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Abstract

This paper deals with the statistical properties of a response adaptive design,
described in terms of a two colors urn model, targeting prespecified asymptotic
allocations. Results on the rate of convergence of number of patients assigned
to each treatment are proved as well as on the asymptotic behavior of the
urn composition. Suitable statistics are introduced and studied to test the
hypothesis on treatment’s differences.
Keywords: Response adaptive designs; Clinical trials; Randomly Reinforced
Urns.

1 Introduction

In this paper we focus on studying statistical properties of a response-adaptive
design, described in terms of two-color urn model, able to target any fixed
asymptotic allocation probability. The model considered in this work is the
Modified Randomly Reinforced Urn (MRRU) presented in [4]. The generality
of the mathematical setting allows this experimental design to be applied to a
broad set of areas of applications. However, since urn models are usually adopted
to compare two or more competitive treatments, this work will be illustrated
within a clinical trial framework. In this context, adaptive designs are attractive
because they aim to achieve two simultaneous goals, concerning both statistical
and ethical points of view: (a) collecting evidence to determine the superior
treatment, and (b) increasing the allocation of units to the superior treatment.
For a complete literature review on response adaptive designs see [16, 19]. Urn
models are some of the most attracting adaptive designs, since they guarantee
the randomization of allocations [26]. Asymptotic results concerning urn models
with an irreducible mean reinforcement matrix could be found in [5, 6, 8, 18, 26].
This irreducibility assumption is not satisfied by the Randomly Reinforced Urn
(RRU) studied in [20, 24, 25], which has a diagonal mean replacement matrix.

1



The RRU models were introduced by [9] for binary responses, applied to the
dose-finding problems in [10, 11] and then extended to the case of continuous
responses by [7, 24]. An interesting property concerning RRU models is that
the probability to allocate units to the best treatment converges to one as the
sample size increases, that is a very attractive feature from an ethical point of
view. However, because of this asymptotic behavior, RRU models are not in
the large class of designs targeting a certain proportion η ∈ (0, 1), that usually
is fixed ad hoc or computed by satisfying some optimal criteria. Hence, all the
asymptotic desirable properties concerning these procedures presented in litera-
ture (for instance in [22] and [23]), are not straightforwardly fulfilled by the RRU
designs. Then, in [4] a Modified Randomly Reinforced Urn design (MRRU) was
introduced; this design is able to target any prespecified asymptotic allocation
η ∈ (0, 1).
In Section 2 we describe the MRRU model, which this work is based on. Vi-
sualize an urn containing balls of two colors (red,white) that is sequentially
sampled. Each time, the extracted ball is reintroduced in the urn together with
a random number of balls of the same color. To fix the notation we call µR and
µW the laws of the random reinforcements of red and white balls, respectively,
and mR, mW the corresponding means. Let us call X = (Xn)n∈N (Xn ∈ {0, 1},
n = 1, 2, ..) the sequence of the colors sampled by the urn and Z = (Zn)n∈N

(Zn ∈ (0, 1), n = 0, 1, 2, ..) the sequence of urn proportions before each draw.
We report the main result proved in [4], concerning the almost sure convergence
of the process (Zn)n∈N to a fixed parameter η ∈ (0, 1), whenever the means of
the reinforcements’ distributions are different. We prove that the proportion
of colors sampled by the urn converges to the same limit of the urn composi-
tion. Since this proportion represents also the proportion of patients assigned
to treatments, we are able to rule the asymptotic patient’s allocation.
Section 3 is focused on the rate of convergence of the process (Zn)n∈N in the
MRRU model. Important results on the asymptotic behavior of the urn pro-
portion (Zn)n∈N for a RRU model were developed in [12], in the case of rein-
forcements with different expected values. In [12] it was proved that the rate of
convergence of the process (Zn)n∈N to one (i.e. its limit in the case mR > mW )
is equal to 1/nγ (with γ = 1 − mW

mR
< 1). Moreover, the quantity nγ(1 − Zn)

converges almost surely to a positive random variable, whose behavior has been
studied in [17, 21]. In Theorem 3.1 of this paper it is proved that the rate of
convergence of the process (Zn)n∈N to its limit η ∈ (0, 1) is 1/n for the MRRU
model. This asymptotic result was achieved after defining a particular Markov
process denoted (T̃n)n∈N, based on the quantities that rule the urn process.

The study of stochastic properties of the process T̃n (see Appendix and Propo-
sition 3.1) has been crucial for proving Theorem 3.1. Moreover, Theorem 3.1
shows that the sequence n(η − Zn) converges in distribution to a real random
variable, whose probability law is related to the unique invariant distribution π
of the process (T̃n)n∈N.
Section 4 is dedicated to the inferential aspects concerning the design described
in Section 2. We deal with a classical hypothesis test comparing the null hy-
pothesis that reinforcement’s means are equal (mR = mW ) and the one-side
alternative hypothesis (mR > mW ). We consider different statistical tests,
based either (a) on adaptive estimators of the unknown means or (b) on the urn
proportion. Under the null hypothesis, the asymptotic behavior of statistics of
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type (a) has been studied in many works (see for instance [23] and the bibliog-
raphy therein) for adaptive designs with target allocation η ∈ (0, 1) and in [12]
for RRU designs. Instead, asymptotic properties of statistics concerning the urn
proportion in a RRU design were investigated in [1, 2, 3]. However, under the
null hypothesis the asymptotic distribution of the urn proportion’s limit is still
unknown, except in a few particular cases. The behavior under the alternative
hypothesis of statistics based on adaptive estimators of the unknown parameters
has been investigated for instance in [15, 16, 27] for adaptive designs with target
allocation η ∈ (0, 1). For RRU designs, the asymptotic properties of both types
of statistics have been studied in [12]. We compare statistical properties of tests
based on RRU design and tests based on the MRRU design. We conclude that,
for every fixed level α, we can construct a test based on MRRU design which is
asymptotically more powerful than the one based on RRU design, and proposed
in [14].
In Section 5 we illustrate some simulations studies on the probability distribu-
tion π and on the statistical properties of the tests described in Section 4. To
ease the comprehension the proofs concerning the process (T̃n)n∈N introduced
in Section 3 are postposed in Appendix.

