed that v1 ∈ H1(Ω)), and
in particular that v̂ ∈ V Γ

+ and vα ∈ Ls(Ωα) for a s > 2. This is sufficient to derive that

‖v̂h‖V Γ
h
. ‖q̂h‖MΓ

h
, |||v1|||V Ω

h
. ‖qh‖MΩ

h
and |||v2|||V Ω

h
. ‖qh‖MΩ

h
,

see, for instance, [16, 19]. Therefore, we are left to show that∑
ĉ∈CΓ

|ĉ|
(
Jv2K2

ĉ + {v2}2ĉ
)

+
∑
ĉ∈CΓ

|ĉ|{v1}2ĉ . ‖qh‖2MΩ
h
,
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where we used the fact that Jv1K = 0 by construction. Indeed, by using the properties of the flux
carriers and trace inequalities,∑

ĉ∈CΓ |ĉ|
(
Jv2K2

ĉ + {v2}2ĉ
)

=
∑
k

∑
ĉ∈CΓ

k
|ĉ|
(
JzkK2 + {zk}2

)
. ‖q‖2L2(Ω) = ‖qh‖2MΩ

h
,∑

ĉ∈CΓ |ĉ|{v1}2ĉ .
∑
ĉ∈CΓ ‖v1 · nΓ‖2L2(ĉ) . ‖v1‖2H1(Ω) . ‖q‖

2
L2(Ω) = ‖qh‖2MΩ

h
.

We can then conclude that ‖(vh, v̂h)‖W h
. ‖(q, q̂)‖Mh

and, consequently, Bh is inf-sup stable.

3.9 Convergence Results

In this section we give a convergence result of our mimetic discretization. To this purpose, we
recall some known results.

Let P be a polyedron in Rd for d = 2 or d = 3 of diameter hP .

Lemma 3.8. For any function q ∈ H2(P) there exists a linear polynomial qP ∈ P1(P) such that

‖q − qP‖L2(P) + hP‖∇(q − qP)‖L2(P) . h2
P |q|H2(P).

Lemma 3.9. For every q ∈ H1(P)∑
f∈∂P

‖q‖2L2(f) . h−1
P ‖q‖

2
L2(P) + hP |∇q|2L2(P).

Lemma 3.10. Let (q, q̂) ∈ H2(ΩΓ)×H2(Γ) and (q1, q̂1) piece-wise linear polynomials so that q1
c

and q̂1
ĉ satisfy the assumptions of Lemma 3.8. Then, for any (vh, v̂h) ∈W h we have that

mh

(
ΠV Ω

h (K∇(q − q1)
)
, vh)

)
+ âh

(
ΠV Γ

h (K̂τ∇τ (q̂ − q̂1)), v̂h)
)
. h|(q, q̂)|H2(ΩΓ)×H2(Γ)‖(vh, v̂h)‖W h

.
(78)

The previous Lemmas are direct consequence of standard results of approximation and mimetic
finite difference theory, and and their proof is not reported here.

In the following, for the sake of brevity we make two further assumptions. We consider only
the case of constant K, K̂τ and η and homogeneous velocity flux conditions at the boundary of
the fracture network, which includes fully immersed fractures and implies Ip = ∅. The following
convergence result can however be generalized to the case of varying coefficients, by making some
hypotheses on their regularity and following the techniques illustrated in [18, 19], as well as to the
case of pressure imposed on the boundary of the fracture network. We also assume ξ0 > 0. We
have,

Theorem 3.1. Let U = (u, û) ∈W and P = (p, p̂) ∈M be solution of problem (12). Let assume
that P ∈ H2(ΩΓ)×H2(Γ). Then, the numerical solution Uh = (uh, ûh) ∈W h of (57) satisfies

‖(u, û)−ΠW h(u, û)‖W h
. h‖(p, p̂)‖H2(ΩΓ)×H2(Γ). (79)

Proof. To simplify the notation we set U Ih = ΠW hU , and Eh = (eh, êh) = U Ih−Uh and P = (p, p̂).
While, Ph = (ph, p̂h) is solution of (57). Moreover, we indicate with P 1 = (p1, p̂1) ∈ M the
piecewise discontinuous linear approximation of P whose restriction on each cell satisfy Lemma
3.8, and we set

V τ = {(vτ , v̂τ ) : vτc = −K∇p1|c, v̂τĉ = −K̂τ∇τ p̂1|ĉ}, (80)

while (vτh, v̂
τ
h) = V τh = ΠW hV τ . The stability of Ah stated in Lemma 3.4 allows us to write that

‖Uh − U Ih‖2W h
= ‖Eh‖2W h

. Ah(Eh, Eh) = Ah(Uh, Eh)−Ah(U Ih , Eh).

