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Abstract

We propose a new tree-based classifier for Functional Data. A novel objective
function for Suárez and Lutsko (1999)’s globally-optimised Soft Classification Trees
is proposed to adapt it to the Functional Data Analysis setting when using an FPCA
basis. It consists of a supervised and an unsupervised term, with the latter working
as a penalisation for heterogeneity in the leaf nodes of the tree. Experiments on
benchmark data sets and two case studies demonstrate that the penalisation and
proposed initialisation heuristics work synergically to increase model performance
both in the train and test data set. In particular, including the unsupervised term
shows to aid the supervised term to reach better objective function values. The
case studies specifically illustrate how the unsupervised term yields adaptiveness to
different problems, by using custom criteria of homogeneity in the leaf nodes. The
interpretability of the splitting functions at the internal nodes is also discussed.

Keywords: functional data classification · regularisation · soft classification tree · penalised
learning· decision tree learning
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1 Introduction

In the context of high-dimensional data, Functional Data Analysis (FDA) has consolidated

itself as statisticians’ go-to framework whenever the different measurements per statistical

unit are indexed by some continuous domain, such as space or time. Several classical

methods, such as PCA, regression, testing, amongst others, have been extended to such

setting (Ramsay and Dalzell 1991). Classification models are no exception, and owing to the

relevance of this growing field in statistics, we seek to contribute to this stream of literature

through a nonparametric, interpretable and performant model that combines ideas from

globally-optimised Decision Trees, where the overall tree is estimated by minimising the

objective function over all its decision variables, and the FDA literature.

The most relevant methods for predicting the label of an observation when the data are

functions, i.e, classification in FDA, have been reviewed by Wang, Huang, and Cao (2024).

In the FDA setting, formulating parametric assumptions on the underlying distribution of

the data is particularly critical, since these suppositions can lead to severe misspecification

bias and can be difficult to test for, as studied for e.g. by Cuevas, Febrero, and Fraiman

(2007)’s work, which has led to the growth of nonparametric FDA (Ferraty 2006). Fur-

thermore, the interpretability of FDA models is a key issue given the infinite-dimensional

nature of the objects of analysis.

On the other hand, since Breiman, Friedman, Olshen, and Stone (1984)’s seminal pa-

per, decision tree learning has been widely adopted both by the statistical and machine

learning communities, cfr. (Breiman 2001b), altogether with ensemble variants such as

Bagging, Random Forests (Breiman 2001a) and Boosting (Hastie, Tibshirani, Friedman,

Hastie, Tibshirani, and Friedman 2009). The optimisation problem that has to be solved

in order to fit a decision tree is NP-hard (Hyafil and Rivest 1976), and as a result in the
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past these models were solved through greedy heuristics, optimise one node of the tree at a

time. They are referred to as Classification and Regression Trees (CARTs). Nevertheless,

thanks both to an increase in computational power and improved solvers driven by con-

tributions in the operations research literature, a plethora of alternative formulations have

been proposed optimise trees globally. These are in turn divided into those with hard split-

ting rules (Verwer and Zhang 2019; Bertsimas and Dunn 2017); and so-called soft splitting

rules, started by Suárez and Lutsko (1999) and further developed by Blanquero, Carrizosa,

Molero-Ŕıo, and Morales (2021); Blanquero, Carrizosa, Molero-Rı́o, and Romero Morales

(2020). In the first case, observations are routed along the tree graph following one single

path from the start node until a leaf node; whereas in the latter they can follow different

paths to different leaf nodes but in a probabilistic fashion.

In the particular context of CARTs for functional data, we retrieve Belli and Vantini

(2022)’s and Maturo and Verde (2023)’s works. Blanquero, Carrizosa, Molero-Ŕıo, and

Romero Morales (2023) use soft trees focusing in domain selection in the case of regression.

