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Abstract

In this work we consider the random discrete L
2 projection on polynomial spaces

(hereafter RDP) for the approximation of scalar Quantities of Interest (QOIs) re-
lated to the solution of a Partial Differential Equation model with random input
parameters. The RDP technique consists of randomly sampling the input param-
eters and computing the corresponding values of the QOI, as in a standard Monte
Carlo approach. Then, the QOI is approximated as a multivariate polynomial
function of the input parameters by a discrete least squares approach.

We consider several examples including the Darcy equations with random
permeability; the linear elasticity equations with random elastic coefficient; the
Navier-Stokes equations in random geometries and with random fluid viscosity.

We show that the RDP technique is well suited for QOIs that depend smoothly
on a moderate number of random parameters. Our numerical tests confirm the
theoretical findings in [14], which have shown that, in the case of a single random
parameter uniformly distributed, the RDP technique is stable and optimally con-
vergent if the number of sampling points scales quadratically with the dimension
of the polynomial space. However, in the case of several random input parame-
ters, numerical evidence shows that this condition could be relaxed and a linear
scaling seems enough to achieve stable and optimal convergence, making the RDP
technique very promising for high dimensional uncertainty quantification.

Keywords: PDE stochastic data, polynomial approximation, discrete least squares.

AMS Subject Classification: 41A10, 65N35.

1 Introduction

In the last years, the modeling of uncertainty in mathematical models has attracted a lot
of attention in the scientific community. When a probabilistic framework is considered,
uncertainty in the model parameters is modeled in terms of random variables. The
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underlying challenge concerns the accurate and efficient approximation of the model
outcome in presence of many random input parameters. In the context of PDE’s with
stochastic data, a well-established technique that has been employed in many engi-
neering applications [8, 12, 9] consists in the use of a spectral expansion to represent
the input/output dependence; see e.g. [10, 16, 13]. Once such an expansion has been
computed by some means, statistics of the model output can be easily recovered. The
random discrete L2 projection (RDP), also known as regression or point collocation ap-
proach, has been proposed in the context of applications devoted to uncertainty analysis
in [12, 3, 7] as a tool to compute the spectral expansion of the model response. The re-
gression approach is based on the evaluation of the target output function on randomly
selected points, and aims to improve the slow convergence of the classical Monte-Carlo
method by performing a discrete projection onto a multivariate polynomial space. It
differs from other techniques based on a deterministic choice of the points where to
evaluate the function, also known as Collocation methods on Sparse Grids [4].

In [14, 5] the RDP was analyzed in the context of approximating a smooth aleatory
function in the L2 probability sense. This approximation problem falls in the field of
non-parametric regression with random design, and when noise is present there exist
well-known estimates for the approximation error [11]. The RDP of a given aleatory
function, consists in its discrete L2 projection over a polynomial space, and is computed
evaluating the target function point-wise in randomly selected points of the parameter
space. The evaluations are assumed to be noise-free. The stability and convergence
properties of RDP are analyzed in [14, 5]. Under some assumptions on the probability
density, it is proved in these works that, in one dimension and when the number of
sampling points scales quadratically with respect to the dimension of the polynomial
space, the RDP converges at the optimal convergence rate, i.e. the error is equivalent
up to a constant to the best approximation error of the target function in the chosen
polynomial space. Several numerical tests show the capabilities of the method, and
highlight the influence of the dimension of the parameter space and of the smoothness
of the target function on the achieved convergence rate.

The present work focuses on the application of RDP to the approximation of quan-
tities of interest related to the solution of PDEs with stochastic data. The aleatory
function is defined as an integral of the solution of the PDE over a portion of the
physical domain. We begin by considering the Darcy model with a random diffusion
coefficient, parametrized in a one-dimensional parameter space. The randomness affects
the value of the coefficient in a particular region of the physical domain, for instance
an inclusion. Then we investigate the same example, but when the randomness affects
the location where the diffusion coefficient is discontinuous. In particular, this example
treats an inclusion with a random domain, i.e. the geometrical shape of the domain is
parametrized in terms of a random variable.

Next, we move to higher dimensional parameter spaces, always choosing the poly-
nomial space to be the isotropic Total Degree space. This choice is well motivated in
those cases where the target function depends analytically on each input parameter with
analyticity region not affected by the other parameters [2]. We consider a Darcy model
with a random diffusion coefficient parametrized in a five-dimensional parameter space,
increasing the number of nonoverlapping inclusions that are displaced in the physical
domain to five.

