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Abstract

In this paper, we present inferential procedures to compare the means of two sam-
ples of functional data. The proposed tests are based on a suitable generalization
of Mahalanobis distance to the Hibert space of square integrable function defined
on a compact interval. We do not require any specific distributional assumption on
the processes generating the data. Test procedures are proposed for both the cases
of known and unknown variance-covariance structures, and asymptotic properties
of test statistics are deeply studied. A simulation study together with a real case
data analysis are also presented.
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lem.
AMS Subject Classification: 62M07

1 Introduction

In the last two decades statistical research has grown an increasing interest in
the study of high dimensional data, having a wide range of applications in biol-
ogy, chemometrics, medicine, meteorology and finance, among others. In all these
cases, observed data may be points that belong to functions generated by a contin-
uous time stochastic process with values in a suitable infinite dimensional Hilbert
space, typically L2(T ) with T compact interval of R. Functional Data Analysis
(FDA) gathers all the statistical models and tools fit for the study of this kind
of data characterized by a number p of features observed for each statistical unit
much larger than the sample size n (see Ramsey and Silverman (2002), Ramsey
and Silverman (2005), Ferraty and Vieu (2006), Horváth and Kokoszka (2012) and
references therein). Classical methodologies in FDA are concerned with the mean
function and the covariance kernel of the process generating the data. The esti-
mation and the inference on the mean function is typically realized by computing
confidence bands that take into account the covariance structure of the process, see
for instance see Yao et al. (2005) and Ma et al. (2012) for sparse longitudinal data,
Bunea et al. (2011), Degras (2011) and Cao et al. (2012) for dense functional data.

Despite the massive methodological and theoretical development of statistical
inference for functional data, testing hypothesis on generating distributions of two
samples of curves has received only a little attention (Pomann et al, 2014). In par-
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ticular concerning the study of differences in the mean functions of two independent
samples of curves, Ramsay and Silverman (2005) proposed a pointwise t-test, Zhang
et al. (2010) introduced a test based on L2 norm for the Behrens-Fisher problem,
Pini and Vantini (2013) proposed an interval testing procedure based on permuta-
tion tests, Staicu et al. (2014) developed a pseudo likelihood ratio test. In many
cases, these procedures consist of a suitable dimensional reduction of the data which
allows classical multivariate procedures to be applied. Although this approach may
be satisfactory in some situations, the functional nature of the data is not fully
exploited and some information may be lost due to the dimensional reduction.

Ghiglietti and Paganoni (2014) proposed a procedure to test the difference be-
tween the means of Gaussian processes based on a generalization of Mahalanobis
distance (say dp) that achieves two main goals: (i) to consider all the infinite
components of data basis expansion and (ii) to share the same ideas which the
Mahalanobis distance is based on. In this paper, we extend those inferential pro-
cedures to a wide range of situations, by relaxing some strong assumptions made
in Ghiglietti and Paganoni (2014). Specifically, the proposed tests do not require
any specific distribution assumption on the processes generating the data and allow
comparison between samples with different covariance functions. In this wider con-
text, we prove theoretical results on the convergence of dp distance between sample
mean and a fixed function m(t) ∈ L2(T ) and between means of two independent
samples. Additionally, we establish the rate of convergence and the exact asymp-
totic distributions of the distance dp between functional sample means. The rate
of convergence and the limiting distributions are sharply different when the true
means of the processes are equal or different. Indeed, in the first case, we show that
the exact rate of convergence is n−1 and the limiting distribution is a strictly pos-
itive random variable; in the second case, we prove a central limit theorem (CLT)
for the distance dp between functional sample means with Gaussian asymptotic

distribution and the rate of convergence of n− 1

2 .
The almost sure convergence established for the distance dp of the sample means

guaranteed the consistency of this estimator, while the second-order asymptotic re-
sults provide the probabilistic basis to construct test procedures for the comparison
of the means of two functional populations. Indeed, the proposed critical regions are
based on the limiting distribution established in the case of equality of the means,
while the CLT is applied to compute the asymptotic power of the test given any
difference between the means of the processes. Test procedures are proposed for
both the cases of known and unknown variance-covariance structures. It is worth
noting that all the results hold also for multivariate functional data case.

The rest of the paper is structured as follows: firstly, the distance dp is intro-
duced and its main properties are discussed in Section 2. Then, the asymptotic
results on the behavior of this metric applied to random processes are presented
in Section 3. Section 4 is concerned with inferential procedures for the comparison
of the means in functional data analysis. Specifically, critical regions based on the
distance dp applied to functional sample means are proposed. Finally, a simulation
study together with a real case data analysis are presented in Section 5. Appendixes
A and B gather the proofs of the theorems stated in Section 3. All the analyzes are
carried out with R.
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2 Properties of a generalized Mahalanobis distance for

functional objects

In this section, we present the generalized Mahalanobis distance for infinite di-
mensional spaces introduced in Ghiglietti and Paganoni (2014). This metric is
characterized by features similar to the Mahalanobis distance commonly used in
the multivariate context. Hence, inferential tools for infinite dimensional objects
can be constructed in an analogous way to the procedures typically used for mul-
tivariate elements (see Section 4). We start by describing the motivation problem
that required the introduction of the new distance.

Let y and w be realizations of a stochastic process X ∈ L2(T ), where T is
a compact interval of R. Let m(t) = E[X(t)] be the mean function and V the
covariance operator of X , i.e. V is a linear compact integral operator from L2(T )
to L2(T ) acting as follows: (V a)(s) =

∫
T
v(s, t)a(t)dt ∀a ∈ L2(T ), where v is the

covariance function defined as v(s, t) = E[(X(t)−m(t))(X(s)−m(s))]. Then, denote
by {λk; k ≥ 1} and {ϕk; k ≥ 1} the sequences of eigenvalues and eigenfunctions,
respectively, associated to v.

Letting 〈a, b〉 =
∫
T a(t)b(t)dt be the usual inner product in L2(T ), the natural

generalization of the Mahalanobis distance in the functional framework would be
the following

dM (y, w) =

√√√√
∞∑

k=1

(〈y − w,ϕk〉)2
λk

. (2.1)

This distance takes into account the correlations and the variability described by
the covariance structure of X . However, it is well known that in an infinite di-
mensional space dM is not a proper distance in L2(T ), since the series in (2.1)
can diverge for some y, w ∈ L2(T ). For this reason, a typical methodology is to
fix an integer K ∈ N and consider the truncated version of the Mahalanobis dis-
tance, summing up in (2.1) only the first K components. Nevertheless, when this
approach is used to measure the entire space L2(T ), we can point out two main
drawbacks can be highlighted: (i) the contribution given by the projections in the
space orthogonal to ϕ1, .., ϕK is not considered in the distance. Then, for any choice
of K, we may have y, w ∈ L2(T ) such that the truncated Mahalanobis distance is
arbitrarily small and the euclidian distance is arbitrarily large, which seems unrea-
sonable. (ii) All the contributions of the L2(T ) distance are basically multiplied by
1/λk · 1{λk≥λK}, which is not decreasing in λk. This is incoherent with the idea of
penalizing the L2(T ) distance with a term that is inversely proportional to the size
of the corresponding eigenvalue λk.