2 The Modified Randomly Reinforced Urn De-

sign

Consider a clinical trial with two competitive treatments, say R and W . In this
section we describe a response adaptive design, presented as an urn model, able
to target any fixed asymptotic allocation. This model called MRRU, introduced
in [4], is a modified version of the RRU design studied in [24]. In both the
cases the reinforcements are modeled as random variables following different
probability distributions. In the MRRU model we modify the reinforcement
scheme of the urn to asymptotically target an optimal allocation proportion.
The term target refers to the limit of the urn proportion process. Let us consider
two probability distributions µR and µW with support contained in [αR, βR] and
[αW , βW ] respectively, where 0 < αR ≤ βR < +∞ and 0 < αW ≤ βW < +∞.
Let (Un)n∈N be a sequence of independent uniform random variable on (0, 1).
We will interpret µR and µW as the laws of the responses to treatment R and

W , respectively. We assume that both the means mR =
∫ βR

αR
xµR(dx) and

mW =
∫ βW

αW
xµW (dx) are strictly positive. Moreover,

Assumption 2.1. At least one of these two conditions is satisfied:

(a) there exists a closed interval [α0, β0] ⊂ [αW , βW ] such that, ∀ x ∈ [α0, β0],
the measure µW is absolutely continuous with respect the Lebesgue measure

and the derivative is strictly positive, i.e. ∃ µW (dx)
dx > 0

(b) there exists a closed interval [α0, β0] ⊂ [αR, βR] such that, ∀ x ∈ [α0, β0],
the measure µR is absolutely continuous with respect the Lebesgue measure

and the derivative is strictly positive, i.e. ∃ µR(dx)
dx > 0

Consider an urn initially containing r0 balls of color R and w0 balls of color
W . Set

R0 = r0, W0 = w0, D0 = R0 + W0, Z0 =
R0

D0
.
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At time n = 1, a ball is sampled from the urn; its color is X1 = 1[0,Z0](U1),
a random variable with Bernoulli(Z0) distribution. Let M1 and N1 be two
independent random variables with distribution µR and µW , respectively; as-
sume that X1,M1 and N1 are independent. Next, if the sampled ball is R, it
is replaced in the urn together with X1M1 balls of the same color if Z0 < η,
where η ∈ (0, 1) is a suitable parameter, otherwise the urn composition does
not change; if the sampled ball is W , it is replaced in the urn together with
(1 − X1)N1 balls of the same color if Z0 > δ, where δ < η ∈ (0, 1) is a suitable
parameter, otherwise the urn composition does not change. So we can update
the urn composition in the following way

R1 = R0 + X1M11[Z0<η],

W1 = W0 + (1 − X1)N11[Z0>δ],

D1 = R1 + W1, Z1 =
R1

D1
.

(2.1)

Now iterate this sampling scheme forever. Thus, at time n + 1, given the
sigma-field Fn generated by X1, ..., Xn, M1, ..., Mn and N1, ..., Nn, let Xn+1 =
1[0,Zn](Un+1) be a Bernoulli(Zn) random variable and, independently of Fn and
Xn+1, assume that Mn+1 and Nn+1 are two independent random variables with
distribution µR and µW , respectively. Set

Rn+1 = Rn + Xn+1Mn+11[Zn<η],

Wn+1 = Wn + (1 − Xn+1)Nn+11[Zn>δ],

Dn+1 = Rn+1 + Wn+1,

Zn+1 =
Rn+1

Dn+1
.

(2.2)

We thus generate an infinite sequence X = (Xn, n = 1, 2, ..) of Bernoulli ran-
dom variables, with Xn representing the color of the ball sampled from the
urn at time n, and a process (Z, D) = ((Zn, Dn), n = 0, 1, 2...) with values in
[0, 1]×(0,∞), where Dn represents the total number of balls in the urn before it
is sampled for the (n + 1)-th time, and Zn is the proportion of balls of color R;
we call X the process of colors generated by the urn while (Z, D) is the process
of its compositions. Let us observe that the process (Z,D) is a Markov sequence
with respect to the filtration Fn.

In [4] it was proved that the sequence of proportions Z = (Zn, n = 0, 1, 2, ...)
of the urn process converges almost surely to the following limit

lim
n→∞

Zn =





η if mR > mW ,

δ if mR < mW .

In this paper we study the urn process under the hypothesis mR > mW , be-
cause the situation mR < mW is specular. Let us notice that in this case
P (Zn < δ, i.o.) = 0; then, since we will deal with asymptotic results, from now
on we can assume without loss of generality δ = 0.

In this section we study some interesting features of the urn process. The
first result concerns the proportion of colors sampled from the urn. Here we
prove that it converges to the same limit of the urn proportion Zn.
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Proposition 2.1. ∑n
i=1 Xi

n

a.s.→ η (2.3)

Proof. Let us denote ξn = Zn−1−Xn

n for any n ≥ 1, with ξ0 = 0. Then, (ξn)n∈N

is a sequence of random variables adapted with respect to the filtration (Fn)n∈N

such that
∞∑

i=1

E [ξi |Fi−1] =

∞∑

i=1

E

[
Zi−1 − Xi

i

∣∣∣Fi−1

]
= 0

∞∑

i=1

E

[
ξ2
i

∣∣∣Fi−1

]
=

∞∑

i=1

E

[(
Zi−1 − Xi

i

)2 ∣∣∣Fi−1

]
≤

∞∑

i=1

1

i2
< ∞

Applying Lemma 7 of [2] we have that
∑

ξn < ∞ almost surely.
Now, we have that

1

n

n∑

i=1

Zi−1 − Xi =
1

n

n∑

i=1

iξi
a.s→ 0,

by using Kronecker’s lemma, and so

η −
∑n

i=1 Xi

n
= η −

∑n
i=1 Zi−1

n
+

∑n
i=1 Zi−1 − Xi

n

a.s.→ 0

where the first term goes to zero thanks to the Toeplitz Lemma, since Zn con-
verge to η almost surely.

The following proposition shows the rate of divergence of the total number
of balls in the urn. The sequence (Dn/n, n = 0, 1, 2, ...) converges almost surely
to the mean of the inferior treatment.

Proposition 2.2.
Dn

n

a.s.→ mW (2.4)

Proof. Notice that
∑n

i=1 1 − Xi

n

[
W0 +

∑n
i=1(1 − Xi)Ni∑n

i=1 1 − Xi
− mW

]
=

∑n
i=1(1 − Xi)Ni

n
− mW

∑n
i=1 1 − Xi

n
=

∑n
i=1 [ (1 − Xi)Ni − mW (1 − Xi) ]

n
=

∑n
i=1(1 − Xi)(Ni − mW )

n

a.s.→ 0

where the almost sure convergence to zero of the last term can be proved with
the same arguments used to prove Proposition 2.1. This result implies that

W0 +
∑n

i=1(1 − Xi)Ni∑n
i=1 1 − Xi

a.s.→ mW (2.5)
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since from Proposition 2.1 we have that
∑ n

i=1(1−Xi)

n

a.s.→ 1 − η. Then, we have
that

Wn

n
=

W0 +
∑n

i=1(1 − Xi)Ni∑n
i=1(1 − Xi)

·
∑n

i=1(1 − Xi)

n

a.s.→ mW · (1 − η)

Since Zn
a.s.→ η, we get

Rn

n
=

Wn

n

Zn

1 − Zn

a.s.→ µW (1 − η) · η

1 − η
= mW · η

Globally we obtain

Dn

n
=

Rn

n
+

Wn

n

a.s.→ mW · η + mW · (1 − η) = mW

Remark 2.1. Notice that in a RRU model the sequence Dn/n converges almost
surely to the mean of the superior treatment. In fact, in a RRU model, when
mR > mW , we have that

lim
n→∞

Dn

n
= lim

n→∞

Rn

n
= lim

n→∞

R0 +
∑n

i=1 XiMi∑n
i=1 Xi

= mR (2.6)

on a set of probability one. The result (2.6) is proved following the same argu-
ments of (2.5)

Here, we show that the proportion of times the urn proportion Zn is under
the limit η converges almost surely to a quantity that depends only on the
reinforcements’ means mR and mW .