Lastly, we consider two more complex vectorial problems: the Navier-Lamé equations
that govern the bending of a cantilever beam in the regime of linear elasticity, and the
incompressible Navier-Stokes equations that govern the motion of a viscous fluid in a
pipe. Both examples contain uncertainty in the model parameters: the Young modulus
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in the former, and the viscosity and the geometry of the domain in the latter.
All examples of the elliptic class presented in this paper, with one-dimensional pa-

rameter space, validate the theoretical results outlined in [14, 5]. In particular, a number
of sampling points proportional to the square of the dimension of the polynomial space
always yields optimal convergence, as predicted by the theory. Moreover, when the
function to approximate is smooth, an optimal convergence is observed up to a certain
threshold, even if the number of sampling points is only linearly proportional to the
dimension of the polynomial space. Beyond such threshold, the error starts diverging.
The same holds in higher dimensional parameter spaces. As pointed out in [14], when
the dimension gets higher, the sample points naturally spread over the whole parameter
space, and the RDP becomes more stable even when the number of sample points is
only linearly proportional to the dimension of the polynomial space. In this case op-
timal convergence rate for smooth functions has always been achieved, in all ranges of
polynomial space dimensions tested (i.e. no blow up has been observed).

The previous give indications on the correct amount of “regularization” needed to
achieve the optimal convergence rate, that is how much smaller the number of degrees
of freedom necessary to parametrize the polynomial space has to be with respect to
the number of sampling points. In this sense, the one-dimensional case is the most ill-
conditioned case, making the RDP more promising in high dimensional approximation
problems.

The outline of the paper is the following: in Section 2 we introduce the formula-
tion of the random discrete L2 projection and recall the main results obtained in [14]
concerning stability and optimality. In Section 3 the numerical examples are presented.
Examples 1,2,3 are based on the Darcy model with random permeability. Example 4
and 5 address the linear elasticity equations with random elastic coefficient, and Navier-
Stokes equations in random geometries and with random fluid viscosity. Finally, in
Section 4 we draw some conclusions.

2 The random discrete L
2 projection on polynomial

spaces

In this section, we review in abstract settings the formulation of the random discrete
L2 projection and recall the main results obtained in [14]. The technique will then be
applied to PDEs with random data in Section 3.

Let Γ ⊆ R
N be an N-dimensional subset of the N-dimensional Euclidean space, with

a tensor structure form Γ = Γ1 × · · · ×ΓN . Denote by ρ : Γ → R
+ a probability density

function over Γ, and by Y = (Y1, . . . , YN ) a vector of N random variables, taking values
in Γ and distributed according to the density ρ.

We consider a random variable Z = φ(Y), where φ : Γ → R is assumed to be a
smooth function, and we are interested in computing statistical moments of Z. This
will be achieved by first constructing a reduced model; i.e. we approximate the function
φ(Y1, . . . , YN ) by a suitable multivariate polynomial φΛ(Y1, . . . , YN ). We then compute
statistical moments using the approximate function φΛ.

We denote by

E[Z] :=

∫

Γ

φ(Y)ρ(Y)dY
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the expected value of the random variable Z = φ(Y) and by

P (A) :=

∫

A

ρ(Y)dY

the probability of the event A ∈ B(Γ), where B(Γ) is the Borel σ-algebra with respect
to the measure ρ(Y)dY. Throughout the paper we also assume that:

Assumption 1 Γ is a bounded set, and 0 < ρmin ≤ ρ(y) ≤ ρmax < ∞, ∀y ∈ Γ.

Remark 1 This assumption excludes e.g. the normal and lognormal cases, since these
densities are not bounded away from zero due to their unbounded support. Assumption 1
is needed only in the proof of Theorem 2 (see Section 2.2). The Propositions 2, 1 and
Theorem 1 hold also with the normal and lognormal densities. The proofs of these results
are presented in [14].

We introduce the space L2
ρ of square integrable functions f : Γ → R, endowed with

the norm

‖f‖L2
ρ
=

(∫

Γ

f2(Y)ρ(Y)dY

)1/2

.

Let p = (p1, . . . , pN ) be a multi-index and Λ ⊂ N
N a set of multi-indices. In the

sequel we consider only sets Λ that are monotone in the following sense:

Property 1 (Monotonicity of Λ) Consider two multi-indices p′,p′′ ∈ N
N such that

p′′n ≤ p′n, ∀n = 1, . . . , N . The multi-index set Λ is monotone if the following holds:

p′ ∈ Λ =⇒ p′′ ∈ Λ.

We denote by PΛ(Γ) the multivariate polynomial space

PΛ(Γ) = span

{
N∏

n=1

ypn

n , with p ∈ Λ

}
, (1)

and by #Λ = dim(PΛ) the dimension of the polynomial space, which corresponds to
the cardinality of the multi-index set Λ. For convenience, the set Λ can be arranged in
lexicographical order, and according to this order, we can denote by pj the j-th multi-
index of Λ. Sometimes we refer to the elements of Λ with the generic multi-index p,
rather than listing them by the lexicographical index.