In the current work, we build upon optimal (non-greedy) soft classification trees (SCTs),

devised by Suárez and Lutsko (1999), expanded and called Optimal Randomised Classifi-

cation Trees (ORCTs) (Blanquero et al. 2021). In order to tailor SCTs to functional data,

we propose a new objective function that contains both a supervised and an unsupervised

term, where the latter promotes leaf node homogeneity and also works as a penalisation

to mitigate overfitting. We additionally provide a heuristic method that combines boot-

strap aggregation and functional LDA (FLDA, see James and Hastie (2002)), yielding a

statistically-driven initialisation of the parameters of the tree. Both proposals work in syn-

gery with interior-point methods for optimisation, yielding more stable and better results

each time the mathematical program is solved, as we demonstrate through a simulation

study. Moreover, to improve interpretability, a suitable dimensionality reduction through
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FPCA is performed. Indeed, estimation yields what we name a splitting function at each

internal node of the tree, which provides a direct interpretability of how the model learns

to separate the functional data.

The outline for the current work is the following: in Section 2.1, we first review classi-

fication methods in FDA, as well as CARTs and (optimal) soft trees, including ORCTs in

detail. In Section 2.2 we delve into the details of our proposal, including the formulation

with its penalisation, the initialisation methods we propose, and outline its interpretability

through the splitting functions. Next, we turn to its application: in Section 3.2 the algo-

rithm’s performance is tested on standard benchmark data sets for functional classification

and we show its worth in real-world application in Section in 3.3.2 and 3.3.1. We conclude

by commenting our results and outlining possible research directions to further pursue.

2 Methods

2.1 Preliminaries

2.1.1 Notation for Functional Data

Letting (Ω,F ,P) be a (complete) probability space, we denote as functional datum a re-

alisation of a real-valued process X defined over a compact subset of Rd, viz. X(s) =

X(ω, s), s ∈ I with I ⊂ Rd. In the FDA literature, (cfr. (Ferraty 2006)), it is typically as-

sumed either that (functional) realisations X(s) belong to the L2(I;R) H-space or that they

are continuous functions: E[
∫
I X(s)ds] < +∞ (sometimes even

∫
I X(s)ds < +∞ P a.s.)

or X(s) ∈ C(I, ||.||∞; R) P a.s., respectively. In a given data set, functions are discretely

sampled, since it is unrealistic to gather infinite measurements per statistical unit. In

the present work we assume they are observed on a fine enough grid, such that standard
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smoothing techniques may be applied, such as splines or nonparametric techniques, see

(Ramsay and Silverman 2005).

2.1.2 Classification of Functional Data

Given a training data set of N functional data observed at p points of their domain, with

observed labels, viz. {(
{Xi(sj)}pj=1, yi

)}N
i=1

(1)

where yi ∈ {1, ... , K} , K denoting the number of different labels present in the data set is

given. The objective is to fit a model that is able to predict correctly the label of a newly

observed function {Xnew(sj)}pj=1.

Several of the available models are adaptations of algorithms for multivariate data,

applied to a suitable dimension reduction of the infinite-dimensional functional data set,

but ad hoc methods have also been proposed for the FDA setting. The latter in turn

can be divided into two groups, namely distance-based approaches, where notable exam-

ples are centroid classifiers (Delaigle and Hall 2012, 2013), nearest-neighbours (Galeano,

Joseph, and Lillo 2015) (Venturini, Muñoz, and González 2014); and those which utilise

so-called functional depths, building onto Cuevas, Febrero, and Fraiman (2006)’s seminal

paper, for e.g. Hlubinka, Gijbels, Omelka, and Nagy (2015)’s. Their popularity is attested

by their inclusion of the popular Python package Scikit-fda (Ramos-Carreño, Torrecilla,

Carbajo Berrocal, Marcos Manchón, and Suárez 2024). The second group exploits Repro-

ducing Kernel Hilbert spaces, which allow for a more efficient computation for dot products

in Hilbert spaces, being directly applicable to distance calculations (Wang et al. 2024) , cfr.

contributions by Berrendero, Cuevas, and Torrecilla (2018) et Sang, Kashlak, and Kong

(2023).