Proposition 2.3. ∑n
i=1 1{Zi<η}

n

a.s.→ mW

mR
(2.7)

To prove Proposition 2.3 we need the following lemma

Lemma 2.1. ∑n
i=1 Xi+11{Zi<η}∑n

i=1 1{Zi<η}

a.s.→ η (2.8)

Proof. Notice that
∑n

i=1 1{Zi−1<η}

n

[ ∑n
i=1 Xi1{Zi−1<η}∑n

i=1 1{Zi−1<η}
− η

]
=

∑n
i=1 Xi1{Zi−1<η}

n
− η

∑n
i=1 1{Zi−1<η}

n
=

∑n
i=1

[
Xi1{Zi−1<η} − η1{Zi−1<η}

]

n
=

∑n
i=1[Xi1{Zi−1<η} − Zi−11{Zi−1<η}]

n
+

∑n
i=1[Zi−11{Zi−1<η} − η1{Zi−1<η}]

n

a.s.→ 0
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where the almost surely convergence to zero of the last terms can be proved
with the same arguments used to prove Proposition 2.1. Moreover this result

implies (2.8) due to the fact that
∑ n

i=1 1{Zi<η}

n cannot be asymptotically closed
to zero. This fact can be proved by contradiction: suppose that

P

(
lim inf

n→∞

∑n
i=1 1{Zi<η}

n
= 0

)
> 0. (2.9)

But we have that

lim inf
n→∞

∑n
i=1 1{Zi<η}

n
≥

lim inf
n→∞

1

βR

R0 +
∑n

i=1 Xi+1Mi+11{Zi<η}∑n
i=1 Xi+11{Zi<η}

·
∑n

i=1 Xi+11{Zi<η}∑n
i=1 1{Zi<η}

·
∑n

i=1 1{Zi<η}

n
≥

lim inf
n→∞

1

βR

Rn

n
=

mW η

βR
> 0

on a set of probability one. This contradicts the assumption (2.9).

Remark 2.2. By following the same arguments used to prove Proposition 2.1
and Lemma 2.1 it can be proved also that

R0 +
∑n

i=1 Xi+1Mi+11{Zi<η}∑n
i=1 Xi+11{Zi<η}

a.s.→ mR (2.10)

Proof. [Proof of the Proposition 2.3] Let us observe that on a set of probability
one

0 = lim
n→∞

η − Zn = lim
n→∞

η − Rn/n

Rn/n + Wn/n
=

η − mR · η · limn→∞

∑ n
i=1 1{Zi<η}

n

mR · η · limn→∞

∑
n
i=1 1{Zi<η}

n + mW · (1 − η)

(2.11)

where the last equality is based on the result of Lemma 2.1. Finally, we note
that the equality (2.11) holds if and only if

∑n
i=1 1{Zi<η}

n

a.s.→ mW

mR

3 Asymptotic results

We want to study the asymptotic behavior of the quantity n · (η − Zn). To
do this, let us introduce a new real stochastic process (Tn)n∈N, whose features
depend on the random variables ruling the urn process:

{
T0 = ηW0 − (1 − η)R0

Tn+1 = Tn + η(1 − Xn+1) Nn+1 − (1 − η)Xi+1 Mi+1 1{Zn<η}

(3.1)
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∀n ∈ N. Let us note that

n · (η − Zn) =
n(η − Zn)Dn

Dn
=

ηWn − (1 − η)Rn

Dn

n

=
Tn

Dn

n

(3.2)

where Tn = ηWn − (1 − η)Rn satisfies the iterative equations in (3.1).
The process (Zn, Tn)n∈N is an homogeneous Markov sequence. Then, there
exists the transition probability kernel K for the process Tn such that for any
(z0, t0) ∈ (0, η] × [0,∞) ∪ (η, 1) × (−∞, 0) and for any A ⊂ R

P ( Tn+1 ∈ A | (Zn, Tn) = (z0, t0) ) =

∫

A

Kz0(t0, dt)

The analytic form of the transition probability kernel is the following

Kz0(t0, dt) = z0 µR

(
d

(
t0 − t

1 − η

))
1{z0<η ∧ t<t0} +

z0 δt0(t) 1{z0>η} + (1 − z0) µW

(
d

(
t − t0

η

))
1{t>t0}

(3.3)

If the probability measures µR and µW are absolutely continuous with respect
to the Lebesgue measure, we can write as well

• µR

(
d

(
t0−t
1−η

))
= fR

(
t0−t
1−η

)
1

1−η dt

• µW

(
d

(
t−t0

η

))
= fW

(
t−t0

η

)
1
η dt

where fR(·) and fW (·) are the Radon Nikodym derivatives of the measures µR

and µW with respect to the Lebesge measure.
Since the marginal process Tn needs to be coupled with the process Zn to have
a Markov bivariate process (Tn, Zn), the application of many results on Markov
processes in the case of continuous state space it’s not straightforward. Then,
we define a new auxiliary process T̃n strictly related to Tn, in this way:

{
T̃0 = ηW0 − (1 − η)R0

T̃n+1 = T̃n + η(1 − X̃n+1) Nn+1 − (1 − η)X̃n+1 Mn+1 1{T̃n>0}

(3.4)

∀n ∈ N, where (X̃n)n∈N are i.i.d. Bernoulli random variables of parameter η

independent of the sequences (Mn)n∈N and (Nn)n∈N. It’s easy to see that T̃n is

a Markov process. In fact, the transition kernel Kη of T̃n is independent of the
quantity z0

Kη(t0, dt) = η µR

(
d

(
t0 − t

1 − η

))
1{t0>0 ∧ t<t0} + η δt0(t) 1{t0<0} +

(1 − η) µW

(
d

(
t − t0

η

))
1{t>t0}

(3.5)

Using Assumption 2.1 we can prove (see Appendix) that the Markov process

T̃n is an aperiodic recurrent Harris chain. So, the following holds:
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Proposition 3.1. Let call π the stationary distribution of the recurrent aperi-
odic Harris Chain T̃ = (T̃n)n∈N. Then, for every t0 ∈ R, we have that

lim
n→∞

sup
C∈B(R)

| P (T̃n ∈ C | T̃0 = t0) − π(A) | = 0 (3.6)

Proof. The Markov process T̃n is a recurrent aperiodic Harris Chain (see Ap-
pendix). This result implies that there exists a unique invariant distribution
probability π and (3.6) holds for any t0 such that

P ( τA < ∞ | T̃0 = t0 ) = 1 (3.7)

The thesis is proved since (3.7) holds for any t0 ∈ R (see Appendix).

Now, we can state the main result

Theorem 3.1. For any initial composition (r0, w0) ∈ (0,∞)× (0,∞), we have
that

n · (η − Zn)
L→ ψ

mW
(3.8)

where ψ is a real random variable with probability distribution π.