Since the monomial basis in (1) is very ill-conditioned, in practice we use an orthonor-
mal polynomial basis. A typical choice is to take orthogonal polynomials with respect
to the measure ρ(Y)dY. We introduce an N-dimensional orthonormal polynomial basis

{lj}#Λ
j=1 of PΛ with respect to the weighted inner product

(u, v)L2
ρ
=

∫

Γ

u(Y)v(Y)ρ(Y) dY,

i.e. (li, lj)L2
ρ
= δij . Assumption 1 ensures that the orthonormal basis is complete in L2

ρ

when Λ = N
N .

In the particular case where the density factorizes as ρ(Y) =
∏N

n=1 ρn(Yn) the basis
can be constructed by tensorizing 1D orthogonal polynomials with respect to each weight
ρn separately. Given n, let {ϕn

j (·)}j be the orthogonal polynomials with respect to ρn.



Polynomial approximation of QOI in SPDEs by the random discrete L2 projection 5

The jth multi-index pj ∈ Λ is associated to the corresponding jth multidimensional
basis function by

lj(Y) =

N∏

n=1

ϕn
pj
n
(Yn). (2)

Thus, using the basis functions provided by (2), the definition (1) of PΛ becomes

PΛ(Γ) = span{lj , j = 1, . . . ,#Λ}, (3)

and of course dim(PΛ) = #Λ. Observe that in general (1) and (3) are equivalent only
if the index set Λ satisfies the Monotonicity Property 1.

We consider a random sample y1, . . . ,yM (with independent variables) of size M ≥
#Λ of the random variable Y, and then evaluate the function φ point-wise at each value
yi, i = 1, . . . ,M .

Finally, we compute a discrete least square approximation of the values φ(yi) in the
polynomial space PΛ, i.e.

φΛ = ΠΛ,ω
M φ = argmin

v∈PΛ(Γ)

1

M

M∑

i=1

(φ(yi)− v(yi))
2. (4)

We will use the superscript (or subscript) ω to denote a quantity that depends on the
random sample y1, . . . ,yM (and therefore is random itself).

We now introduce the random discrete inner product

(u, v)M,ω =
1

M

M∑

i=1

u(yi)v(yi), (5)

that induces on Γ the corresponding discrete norm ‖u‖M,ω = (u, u)
1/2
M,ω. With this

notation we can write (4) as

find ΠΛ,ω
M φ ∈ PΛ(Γ) s.t. (φ−ΠΛ,ω

M , v)M,ω = 0, ∀ v ∈ PΛ(Γ).

2.1 Common multivariate polynomial spaces

Some of the most common choices of function spaces are Tensor Product, Total Degree,
and Hyperbolic Cross, which are defined by the index sets below. We index the set Λ
by the subscript w, that denotes the maximum polynomial degree used:

Tensor Product (TP), Λw =
{
p ∈ N

N : max
n=1,...,N

pn ≤ w
}
, (6)

Total Degree (TD), Λw =
{
p ∈ N

N :
N∑

n=1

pn ≤ w
}
, (7)

Hyperbolic Cross (HC), Λw =
{
p ∈ N

N :

N∏

n=1

(pn + 1) ≤ w+ 1
}
. (8)

These spaces are isotropic in the sense that the maximum polynomial degree w is the
same in all variables Y1, . . . , YN . The dimensions of TP and TD spaces are

#TP (w, N) = (w + 1)N , (9)
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#TD(w, N) =

(
N +w

N

)
. (10)

The dimension of the HC space is harder to quantify, so we report its exact dimension
#HC(w, N) in Fig. 1, computed for some values of w and N . An upper bound is given
by

#HC(w, N) ≤
⌊
(w + 1) · (1 + log(w + 1))

N−1

⌋
. (11)

This bound is sharp for N = 2 and becomes very conservative as N increases.
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Figure 1: Dimension of the HC space, N = 2, 5, 10, 15, 20, 50, 100.