Since we build upon SCTs, in this research we have chosen the other possibility, id

5



est, to firstly perform a suitable dimensional reduction on the functional data set and

algorithmically deal with multivariate data. The key idea is representing each functional

datum as a linear combination of a family G of basis functions or bases :

xi(s) =
∑
g∈G

β(i)
g φg(s) i = 1, ..., N (2)

The most popular bases in the FDA literature are Fourier, Splines, Wavelets, step func-

tions, amongst others (Ramsay and Silverman 2005), as well as data-driven bases, such as

functional PCA (FPCA) or functional canonical correlation analysis (FCCA), cfr. (Kneip

1994)(Rice and Silverman 1991).

In the current work, we consider FPCA. Assuming realisations to be in L2(I;R)P a.s.,

the variance-covariance function C : I × I → R+ given by C(s1, s2) := E[
(
X(s1) −

µ(t1)
)
[
(
X(s2) − µ(s2)

)
] , s1, s2 ∈ I satisfies the conditions to apply Mercer’s theorem,

yielding the Karhunen-Loève expansion (Hsing and Eubank (2015) provides details). Let-

ting E[X(s)] = µ(s), s ∈ I be the pointwise expected value of the process, one obtains

xi(s) = µ(s) +
∞∑
j=1

β
(i)
j ξj(s) i = 1, ..., N (3)

where ξj(s) are the eigenfunctions corresponding to the (infinite-dimensional) spectral de-

composition of C(. , .).

In practice, though, the covariance function C(. , .) is unknown and has to be estimated

from the available data. Assuming the sampling grid of the functional data to be fine

enough, the sample covariance estimator for multivariate data can be considered a good

enough finite rank (that is, finite-dimensional) operator that is converging to the true

infinite-dimensional covariance function. Indeed, since the covariance function is a compact

operator in a Hilbert space, it can be approximated by a sequence of finite rank operators

(Brézis 2011). Since we assume the functions to belong to L2(I;R), the sample covariance
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estimator is consistent. Hence, eigenfunctions ξ(s) of C(. , .) can be approximated by the

(finite dimensional) eigenvectors of the sample (multivariate) covariance matrix N−1XTX,

where X is the N ×p matrix of centred observed functions. As typically done in dimension

reduction techniques, a finite basis is constructed by keeping the first J eigenvectors. Then,

Ordinary Least Squares (OLS) estimation is employed to obtain the weights of the linear

combination for each functional datum of the sample, as follows:

xi(s) =
J∑
j=1

β̂
(i)
j ξ̃j(s) + εi(s) (4)

with εi(s) being i.i.d. functions with in L2(I;R)P a.s. with E[εi(s)] = 0. Whereas other

bases could be employed, we make such choice because (i) estimation can be made without

smoothing the functional data, provided the sampling grid is fine enough, (ii) it grants

interpretability (see Section 2.2.2), (iii) it allows to perform an initialisation heuristic based

on FLDA (Section 2.2.3), (iv) it allows for a quick computation of the distance between

functions when such is the homogeneity criterion in the penalisation, as shown Section

2.1.2. Indeed that due to the orthogonality of {ξ̃j}Jj=1, the estimated β̂
(i)
j , j ∈ {1, . . . , J}

correspond to the estimates of the principal component scores of the i-th datum with

respect to the j-th principal component:

β̂
(i)
j = 〈xi, ξj〉Rp ≈ 〈Xi(s) , ξj(s)〉L2(I;R) =

∫
I
Xi(s)ξj(s)ds (5)

Regarding aforementioned CARTs expressly for functional data, Belli and Vantini (2022)’s

and Maturo and Verde (2023)’s contributions stand out; and for SCTs Riccio, Maturo, and

Romano (2024)’s and Blanquero et al. (2023)’s. However, the first three perform greedy

optimisation; and the latter, originally designed for regression, could be adapted for clas-

sification, yet using step functions bases whose support is an optimising variable yields to

awkward integral evaluations at the objective function and lacks the flexibility of non-linear
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bases. In the present work, interior point methods for trees proposed by Suárez and Lutsko

(1999) for Blanquero et al. (2021)’s soft tree global formulation are exploited the context of

functional data. After choosing FPCA for the basis expansion, two novelties are proposed:

(i) adding an unsupervised term in the objective function that promotes homogeneity be-

tween the functions at each leaf node, working as a penalisation (ii) devising a heuristic for

the initialisation of the optimising variables based on bootstrap aggregation and FLDA.