Proof. Using equation (3.2), Proposition 2.2 and Slutsky’s theorem we have

that it’s sufficient to prove that Tn
L→ ψ, where ψ is a real random variable with

probability distribution π. Notice that for any interval C ⊂ R

| P (Tn ∈ C | T0 = t0) − π(C) | ≤ | P (Tn ∈ C | T0 = t0) − P (T̃n ∈ C | T̃0 = t0) | +

| P (T̃n ∈ C | T̃0 = t0) − π(C) |

From the Proposition 3.1 we have that the second term converges to zero as
long as n goes to infinity. Then, to prove the thesis we have to study the first
term.

Let us take α, β ∈ R
+ such that α0 < α < β < β0; then, let us introduce the

set
B = [ (β − α + α0)η , β0η ] ⊂ R

and the probability measure

ρ(C) =
1

(β0 − β + α − α0)η

∫

C

dt

defined for every set C ⊂ B. Then, it is easy to see that there exists a sequence of
positive numbers (ǫzn

)n∈N such that, if t0 ∈ A, then Kzn
(t0, C) ≥ ǫzn

ρ(C) ∀n ∈
N. By following the same procedure adopted in the proof of Proposition 5.3, a
possible choice for the terms of the sequence is

ǫzn
= (β0 − β + α − α0)η(1 − zn) min

x∈(α0,β0)

[
µW (dx)

dx

]

Since the sequence Zn is strictly less than one and converges to η almost
surely, we have that ǫ := infn∈N{ǫzn

} > 0. Besides, it is trivial to see that
Kη(t0, C) ≥ ǫρ(C), because P (

⋃∞
n=1{Zn > η}) = 1.
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Let us now introduce two sequences of i.i.d. Bernoulli variables (ξi)i and (ξ̃i)i,
both of them with parameter ǫ. Let us define two random variables which count
the number of times the processes Tn and T̃n are in the set A

νn :=

n∑

i=1

1{Ti∈A} and ν̃n :=

n∑

i=1

1{T̃i∈A}

Then, let us construct two sequences of stopping times

{
τ0 = 0
τi := inf{ n > τi−1 : {Tn ∈ A}⋂{ξνn

= 1} }, i ≥ 1

{
τ̃0 = 0

τ̃i := inf{ n > τ̃i−1 : {T̃n ∈ A}⋂{ξ̃ν̃n
= 1} }, i ≥ 1

Naturally, the times (τ̃i)i∈N are all almost surely finite because the process T̃n

is a recurrent Harris chain. It is easy to show that also the times (τi)i∈N are
almost surely finite. The procedure to prove the recurrence of the process Tn

it’s analogous to the one used for the process T̃n.

Let us imagine that when the process (either Tn or T̃n) is in the set A, we flip
a Bernoulli with parameter ǫ: if it comes up one, the process evolves by using
the probability law ρ(dt); otherwise, if it comes up zero, the process moves

according to the modified transition kernel
Kη(t0,dt)−ǫρ(dt)

1−ǫ . The sequences ξn

and ξ̃n represent the outcomes of the Bernoulli trials when the process is in A.
Let us denote as λτi

and λ̃τ̃i
the probability measures of the random variables

Tτi
and T̃τ̃i

respectively, when both the processes start from the same initial
point t0 ∈ R. Hence, we have that

∫

A

λτi
(dt)Kzτi

(t, C) =

∫

A

λτi
(dt)ρ(C) = ρ(C) =

∫

A

λ̃τ̃i
(dt)ρ(C) =

∫

A

λ̃τ̃i
(dt)Kη(t, C)

for any C ∈ B(R).

By comparing the transition kernels of the processes Tn and T̃n we have that

|Kzn
(t0, dt) − Kη(t0, dt)| = |(zn − η) µR

(
d

(
t0 − t

1 − η

))
1{t0>0 ∧ t<t0} +

(zn − η) δt0(t) 1{t0<0} − (zn − η) µW

(
d

(
t − t0

η

))
1{t>t0}| ≤

ωnη µR

(
d

(
t0 − t

1 − η

))
1{t0>0 ∧ t<t0} + ωnη δt0(t) 1{t0<0} +

ωn(1 − η) µW

(
d

(
t − t0

η

))
1{t>t0} = ωnKη(t0, dt)

for any ωn ≥ |zn−η|
min{η;1−η} . Therefore, since Zn converge to η a.s., there exists a

sequence (ωn)n∈N, going to zero as n goes to infinity, such that for any t0 ∈ R

| Kzn
(t0, dt) − Kη(t0, dt) | ≤ ωnKη(t0, dt)

10



By using this inequality, for any integer k, n, n0 ∈ N, any t0 ∈ R and any set
C ∈ B(R), we can obtain

| P (Tτn+k ∈ C | T0 = t0) − P (T̃τ̃n0+k ∈ C | T̃0 = t0) | =
∣∣∣∣

∫

A

λτn
(ds0) · P (Tτn+k ∈ C | Tτn

= s0) −
∫

A

λ̃τ̃n0
(ds0) · P (T̃τ̃n0+k ∈ C | T̃τn0

= s0)

∣∣∣∣ =

∣∣∣∣∣∣

∫

A

∫

Rk−1

∫

C


λτn

(ds0)

k∏

j=1

Kzτn+j−1(sj−1, dsj)


 −

∫

A

∫

Rk−1

∫

C


λ̃τ̃n0

(ds0)

k∏

j=1

Kη(sj−1, dsj)




∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫

Rk−1

∫

C


ρ(ds1)

k∏

j=2

Kzτn+j−1(sj−1, dsj)


 −

∫

Rk−1

∫

C


ρ(ds1)

k∏

j=2

Kη(sj−1, dsj)




∣∣∣∣∣∣
≤

max





∫

Rk−1

∫

C


ρ(ds1)

k∏

j=2

(1 + ωτn+j−1)Kη(sj−1, dsj)


 −

∫

Rk−1

∫

C


ρ(ds1)

k∏

j=2

Kη(sj−1, dsj)


 ;

∫

Rk−1

∫

C


ρ(ds1)

k∏

j=2

Kη(sj−1, dsj)


 −

∫

Rk−1

∫

C


ρ(ds1)

k∏

j=2

(1 + ωτn+j−1)Kη(sj−1, dsj)








k∑

j=2

(
k−1
j−1

) [
max

i∈{1,2,...,k−1}
(ωτn+i)

]j−1 ∫

Rk−1

∫

C


ρ(dt1)

k∏

j=2

Kη(sj−1, dsj)


 ≤

(
2k−1 − 1

)
max

i∈{1,2,...,k−1}
(ωτn+i)

Therefore, we can prove that, for every k, n0 ∈ N,

lim
n→∞

sup
C∈B(R)

| P (Tτn+k ∈ C | T0 = t0) − P (T̃τ̃n0+k ∈ C | T̃0 = t0) | = 0

Let define the stopping time

τ∗
n := sup { τi ≤ n , i ∈ N }

We have

lim
n→∞

sup
C∈B(R)

| P (Tn ∈ C | T0 = t0) − P (T̃n ∈ C | T̃0 = t0) | ≤

lim
n→∞

sup
C∈B(R)

| P (Tτ∗
n+(n−τ∗

n) ∈ C | T0 = t0) − P (T̃τ̃m+(n−τ∗
n) ∈ C | T̃0 = t0) | +

lim
n→∞

sup
C∈B(R)

| P (T̃τ̃m+(n−τ∗
n) ∈ C | T̃0 = t0) − P (T̃n ∈ C | T̃0 = t0) | = 0

where the second term converges to zero if we let m = mn goes to infinity as n
increase, since P (T̃n ∈ C|T̃0 = t0) is a Cauchy sequence.