2.2 Stability and convergence rate of the random discrete L
2

projection

Here we recall some theoretical results concerning the discrete L2 projection, derived in
[14] and [5]. Let us first introduce the following quantity

Cω(M,Λ) := sup
v∈PΛ\{v≡0}

‖v‖2L2
ρ

‖v‖2M,ω

, (12)

that depends on the random sample and is therefore a random variable. The following
proposition states the optimality of the discrete L2 projection with respect to the L∞

norm, when the error is evaluated in the L2
ρ norm, that is:

Proposition 1 (see [14]) With Cω(M,Λ) defined as in (12), it holds

‖φ−ΠΛ,ω
M φ‖L2

ρ
≤
(
1 +

√
Cω(M,Λ)

)
inf

v∈PΛ(Γ)
‖φ− v‖L∞ . (13)

As a consequence, the convergence properties of the random discrete projection are
strictly related to the properties of the quantity Cω(M,Λ). The next theorem quantifies
the asymptotic behaviour of the random variable Cω(M,Λ).
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Theorem 1 (see [14]) Let Cω(M,Λ) be the random variable defined in (12). Then,
for any given Λ we have

lim
M→∞

Cω(M,Λ) = 1, a.s.

The previous proposition and theorem are general results on the discrete L2 pro-
jection: they hold in any dimension N , for any arbitrary N-dimensional monotone
multi-index set Λ, and for any density ρ.

When N = 1 and ρ = U([−1, 1]) a probability estimate has been proved in [14].
In this particular case the polynomial space is denoted by Pw rather than PΛ, because
the multi-index set Λ is just {1, . . . ,w} and its dimension #Λ = 1 + w. The following
theorem ensures the stability and accuracy of the discrete L2 projection, under the
condition M ∝ (#Λ)2:

Theorem 2 ([14]) For any α ∈ (0, 1), under the condition

M

3 log((M + 1)/α)
≥ 4

√
3w2 (14)

it holds

P

(
‖φ−Πw,ω

M φ‖L2
ρ
≤
(
1 +

√
3 log

M + 1

α

)
inf

v∈Pw

‖φ− v‖L∞

)
≥ 1− α. (15)

We remark that in practice condition (14) is equivalent to M ∝ (#Λ)2, since the effect
due to the presence of the nonoptimal logarithmic factor is often negligible. In [5] an
estimate in expectation for the error ‖φ−Πw,ω

M φ‖L2
ρ
has also been derived, showing that

it behaves as the L2 best approximation error under the same condition M ∝ (#Λ)2.
There exists also a general relation between the optimal convergence rate of the

random projection and its stability, which holds again in any dimension N and for any
Λ and ρ. The same random variable Cω, besides entering in the error estimate (13),
plays a role in the stability of the random projection, as stated in the next proposition.
As in [14], we denote by Dω the random design matrix associated to problem (4); its
elements are defined as [Dω]i,j = lj(yi).

Proposition 2 (From [14]) The spectral condition number (2-norm) of the matrix
(Dω)TDω is equal to

K
(
(Dω)TDω

)
= cω(M,Λ)Cω(M,Λ), (16)

where

cω(M,Λ) := sup
v∈PΛ\{v≡0}

‖v‖2M,ω

‖v‖2L2
ρ

. (17)

3 Parametric PDEs

In [14] we presented some numerical examples of RDP to approximate monovariate
and multivariate target functions φ = φ(Y) : Γ → R on polynomial spaces. The role of
smoothness was investigated. When using a relationM ∝ (#Λ)2 an optimal convergence
rate was always observed. On the other hand, when using a linear relation M ∝ #Λ
the optimal convergence rate was observed up to a certain threshold, after which the
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error starts increasing and eventually diverges. This effect was clearly observed in the
monovariate case. However, in higher dimensions the blow up of the error was not
observed in the range of practical polynomial degrees explored. As pointed out in [14],
the linear relation M ∝ #Λ seems therefore to be sufficient for all practical purposes to
achieve an accurate and stable approximation.

The aim of this paper is to test the RDP when the target function φ is related to
the solution of a stochastic PDE model. We focus on Quantities of Interest of integral
type over the spatial domain of the PDE model, such as the mean of the solution in
portions of the domain, the mean energy of the solution, or point-wise quantities such
as the maximum or minimum of the solution in the domain.

Consider a steady state PDE model,

L(y, u, f, g,Ω) = 0, (18)

defined on a bounded domain Ω ⊂ R
d and parametrized by y ∈ Γ ⊆ R

N , with u :
Ω × Γ → R its solution, f : Ω × Γ → R the forcing term, and g : ∂Ω × Γ → R

a suitable boundary condition. The following examples feature only two-dimensional
spatial domains Ω, i.e. d = 2. However, extensions to 3D problems are straightforward.
For the sake of notation, we will hereafter omit the dependence on the independent
variable x ∈ Ω. The domain may also depend on the parameter y, i.e. Ω = Ω(y).
Moreover, we assume that f and g satisfy proper conditions to make the whole model
well-posed in the sense of Hadamard.

Considering y as a realization of the random variable Y ∈ Γ distributed according
to the density ρ : Γ → R

+, the parametric model (18) can also be considered as a PDE
model with stochastic data.