As a result of (i), the first non-greedy SCT in the FDA setting to our knowledge is cre-

ated. (ii) aids the solver to yield solution with increased performance and lower variability

with respect to a trivial initial solutions, as evinced from the simulation study in Section

3. Moreover, by performing the so-called soft splits with respect to all FPCA scores at

each internal node yields as an easy and intuitive way of visualising the splitting functions,

enhancing interpretability, cfr. Section 2.2.2.

2.1.3 ORCTs and variants

A classification tree can be viewed as a directed binary graph composed of a set of internal

(branch) nodes τB, which includes the root, and a set of terminal (leaf) nodes τL. Each

internal node applies a binary splitting rule that routes an input vector z ∈ RJ along one

of its two outgoing arcs. Starting from the root, the input vector follows these rules until

it reaches a leaf node, where the model assigns a class label y ∈ {1, . . . , K}.

In Soft Classification Trees (SCTs), each branch node employs a link function to de-

termine the routing probability. For an input vector zi and a branch node t ∈ τB, the

probability of moving to the left child is

pit = pit
(
zi; (at,mt)

)
= F

(
J∑
j=1

ajtzij −mt

)
(6)
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where ajt ∈ R and mt ∈ R arex the decision variables and F (·) denotes the link func-

tion, which is usually taken as the logistic distribution function F (v) = {1 + exp (−v)}−1.

Accordingly, the probability of choosing the right child is 1− pit.

Due to the application of distribution functions, every input vector reaches each leaf

node with non-negative probability. Thus, the probability that input vector zi falls in leaf

node t ∈ τL is

Pit = Pit
(
zi; (at,mt)

)
=

∏
tl∈AL(t)

pitl
∏

tr∈AR(t)

(1− pitr)

where AL(t) is the set of ancestors of t whose left branch lies on the path from the root

to t, and AR(t) is the set of ancestors whose right branch belongs to that path. Figure 1

illustrates a soft decision tree with depth D = 2.

Figure 1: A soft decision tree of depth D = 2.

In (Blanquero et al. 2021, 2020), for each leaf node t ∈ τL and class label k ∈ {1, . . . , K},

the authors define a binary decision variable ckt, which takes the value 1 if all data assigned

to node t are classified with label k, and 0 otherwise. To formulate the misclassification

error, they introduce, for each observation (zi, yi) with i ∈ 1, . . . , N and for each class

k ∈ {1, . . . , K}, a parameter wyik ≥ 0 representing the cost incurred when zi is classified

as class k instead of its true label yi.

As a result, the task of minimizing the expected misclassification error over the training
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set can be expressed as the following continuous nonlinear optimization problem:

min N−1
N∑
i=1

∑
t∈τL

Pit

K∑
k=1

wyikckt (7a)

s.t.
K∑
k=1

ckt = 1 t ∈ τL, (7b)

∑
t∈τL

ckt ≥ 1 ∀k ∈ {1, ...., K}, (7c)

ajt ∈ [−1, 1], mt ∈ [−1, 1] j ∈ {1, . . . , J}, t ∈ τB, (7d)

ckt ∈ [0, 1] k ∈ {1, . . . , K}, t ∈ τL, (7e)

where the set of constraints in (7b) enforces a unique class label assignment for each leaf

node, whereas constraints (7c) require that each class label k be assigned to at least one

leaf node.