These issues are addressed by using the following equivalent representation for
dM in (2.1), that has been presented in Ghiglietti and Paganoni (2014)

dM (y, w) :=

√∫ ∞

0

f(c; y, w)dc, (2.2)

where the function f(·; y, w) : R+ → R
+ is defined as follows

f(c; y, w) :=

∞∑

k=1

(〈y − w,ϕk〉)2 · exp(−λkc). (2.3)
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The idea is to use (2.2) to compute a well-defined distance in L2(T ) that is in a
certain sense similar to dM in (2.1). In fact, although f(c; y, w) is finite for any
c ≥ 0, the function f(·; y, w) may not be integrable in R

+ for some y, w ∈ L2(T ),
that occurs when the Mahalanobis distance is not defined. To deal with this case, we
introduce a function g(·; p), tuned by a parameter p > 0, such that

∫∞

0
g(c; p)dc <

∞. In particular, without loss of generality, we define g such that
∫∞

0 g(c; p)dc = p.
Since this ensures that f(c; y, w) · g(c; p) is integrable for any p > 0, the generalized
Mahalanobis distance is defined as follows

dp(y, w) :=

√∫ ∞

0

f(c; y, w) · g(c; p)dc

=

√√√√
∫ ∞

0

∞∑

k=1

(〈y − w,ϕk〉)2 · exp(−λkc) · g(c; p)dc,
(2.4)

that is finite for any pair of functions y and w.
Some conditions should be required to make the distance dp sharing analogous

features of the Mahalanobis distance. Specifically, g should be defined such that
the functions f · g and f are similar concerning some essential properties, such as
penalizing more the distances along components with smaller variability. To this
aim, we assume that g(0; p) = 1 and g(c; p) is non increasing and non negative, for
any p > 0. Moreover, for any fixed c > 0, we assume that g(c; p) is non decreasing
in p and limp→∞ g(c; p) = 1, so that dp tends to the Mahalanobis distance as p goes
to infinity.

The distance dp(y, w) can be expressed in a more suitable way

dp(y, w) =

√√√√
∞∑

k=1

d2M,k(y, w) · hk(p),

where dM,k(y, w) =

√
(〈y − w,ϕk〉)2 /λk is the term representing the contribution

of the Mahalanobis distance along the kth component and

hk(p) :=

∫ ∞

0

λk exp(−λkc) · g(c; p)dc.

It follows that hk(p)/λk →k p and hk(p) →p 1. Moreover, the distance dp and the
usual distance in L2 (dL2) are equivalent since, for any x, y ∈ L2(T )

(
h1(p)

λ1

)
· dL2(x, y) ≤ dp(x, y) ≤ p · dL2(x, y). (2.5)

Possible choices for g are the following:

(1) g(c; p) = 1{c≤p}. In this case hk(p) = (1 − exp(−λkp)).
(2) g(c; p) = exp(−c/p). In this case hk(p) = λk/(λk + 1/p).

3 Asymptotic results

In this section, we present the main results concerning the first and second-order
asymptotic properties of the functional sample mean. These results are essential
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to construct inferential procedures for testing the equality among the mean of one
functional sample and a fixed function or for testing the equality of the means of
two samples. The inferential framework is presented in Section 4.

Here, we consider a random function X and we establish the Large Law of Num-
ber (LLN) and the Central Limit Theorem (CLT) for the generalized Mahalanobis
distance of the sample mean of i.i.d. realizations of X . Then, in Subsection 3.1
analogous results for the distance among the means of two independent random
functions are obtained. In Subsection 3.2 we describe how these asymptotic re-
sults must be modified when the covariance structure is unknown and it must be
estimated from the data. All the proofs are gathered in Appendix B.

Let X1, .., Xn be n ≥ 1 i.i.d. realizations of a random function X ∈ L2(T ), with
T ⊂ R compact interval, and assume E[‖X‖4] <∞; let m be the mean function of
X and let {λk; k ≥ 1} and {ϕk; k ≥ 1} be the eigenvalues and the eigenfunctions,
respectively, of the covariance operator of X . First, we report a functional strong
law of large numbers concerning the distance dp. The result is the following:

Theorem 3.1 Let X̄n be the pointwise sample mean X̄n = (X1 + ... + Xn)/n.
Then, for any m0 ∈ L2(T ), we have that

dp
(
X̄n,m0

) a.s.−→ dp (m,m0) . (3.1)

The proof of Theorem 3.1 is presented in Appendix B. Theorem 3.1 ensures that
dp
(
X̄n,m0

)
is a consistent estimator for the quantity dp (m,m0). Hence, it seems

reasonable to consider the statistics dp
(
X̄n,m0

)
as statistics for testing the distance

among m0 and m, once we get its asymptotic probability distribution. This is
provided by the following result, which shows the rate of convergence and the
limiting distribution of dp

(
X̄n,m0

)
, for any function m0 ∈ L2(T ).

Theorem 3.2 Let ψp be a positive random variable defined as follows

ψ2
p :=

∞∑

k=1

χ2
1,khk(p), (3.2)

where {χ2
1,k; k ≥ 1} is a sequence of i.i.d chi-squared variables with 1 degree of

freedom. Then, we have that

√
n · dp

(
X̄n,m

) D−→ ψp, (3.3)

For any m0 6= m, we have that

√
n ·
(
dp
(
X̄n,m0

)
− dp (m,m0)

) D−→ rp(m,m0) · Z, (3.4)

where rp(m,m0) := [dp (m,m0)]
−1 d̃p (m,m0) and

d̃p (m,m0) :=

∞∑

k=1

( 〈m−m0, ϕk〉√
λk

)2

· (hk(p))2 . (3.5)

The proof of Theorem 3.2 is presented in Appendix B, and it requires the auxiliary
Theorem A.1, that is reported in Appendix A.
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It is worth noting that the limiting distribution is not unique for any function
m0: whenm0 is the mean of the processX , the asymptotic distribution is a series of
weighted chi-squared, while when m0 6= m, the asymptotic distribution is Gaussian.
Moreover, note that, since 0 ≤ hk(p) ≤ 1 for any p > 0 and k ≥ 1, we have

that d̃p (x, y) ≤ dp (x, y) for any x, y ∈ L2(T ). Hence, the asymptotic variance

[rp(m,m0)]
2
in (3.4) is always less than or equal to one.

Remark 3.3 It is worth noting that analogous asymptotic results can be obtained
for multivariate random functions X = (X1, .., Xh)

T , with h ≥ 2, where Xi ∈ L2(t)
for any i ∈ {1, .., h}. In that case, the mean m = E[X] is defined as a vector of
functions in L2(T ;R) such that ml = E[Xl] for any l = {1, .., h}, and the covariance
kernel v(s, t) = Cov [X(s)⊗X(t)] is defined as a h× h matrix of functions such
that vl1l2(s, t) := Cov [Xl1(s), Xl2(t)] for any l1, l2 = {1, .., h}. The scalar product
between two elements y and w of L2(T ) with values in R

h is defined as follows

〈y, w〉 =
h∑

l=1

∫

T

yl(t)wl(t)dt.

The eigenvalues {λk; k ≥ 1} and the eigenfunctions {ϕk; k ≥ 1} of v are the el-

ements solving
∑h

l2
〈vl1l2 , ϕkl2〉 = λkϕkl1 for any l1 = {1, .., h}. The generalized

Mahalanobis distance dp can be defined as in (2.4) using these quantities and the
asymptotic results presented in this paper hold as well.