Using the fact the Uh is our discrete solution and that Bh(Eh, Ph) = 0, we have

Ah(Uh, Eh) = −Bh(Eh, Ph) + Fuh (Eh) = Fuh (Eh),
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while
Ah(U Ih , Eh) = Ah(U Ih − V τh , Eh) +Ah(V τh , Eh).

Thanks to (75), we may write

−Ah(V τh , Eh) = −(divh eh, p
1
h)MΩ

h
− (divτ,h êh, p̂

1
h)MΓ

h
+∑

c∈CΩ

∑
f∈∂c

αc,fef

∫
f

p1 +
∑
ĉ∈CΓ

∑
f̂∈∂ĉ

αĉ,f̂ êf̂

∫
f̂

p̂1 − ch(vτh, eh) =

Bh(Eh, P
1
h ) +

∑
c∈CΩ

∑
f∈∂c

αc,fef

∫
f

p1 +
∑
ĉ∈CΓ

∑
f̂∈∂ĉ

αĉ,f̂ êf̂ + JeKf̂

∫
ĉ

p̂1 −
∑
ĉ∈CΓ

JeKĉ
∫
ĉ

p̂1 − ch(vτh, eh) =

∑
c∈CΩ

∑
f∈∂c

αc,fef

∫
f

p1 +
∑
ĉ∈CΓ

∑
f̂∈∂ĉ

αĉ,f̂ êf̂

∫
ĉ

p̂1 −
∑
ĉ∈CΓ

JeKĉ
∫
ĉ

p̂1 − ch(vτh, eh),

since Bh(Eh, P
1
h ) = 0. Moreover, since eh ∈ V Ω

h 0, and pressures (p, p̂) are continuous across internal
bulk and fracture mesh faces, respectively, we get

∑
c∈CΩ

∑
f∈∂c

αc,fef

∫
f

p1 =
∑
ĉ∈CΓ

Jeh
∫
ĉ

p1Kĉ +
∑
c∈CΩ

∑
f∈∂c\Γ

αc,fef

∫
f

p1 =

∑
ĉ∈CΓ

Jeh
∫
ĉ

p1Kĉ+
∑
f∈FΩ

I

ef J
∫
f

p1Kf+
∑

f∈F∂Ωp

ef

∫
f

p1 =
∑
ĉ∈CΓ

Jeh
∫
ĉ

p1Kĉ+
∑
f∈FΩ

I

ef J
∫
f

(p1−p)Kf+
∑

f∈F∂Ωp

ef

∫
f

p1.

And, since we are treating here the case Ip = ∅,

∑
ĉ∈CΓ

∑
f̂∈∂ĉ

αĉ,f̂ êf̂

∫
f̂

p̂1 =
∑
f̂∈FΓ

I

êf̂ J
∫
f̂

p̂1Kf̂ +
∑
F∈F#

Γ

∑
f̂∈F

αĉ(f̂),f̂ êf̂

∫
f̂

p̂1,=

∑
f̂∈FΓ

I

êf̂ J
∫
f̂

(p̂1 − p̂)Kf̂ +
∑
F∈F#

Γ

∑
f̂∈F

αĉ(f̂),f̂ êf̂

∫
f̂

(p̂1 − p̂),

where we have also exploited the fact that
∑
F∈F#

Γ

∑
f̂∈F αf̂ ,ĉ(f̂)êf̂ = 0 because of the coupling

condition at the interface.
We now note that, thanks to Eq. (76),

ch(vτh, eh) = ch(vτh − uIh, eh) + ch(uIh, eh) = ch(vτh − uIh, eh) +
∑
ĉ∈CΓ

(Jeh
∫
ĉ

pKĉ − JehKĉ
∫
ĉ

p̂).