4 Testing hypothesis

In this section we focus on the inferential aspects concerning the MRRU design.
Let us introduce the classical hypothesis test aiming at comparing the means of
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two distributions µR, µW

H0 : mR − mW = 0 vs H1 : mR − mW > 0. (4.1)

We approach to the statistical problem (4.1) considering first a no-adaptive de-
sign, and then the MRRU model. Let (Mn)n∈N and (Nn)n∈N be i.i.d. sequences
of random variables with distribution µR and µW , respectively. For a fixed
design with sample sizes nR and nW , the usual test statistics is

ζ0 =
MnR

− NnW√
s2

R

nR
+

s2
W

nW

(4.2)

where MnR
and NnW

are the sample means and s2
R and s2

W are consistent
estimators of the variances. When the no-adaptive design allows both the sample
sizes nR and nW goes to infinity, by the central limit theorem we have that,
under the null hypothesis, ζ0 converges in distribution to a standard normal
variable. Then, fixing a significance level α ∈ (0, 1), we define

Rα = {ζ0 > zα} (4.3)

as the critical region asymptotically of level α, with zα as the α-percentage
point of the standard gaussian distribution. Now, let us assume that the rate
of divergence of the sample sizes is such that nR

nR+nW
→ η, for some η ∈ (0, 1).

Then, the power of the test defined in (4.3) can be approximated, for large nR

and nW , as

P


 Z +

√
n

mR − mW√
σ2

R

η +
σ2

W

1−η

> zα


 , (4.4)

where Z is a gaussian standard random variable.

Now, let us consider an adaptive design described in term of an urn model.
Let us denote NR(n) and NW (n) as the sample sizes after the firsts n draws,
M(n) and N(n) the corresponding sample means and s2

R(n) and s2
W (n) the

adaptive consistent estimators. Plugging in (4.2) the corresponding adaptive
quantities, we obtain the statistics

ζ0(n) =
M(n) − N(n)√
s2

R
(n)

NR(n) +
s2

W
(n)

NW (n)

(4.5)

Using Proposition 3.1 of [4] and Slutsky’s Theorem, it can be deduced from the
no-adaptive case that for the MRRU model, if mR = mW , the statistics ζ0(n)
converges to a standard normal variable. Hence, the critical region (4.3) still
defines a test asymptotically of level α. Moreover, calling η the limit of the urn
proportion Zn under the alternative hypothesis, the power of the test defined
in (4.3) can be approximated, for large n, as (4.4).

Remark 4.1. The behavior of the statistics ζ0 defined in (4.5) in the case of
RRU model was studied in [12]. In that paper, the asymptotic normality of ζ0(n)
under the null hypothesis was proved; then (4.3) defines a test of asymptotic
level α also in the RRU case. However, under the alternative hypothesis ζ0(n)

12



converges to a mixture of gaussian distributions, where the mixing variable ϕ2

is a strictly positive random variable such that

NW (n)

nmW /mR

a.s.→ ϕ2 (4.6)

Therefore, it follows that in the RRU case the power of the test defined in (4.3)
can be approximated, for large n, as

P

(
Z + n

mW
2mR ϕ

mR − mW

σW
> zα

)
, (4.7)

where Z is a gaussian standard random variable independent of ϕ.

A different test statistics based on the urn proportion of a RRU model has

been investigated in [13]. Let us denote as c
(0,1)
α the α-percentage point of the

distribution of the limiting proportion Z∞ under the null hypothesis in a RRU
model. Then, the critical region

{Zn > c(0,1)
α } (4.8)

defines a test asymptotically of level α. As explained in [13], the power of this
test can be approximated, for large n, as

P

(
ϕ2 < (1 − c(0,1)

α )
mR

mW
n

1−
mW
mR

)
(4.9)

where ϕ2 is the random quantity defined in (4.6).
Now, we consider the statistics Zn as the urn proportion of a MRRU model,

with parameters δ and η. Let us denote as c
(δ,η)
α the α-percentage point of the

distribution of the limiting proportion Z∞ when the mean responses are equal.
Then, the critical region

{Zn > c(δ,η)
α } (4.10)

defines a test asymptotically of level α. Under the alternative hypothesis, the
asymptotic behavior of the proportion Zn is shown in Theorem 3.1. The power

of the test {Zn > c
(δ,η)
α } can be approximated, for large n, as

P
(

ψ < (η − c(δ,η)
α )mW n

)
(4.11)

where ψ is the random quantity defined in Theorem 3.1.

5 Simulation study

This section is dedicated to presenting the simulation studies aim at exploring
the asymptotic behavior of the urn proportion Zn. In this section, all the urns
are simulated with the following choice of parameters: δ = 0.2 and η = 0.8.
Further studies based on changing the values of δ or η can be of great interest,
but this wasn’t the real purpose of the paper.
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Initially, we focus on supporting the convergence result shown in Theo-
rem 3.1. The reinforcement distributions µR and µW are chosen to be gaus-
sians, with means set to mR = 10 and mW = 5 respectively. The variances
are assumed to be equal and fixed at σ2

R = σ2
W = 1. Theorem 3.1 shows that,

when mR > mW , the quantity n(η − Zn)mW converges in distribution to a
random variable ψ, whose probability law is π. Through some simulations, we
compute the empirical distribution of n(η − Zn)mW for n = 102 and n = 104.
The corresponding histograms are presented in Figure 1.

In proposition 3.1 it was proved that the probability measure π is the unique
invariant distribution of the process (T̃n)n∈N. This means π is the unique solu-
tion of the functional equation

∫

R

Kη(x, dy)π(dx) = π(dy) (5.1)

where Kη is the transition kernel of the process T̃n defined in (3.5). Taking
the discrete version of (5.1) we compute the density of the measure π, which is
superimposed on both the histograms in Figure 1. The quite perfect agreement
betweeen the empirical distribution of n(η−Zn)mW and the discrete estimation
of π gave to the authors the impetus to prove the convergence result described
in Theorem 3.1.
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Figure 1: Histograms of ψ obtained simulating the empirical distribution of n(η −
Zn)mW for large n, with superimposed the density of ψ obtained by numerically
solving the discrete version of (5.1). Left panel: n = 102. Right panel: n = 104.