3.1 Asymptotic results for two populations of random functions

Here, we consider the results related to the distance dp between the means of two in-
dependent random processesX1 andX2 of L

2(T ;R), with E[‖X1‖4],E[‖X2‖4] <∞.
Let n1, n2 ≥ 1 and denote by X11, .., X1n1

and X21, .., X2n2
two i.i.d. samples of

functions from X1 and X2, respectively. Consider the process Xj , j = {1, 2}, and
call mj its mean function and vj its covariance function. Let N := n1 + n2 and
assume that both n1 and n2 increase to infinity as N increases. To obtain asymp-
totic results for two populations, we need to define the right covariance function
that generates the distance dp defined in (2.4). To this end, since

E
[
(X̄1n1

(s)− X̄2n2
(s))(X̄1n1

(t)− X̄2n2
(t))
]

=

(m1(s)−m2(s))(m1(t)−m2(t)) +
v1(s, t)

n1
+
v2(s, t)

n2
,

the covariance function of (1/n1 + 1/n2)
−1/2 · (X̄1n1

− X̄2n2
) can be written as

(1 − cN)v1 + cNv2, where cN = n1/N . Hence, the asymptotic covariance function
can be identified whenever the following assumption holds

Assumption 1 At least one of the following conditions must be satisfied:

(c1) v1 = v2, i.e. X1 and X2 have the same covariance function;

(c2) ∃c ∈ (0, 1), such that n1/N →N c, i.e. the sample sizes n1 and n2 increases
to infinity at the same rate.
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Now, define v := v1 = v2 when (c1) holds, or v := (1− c)v1 + cv2 when (c2) holds,
and denote by {λk; k ≥ 1} and {ϕk; k ≥ 1} the sequences of the eigenvalues and
the eigenfunctions of v, respectively. This new covariance structure is considered
to generate the distance dp defined in (2.4). Thus, we can prove the following
asymptotic results:

Theorem 3.4 Consider Assumption 1. Then,

dp
(
X̄1n1

, X̄2n2

) a.s.−→N dp (m1,m2) . (3.6)

If m1 = m2, we have

(
1

n1
+

1

n2

)−1/2

· dp
(
X̄1n1

, X̄2n2

) D−→N ψp, (3.7)

while if m1 6= m2, we obtain

(
1

n1
+

1

n2

)−1/2

·
(
dp
(
X̄1n1

, X̄2n2

)
− dp (m1,m2)

) D−→N rp(m1,m2) · Z, (3.8)

where we recall that ψ2
p =

∑∞
k=1 χ

2
1,khk(p) and rp(m1,m2) = [dp (m1,m2)]

−1 d̃p (m1,m2).

The proof of Theorem 3.4 is presented in Appendix B, and it requires the auxiliary
Theorem A.1, that is reported Appendix A.

3.2 Asymptotic results in the case of unknown covariance

function

All the results presented in Section 3 can be extended for the case of unknown
covariance functions. In this situation, the eigenvalues and eigenfunctions used to
compute the distance dp in (2.4) are estimated from the data.

Consider an i.i.d. functional sample X1, .., Xn from the random processX . The
covariance function v of X can be estimated by the following quantity

v̂n :=
1

n− 1

n∑

i=1

(
Xi(s)− X̄n(s)

) (
Xi(t)− X̄n(t)

)
.

Let us denote by {λ̂k; k ≥ 1} the ordered eigenvalues of v̂n and {ϕ̂k; k ≥ 1} the
corresponding eigenfunctions. Naturally, since v̂n is computed using n functions,
we have that λ̂k = 0 for all k ≥ n, and so the eigenfunctions ϕ̂n, ϕ̂n+1, .. can be
arbitrary chosen such that {ϕ̂k; k ≥ 1} represents an orthonormal basis of L2(T ).

The estimator of dp based on the covariance estimator v̂n is defined as follows

d̂2p(y, w) :=

n−1∑

k=1

d̂2M,k(y, w) · ĥk(p) + p

∞∑

k=n

(〈y − w, ϕ̂k〉)2 , (3.9)

with y, w ∈ L2(T ), where d̂2M,k(·, ·) and ĥk(p) indicate the quantities d2M,k(·, ·)
and hk(p), with λk replaced by λ̂k and ϕk replaced by ϕ̂k. The definition of d̂p
in (3.9) requires a specific explanation. Comparing the definitions of d̂p in (3.9)
and dp in (2.4), we note how the first n − 1 components are similar, while the
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terms k ≥ n seem very different. The reason is that, since the span of the data
{X1 − X̄n, .., Xn − X̄n} generates a space of dimension (n − 1), we have λ̂k = 0

for all k ≥ n and so d̂M,k is undefined for k ≥ n. Hence, we need to change the

definition of d̂p in order to make all the components of the estimate d̂p as close as
possible to the components of the distance dp. Specifically, since λ−1

k hk(p) → p as

k → ∞, in (3.9) we have redefined d̂M,kĥk(p) := p · (〈y − w, ϕ̂k〉)2 for any k ≥ n.
Below, we present a theorem that extends the asymptotic results for one pop-

ulation of random functions to the case of estimated covariance function.

Theorem 3.5 We have that

d̂p
(
X̄n,m0

) p−→ dp (m,m0) . (3.10)

Moreover, √
n · d̂p

(
X̄n,m

) D−→ ψp. (3.11)

and, for any m0 6= m, we have

√
n ·
(
d̂p
(
X̄n,m0

)
− d̂p (m,m0)

)
D−→ rp(m,m0) · Z, (3.12)

where we recall that ψ2
p =

∑∞
k=1 χ

2
1,khk(p) and rp(m,m0) = [dp (m,m0)]

−1
d̃p (m,m0).

The proof of Theorem 3.5 is presented in Appendix B, and it requires the auxiliary
Lemma A.2 that is reported in Appendix A.

Analogously, we can deal with the case of two populations presented in Sub-
section 3.1. In this case, for each j = 1, 2, consider the i.i.d. functional samples
Xj1, .., Xjnj

from the random process Xj, denote by X̄jnj
the pointwise sample

mean, i.e. X̄jnj
= (Xj1, .., Xjnj

)/nj , and let v̂j,nj
be the estimated covariance

function, i.e.

v̂j,nj
:=

1

nj − 1

nj∑

i=1

(
Xi,j(s)− X̄jnj

(s)
) (
Xi,j(t)− X̄jnj

(t)
)
.

Now, let Assumption 1 be satisfied and define v := v1 = v2 when (c1) holds, or
v := (1 − c)v1 + cv2 when (c2) holds. Thus, assuming (c1), we define v̂N as the
pooled estimator of v, i.e.

v̂N :=
(n1 − 1)v̂1,n1

+ (n2 − 1)v̂2,n2

N − 2
. (3.13)

On the other hand, assuming (c2), we define v̂N as the linear combination of the
estimated covariance functions in each group, i.e.

v̂N := (1− cN )v̂1,n1
+ cN v̂2,n2

,

where we remind that cN = n1/N and N = n1 + n2. Then, by using the same
arguments contained in the proof of Theorem 3.5, it is straightforward to extend
the results concerning two populations presented in Theorem 3.4 to the case of
estimated covariance function. For this reason, we omit it in the paper.
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4 Inference on the mean

In this section we construct inferential procedures for testing the means of random
processes and we discuss their main statistical properties. Specifically, we propose
critical regions based on the generalized Mahalanobis distance dp and we compute
the asymptotic analytic expression of the corresponding power. Both the cases of
known and unknown covariance function are analyzed. For each case, we present
tests on the mean of a single population of random functions, and tests to compare
the means of two independent populations.

4.1 Inference with known covariance function

First, we propose critical regions for testing the meanm of a processX with respect
to an arbitrary function m0 in L2(T ), i.e.

H0 : m = m0 vs H1 : m 6= m0. (4.1)

Consider an i.i.d. sample of random functionsX1, .., Xn distributed asX . From (3.3)
of Theorem 3.2, we have that the following critical region is asymptotically of level
α

R1
α =

{√
n · dp(X̄n,m0) > ξα,p

}
, (4.2)

where ξα,p indicates a quantile of the distribution of ψp, which can be numerically
computed. Note that this probability distribution depends on the entire sequence
{λk; k ≥ 1}, on the choice of g and on the parameter p.