We now proceed with some examples to illustrate the application of the RDP to
approximate Quantities of Interest depending on the solution of stochastic PDE’s. First
we focus on models in the elliptic class, where the solution typically depends smoothly
on the random variable, as proved in [6, 1].

The first three examples concern the Darcy flow in a medium containing some in-
clusions. The first and second examples have a one-dimensional stochastic parameter
space: in Example 1 the value of the diffusion coefficient is stochastic, while in Example
2 the geometrical shape of the inclusion is stochastic. In Example 3 we increase the
dimension of the parameter space to five.

Then we analyze the linear elasticity model and the incompressible Navier-Stokes
model. The former exhibits a highly regular dependence of the solution on the random
parameter affecting the Young’s modulus, while the latter shows some non-smooth QOIs.

To quantify the error ‖φ − ΠΛ,ω
M φ‖L2

ρ
committed by RDP we employ the cross-

validation procedure described in [14, Section 4]. In all the numerical tests we choose
100 cross-validation points. The stability of the random projection is quantified by the
(2-norm) condition number of the design random matrix Dω, as in [14, Section 4]. In

the convergence plots, the continuous lines mark the mean of the error ‖φ−ΠΛ,ω
M φ‖L2

ρ
,

or the mean of the condition number of the random design matrix, while the dashed line
mark the mean plus one standard deviation. The discretization of the PDE model over
the spatial domain Ω is obtained by means of the Finite Element method. In Examples
1,2,3,4 the P1 finite elements are used. In Example 5 the inf-sup compatible P2-P1
finite elements are used.
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3.1 Example 1: the Darcy flow in a domain with one inclusion

To start with, we consider an elliptic model on a bounded deterministic domain Ω ⊂ R
2,

with a random diffusion coefficient µ:




−∇ · (µ(x,y)∇u(x,y)) = 0, x in Ω, y ∈ Γ,

u(x,y) = g1(x), x on ∂Γ1 ∪ ∂Γ3, y ∈ Γ,

∂νu(x,y) = g2(x), x on ∂Γ2 ∪ ∂Γ4, y ∈ Γ.

(19)

We set problem (19) in a unitary square domain, with a circular inclusion ΩI with
radius 0.2, as shown in Fig. 2. The edges are labeled clockwise as Γ1,Γ2,Γ3,Γ4 starting
from the left. We impose nonhomogeneous Dirichlet conditions on the vertical edges,

Figure 2: Square domain Ω with a circular inclusion ΩI .

and homogeneous Neumann conditions on the horizontal ones, so to force a steady state
flow from left to right. The random diffusion coefficient depends on a uniform random
variable Y ∼ U(−1, 1), and is defined as

µ(x, Y ) =

{
exp(5Y ), ΩI ,

10−4, Ω \ ΩI .
(20)

Such a model for the coefficient can be employed in practical situations where the
value of the diffusion properties of the material are not accurately determined in a
given region of the physical domain, or when the value is a function of the outcome
of some stochastic process with a known underlying probability law. Notice that the
aforementioned diffusion coefficient may jump by more than 4 orders of magnitude from
the bulk to the inclusion.

The QOIs we analyze are defined by integrals of the solution over the physical do-
main. We consider the mean of the solution u in Ω,

QOI1(u) =
1

|Ω|

∫

Ω

u dx, (21)

the mean of |∇u|2 in Ω

QOI2(u) =
1

|Ω|

∫

Ω

|∇u|2 dx, (22)
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and the mean of the solution on the left boundary segment Γ1,

QOI3(u) =
1

|Γ1|

∫

Γ1

u dx. (23)

The numerical results obtained with a sample size chosen as M ∝ #Λ are reported
in Fig. 3. When the value of the proportionality constant c decreases too much, the
convergence rate achieved by the random projection is reduced, and the variability of the
error amplifies as well. Analogous results were shown in [14] for scalar target functions.

The optimal convergence rate in terms of w is shown in Fig. 4-left, obtained using
the quadratic rule M ∝ (#Λ)2. Note that the rule M = 20 · #Λ used in Fig. 3 uses
more points than the rule M = (#Λ)2 for the range of polynomial degrees considered.
So the corresponding curve in Fig. 3 can also be considered as the optimal convergence
rate. In addition, Theorem 2 tells us that with M ∝ (#Λ)3 we would converge with
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Figure 3: Example 1. Condition number and approximation errors averaged over 100
repetitions, M = c#Λ.

the same optimal rate given by M ∝ (#Λ)2. This is confirmed numerically, since the
convergence rates in Fig. 4-right and Fig. 4-left are the same.