The simulation study also encouraged the authors to prove some further
theoretical results. The first one we present is related to an easy expression
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for a quantile of the probability law of the limiting variable ψ. In general, the
asymptotic distribution of the quantity n(η − Zn) depends on the value η and
on the reinforcements distributions µR and µW . Nevertheless, the following
proposition state that 0 is always the mW

mR
-percentage point of the distribution

π, regardless η or the types of distributions involved.

Proposition 5.1.

P (ψ > 0) =
mW

mR
(5.2)

Proof. Since P (Zn < η) = P (Tn > 0) we know that P (Zn < η) is a convergent
sequence. In particular

lim
n→∞

P (Zn < η) = P (ψ > 0) = π([0,∞))

Therefore, by using the dominated convergence theorem, the Toeplitz Lemma
and Proposition 2.3, we obtain

P (ψ > 0) = lim
n→∞

P (Zn < η) = lim
n→∞

∑n
i=1 P (Zi < η)

n
=

lim
n→∞

∑n
i=1 E[1{Zi<η}]

n
= E

[
lim

n→∞

∑n
i=1 1{Zi<η}

n

]
= E

[
mW

mR

]
=

mW

mR

Another interesting result, that came out from the simulation analysis, con-
cerns the correspondence between the asymptotic distribution of Zn and a linear
transformation of the reinforcement laws. This property is explained in the fol-
lowing proposition

Proposition 5.2. Let Zn and Ẑn be the urn proportions of two MRRU models
with reinforcements distributions (µR, µW ) and (µ̂R, µ̂W ) respectively. Assume
that there exists c > 0 such that, for any a, b ∈ R with a < b

{
µ̂R( (a, b) ) = µR( (ca, cb) )
µ̂W ( (a, b) ) = µW ( (ca, cb) )

(5.3)

i.e. M̂n
L
= c · Mn and N̂n

L
= c · Nn for any n ∈ N.

Then, for any a, b ∈ R with a < b, we have

π̂( (a, b) ) = π( (c · a, c · b) ) (5.4)

i.e. ψ̂
L
= c · ψ.

Proof. Let us call the initial compositions of the two urn processes as (r0, w0)
and (r̂0, ŵ0). The proof will be based on the particular choice r̂0 = c · r0 and
ŵ0 = c ·w0. However, since from Proposition 3.1 the invariant distribution π is
independent of the initial composition, the generality of the result still holds.
For any n ≥ 1, by conditioning to the event {(T̂n, Ẑn) = (c · Tn, Zn)}, we have
that

T̂n+1 = T̂n + η(1 − X̂n+1)N̂n+1 − (1 − η)X̂n+11{T̂n>0}M̂n+1 =

= c · Tn + η(1 − X̂n+1)N̂n+1 − (1 − η)X̂n+11{Tn>0}M̂n+1
L
=

L
= c · Tn + η(1 − Xn)c · Nn+1 − (1 − η)Xn+11{Tn>0}c · Mn+1 = c · Tn+1

(5.5)
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Ẑn+1 =
R̂n+1

R̂n+1 + Ŵn+1

=

=
R̂n + X̂n+1M̂n+1

R̂n + Ŵn + X̂n+1M̂n+1 + (1 − X̂n+1)N̂n+1

=

=
c · Rn + X̂n+1M̂n+1

c · Rn + c · Wn + X̂n+1M̂n+1 + (1 − X̂n+1)N̂n+1

L
=

L
=

Rn + Xn+1c · Mn+1

Rn + Wn + Xn+1c · Mn+1 + (1 − Xn+1)c · Nn+1
= Zn+1

(5.6)

For ease of notation, let us denote λ(Tn,Zn) and λ(T̂n,Ẑn) as the bivariate laws

of the couple of random variables (Tn, Zn) and (T̂n, Ẑn) respectively. Then, let
us notice that the equivalence of the initial compositions of the two processes
Zn and Ẑn implies that the event {(T̂0, Ẑ0) = (c · T0, Z0)} has probability one.
Hence, for any n ≥ 1, we have

λ(T̂n,Ẑn) =

∫

Rn−1×(0,1)n−1

λ(T̂n,Ẑn)|(T̂n−1,Ẑn−1)
· λ(T̂n−1,Ẑn−1)|(T̂n−2,Ẑn−2)

· · · λ(T̂1,Ẑ1)|(T̂0,Ẑ0)
=

=

∫

Rn−1×(0,1)n−1

λ(cTn,Zn)|(cTn−1,Zn−1) · λ(cTn−1,Zn−1)|(cTn−2,Zn−2) · · · λ(cT1,Z1)|(cT0,Z0) =

= λ(cTn,Zn))

The thesis is proved since the equivalence λ(T̂n,Ẑn) = λ(c·Tn,Zn) implies that

π̂ = π.

The assumption (5.3) implies also that m̂R = c · mR and m̂W = c · mW .
Then, from Theorem 3.1 we deduce the equivalence between the asymptotic
laws of Zn and Ẑn. Propositions 5.1 and 5.2 suggest that urn processes with
the same reinforcement means ratio present also similar asymptotic behavior.
For this reason, we prefer to use the ratio mR

mW
as parameter measuring the

means’ distance, instead of the usual mean difference mR − mW .

Here we present some simulations concerning the hypothesis test (4.1). In par-
ticular, we focus on comparing the power of the tests defined in (4.8) and (4.10).
The empirical power is computed using n = 104 subject, in correspondence of
different values of the ratio mR

mW
. The empirical power functions are reported

in Figure 2. As shown in Figure 2, the MRRU design constructs a test more
powerful then the one based on the RRU design with the sample size, for any
choice of the reinforcement means. Although this property makes the MRRU
design very attractive, the RRU model has the advantage that, with the same
sample size, it allocates less subject to the inferior treatment. Hence, what is
really interesting is studing the power functions of the tests (4.8) and (4.10),
in correspondence of a different values of NW , i.e. the number of subjects as-
signed to the inferior treatment. We compute the empirical power functions
for NW = 20, 50, 100, 500 and we report the graphics in Figure 3. From the
analysis of the power functions in Figure 3, different considerations can be done
depending on the size of the ratio mR

mW
. For high values of mR

mW
the power of the

tests (4.8) and (4.10) are very similar. When the ratio mR

mW
is small the power of

the test based on MRRU design seems to be considerable greater, for any value
of NW .
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Figure 2: The empirical power functions of test (4.8) (line with crosses) and of
test (4.10) (line with triangles).

Appendix

In the following we assume, without loss of generality, that condition (a) of the
Assumption 2.1 is satisfied; the symmetric case (b) is straightforward.

Lemma 5.1. For any t0 ∈ R, there exists t̄ > t0 such that

∀ t > t̄, ∀ ǫ > 0, P

(
∞⋃

k=1

{
T̃k ∈ [t, t + ǫ]

}
| T̃0 = t0

)
> 0 (5.7)

Proof. Let us take α, β ∈ R
+ such that α0 < α < β < β0. At first, notice that

if t ∈ (t0 + αη, t0 + βη), then

P
(

T̃1 ∈ (t, t + dt) | T̃0 = t0

)
= (1 − η) µW

(
d

(
t − t0

η

))
> 0

since t−t0
η ∈ (α, β).