The power of test (4.1) based on the critical region (4.2) can be obtained us-
ing (3.4) of Theorem 3.2 as follows

Pm 6=m0

(
R1

α

)
= Pm 6=m0

(√
n · dp(X̄n,m0) > ξα,p

)

∼ Pm 6=m0

(
Z > [rp(m,m0)]

−1 ·
[
ξα,p −

√
n · dp(m,m0)

])
,

where we recall that rp(m,m0) = [dp (m,m0)]
−1
d̃p (m,m0).

Now, consider the framework of Subsection 3.1, where we have two i.i.d. samples
Xj1, .., Xjnj

from the processes Xj , j = 1, 2, with the corresponding mean mj and
covariance function vj . Let Assumption 1 hold and consider the following hypothesis
test that compares the two mean functions

H0 : m1 = m2 vs H1 : m1 6= m2. (4.3)

Thus, a critical region asymptotically of level α can be obtain using (3.7) of Theo-
rem 3.4 as follows

R2
α =

{(
1

n1
+

1

n2

)−1/2

· dp(X̄1n1
, X̄2n2

) > ξα,p

}
. (4.4)

The power of (4.4) can be obtained using (3.8) of Theorem 3.4 as follows

Pm1 6=m2

(
R2

α

)
= Pm1 6=m2

((
1

n1
+

1

n2

)−1/2

· dp(X̄1n1
, X̄2n2

) > ξα,p

)

∼ Pm1 6=m2

(
Z > [rp(m1,m2)]

−1 ·
[
ξα,p −

(
1

n1
+

1

n2

)−1/2

· dp(m1,m2)

])
,
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where we recall that rp(m1,m2) = [dp (m1,m2)]
−1
d̃p (m1,m2).

Remark 4.1 From Remark 3.3 we have that the analogous asymptotic results pre-
sented in Section 3 hold as well for multivariate random functions X = (X1, .., Xh)

T ∈
L2(T ;Rh), with h ≥ 2. Then, the critical regions introduced in Section 4 based on
those asymptotic results can be analogously used for testing the means of multivari-
ate random functions.

4.2 Inference with unknown covariance function

Here, we extend the inferential procedures presented in Section 4 to the case of un-
known covariance structure. We propose tests similar to (4.2) and (4.4), where the
covariance operator and the related eigenvalues and eigenfunctions are estimated
from the data.

Theorem 3.5 ensures that, concerning the hypothesis tests (4.1) and (4.3), the
critical regions obtained using covariance estimator show the same structure of those
in (4.2) and (4.4) where the covariance function is assumed to be known. However,
the asymptotic distribution of ψp depends on the eigenvalues of v, which are un-
known here. Thus, to compute the critical regions we need a further asymptotic
result which corresponds to Theorem 4.3 of Ghiglietti and Paganoni (2014)

Theorem 4.2 Let {χ2
1,k; k ≥ 1} be a sequence of i.i.d. chi-squared with 1 d.f.

independent of v̂n. Let ξ̂α,p be the 1− α quantile of the conditional distribution of

ψp given {λ̂k; k ≥ 1}. Then, we have that

ξ̂α,p
p−→n ξα,p (4.5)

The proof of Theorem 4.2 is reported in Theorem 4.3 of Ghiglietti and Paganoni
(2014), and so we have omitted it here.

Consider the hypothesis tests (4.1) for the mean of a process X . By using
Slustsky’s Theorem, (3.11) and (4.5), we have that the following critical region is
asymptotically of level α:

R3
α =

{ √
n · d̂p(X̄n,m) > ξ̂α,p

}
. (4.6)

Moreover, by following standard arguments and using (3.12), we can compute the
power of test (4.6) as follows

Pm 6=m0

(
R3

α

)
= Pm 6=m0

(√
n · dp(X̄n,m0) > ξ̂α,p

)

∼ Pm 6=m0

(
Z > [rp(m,m0)]

−1 ·
[
ξα,p −

√
n · d̂p(m,m0)

])
,

where we recall that rp(m,m0) = [dp (m,m0)]
−1
d̃p (m,m0).

Now, consider the framework of Subsection 3.1, where two i.i.d. samples
Xj1, .., Xjnj

from independent processes Xj, j = 1, 2, are used for the hypothe-
sis tests (4.3). Let Assumption 1 hold. Hence, by following analogous arguments,
it is possible to show that the following critical region is asymptotically of level α:

R4
α =

{ (
1

n1
+

1

n2

)−1/2

· d̂p(X̄1n1
, X̄2n2

) > ξ̂α,p

}
(4.7)
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Moreover, the power can be derived as follows

Pm1 6=m2

(
R4

α

)
= Pm1 6=m2

((
1

n1
+

1

n2

)−1/2

· d̂p(X̄1n1
, X̄2n2

) > ξα,p

)

∼ Pm1 6=m2

(
[rp(m1,m2)]

−1 ·
[
ξα,p −

(
1

n1
+

1

n2

)−1/2

· d̂p(m1,m2)

])
,

where we recall that rp(m1,m2) = [dp (m1,m2)]
−1
d̃p (m1,m2).

5 Simulations and Case Study

In this section, we illustrate the inferential properties of the tests proposed in the
paper in a simulation setting, and we then present a real case study where the aim
is to distinguish two populations of electrocardiograms (ECGs).

5.1 Simulation Study

In this simulation study, we consider two samples of i.i.d. curves generated by
independent stochastic processes with different means (say m1, m2 ∈ L2(T ) and
the same covariance function. We wish to test the null hypothesis H0: m1 = m2 in
L2 against the alternative H1. The sample curves are generated as follows:

X1i(t) = m1(t) +

∞∑

k=1

U1i,k

√
λkϕk(t) for t ∈ [0, 1], i ∈ {1, .., n1},

X2i(t) = m2(t) +
∞∑

k=1

U2i,k

√
λkϕk(t) for t ∈ [0, 1], i ∈ {1, .., n2}.

We set

(i) the sample sizes n1 = n2 = 300 for ease of notation;

(ii) the random variables {Uji,k; k ≥ 1, j ∈ {1, 2}, 1 ≤ i ≤ nj} as independent
random variables uniformly distributed in (−

√
3,
√
3), so that E[Uk] = 0 and

V ar[Uk] = 1;

(iii) {λk; k ≥ 1} is the sequence of eigenvalues of the covariance function v defined
as follows:

λk =

{
1

k+1 if k ∈ {1, 2, 3},
1

(k+1)4 if k ≥ 4;
(5.1)

(iv) {ϕk; k ≥ 1} is the sequence of eigenfunctions of the covariance function v
defined as follows:

ϕk =





1 if k = 1,√
2 sin(kπt) if k ≥ 2, k even,√
2 cos((k − 1)πt) if k ≥ 3, k odd;

(v) the mean functions m1(t) = 4t(1 − t) and m2(t) = m1(t) + 3
√
λ4ϕ4(t) (see

Figure 1, left panel).
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Fig. 1: Left panel: 10 curves from sample 1 (solid yellow lines) with the mean
function m1 (solid red line), and 10 curves from sample 2 (dashed
light green lines) with the mean function m2 (dashed green line).
Right panel: screeplot of the estimated eigenvalues λ̂k.

First, consider the test defined by the critical region (4.7) presented in Subsec-
tion 4.2, i.e.

R4
α =

{ (
1

n1
+

1

n2

)−1/2

· d̂p(X̄1n1
, X̄2n2

) > ξ̂α,p

}
,

where we set p = 1 and α = 0.05. We repeated the above test on 103 samples
generated by simulation, and we obtained an empirical power of 0.865.