To simplifly the comparison among the results obtained with M ∝ #Λ, M ∝ (#Λ)2,
and M ∝ (#Λ)3 we summarize the convergence plots in Fig. 5 putting M instead of
w on the abscissas. The optimal convergence rate, e.g. obtained with M = 1 · (#Λ)2,
is exponentially fast and monotonous w.r.t. the sample size M . Choosing a smaller
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Figure 4: Example 1. Approximation errors averaged over 100 repetitions, M = c·(#Λ)2

(left), M = c · (#Λ)3 (right).

sample size, e.g. M = 2 ·#Λ, yields a faster convergence up to a certain threshold, after
which the solution deteriorates. This effect is also seen in [14, Fig.8].
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Figure 5: Example 1. Approximation errors vs M for different choices of the sample
size, M = c · (#Λ)α. Same data as in Fig. 3 (top-right) and Fig. 4.

3.2 Example 2: the Darcy model in a domain with an inclusion

of random shape

The second example we consider is based on problem (19), but now we choose a deter-
ministic value of the diffusion coefficient µ as

µ(x,Y) =

{
1, ΩI ,

10−6, Ω \ ΩI ,
(24)

and the randomness is in the radius of the circular inclusion ΩI , which is centered
in (0.4, 0.4) and has a radius R which is determined by the uniform random variable
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Y ∼ U(−1, 1) as R = (Y +2)/10. For each realization of the random variable we remesh
the whole domain. The motivations for this example are to investigate the effect of a
discontinuity of the diffusion coefficient with random location in the physical domain.
The discontinuity consists in the boundary of the inclusion where the diffusion coefficient
jumps by six orders of magnitude. The QOIs considered are the same as in Example 1.
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Figure 6: Example 2. Condition number and approximation errors averaged over 100
repetitions, M = c · (#Λ)2.

In Fig. 6 we observe an exponential convergence up to w = 6 for all the three
QOIs, and this example shows that there are smooth QOIs even if the problem presents
discontinuities with a random location (hence the solution itself, measured in the L2(Ω)
or H1(Ω) norm, is not smooth with respect to Y). For larger values than w = 6 the
error levels out due to not negligible contributions of the finite element error.

We notice from Fig. 6 that the convergence plots for M = 3 · (#Λ)2 and M =
10 · (#Λ)2 are nearly identical. Therefore already M = 3 · (#Λ)2 gives the optimal rate
in terms of w. We have also checked the cubic relation M = #Λ3 (Fig.6-right).

We have verified that a similar convergence behavior holds when varying the value
of the diffusion coefficient in the bulk, or when considering quantities of interest such
as the integral over a line that always intersects the inclusion.
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Example 2: a less smooth QOI We now build a QOI that exhibits a less regular
dependence on the random variable Y. We consider again problem (19) with the value
of the diffusion coefficient µ given by

µ(x,Y) =

{
1, ΩI ,

10−2, Ω \ ΩI ,
(25)

and the circular inclusion ΩI with random radius as in the previous section. Note that
the discontinuity of the coefficient is a jump of two orders of magnitude across the
boundary of the inclusion. Now we consider the following quantities of interest,

QOI4(Y) = u(x̃,Y)
∣∣∣
x̃=(0.4,0.4)

, QOI5(Y) = u(x̃,Y)
∣∣∣
x̃=(0.55,0.55)

, (26)

that are point-wise evaluations of the solution u of problem (19) in two fixed positions
x̃ = (0.4, 0.4) and x̃ = (0.55, 0.55). The former coincides with the center of the random
shape inclusion, and therefore always lies inside it. The latter point may or may not
belong to the inclusion, depending on the outcome of the random variable Y that
determines the radius of the inclusion. The corresponding results are displayed in Fig. 7.
The QOI associated to the point x̃ = (0.4, 0.4) exhibits a faster convergence than the
one associated to x̃ = (0.55, 0.55), since the discontinuity in the coefficient affects the
regularity of the solution exactly in the point where it is evaluated. In this case, the point
x̃ = (0.55, 0.55) is such that the probability to fall inside the inclusion is approximately
twice the probability to fall outside it. Of course there are also QOIs that are hard to
approximate: e.g. the one associated to the point x̃ = (0.6, 0.6) that falls inside the
inclusion with a probability larger than 98%. In this case the use of importance sampling
techniques (see e.g. [15]) should be considered.