Therefore, using the definition of Fuh (Eh), collecting and rearranging all previous results, we
obtain

‖Eh‖2W h
= ‖Uh−U Ih‖2W h

. −Ah(U Ih−V τh , Eh)+ch(uIh−vτh, eh)+
∑
ĉ∈CΓ

Jeh
∫
ĉ

(p1−p)Kĉ+
∑
f∈FΩ

I

ef J
∫
f

(p1−p)Kf+

∑
f∈F∂Ωp

ef

∫
f

(p− p1) +
∑
f̂∈FΓ

I

êf̂ J
∫
f̂

(p̂1 − p̂)Kf̂ +
∑
F∈F#

Γ

∑
f̂∈F

αf̂ ,ĉ(f̂)êf̂

∫
f̂

(p̂− p̂1).

We have that

−Ah(U Ih−V τh , Eh)+ch(uIh−vτh, eh) = mh

(
ΠV Ω

h (K∇(p−p1)
)
, eh)

)
+ âh

(
ΠV Γ

h (K̂τ∇τ (p̂− p̂1)), êh)
)
,
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and we can use Lemma 3.10. All other terms are upper bounded by a term proportional to
h‖Eh‖W h

|P |H2(ΩΓ)×H2(Γ), thanks to the application of Cauchy-Schwartz inequality and of Lem-
mas 3.8, 3.9 and 3.10. For instance,

∑
ĉ∈CΓ

Jeh
∫
ĉ

(p1 − p)Kĉ =
∑
ĉ∈CΓ

JehKĉ
∫
ĉ

{p1 − p}+ {eh}ĉ
∫
ĉ

Jp1 − pK .

√∑
ĉ∈CΓ

|ĉ| (JehK2
ĉ + {eh}2ĉ)

√∑
ĉ∈CΓ

∫
ĉ

{p1 − p}2 + Jp1 − pK2 ≤ ‖Eh‖W h

√∑
ĉ∈CΓ

∫
ĉ

{p1 − p}2 + Jp1 − pK2.

Now, since ĉ is a boundary face of two bulk cells, I can use Lemma 3.9 to bound the integral over
fracture cells with bulk cell integrals, and the use Lemma 3.8 to get the wanted result.

We give now the details for the term
∑
f∈FΩ

I
ef J
∫
f
(p1 − p)Kf . We have,

∣∣∣∣∣∣
∑
f∈FΩ

I

ef J
∫
f

(p1 − p)Kf

∣∣∣∣∣∣ ≤
√∑
c∈CΩ

|c|
∑
f∈∂c

e2
f

√√√√∑
c∈CΩ

|c|−1
∑
f∈∂c

(∫
f

(p1 − p)
)2

≤

‖eh‖V Ω
h

√√√√∑
c∈CΩ

|c|−1
∑
f∈∂c

(∫
f

(p1 − p)
)2

.

Now, thanks to (36) we have |f | . h−1
c |c| for all f ∈ ∂c, thus

∑
c∈CΩ

|c|−1
∑
f∈∂c

(∫
f

(p1 − p)
)2

.
∑
c∈CΩ

h−1
c

∑
f∈∂c

‖p1−p‖2L2(f) .
∑
c∈CΩ

h−2
c

(
‖p1 − p‖2L2(c) + h2

c‖∇p1 −∇p‖2L2(c)

)
.

∑
c∈CΩ

h2
c |p1 − p|2H2(c) . h2|P |2H2(ΩΓ)×H2(Γ),

and, consequently, ∣∣∣∣∣∣
∑
f∈FΩ

I

ef J
∫
f

(p1 − p)Kf

∣∣∣∣∣∣ . h‖eh‖W h
|P |2H2(ΩΓ)×H2(Γ).

The other terms can be treated similarly and we are able to obtain the desired estimate for the
error in velocity.

Theorem 3.2. Under the same hypotheses of Theorem 3.1, the solution Ph = (ph, p̂h) ∈Mh of
(57) satisfies

‖(ph, p̂h)−ΠMh(p, p̂)‖Mh
. h‖(p, p̂)‖H2(ΩΓ)×H2(Γ). (81)

Proof. Given the result of the previous theorem, a possible proof is obtained by extending the
steps illustrated in [19, Section 5.2.4] to our case. We follow another route which requires to
assume the existence of a stable reconstruction operator for the velocity (see the cited reference
for a general discussion of reconstruction operators in mimetic finite differences).