Now, let us consider other test statistics typically used in the functional prin-
ciple component analysis (FPCA) approach (see Horvath and Kokoszka (2012)),
where the inference is based on the projection of the difference between the sample
means on the space generated by the components with higher variability. In the
sequence of eigenvalues defined in (iv), the first three components explain most of
the variance of the data. To see this in practice, we analyze the estimated eigenval-
ues λ̂k obtained by the usual covariance estimator v̂N (see (3.13)). The screeplot of

the λ̂ks, reported in Figure 1 (right panel), shows that the first three components
contain a large percentage of the total variance of the processes. First, we consider

the test statistics T
(1)
n1n2

and T
(2)
n1n2

presented in Horvath and Kokoszka (2012) as
follows:

(1) T
(1)
n1n2

:=
(

1
n1

+ 1
n2

)−1/2∑3
k=1

(
〈X̄1n1

−X̄2n2
,ϕ̂k〉√

λ̂k

)2

;

(2) T
(2)
n1n2

:=
(

1
n1

+ 1
n2

)−1/2∑3
k=1

(
〈X̄1n1

− X̄2n2
, ϕ̂k〉

)2
.

As explained in Horvath and Kokoszka (2012), when the mean difference (m2(t)−
m1(t)) is orthogonal to the linear span of {ϕ1, ϕ2, ϕ3}, as in this simulation study,

tests based on the statistics T
(1)
n1n2

and T
(2)
n1n2

will not reject H0. Specifically, when
m1 and m2 have the same projection on the subspace generated by {ϕ1, ϕ2, ϕ3},
the power of such tests coincides with the nominal level α. This issue is addressed
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by the test based on R4
α since, unlike T

(1)
n1n2

and T
(2)
n1n2

, all the components provide

a contribute to the distance d̂p.
Another statistics that is proposed in Horvath and Kokoszka (2012) is based

on the L2 distance between the sample means:

(3) Un1n2
:=
(

1
n1

+ 1
n2

)−1/2 ∫ 1

0

(
X̄1n1

(t)− X̄2n2
(t)
)2
dt.

Unlike T
(1)
n1n2

and T
(2)
n1n2

, the statistics Un1n2
is able to detect the mean difference

along any component; however, the covariance structure of the process does not
play any role in Un1n2

and hence, since there is no adjustment for correlations and
variability along the different components, this may lead to a severe loss of power.
We repeated the test based on Un1n2

at level α = 0.05, with 103 samples generated
by simulation, obtaining an empirical power equal to 0.563. Therefore, the test

based on R4
α is characterized by an higher power (0.865) since, unlike U

(1)
n1n2

, the

distance d̂p,N takes into account the covariance structure of the process.
Finally, the last competitor we consider is the one proposed in Pini at al (2013).

This method implements a two populations interval testing procedure, based on
permutation tests, for testing the difference between two functional populations
evaluated on a uniform grid. Data are represented by means of the B-spline basis
and the significance of each basis coefficient is tested with an interval-wise control
of the Family Wise Error Rate (FWER). This procedure has been implemented
by applying the R package fdatest: Interval Testing Procedure for Functional Data
developed in Pini et al.(2015). to two functional samples generated by simulation
and distributed as X1 and X2. Figure 2 reports the results. Since the curve of the
adjusted p-values is above the significance level α = 0.05 for any t ∈ T (see Figure
2, left panel), the nonparametric testing procedure proposed in Pini et al. (2013)
does not reject the null hypothesis, whereas the p-value of the test (4.7) applied to
this dataset is 0.03.

Figure 2 reports the results obtained from the procedure.

5.2 Case Study

In this section we apply the inferential procedures proposed in Subsection 4.2 to
a dataset composed by Electrocardiographic signals (ECGs). The basic statistical
unit is the eight-variate function (the ECG) which describes the heart dynamics of
a patient on the eight leads I, II, V1, V2, V3, V4, V5 and V6. We will focus on
lead I (the most representative for the pathology we are going to consider) in order
to have one functional data associated to each patient. The generalization to the
multivariate functional case is also possible (see Remark 3.3).

The sample of curves we consider are extracted from a wider database (PROM-
ETEO - PROgetto Milano Ecg Teletrasmessi Extra Ospedaliero, for further infor-
mation, see Ieva and Paganoni (2013) and references therein) containing 6758 ECG
signals both from healty and not healthy subjects.

Figure 3 shows the I lead of the ECG signal of 100 healthy patients (red curves,
left panel) and of 100 patients affected by LBBB (blue curves, central panel), i.e.,
Left Bundle Brunch Block, a kind of Acute Myocardial Infarction. Their sample
means, depicted in Figure 3 (right panel), appear pretty different in morphology.
By applying the test proposed in Subsection 4.2 (two balanced samples with dif-
ferent unknown variances), and by setting the parameters as reported in Table 5.2,
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Fig. 2: Results of the nonparametric testing procedure proposed in Pini et
al (2013) applied to the simulated dataset described in Subsection
5.1.

we get evidence for rejecting the null hypothesis of equal means (for all values of
the tuning parameters p, the test statistics fell in the critical region R4

α). We de-
note by T0,p the test statistic corresponding to the critical region in equation (4.7),
computed for given values of the tuning parameters p. Since different choices for p
do not change the result of the test and both T0,p and the quantiles are monotonic
with respect to p, we decided to report only the extreme values corresponding to
p = 10−5 and p = 1.
Also the method proposed in Pini et al (2013) provides evidence for rejecting the
null hypothesis in this case. Figure 4 shows the portion of the time domain the
rejection is due to. In this case the output is helpful for identifying the time domain
areas where the differences between the two functional populations are significant,
but computational costs are considerable (43 hours).

6 Conclusions

In this paper, we propose inferential procedures to test difference between means
of functional data. The proposed tests do not require any specific distribution
assumption on the processes generating the data and allow comparison between
samples with different covariance functions. The inference is based on a suitable
generalization dp of the Mahalanobis distance to the Hilbert space L2. Theoretical
results on the asymptotic behaviour of dp distance between sample mean and a fixed
function m(t) ∈ L2(T ) and between means of two independent samples are proved.
Additionally, the rate of convergence and the exact asymptotic distributions of the
distance dp between functional sample means has been studied. In fact, despite
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Fig. 3: Healthy (red lines, left pnel) and Left Bundle Brunch Block (blue
lines, second panel) ECGs, with corresponding means (third panel).

the massive methodological and theoretical development of statistical inference for
functional data, testing hypothesis on the distribution of stochastic processes gener-
ating two samples of curves has received little attention. The generalization to the
inference on processes with cladag trajectories is the object of future work together
with the study of properties of Skorohod distance in this wider context.
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A Auxiliary results

In this section, we present some auxiliary results that are required to prove the
main theorems of the paper, whose proofs are gathered in Appendix B. Specifically,
Theorem A.1 represents the crucial result to prove the asymptotic distributions of
dp(X̄,m) and dp(X̄,m0) presented in (3.3) and (3.4) in Theorem 3.2. Naturally, the
analogous results for two populations and unknown covariance function presented
in Theorem 3.4 and 3.5, respectively, require Theorem A.1 as well. Theorem A.1 is
presented below in a very general framework.
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Test on the means of two populations

Level of the test α = 0.05
Size of the samples n1 = n2 = 100

Test Statistics T0,p={0.00001,1} = {196.40, 1979.73}
Quantiles ξ̂0.05,p=={10−5,1} =

{
2.22 ∗ e−3, 16.39

}

Further parameters

Time grid T = [0; 1024]
Truncation parameter k = 200
Tuning parameter p =

{
10−5, 1

}

Tab. 1: Parameters settings for the test of the means of two populations of
stochastic processes with different unknown covariances.