1 2 3 4 5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

w

||Q
O

I
4
(u

)−
Π

wM
(ω

)
Q

O
I 4

(u
)|

|
cv

Error QOI
4
(u), N=1, M=c ⋅#Λ2

 

 

c=1
c=3
c=10

1 2 3 4 5

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

w

||Q
O

I
5
(u

)−
Π

wM
(ω

)
Q

O
I 5

(u
)|

|
cv

Error QOI
5
(u), N=1, M=c ⋅#Λ2

 

 

c=1
c=3
c=10

Figure 7: Example 2. Approximation errors averaged over 100 repetitions, M = c ·
(#Λ)2.

3.3 Example 3: the Darcy flow in a domain with five inclusions

In the next test we again use problem (19), and increase the dimension of the parameter
space Γ to N = 5 by adding some inclusions, as shown in Fig. 8. The inclusions are
circular with radius equal to 0.1, and are centered in the points x = (0.5, 0.5) and
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x = (0.5 ± 0.25, 0.5 ± 0.25). We denote by Ωi, i = 1, . . . , 5, the inclusion domains and

with Ω0 = Ω \ ∪5
i=1Ωi the bulk. Therefore Ω =

(⋃5
i=0 Ωi

)
, and the sets Ωi are not

overlapping each other. The random diffusion coefficient depends now on a multivariate
uniform random variable Y ∼ U([−1, 1]5), and is defined as

µ(x,Y) =

{
exp(β Yi), Ωi, i = 1, . . . , 5,

10−4, Ω0,
(27)

such that each random variable is associated to an inclusion. We consider the same
quantities of interest as in Example 1. The chosen polynomial space PΛ is the isotropic
Total Degree space. This choice is motivated by the analysis in [2]. We set β = 2,
so that the coefficient variations in the inclusions are of two orders of magnitude, and
report the results in Fig. 9. The convergence rate is exponential whenever the value of
c is larger than 1. A number of points M = 3 · #Λ is enough to achieve the optimal
convergence rate, and no deterioration is observed up to the maximal polynomial degree
w = 10 considered. Then we set β = 5 and obtain the results in Fig. 10. Note that this
case yields a variation of more than 4 orders of magnitude in the coefficient inside the
inclusions. As a consequence we observe that the convergence remains exponential, but
with a slower rate.

Figure 8: Domain with 5 inclusions Ω1,Ω2,Ω3,Ω4,Ω5 with random diffusivity for prob-
lem (19).
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Figure 9: Example 3: the Darcy model. β = 2.
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Figure 10: Example 3: the Darcy model. β = 5.
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3.4 Example 4: the cantilever beam

We consider the Navier-Lamé equation written in displacement form on the domain
Ω = ∪7

i=1Ωi depicted in Fig. 11:





−(λ(x,Y) + µ(x,Y))∇(∇ · u) + µ(x,Y)∇2u = −f(x,Y), x ∈ Ω, Y ∈ Γ,

σ(u) · n = 0, x on ∂Ω \ Γwall, Y ∈ Γ,

u = 0, x on Γwall, Y ∈ Γ,

(28)
with

µ(x,Y) =
E(x,Y)

2(1 + ν)
, λ(x,Y) =

ν E(x,Y)

(1 + ν)(1− 2 ν)
,

and with σ the usual stress tensor

σ(u) = λ(∇ · u)I+ 2µ
∇u+∇Tu

2
.

The Young’s modulus E is affected by uncertainty, and it depends on the random variable
Y ∼ U([−1, 1]7) in the following way:

E(x,Y) = exp(7 + Yi), in Ωi, i = 1, . . . , 7.

The Poisson’s ratio ν is deterministic and equal to 0.28. The prescribed boundary
conditions are null displacement on Γwall and null stress on ∂Ω\Γwall. The forcing term
f ≡ −1 models the distributed action of the gravity force. The reference configuration
of the cantilever is a one-by-seven rectangle. Further details about the geometry are
given in Fig. 11. As in Example 3, we choose PΛ to be the isotropic Total Degree space.
We are interested in the following quantities of interest

QOI6(u) =

∫

Ω

|∇u1|2 + |∇u2|2 dx,

QOI7(u2) = min
x∈Ω

u2(x), QOI8(u) =

∫

Ω

σ12(u) dx.

In Fig. 12 we report the corresponding results. The convergence is exponential even
with M = 1.1 ·#Λ, that is very close to the minimal number of points required to have
an overdetermined problem. The red line corresponds to the choice M = 3 · #Λ, and
can be considered the optimal convergence rate, since no improvement is observed when
going to M = 10 ·#Λ (green line).

3.5 Example 5: Navier-Stokes equations in a random domain

In the last example, we consider the steady state incompressible Navier-Stokes equations
which govern the motion of a fluid in a pipe:





−ν∆u+
(
u · ∇

)
u+∇p = 0, in Ω,

∇ · u = 0, in Ω,

+B.C. on ∂Ω.