For the same reason, for any k ∈ N, we have that if t ∈ (t0 + kαη, t0 + kβη),
then

P
(

T̃k ∈ (t, t + dt) | T̃0 = t0

)
≥ (1 − η)k µW

(
d

(
t − t0
kη

))k

> 0
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Figure 3: The empirical power functions of test (4.8) (line with crosses) and of
test (4.10) (line with triangles). Top left panel: NW = 20. Top right panel: NW =
50. Bottom left panel: NW = 100. Bottom right panel: NW = 20.

Let us introduce the sequence of sets (Ak)k such that

Ak =





( t0 + (k − 1)βη , t0 + kαη ) if k < β
β−α ,

∅ otherwise .

for k ≥ 1. Then, for any n ∈ N, we have that if

t ∈ ( t0 , t0 + nβη ) /

n⋃

k=1

Ak,

then

t ∈
n⋃

k=1

( t0 + kαη , t0 + kβη ),

and

P

(
n⋃

k=1

{T̃k ∈ (t, t + dt)} | T̃0 = t0

)
≥ (1 − η)n0 µW

(
d

(
t − t0
n0η

))n0

> 0,

where we choose

n0 =

[
t − t0
βη

]
+ 1
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Therefore, a sufficient condition for P
(⋃∞

k=1

{
T̃k ∈ [t, t + ǫ]

}
|T̃0 = t0

)
> 0 is

t ∈ (t0,∞) /

[ β
β+α

]⋃

k=1

( t0 + (k − 1)βη , t0 + kαη ),

so the thesis holds for any t̄ ≥ t0 +
[

β
β−α

]
αη.

Proposition 5.3. The Markov process T̃ = (T̃n)n∈N on the state space R is a
Harris Chain.

Proof. Let us start reminding that the Markov process T̃n on the state space
R is a Harris chain if there exist A,B ⊂ R, a constant ǫ > 0 and a probability
measure ρ with ρ(B) = 1, such that

(a) If τA := inf{n ≥ 0 : T̃n ∈ A}, then P (τA < ∞ | T̃0 = t0) > 0 for any
t0 ∈ R.

(b) If t0 ∈ A and C ⊂ B, then Kη(t0, C) ≥ ǫρ(C).

Let us prove the condition (a). Let A = [0, (β − α)η].

• First case: t0 ∈ [0, (β − α)η]

The condition (a) is trivial, since P (τA = 0 | T̃0 = t0 ∈ A) = 1.

• Second case: t0 > (β − α)η

We fix t̄ ≥ t0 +
[

β
β−α

]
αη and we define n̄ ∈ N, I ⊂ R as follows

n̄ =

[
t̄

(1 − η)x0

]
+ 1,

I = [ n̄(1 − η)x0 , n̄(1 − η)x0 + (β − α)η ] ,

where x0 ∈ [αR, βR] is chosen such that, for every ǫ > 0, µR([x0, x0 + ǫ]) > 0.
Fixing t̃ ∈ I, we have from the previous lemma that for every ζ > 0

P

(
∞⋃

k=1

{
T̃k ∈ [t̃, t̃ + ζ]

}
| T̃0 = t0

)
> 0,

since t̃ ≥ n̄(1 − η)x0 ≥ t̄. Then, let fix ζ small enough, such that t̃ + ζ ∈ I. Let

ñ := inf

{
n ≥ 1 : P

(
n⋃

k=1

{
T̃k ∈ [t̃, t̃ + ζ]

}
| T̃0 = t0 > (β − α)η

)
> 0

}

We can write

P ( τA < ∞ | T̃0 = t0 ) ≥ P ( T̃ñ+n̄ ∈ (0, (β − α)η) | T̃0 = t0 ) ≥

P ( T̃ñ+n̄ ∈ (0, (β − α)η) | T̃ñ ∈ [t̃, t̃ + ζ] ) · P ( T̃ñ ∈ [t̃, t̃ + ζ] | T̃0 = t0 )
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We have already proved that the second term of this product is strictly positive,
so we focus on the first term. Let us call

t̃min := arg min
t∈[t̃,t̃+ζ]

P ( T̃ñ+n̄ ∈ (0, (β − α)η) | T̃ñ = t )

we have

P ( T̃ñ+n̄ ∈ (0, (β − α)η) | T̃ñ ∈ [t̃, t̃ + ζ] ) ≥ P ( T̃ñ+n̄ ∈ (0, (β − α)η) | T̃ñ = t̃min ) ≥
n̄∏

s=1

Kη

(
t̃min − (s − 1)(1 − η)x0 , [t̃min − s(1 − η)x0; t̃min − s(1 − η)x0 + dt]

)
=

( η · µR(dx0) )n̄ > 0

because t̃min − n̄(1 − η)x0 ∈ (0, (β − α)η).

• Third case: t0 < 0

We fix t̄ ≥ max
{

t0 +
[

β
β−α

]
αη ; 0

}
and then we follow the same strategy

used in the second case (t0 > (β − α)η).

Let us prove the condition (b) Let

B = [ (β − α + α0)η , β0η ] ⊂ R

and the probability measure

ρ(C) =
1

(β0 − β + α − α0)η

∫

C

dt

for any set C ⊂ B. For every t0 ∈ A,

Kη(t0, C) ≥
∫

C

(1−η) µW

(
d

(
t − t0

η

))
≥ (1−η)

∫

C

min
(t0,t)∈A×B




µW

(
d

(
t−t0

η

))

dt


 dt

= (1 − η)

∫

C

min
x∈(α0,β0)

[
µW (dx)

dx

]
dt

Now if we define

ǫ = (β0 − β + α − α0)η(1 − η) min
x∈(α0,β0)

[
µW (dx)

dx

]

we obtain

Kη(t0, C) ≥ ǫ · 1

(β0 − β + α − α0)η

∫

C

dt = ǫ · ρ(C)

In what follows, for any interval I ⊂ R, we will refer to (τ I
i )i as the sequence

of stopping times
{

τ I
0 = 0

τ I
i := inf

{
n > τ I

i−1 : T̃n ∈ I
}

, i ≥ 1

For ease of notation, we will denote τ I as τ I
1 .
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Proposition 5.4. The Harris chain T̃ = (T̃n∈N on the state space R is recurrent
.

Proof. Let us remind that T̃n is recurrent if P (τA < ∞ | T̃0 ∈ A) = 1, for any

initial probability distribution λ̃0, where τA := inf{n ≥ 1 : T̃n ∈ A}. In partic-

ular, we are able to prove a stronger property, that is P (τA < ∞ | T̃0 = t0) = 1
for any t0 ∈ R, which implies the condition we need.