Theorem A.1 Let {Wn;n ≥ 1} be a real-valued random sequence. Consider two
sequences of continuous random variables {Xj,n; j, n ≥ 1} and {Yj,n; j, n ≥ 1} such
that Wn = Xj,n + Yj,n for any j, n ≥ 1. Assume the following results hold

(a) supn≥1{E[|Yj,n|]} −→j 0;

(b) for any j ≥ 1, there exists a r.v. Xj such that Xj,n
D−→n Xj;

(c) there exists a continuous r.v. X such that Xj
D−→j X;

(d) there exists a constant M > 0 such that P (X ∈ I) ≤ M |I| for any interval
I ⊂ R, where |I| is the length of I.

Then,

Wn
D−→ X. (A.1)

Proof. To prove (A.1), we fix t ∈ R and we show that, for any ǫ > 0,

lim
n→∞

|P (Wn ≤ t)− P (X ≤ t) | ≤ ǫ.

To this end, we establish the following

(1) limn→∞ P (Wn ≤ t) ≥ P (X ≤ t)− ǫ;

(2) limn→∞ P (Wn ≤ t) ≤ P (X ≤ t) + ǫ.

Part (1)
For any j ∈ N and ν > 0, since Wn = Xj,n + Yj,n we have

{Wn ≤ t} ⊃ {Xj,n ≤ t− ν}
⋂

{|Yj,n| < ν} ,

which implies the following

P (Wn ≤ t) ≥ P (Xj,n ≤ t− ν)− P (|Yj,n| > ν) . (A.2)

We will show that for large values of j and n, the term P (|Yj,n| > ν) is arbitrary
small and P (Xj,n ≤ t− ν) is arbitrary close to P (X ≤ t).
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Fig. 4: Results of the nonparametric testing procedure proposed in Pini et
al (2013).

Now, we present a list of preliminary results to make the proof easier to read.
Choose ν := ǫ(3M)−1 and, by applying Markov’s inequality, note that

P (|Yj,n| > ν) ≤ ν−1 ·E[|Yj,n|] ≤ ν−1 · sup
n≥n0

{E[|Yj,n|]};

now, from (a) there exists j1 ≥ 1 such that supn≥n0
{E[|Yj,n|]} ≤ ǫ2/(9M) for any

j ≥ j1; hence

P (|Yj,n| > ν) ≤ 3M

ǫ
· ǫ2

9M
= ǫ/3, (A.3)

for any j ≥ j1. Moreover, from (c), there exists j2 ≥ 1 such that

|P (Xj ≤ t− ν)− P (X ≤ t− ν) | ≤ ǫ/3, (A.4)

for any j ≥ j2; then, from (d), we have that

|P (X ≤ t− ν)− P (X ≤ t) | ≤Mν = ǫ/3. (A.5)

Now, consider (A.2) and fix j ≥ max{j1; j2}. From (b) and (A.3) we have that

lim
n→∞

P (Wn ≤ t) ≥ P (Xj ≤ t− ν)− ǫ/3.

Moreover, from (A.4), we can obtain

lim
n→∞

P (Wn ≤ t) ≥ P (X ≤ t− ν)− 2ǫ/3.
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Finally, by using (A.5), we get

lim
n→∞

P (Wn ≤ t) ≥ P (X ≤ t)− ǫ.

Part (2)
The proof of this part is analogous to the previous one, once we note that

{Wn ≤ t} ⊂ {Xj,n ≤ t+ ν}
⋃

{|Yj,n| > ν} ,

which implies

P (Wn ≤ t) ≤ P (Xj,n ≤ t+ ν) + P (|Yj,n| > ν) .

Then, from (A.3) we get P (|Yj,n| > ν) ≤ ǫ/3 and by introducing results analogous
to (A.4) and (A.5) we can obtain P (Xj,n ≤ t+ ν) ≤ P (X ≤ t) + 2ǫ/3, which
concludes the proof.

Here, we present a Lemma required to prove the asymptotic results with esti-
mated covariance function that are presented in Theorem 3.5. This result has been
proved in Ghiglietti and Paganoni (2014), as Theorem 4.1.

Lemma A.2 Let {(Yn,Wn);n ≥ 1} be a pair of real-valued stochastic processes
such that

sup
n≥1

{
E
[
‖Yn −Wn‖4

] }
< ∞, (A.6)

and ∑

k=1

Sk <∞, Sk := sup
n≥1

E

[
(〈Yn −Wn, ϕk〉)2

]
, (A.7)

Then, we have that

E

[
|d̂2p(Yn,Wn)− d2p(Yn,Wn)|

]
→n 0. (A.8)

B Proof of main results

Proof. [Proof of Theorem 3.1] Since dp
(
X̄n,m0

)
is a non negative quantity, then (3.1)

is equivalent to prove that

d2p
(
X̄n,m0

) a.s.−→ d2p (m,m0) . (B.1)

By noting that

d2p
(
X̄n,m0

)
= d2p

(
X̄n −m+m,m0

)
=

∞∑

k=1

(
〈X̄n −m,ϕk〉+ 〈m−m0, ϕk〉

)2 hk(p)
λk

,

we obtain the following decomposition

d2p
(
X̄n,m0

)
− d2p (m,m0) = d2p

(
X̄n,m

)

+ 2
∞∑

k=1

(
〈X̄n −m,ϕk〉〈m−m0, ϕk〉

) hk(p)
λk

.
(B.2)
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From (B.2), we have that (B.1) can be obtained by establishing these two results

dp
(
X̄n,m

) a.s.−→ 0. (B.3)

∞∑

k=1

(
〈X̄n −m,ϕk〉〈m−m0, ϕk〉

) hk(p)
λk

a.s.−→ 0, (B.4)

First, consider (B.3). Using the equivalence among the distance dp and the
usual-L2 metric shown in (2.5), we have that

dp
(
X̄n,m

)
≤ p · ‖X̄n −m‖ a.s.−→ 0.

Then, consider (B.4). By using Holder’s inequality and hk(p)/λk ≤ p, we have
that the left hand side of (B.4) is less or equal to

p ·

√√√√
∞∑

k=1

(
〈X̄n −m,ϕk〉

)2 ·

√√√√
∞∑

k=1

(〈m−m0, ϕk〉)2 = p · ‖X̄n −m‖ · ‖m−m0‖,

which tends to zero almost surely since ‖X̄n−m‖ a.s.−→ 0. This concludes the proof.

Proof. [Proof of Theorem 3.2] The proofs of both (3.3) and (3.4) are realized by
applying Theorem A.1 to the corresponding random sequences.

We start by proving (3.3). Since
√
ndp

(
X̄n,m

)
is a non negative quantity,

then (3.3) is equivalent to prove that

n · d2p
(
X̄n,m

) D−→ ψ2
p, (B.5)

where we recall that ψ2
p =

∑∞
k=1 χ

2
1,khk(p). Using the notation of Theorem A.1, we

define
Wn := n · d2p

(
X̄n,m

)
,

Xj,n := n ·
j∑

k=1

(
〈X̄n −m,ϕk〉

)2
hk(p)/λk,

Yj,n := n ·
∞∑

k=j+1

(
〈X̄n −m,ϕk〉

)2
hk(p)/λk,

Xj :=

j∑

k=1

χ2
1,khk(p),

X :=

∞∑

k=1

χ2
1,khk(p).