It is worth noting that the integrality constraints on the binary variables ckt have been

relaxed in the above formulation, as it has been shown by Blanquero et al. (2021) that the

continuous nonlinear problem admits an optimal solution that is also integer.

According to Blanquero et al. (2021), we will refer to the mentioned SCT of depth D

obtained by minimizing the misclassification error (7a) subject to (7b)–(7c) as an Optimal

Randomized Classification Tree (ORCT), without emphasizing the soft multivariate splits.

Blanquero et al. (2020) promote sparsity in SCTs by adding regularization terms involving

the `1 and `∞ norms to the expected misclassification error. Amaldi et al. (2023) work

induce sparsity by exploiting concave approximations of the `0 norm.

Concerning soft trees for functional data, (Blanquero et al. 2023) extend the formulation

proposed in (Suárez and Lutsko 1999; Blanquero et al. 2022) to construct a soft regres-

sion tree that performs domain selection of critical intervals for prediction by applying `1

10



regularization to the coefficients of functional features.

2.2 Penalised SCT for Functional Data

2.2.1 The homogeneity penalisation

In the current work, we extend the objective function (7) (which in turn extends Suárez and

Lutsko (1999)’s formulation) to handle functional data by incorporating an unsupervised

term which serves as penalisation that takes into account the expected homogeneity at each

leaf node. Following the notation from Section 2.1.3, and denoting djl the dissimilarity

between the j-th and l-th functional data from the available sample (1):

N−1
N∑
i=1

(∑
t∈τL

Pit(zi; a)
K∑
k=1

WyikCkt

)
+α |τL|−1

∑
t∈τL

(
N∑
j=1

N∑
l=j+1

djl Pjt(zj; a)Plt(zl; a)

)
(8)

with α ∈ R+ a hyperparameter to be set.

The rationale behind such decision is that the distribution of the functional data, con-

ditional on the label, should be the same, and thus with respect to some criterion functions

should be homogeneous, pushing their dissimilarity to 0. The algorithm is ipso facto di-

vided into a supervised part for classification (misclassification cost) and an unsupervised

one for clustering (penalty), with the result being a semi-supervised model. These two

goals are not opposed: actually, as seen in Section 3, in some cases the clustering term

leads to better results in the classification, both in the generalisation of the model (test-set

performance) and on the reduced variance of the model with respect to the starting points

for the optimisation. We choose to name the djl as dissimilarity instead of distance since

any other suitable functional of the distribution of the functional data may be utilised to

help . This also promotes flexibility, since the choice of the dissimilarity is problem-specific

(Sections 3.3.2 and 3.3.1).
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Note that since the proposed model, apart from the penalisation, minimises expected

classification cost, an desirable value of such objective function (7a) would mean better

values in a family of standard performance indices of classification, such as accuracy, area

under the Receiver Operating Characteristic (ROC), F1-score, amongst others. The jus-

tification behind the penalisation, besides from the within-label homogeneity argument

exposed in Section 2.2, is to obtain desirable classification metrics not only on the training

set, but on data the model has not been calibrated with, referred to as the test set.

The computation of the dissimilarities djl should be done before the mathematical

optimisation, once the training set has been fixed. Whereas the O(n2) complexity may be

worrisome for large datasets, this another instance where using the FPCA basis provides an

advantage: the L2 distance between two functions can be computed by the euclidean norm

of the difference of FPCA scores (and same for other quantities due to the isomorphism of

all spaces of dimension p to Rp, cfr. Brézis (2011) et Ramsay and Silverman (2005)). Such

procedure is very light computationally and would require the sample size N to be higher

than any known FDA application to our knowledge to be a bottleneck in the inference

procedure.