A stable reconstruction operator RW = RΩ × RΓ : W h → Sh is such that ΠW h ◦ R = I,
where I is the identity operator, and

‖RW (vh, v̂h)‖W . ‖(vh, v̂h)‖W h
, ∀(vh, v̂h) ∈W h. (82)

We recall that the space Sh has been defined in (68) and (70).
We also define RP : (qh, q̂h) ∈Mh → (q, q̂) = RP (qh, q̂h) ∈M so that q|c = qc and q̂|ĉ = q̂ĉ,

for all cells in the bulk and the fracture. Obviously ΠMh ◦ RP = I.
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We use the same definitions of U , Uh, P , Ph, V τ and P 1, while we set P Ih = (pIh, p̂
I
h) =

ΠMh(p, p̂). We construct V P = (vP , v̂P ) as the velocities that satisfy (21), (24) and (32) with
(q, q̂) = RP (Ph − P Ih ).

We then set V Ph (vPh , v̂
P
h ) = ΠW hV P and Sh 3 V PR = (vPR, v̂

P
R) = RV Ph . Clearly, ΠW hV PR =

V Ph , and, moreover, because of the definition of the projector and of Sh we have that for all c ∈ CΩ

and ĉ ∈ CΓ∫
c

div vPR = |c|div vPR|c =

∫
c

div vP ,

∫
ĉ

div v̂PR = |ĉ|divτ v̂
P
R|ĉ =

∫
ĉ

divτ v̂
P and JvPRKĉ = JvP Kĉ.

(83)
By construction of V P , and since Rp(Ph − P Ih ) is cell-wise constant, we have

−B(V PR ,RP (Ph−P Ih )) =
(

DIV V P ,Rp(Ph−P Ih )
)
M

=
∑
c∈CΩ

∫
c

(pc−p) div vP+
∑
ĉ∈CΓ

∫
ĉ

(p̂c−p̂)(divτ v̂
P−JvP Kĉ)

−B(V P , P ) = ‖Ph − P Ih‖2Mh
,

where, as usual, the pedices c and ĉ indicate the corresponding cell values of ph and p̂h, respectively.
Furthermore, the commuting property of the global divergence operators and the previous

result, allows us to write

−Bh(V Ph , Ph − P Ih ) = −(ΠMh DIV V P , Ph − P Ih )Mh
= −B(V PR ,RP (Ph − P Ih )) = ‖Ph − P Ih‖2Mh

.

Now, we have

−Bh(V Ph , Ph − P Ih ) = Bh(V Ph , P
I
h )−Bh(V Ph , Ph) = Bh(V Ph , P

I
h ) +Ah(Uh, V

P
h )− Fuh (V Ph ),

and, exploiting again the fact that P Ih is piecewise constant and the definition of the interpolation
operators, we deduce that

Bh(V Ph , P
I
h ) = B(V PR , P ) = −A(U, V PR ) + Fu(V PR ).

Since the normal component of vPR are piecewise constant on the boundary of ΩΓ, by the definition
of Fu and Fuh we infer that Fuh (V Ph )− Fu(V PR ) = 0 and, consequently

‖Ph − P Ih‖2Mh
= Bh(V Ph , P

I
h )−Bh(V Ph , Ph) = Ah(Uh, V

P
h )−A(U, V PR ).

We now exploit the global consistency condition (72) with (ΠV Ω
h vτ ,ΠV Γ

h v̂τ ) = V τh = ΠW hV τ and

(ΠV Ω
h w,ΠV Γ

h ŵ) = V Ph , where V τ is defined in (80), to obtain

Ah(Uh, V
P
h ) = Ah(Uh − V τh , V Ph ) +Ah(V τh , V

P
h ) = Ah(Uh − V τh , V Ph ) +A(V τ , V PR ),

and thus, by the continuity of Ah and A

‖Ph−P Ih‖2Mh
= Ah(Uh−V τh , V Ph )+A(V τ−U, V PR ) . ‖Uh−V τh ‖W h

‖V Ph ‖W h
+‖U−V τ‖W ‖V PR ‖W .