Then, once we prove that the assumptions of Theorem A.1 are satisfied, from

Theorem A.1 we have that Wn
D−→ X , that is (B.5), and the proof of (3.3) is so

concluded. We now show that the conditions (a)-(b)-(c)-(d) of Theorem A.1 hold:

(a) since E [|Yj,n|] =
∑∞

k=j+1 hk(p) for any n ≥ 1, we have that

sup
n≥1

{E[|Yj,n|]} →j 0;
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(b) note that Xj,n can be written as Xj,n =
∑j

k=1 Z
2
k,nhk(p) where

Zk,n :=

(
〈X̄n −m,ϕk〉√

λk/n

)
= n−1/2

n∑

i=1

( 〈Xi −m,ϕk〉√
λk

)
.

Since X1, .., Xn are i.i.d., using the multivariate CLT, the j-vector Zn :=
(Z1,n, .., Zj,n)

′ converges in distribution to a standard Gaussian vector. Hence,
the processes Z1,n, .., Zj,n are asymptotically independent and, for each k =

1, .., j, Z2
k,n

D−→n χ
2
1; as a consequence, Xj,n

D−→n Xj ;

(c) we can prove Xj
D−→j X by showing that |X −Xj|

p−→j 0 as follows

E [|X −Xj |] = E




∞∑

k=j+1

χ2
1,khk(p)


 =

∞∑

k=j+1

hk(p) −→j 0;

(d) to prove this condition, call µ1 and µ−1 the probability laws of χ2
1,1h1(p)

and
∑

k≥2 χ
2
1,khk(p), respectively; note that X is the sum of these two inde-

pendent variables. Since χ2
1,1h1(p) is a continuous random variable, we can

denote by f1 its density and, for any interval I ⊂ R, we can write

P (X ∈ I) =

∫

I

(∫ ∞

0

f1(x− y)µ−1(dy)

)
dx.

Now, calling M := maxx∈R{f1(x)} we obtain

P (X ∈ I) ≤
∫

I

(∫ ∞

0

Mµ−1(dy)

)
dx = M |I|.

This concludes the proof of (3.3).
Now, we focus on proving (3.4). First, note that

(
dp
(
X̄n,m0

)
− dp (m,m0)

)
=

(
d2p
(
X̄n,m0

)
− d2p (m,m0)

dp
(
X̄n,m0

)
+ dp (m,m0)

)
;

then, since dp
(
X̄n,m0

) a.s.−→ dp (m,m0) from Theorem 3.1, by applying Slutsky’s
Theorem we have that equation (3.4) can be obtain by establishing that

√
n ·
(
d2p
(
X̄n,m0

)
− d2p (m,m0)

) D−→ 2d̃p (m,m0) · Z. (B.6)

Moreover, by using decomposition (B.2) we can show (B.6) by establishing that

√
n ·

∞∑

k=1

(
〈X̄n −m,ϕk〉〈m−m0, ϕk〉

) hk(p)
λk

D−→ d̃p (m,m0) · Z, (B.7)

since by applying Slutsky’s Theorem to (3.3) we have that
√
n · d2p

(
X̄n,m

) p−→ 0.
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To prove (B.7), we apply Lemma A.1 with the following notation:

Wn :=
√
n ·

∞∑

k=1

(
〈X̄n −m,ϕk〉〈m−m0, ϕk〉

) hk(p)
λk

,

Xj,n :=
√
n ·

j∑

k=1

(
〈X̄n −m,ϕk〉〈m−m0, ϕk〉

) hk(p)
λk

,

Yj,n :=
√
n ·

∞∑

k=j+1

(
〈X̄n −m,ϕk〉〈m−m0, ϕk〉

) hk(p)
λk

,

Xj :=

√√√√
j∑

k=1

(〈m−m0, ϕk〉)2
h2k(p)

λk
· Z,

X := d̃p (m,m0) · Z,
where Z denotes a standard normal variable. Then, once we prove that the assump-

tions of Theorem A.1 are satisfied, from Theorem A.1 we have that Wn
D−→ X .

This result is equal to (B.7) and the proof of (3.4) is so concluded. We now show
that the conditions (a)-(b)-(c)-(d) of Theorem A.1 hold:

(a) using Cauchy-Schwartz inequality to Yj,n and since hk(p)/λk ≤ p, we obtain

E [|Yj,n|] ≤ p ·

√√√√
∞∑

k=j+1

E
[(√

n〈X̄n −m,ϕk〉
)2] ·

√√√√
∞∑

k=j+1

(〈m−m0, ϕk〉)2,

for any n ≥ 1. Then, since E
[(√

n〈X̄n −m,ϕk〉
)2]

= λk, we have that

sup
n≥1

{E[|Yj,n|]} ≤ p ·

√√√√
∞∑

k=j+1

λk · ‖m−m0‖ −→j 0;

(b) note that Xj,n can be written as

Xj,n =

j∑

k=1

Zk,n (〈m−m0, ϕk〉)
hk(p)√
λk

,

where

Zk,n :=

(
〈X̄n −m,ϕk〉√

λk/n

)
= n−1/2

n∑

i=1

( 〈Xi −m,ϕk〉√
λk

)
.

Since X1, .., Xn are i.i.d., using the multivariate CLT, the j-vector Zn :=
(Z1,n, .., Zj,n)

′ converges in distribution to a standard Gaussian vector. Hence,
the processes Z1,n, .., Zj,n are asymptotically independent and, for each k =

1, .., j, Zk,n
D−→n Z; as a consequence, Xj,n

D−→n Xj ;

(c) the proof of this condition follows by applying Slutsky’s Theorem and by
noting that

√√√√
j∑

k=1

(〈m−m0, ϕk〉)2
h2k(p)

λk
→j d̃p (m,m0) ;
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(d) since X is a continuous random variable, the proof of this condition fol-
lows by taking M equal to the maximum of the density of X , i.e. M :=
(2πd̃2p (m,m0))

−1/2.

This concludes the proof of (3.4).

Proof. [Proof of Theorem 3.4] In this proof, all the asymptotic results are con-
sidered for N = n1 + n2 going to infinity, where we assume that N → ∞ implies
that both n1 and n2 increase to infinity. Moreover, we present the proofs by as-
suming that condition (c2) is satisfied in Assumption 1. In this case, we recall that
{λk; k ≥ 1} and {ϕk; k ≥ 1} denote the sequences of the eigenvalues and the eigen-
functions, respectively, of the covariance function defined as v = (1 − c)v1 + cv2,
where c ∈ (0, 1) is such that cN = n1/N →N c, which is guaranteed by (c2). These
eigenvalues and eigenfunctions generate the distance dp defined in (2.4). If (c2) is
not satisfied, then (c1) holds in Assumption 1 and the proofs of the same results
are obtained through slight modifications of the proofs presented here.

The convergence result (3.6) is a generalization to two functional populations
of the result (3.1) shown in Theorem 3.1. Hence, the proof of (3.6) follows the
same arguments used in the proof of Theorem 3.1, where we replace X̄n with
(X̄1n1

− X̄2n2
), m with (m1 − m2), m0 with 0, n with (1/n1 + 1/n2)

−1 and we
frequently use the relation dp(x, y) ≡ dp(x− y, 0) for any x, y ∈ L2(T ).

Analogously to the previous case, results (3.7) and (3.8) are generalizations for
two functional populations of the results (3.3) and (3.4) shown in Theorem 3.2.
Hence, the proofs of (3.7) and (3.8) follow the same arguments used in the proof
of Theorem 3.2, where the notation have been changed similarly as we have done
above to prove (3.6). Therefore, we only discuss the parts of the proof where the
modifications from the proof of Theorem 3.2 are more relevant. Specifically, we
present how to verify that the assumptions (a) and (b) of Theorem A.1 hold in the
cases m1 = m2 and m1 6= m2.