2.2.2 Model interpretability

In high-stakes domains, such as medicine, finance, and criminal justice, it is important

to know why, given a (new) observation, a class assignment is made. Domain experts

are interested in understanding what characteristics of the observation are looked at by

the model to predict such label. The advantage of working in the context of soft trees,

and deciding to make the dimension reduction through FPCA is that the bases functions

are re-weighted according to he estimated at, t ∈ τB, inheriting the capacity to interpret

(splitting) functions as perturbations of the mean. This is explained as follows. At internal

12



node t ∈ τB, parameters ajt, j ∈ {1, . . . , J} and mt are used to determine the probability

for a given observation z ∈ RJ to fall into the left child of such node. Since distribution

functions are monotone non-decreasing, a higher scalar product between the observation

vector and parameters vector of the fixed node, means a higher probability of descending

leftwards from that internal node. One of the main proposals of this article is to set the

zi, i ∈ {1, . . . , N} as the scores with respect to the estimated FPCA basis :

zi =


〈xi, ξ̃1〉

...

〈xi, ξ̃J〉

 ∈ RJ (9)

and thus, by linearity of the scalar product, Equation (6) becomes:

pit
(
zi; (at,mt)

)
= F (zᵀ

i at −mt) = F (
J∑
j=1

{
〈xi, ξ̃j〉ajt

}
−mt) = F (

J∑
j=1

{
〈xi, ξ̃jajt〉

}
−mt)

(10)

Since we are using scalar products in Rp, with p sufficiently large to approximate scalar

products in L2(I;R), we can denote as splitting functions the set {ft(s)}t∈τB , given by

ft(s; at) =
J∑
j=1

atj ξ̂j(s) (11)

The previous reasoning implies that at node t ∈ τB, the higher the scalar product

between function xi(s) and splitting function ft(s), the higher the probability of the ith

datum of going to the left child of that same node. This results in a direct interpretation

feature of our model: at each internal node t ∈ τB, the more correlated (in the L2 sense)

with the splitting function ft(s) a (newly) observed function is, the higher the probability it

will descend along the graph of the tree through the left child of such node. Inspecting such
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(estimated) functions grants a direct method to knowing which aspects of the variability

of functional data set the model has learnt and is exploiting to perform inference on new

functional data. This is demonstrated in the case studies of the current manuscript, viz.

Sections 3.3.2 and 3.3.1.

2.2.3 Model fitting: interior point methods

The robustness of the solution of an non-convex optimisation solver method is directly

affected by the choice of a starting point, with poor choices leading to failure of convergence,

and better choices for reaching of stationary point of better objective function value. For

interior point methods, it is common practice to solve the same problem from a range of

different initial coordinates, see Nocedal and Wright (1999); Nocedal, Wachter, and Waltz

(2009)’s works. Blanquero et al. (2021), for e.g., propose to solve the ORCT problem

20 times, keeping the result with the best objective function value. Given the high non-

convexity of objective functions (7a) and (8), the choice of initialisation procedure affects

the variability in the solution obtained by the optimisation method, such that it calls upon

excogitating an ad-hoc initialisation scheme. Ideally, the objective function value should be

robust with respect to different starting points, and these should be such that they guide

the (Interior Point) solver to attain better objective function values, as done by Nocedal

et al. (2009).

Naturally, a trivial initialisation scheme would generate random starting points subject

to constraints (7b)–(7c). In the code we provide as supplement to the present manuscript,

we develop such scheme, utilising distribution U(0, 1) for at, t ∈ τB and mt, t ∈ τB; and

independent K-dimensional Dirichlet distributions for ct, t ∈ τL together with an earth-

moving algorithm to ensure (7b). We hereafter refer to this initialisation as the trivial

one.
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A non-trivial initialisation scheme has been provided by Consolo, Amaldi, and Manno

(2025) for soft regression trees. Utilising the input data matrix Z, at each t ∈ τB k-means

clustering is used to discover two clusters (left and right). Once the left and right clusters

are defined, a logistic regression is fit, whence at and intercepts mt are retrieved. The

observations used at each internal node for the clustering depend on those which descended

left or rightwards in the parent node, as a result of the unsupervised cluster assignment,

and with all observations being used in the node t0 at depth 0, i.e. the first one in the tree.