(84)
We now note that, by using Theorem 3.1 and Lemmas 3.8 and 3.9 and the definition of V τ and
V τh , we can deduce that

‖Uh−V τh ‖W h
. ‖Eh‖W h

+‖U Ih−V τh ‖W h
. h‖(p, p̂)‖H2(ΩΓ)×H2(Γ) and ‖U−V τ‖W . h‖(p, p̂)‖H2(ΩΓ)×H2(Γ).

On the other hand, by construction of V Ph and V PR , as well as the stability of the reconstruction
operator, we have

‖V Ph ‖W h
. ‖Ph − P Ih‖Mh

and ‖V PR ‖W . ‖Ph − P Ih‖Mh
.

We can then obtain the desired result thanks to (84).

Remark 3.3. We will see in the section dedicated to numerical results that one can obtain a
super-optimal convergence of the pressure. The study of super-convergence properties may be done
following the techniques presented in [19], but is beyond the scope of this work.
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Figure 4: Relative error for the pressure in Ω (left) and Γ (right) for triangular and polygonal
grids.

4 Numerical results

In this section we present some numerical tests to assess the theoretical results presented in the
previous sections and to illustrate the behavior of the numerical method on more complex cases.

4.1 Convergence test

To verify the theoretical order of convergence we consider a test case inspired by [10]. The domain
is the square Ω = [−1, 1]×[−1, 1], and in our case the geometry has been slightly modified to assess
the behavior of the numerical method in the presence of an immersed fracture, Γ = [−0.9, 0.9]×{0}
of aperture lΓ = 0.01. We consider a constant and isotropic permeability, equal to one in the
fracture and in the surrounding medium, and we impose a volumetric source term only in the
fracture, i.e. f(x, y) = 0 and f̂ = lΓ cos(x). On the whole boundary ∂Ω we set Dirichlet boundary
conditions with gP = cos(x) cosh(y), while at the tips of the fracture we set non-homogeneous
Neumann boundary conditions, ĝu = lΓ sin(x). The exact solution is then

p =

{
cos(x) cosh(y) in Ω

cos(x) in Γ.

We have performed this test both on unstructured triangular grids and general polygonal grids
with different resolutions. Polygonal grids have been generated from triangular grids by means of
random merging of neighboring triangles. Since the contribution of the fracture to the absolute
error in the pressure defined by (81) is much smaller with respect to the contribution of the
surrounding medium, it is presented separately for the sake of clarity, see figure 4. We can observe
superconvergence of the pressure (order h2 instead of h) both for the triangular and the polygonal
grid case. As concerns the error in the velocity, defined as in (79), it decreases with order h as
expected (figure 5). In this case the experimental order is slightly higher for triangular grids with
respect to more general ones, in particular 1.3471 versus 1.0662.

4.2 Test on the theoretical bound for ξ0

To perform meaningful experiments on the coupling conditions (4) we designed a test case such
that Ju · nK 6= 0 on Γ. In particular, we consider a square domain Ω = [0, 1] × [0, 1], cut by an
horizontal fracture Γ = [0, 1] × {0} of aperture lΓ = 0.01. The boundary conditions are depicted
in figure 6, and no source term is considered in the fracture nor in the bulk: note that due to the
asymmetric boundary conditions there is flow along the fracture. We have set K = I, Kτ = 1,
Kn = 0.01.
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Figure 5: Relative error for the velocity in Ω for triangular and polygonal grids.

Figure 6: Domain and boundary conditions for test case 4.2

As discussed in section 3.6.1, even if in the case ξ0 = 0 the continuous problem is not well
posed, it can be shown that this choice of the parameter is possible in the discrete case, and in
particular ξ0 should be chosen according to inequality (67). In practice, for any mesh size, ξ0 can
be taken equal to zero, as proven by the results in figure 7: if ξ0 < 0 the pressure solution violates
the maximum principle, while for ξ0 = 0 we obtain the correct solution. Moreover, as shown in
figure 8, in this latter case the pressure in the fracture is exactly the average of the pressure on
the two sides of the fracture.

We have computed the minimum eigenvalue of the matrix Ah for different values of ξ0 and
different grid resolutions to verify the inequality (67): negative eigenvalues indicate that Ah is
not positive definite and may correspond to solutions that violate the maximum principle as
summarized in Table 1. Note that the minimum acceptable ξ0 is smaller for coarse grid, while
for more refined grids we approach the theoretical limits of the continuous problem: however, for
h > 0 ξ0 = 0 is always acceptable.