First, consider the proof of (3.7), i.e. m1 = m2; we can show the following
results:

(a) Consider

Yj,N :=

(
1

n1
+

1

n2

)−1

·
∞∑

k=j+1

( 〈X̄1n1
− X̄2n2

, ϕk〉√
λk

)2

hk(p).

We that remind condition (a) in this case is supN≥1{E[|Yj,N |]} −→j 0. Let
us introduce the following notation: ν1,k = 〈v1ϕk, ϕk〉 and ν2,k = 〈v2ϕk, ϕk〉.
Then, we have that E[|Yj,N |] =∑∞

k=j+1 ρN,khk(p), where

ρN,k :=
(1/n1 + 1/n2)

−1E[(〈X̄1n1
− X̄2n2

, ϕk〉)2]
λk

;

since the covariance function of (1/n1 + 1/n2)
−1/2 · (X̄1n1

− X̄2n2
) is (1 −

cN )v1 + cNv2, we have that

ρN,k =
(1− cN )ν1,k + cNν2,k

λk
=

(1 − cN )ν1,k + cNν2,k
(1 − c)ν1,k + cν2,k

,

because λk = 〈vϕk, ϕk〉 and c is defined in Assumption 1. Since for any k ≥ 1
we have that

ρN,k ≤ 1− cN
1− c

+
cN
c

→N 2,
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we obtain that supN≥1{E[|Yj,N |]} −→j 0 and condition (a) is verified;

(b) Consider

Xj,N :=

(
1

n1
+

1

n2

)−1

·
j∑

k=1

( 〈X̄1n1
− X̄2n2

, ϕk〉√
λk

)2

hk(p).

We remind condition (b) is Xj,N
D−→N Xj , where Xj =

∑j
k=1 χ

2
1,khk(p). We

note that Xj,N can be written as Xj,N =
∑j

k=1 Z
2
k,Nhk(p), where

Zk,N :=

(
1

n1
+

1

n2

)−1/2( 〈X̄1n1
− X̄2n2

, ϕk〉√
λk

)
.

Note that, since m1 = m2, for any k ∈ {1, .., j}, Zk,N can also be written as
follows

(1−cN)−1/2·n−1/2
1 ·

n1∑

i=1

( 〈X1i −m1, ϕk〉√
λk

)
+c

−1/2
N ·n−1/2

2 ·
n2∑

i=1

( 〈X2i −m2, ϕk〉√
λk

)
,

which is a linear combination of two independent sequence of random vari-
ables. Thus, by using the multivariate CLT, the j-vectorZN := (Z1,N , .., Zj,N )′

converges in distribution to a Gaussian vector with zero mean. Now, we need
to determine the asymptotic covariance matrix of ZN . From case (a), we
have that V ar[Zk,N ] = ρN,k −→N 1 for any k = 1, .., j. Moreover, calling
for i 6= k ν1,ik := 〈v1ϕi, ϕk〉 and ν2,ik := 〈v2ϕi, ϕk〉, we obtain

Cov[Zi,N , Zk,N ] = (λiλk)
−1/2[(1 − cN )ν1,ik + cNν2,ik].

Since 〈vϕi, ϕk〉 = (1− c)ν1,ik + cν2,ik = 0 by definition of eigenfunctions, we
can write

Cov[Zi,N , Zk,N ] = (λiλk)
−1/2ν1,ik

[
−c
(
1− cN
1− c

)
+ cN

]
−→N 0.

Hence, ZN converges in distribution to a standard Gaussian vector, so that

Z2
k,N

D−→N χ2
1; as a consequence, Xj,N

D−→N Xj .

Then, we can apply Theorem A.1 and the proof of (3.7) is concluded.
The proof of (3.8), i.e. whenm1 6= m2, follows analogous arguments of the proof

of (3.4) shown in Theorem 3.2. In the case m1 6= m2, the validity of conditions
(a) and (b) are obtained by following the proof of (3.4) combined with similar
modifications to those reported above in the proof of (3.7).

Proof. [Proof of Theorem 3.5] All the results proposed in Theorem 3.5 can be
proved by applying Lemma A.2 to the results presented in Theorem 3.1 and 3.2.
Here, we show how to use Lemma A.2 to obtain such results.

First, consider (3.10) which follows by combining (3.1) and (A.8), with Yn = X̄n

and Wn = m0; condition (A.7) of Lemma A.2 needed to use (A.8) is verified since
in this case

Sk = (〈m−m0, ϕk〉)2 + sup
n≥1

{
λk
n

}
= (〈m−m0, ϕk〉)2 + λk,
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and so
∑

k Sk <∞.
Same arguments can be applied for (3.11), which follows from (3.3) and (A.8),

with Yn =
√
nX̄n and Wn =

√
nm, since

Sk = sup
n≥1

{
n · E

[(
〈X̄n −m,ϕk〉

)2]}
= λk,

and so
∑

k Sk <∞.
Then, consider (3.12) and note that

√
n·
(
d̂2p
(
X̄n,m0

)
− d̂2p (m,m0)

)
=

√
n

∞∑

k=1

[(
〈X̄n −m0, ϕ̂k〉

)2 − (〈m−m0, ϕ̂k〉)2
] ĥk(p)

λ̂k
,

with the convention ĥk(p)

λ̂k

= p for k ≥ n. Now, for each k ≥ 1 we can write

√
n
[(
〈X̄n −m0, ϕ̂k〉

)2 − (〈m−m0, ϕ̂k〉)2
]

=

√
n
(
〈X̄n −m, ϕ̂k〉

)2
+ 2

√
n
(
〈X̄n −m, ϕ̂k〉

)
(〈m−m0, ϕ̂k〉) ,

and, by adding and subtracting n ·
(
〈X̄n −m, ϕ̂k〉

)2
and (〈m−m0, ϕ̂k〉)2, we get

=(
√
n− n)

(
〈X̄n −m, ϕ̂k〉

)2
+ n

(
〈X̄n −m, ϕ̂k〉

)2
+ 2

√
n
(
〈X̄n −m, ϕ̂k〉

)
(〈m−m0, ϕ̂k〉)

+ (〈m−m0, ϕ̂k〉)2 − (〈m−m0, ϕ̂k〉)2 .

From this, we can obtain the following decomposition

√
n ·
(
d̂2p
(
X̄n,m0

)
− d̂2p (m,m0)

)
= A1,n +A2,n +A3,n

where
A1,n := (

√
n− n)d̂2p

(
X̄n,m

)
,

A2,n := d̂2p
(√
n(X̄n −m) +m,m0

)
,

A3,n := − d̂2p (m,m0) .

By using previous calculations, it can be shown that condition (A.7) of Theorem A.2
is verified by all the sequences A1,n, A2,n and A3,n. Thus, by applying Lemma A.2

to the sequences A1,n, A2,n and A3,n, we have that
√
n·
(
d̂2p
(
X̄n,m0

)
− d̂2p (m,m0)

)

and
√
n ·
(
d2p
(
X̄n,m0

)
− d2p (m,m0)

)
have the same asymptotic distribution, i.e.

from (B.6)

√
n ·
(
d̂2p
(
X̄n,m0

)
− d̂2p (m,m0)

)
D−→ d̃p (m,m0) · Z.

Finally, from the relation

(
d̂p
(
X̄n,m0

)
− d̂p (m,m0)

)
=

(
d̂2p
(
X̄n,m0

)
− d̂2p (m,m0)

)

(
d̂p
(
X̄n,m0

)
+ d̂p (m,m0)

) ,

we can use Slutsky’s Theorem and (3.10) to get (3.12).
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