(29)

The presence of uncertainty in the model is described by a two-dimensional uniform
random variable Y ∼ U([−1, 1]2). The first component Y1 models the uncertainty in
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Figure 11: The cantilever beam.
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Figure 12: Example 4. Condition number and approximation errors averaged over 100 repe-
titions, M = c ·#Λ.
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the diffusion coefficient ν(Y) = 10−Y1 , while the second component determines the
geometrical parameter r1 by

r1 =
1.5 + Y2

5
.

The parameter r1 defines the curvature in the innermost part of the elbow of the pipe.
The parameter r2 = 0.3 is kept fixed, since it has a minor influence on the solution of
the model. The size of the inflow and outflow sections of the pipe and other geometrical
details are reported in Fig. 13. We choose again PΛ to be the isotropic Total Degree

Figure 13: Geometry of the domain Ω in Example 5.

space, although the two random variables have clearly different roles. We impose a
Poiseuille velocity profile on Γin with maximal velocity equal to 4, no-slip conditions on
Γwall, null tangential velocity and null pressure on Γout. The quantities of interest that
we address are given by the pressure as

QOI9(Y) =
1

|Γin|

∫

Γin

p(x,Y) dx, QOI10(Y) = p(x̃,Y)
∣∣∣
x̃=(2.5,1)

,

and by the vorticity v(x,Y) = ∇× u(x,Y) as

QOI11(Y) =

∫

Ω

|v(x,Y)| dx.

The point x̃ = (2.5, 1) lies in a central region of the domain where the pressure is largely
affected by the values of the random parameters. The Reynolds number ranges from
0.4 to 40, depending on the realizations of the random variable Y. The flow of the fluid
is always in the laminar regime.

We report the numerical results obtained in Fig. 14. The QOIs associated to the
pressure converge exponentially fast. On the other hand, the QOI with the vorticity
is very sensitive to the input parameters. As a consequence, the corresponding QOI
exhibits a slow convergence and the use of a high order polynomial approximation seems
uneffective.
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Figure 14: Example 5. Condition number and approximation errors averaged over 5
repetitions, M = c ·#Λ.
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4 Conclusions

In this work we have presented the use of RDP to approximate Quantities of Interest
related to the solution of PDEs with stochastic data.

When the parameter space is one-dimensional, the stability and optimal convergence
rate under the condition M ∝ (#Λ)2 are ensured from the analysis proposed in [14]. We
presented some results concerning two Darcy models, with values of the coefficient and
geometrical shape of the inclusion governed by random variables, and showed numeri-
cally how the sample size affects the convergence rate, either using a rule with M ∝ #Λ
or a rule M ∝ (#Λ)2.

Moreover, we have shown that in high dimensions the linear scaling M ∝ #Λ yields
an almost-optimal convergence rate, making the RDP particularly suited for the appli-
cation to high dimensional problems. This behaviour of the RDP in high dimension is
reported also in [14], where some numerical tests with scalar target functions are pre-
sented. In this work we tested many smooth QOIs related to the solution of the Darcy
model, of the linear elasticity model, and of the Navier-Stokes equations.

In all cases exponential convergence has always been observed even with the linear
fule M ∝ #Λ and no deterioration of the convergence due to an insufficient sample size
has been observed in the range of polynomial degrees tested. The only exception is Fig. 5
where for the rule M = 2 ·#Λ we had to reach w = 25 to start observing a deterioration.
The situation is better in higher dimensions where no deterioration has been observed
and the matrix (Dω)TDω is better conditioned than in the monovariate case. Our
conclusion is that for practical engineering applications, a linear rule M = c · #Λ is
acceptable, and the higher the dimension the smaller the constant can be taken.

We have also investigated the role that smoothness of the QOI w.r.t. the random
variables plays in the convergence rate of RDP, including some examples of lower regu-
larity QOI. For instance, we showed an example with a nonsmooth QOI related to the
solution of the Darcy model and a QOI related to the vorticity of the solution of the
incompressible Navier-Stokes equations. In both cases a subexponential convergence is
observed. Other numerical tests with nonsmooth target functions are provided in [14].

The overall efficiency of RDP has to be compared with classical methods as Stochas-
tic Galerkin and Stochastic Collocation on Sparse Grids. The RDP is more suited for
applications than Stochastic Galerkin, since the evaluations of the target function are
completely uncoupled and one might use a black box deterministic solver. In addition,
RDP is very promising for intermediate to large dimensions and could be competitive
or even better than Stochastic Collocation on Sparse Grids in terms of accuracy ver-
sus numbers of evaluations of the target function. A fair comparison between the two
methods is out of the scope of the present paper, and will be addressed in a forthcoming
work.
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