4.3 A completely immersed network

To conclude, we consider a more complex case where a network of six fractures of aperture lΓ =
0.01 is completely immersed in the domain Ω. Homogeneous Dirichlet boundary conditions are
imposed on ∂Ω, while no flow is imposed at the fracture tips, except for the two, marked in
figure 9, where injection and production are mimicked with Neumann boundary conditions of
inflow/outflow respectively. Five fractures are more permeable of the surrounding medium, with
Kτ = Kn = ε, while the fracture at the center of the domain, marked in red in figure 9 is
blocking, with Kτ = Kn = ε−1. We set K = I in the porous medium and consider two cases, with
ε = ε1 = 1.0e1 and ε = ε2 = 1.0e6. The results are shown in figure 10. In both cases the effect of
permeable and blocking fractures is visible on the pressure isolines. In the case of lower contrast,
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Figure 7: Pressure in the domain for ξ0 = −0.05 (left) and ξ0 = 0 (right)

Figure 8: Pressure in the fracture for ξ0 = 0, and pressure in Ω on the two sides of the fracture.
Here s denotes the curvilinear abscissa of the fracture.

ξ 0 0.25 0.45 0.48 0.5 0.55 0.75 1

h=0.1

minλA -2.98e-2 -1.42e-2 -1.70e-3 1.61e-4 1.40e-3 1.50e-3 1.50e-3 1.50e-3
minΩ∪Γ ph -1.02e-3 -2.29e0 1.01e-2 1.01e-2 1.01e-2 1.02e-2 1.02e-2 1.03e-2
maxΩ∪Γ ph 1.04e0 4.14e0 9.89e-1 9.89e-1 9.89e-1 9.89e-1 9.89e-1 9.89e-1

h=0.05

minλA -1.53e-2 -7.50e-3 -1.20e-3 -2.89e-4 3.17e-4 3.30e-4 3.30e-4 3.30e-4
minΩ∪Γ ph -3.49e-2 -8.95e-1 -2.68e-1 -3.27e-3 3.15e-3 3.41e-3 3.41e-3 3.41e-3
maxΩ∪Γ ph 1.03e0 1.92e0 1.07e0 9.96e-1 9.96e-1 9.96e-1 9.96e-1 9.96e-1

Table 1: Minimum eigenvalue of Ah and corresponding extrema of pressure for two different grid
sizes.
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Figure 9: Domain and boundary conditions for test case 4.3. The fractures highlighted in blue
are more permeable than the matrix, while the red one is locking. The injection and production
wells are located at two fracture tips.

Figure 10: Pressure fields for test case 4.3 for two values of the contrast ε: ε1 = 1.0e1 on the left,
ε2 = 1.0e6 on the right.

ε = ε1, the matrix/fracture system is overall less permeable and pressure reaches higher values.
In the case ε = ε2 the injected fluid flow preferably in the connected fractures and the pressure
isolines are clearly stretched in the direction of the fractures.

5 Conclusions

In this work we presented, for the first time at the best of our knowledge, a well-posedness results
for Darcy’s flow in fractured media in mixed form where pressure is not imposed on part of the
boundary of the fracture network. We have also given a full analysis of a mimetic finite difference
approximation for the problem.

The theory has been set for a general 3D or 2D problem, even if the numerical experiments
rely on the 2D case. Work on implementing a full 3D code is under way.

Several extensions may be planned. For instance, one may consider time dependent problems
and different models for the flow in the fracture network (for instance Brinkman or Stokes models).
The good approximation of the flow field given by the mixed formulation could be useful for the
coupling with an advection-diffusion problem.

Moving to multi-phase flow opens the question of the proper interface conditions for the satu-

29



ration equation and how to implement them in the context of mimetic finite differences.
We mention that our analysis could be the basis for a more general study of polygonal dis-

cretization based on virtual element methods, which could open a possibility of implementing
higher order approximations.

In the numerical experiments the governing linear system has been solved using direct multi-
frontal methods. This will not be possible, in general, for 3D problems. The use of iterative
schemes opens up the issue of finding optimal preconditioners, particularly when the permeability
is strongly heterogeneous.
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