Let

• I be the closed interval defined as

I := [−(1 − η)βR, 0],

• c be the constant defined as

c := min
t∈I

P
(
τA < ∞ | T̃0 = t

)

c is strictly positive because, the process T̃n is an Harris chain and so
P (τA < ∞ | T̃0 = t0) > 0 ∀t0 ∈ R,

• ñ be the integer defined as

ñ := inf

{
n ≥ 1 : min

x∈I
P

(
ñ⋃

k=1

{T̃k ∈ A} | T̃0 = x

)
≥ c

2

}

Now, we focus on proving that the stopping times (τ I
i )i are almost surely finite:

P
(
τ I = ∞ | T̃0 = t0

)
= 0 (5.8)

(a) First case: t0 ∈ (0,∞)

Looking at the transition kernels (3.3) and (3.5) of the processes Tn and T̃n

respectively, we note that for any t0 ∈ (0,∞), P (T̃1 ≤ T1 | T̃0 = T0 = t0) = 1.
This implies that

P (T̃1 > 0 | T̃0 = t0) ≤ P (T1 > 0 | T0 = t0) (5.9)

Then, we have that

P
(
τ I = ∞ | T̃0 = t0

)
= P

(
τ (−∞,0) = ∞ | T̃0 = t0

)
=

P

(
∞⋂

n=1

{
T̃n > 0

}
| T̃0 = t0

)
≤ P

(
∞⋂

n=1

{Tn > 0} | T0 = t0

)
= 0

where the passage from T̃n to Tn is due to the relation (5.9) and the latest prob-
ability is equal to zero because P (Tn < 0 i.o. | T0 = t0) = P (Zn > η i.o. | T0 =
t0) = 1 for any t0 ∈ R.

(b) Second case: t0 ∈ (−∞, 0]
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Looking at the transition kernels (3.3) and (3.5) we have that for any t0 ∈
(−∞, 0],

P (T̃1 < 0 | T̃0 = t0) ≤ P (T1 < 0 | T0 = t0) (5.10)

and following the same arguments of the case (a) this leads to

P
(
τ (0,∞) = ∞ | T̃0 = t0

)
= 0 (5.11)

Hence, we have

P
(
τ I = ∞ | T̃0 = t0

)
=

P
(
τ I = ∞ | {τ (0,∞) < ∞}

⋂
{T̃0 = t0}

)
=

P

(
∞⋂

n=1

{T̃n /∈ I} | {τ (0,∞) < ∞}
⋂

{T̃0 = t0}
)

≤

P




∞⋂

n=τ(0,∞)+1

{T̃n /∈ I} | {τ (0,∞) < ∞}
⋂

{T̃0 = t0}


 ≤

sup
x∈(0,∞)

P

(
∞⋂

n=1

{T̃n /∈ I} | T̃0 = x

)
=

sup
x∈(0,∞)

P
(
τ I = ∞ | T̃0 = x

)
= 0

since from the case (a) we have that ∀t0 > 0, P (τ I = ∞ | T̃0 = t0) = 0. There-

fore, we conclude that P (
⋂∞

i=1 τ I
i < ∞ | T̃0 = t0) = 1, which means (τ I

i )i is
sequence of stopping times almost surely finite.

Then, let us define the sequence of stopping times

{
τ0 = 0

τi := inf
{

n > τi−1 + ñ : T̃n ∈ I
}

, i ≥ 1

Since
⋃∞

n=1 τn ⊂ ⋃∞
n=1 τ I

n, the stopping times (τn, n = 0, 1, 2, ..) are almost
surely finite.

22



Therefore, for any t0 ∈ R we have that

P
(
τA = ∞ | T̃0 = t0

)
= P

(
∞⋂

n=1

{Tn /∈ A} | T̃0 = t0

)
≤

P

(
∞⋂

i=0

τi+ñ⋂

n=τi+1

{T̃n /∈ A} | T̃0 = t0

)
=

∞∏

i=1

P




τi+ñ⋂

n=τi+1

{T̃n /∈ A} |
i−1⋂

j=0

τj+ñ⋂

n=τj+1

{T̃n /∈ A}


 =

∞∏

i=1


1 − P




τi+ñ⋃

n=τi+1

{T̃n ∈ A} |
i−1⋂

j=0

τj+ñ⋂

n=τj+1

{T̃n /∈ A}





 =

∞∏

i=1


1 −

∫

I

P

(
τi+ñ⋃

n=τi+1

{T̃n ∈ A} | T̃τi
= x

)
P


T̃τi

= dx |
i−1⋂

j=0

τj+ñ⋂

n=τj+1

{T̃n /∈ A}





 =

∞∏

i=1


1 −

∫

I

P

(
ñ⋃

n=1

{T̃n ∈ A} | T̃0 = x

)
P


T̃τi

= dx |
i−1⋂

j=0

τj+ñ⋂

n=τj+1

{T̃n /∈ A}





 ≤

∞∏

i=1

[
1 − min

x∈I
P

(
n̄⋃

n=1

{T̃n ∈ A} | T̃0 = x

)]
≤

∞∏

i=1

[
1 − c

2

]
= 0

and so the thesis is proved.

Proposition 5.5. The recurrent Harris Chain T̃ = (T̃n)n∈N on the state space
R is aperiodic.

Proof. The recurrent Harris chain T̃n is aperiodic if there exists n0 ∈ N such
that P (T̃n ∈ A | T̃0 ∈ A) > 0, for any integer n ≥ n0 and for any distribution

law λ̃0 on T̃0.
Let define the stopping time τA−

1 as follows

τA−

:= inf
{

n > τ (−∞,0) : T̃n ∈ A
}

(5.12)

This stopping time is almost surely finite. In fact, since P (τ (−∞,0) < ∞|T̃0 =
t0) = 1 for any t0 ∈ R, we have that

P
(
τA−

< ∞ | T̃0 ∈ A
)

= P
(
τA−

< ∞ | {τ (−∞,0) < ∞}
⋂

{T̃0 ∈ A}
)

=

P

(
∞⋃

n=τ(−∞,0)

{T̃n ∈ A} | {τ (−∞,0) < ∞}
⋂

{T̃0 ∈ A}
)

≥

min
x∈(−∞,0)

P

(
∞⋃

n=0

{T̃n ∈ A} | T̃0 = x

)
= min

x∈(−∞,0)
P

(
τA < ∞ | T̃0 = x

)
= 1
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Hence, there exists n0 ∈ N such that P (τA−

= n0 | T̃0 ∈ A) > 0. We notice also
that

P
(
T̃n0

∈ A | T̃0 ∈ A
)

≥ P
(
{T̃n0

∈ A}
⋂

{τA−

= n0} | T̃0 ∈ A
)

=

P
(
T̃n0 ∈ A | {τA−

= n0}
⋂

{T̃0 ∈ A}
)

· P
(
τA−

= n0 | T̃0 ∈ A
)

=

P
(
T̃τA− ∈ A | T̃0 ∈ A

)
· P

(
τA−

= n0 | T̃0 ∈ A
)

= P
(
τA−

= n0 | T̃0 ∈ A
)

> 0

Then, for every n ≥ n0, we have

P
(
T̃n ∈ A | T̃0 ∈ A

)
≥ P

(
τA−

= n | T̃0 ∈ A
)

≥ ηn−n0 · P
(
τA−

= n0 | T̃0 ∈ A
)

> 0

and so the thesis is proved.
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