We modify such method to output random starting points subject to (7b)-(7c). The full

algorithm is provided in code supplementary to the manuscript.

As custom for Interior Point methods, the problem is solved from a number of starting

points, keeping the variables associated to the best solution. For each of these initial

solutions, Consolo et al. (2025) run the initialisation procedure a number of times, and

select the best starting point according to some criterion. They utilise the silhouette score

at each leaf node to select the best initial solution to give as input to the solver. In the

current setting, where also the labels yi, i ∈ {1, . . . , N} are available, the Gini index is also

utilised. Hereafter we refer to these non-trivial initialisations as km-silhouette and km-gini.

In the current work, we also propose an ex novo procedure, based on FLDA (James and

Hastie 2002), which exploits both the scores matrix Z and the labels vector y = {yi}Ni=1.

A first design choice is that at each t ∈ τB, the considered observations, indexed by It ⊂

{1, . . . , N}, are bootstrapped (i.e. a sample with replacement is taken), and
⌊√

J
⌋

of the

input data’s columns are chosen at random. This last decision is aligned with Breiman

(2001a)’s Random Forests, as implemented by Pedregosa et al. (2011).

Then, FLDA is fitted on the subsampled columns and a bootstrap sample of the avail-

able observations in such node It. The unit vector corresponding to the first linear discrim-

inant wt is used for the value of at. The rationale behind for such setup is that in (F)LDA,
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the first linear discriminant maximises the separability of observations with respect to the

labels y (Johnson et al. 2002). The procedure is followed for all t ∈ τB. Note that the

J −
⌊√

J
⌋

columns which were not subsampled at the current node are not included in the

FLDA and they are set to zero, whence still wt ∈ RJ .

On the other hand, to obtain mt, the normalised mean of the FLDA scores with respect

to wt are computed. That is, the mean of vector Z(t) · wt is calculated and divided by

J , where Z(t) =
{
zᵀ
i

}
i∈It

This ensures that the inputs to the logistic distribution function

in the calculation of (6) are centred. Such centring, due to the symmetry of the said link

function in (6), causes the half of the present observations It to go to the left child node of

t (pit > 0.5 for half of i ∈ It), so that as the internal nodes t ∈ τB are initialised, none of

them end up with It = {∅}. As a result, a rule for defining the observations used for the

FLDA at each internal node, It, is provided. Naturally, It0 = {1, . . . , N}, where t0 is the

first node of the tree.

Finally, for the choice of the ckt, k ∈ {1, . . . , K}, t ∈ τL the class with the highest

number of observations available (according to this initialisation procedure, It, t ∈ τL) is

set as 1 and else 0. As with the trivial initialisation, and ad-hoc minimum earth moving

algorithm is utilised in case constraints are not respected. The Gini index is utilised to

select the initial solution after having run this algorithm a specified number of times.

Since the initialisation scheme for the interior point method exploits in turn another

model for classification, we deem it to be statistically-driven.

3 Results

This Section is devoted to assess the classification ability of our proposal. On the one

hand, we want to evaluate the POST -FD classifier across different data sets by means
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of a suitable classification metric and of its interpretability. On the other hand, that the

critical choices made, viz. the penalisation in (8) and the FLDA-inspired initialisation are

justified.

We recall (Section 2.2.3) that when using interior point solvers for non-convex objective

functions, a variety of starting points are provided. Given the high-non convexity of (8),

good quality initial solutions can enhance model fitting by aiding for the (Interior Point)

solver to yield good quality final solutions. That is, better starting points should lead to

better objective function values, with less variability. Moreover, since the penalty term in

the objective function promotes homogeneity in leaf nodes, the model’s ability to avoid

overfitting should be improved. Lastly, as outlined in Section 2.2.2, its interpretability

features should be helpful to provide qualitative inference upon utilisation.

3.1 Simulation setting

The performance of the proposed classifier is evaluated through numerical experiments

carried out on different data sets with different characteristics, as argued by e.g. Friedman

(2001) or Báıllo et al. (2011). Firstly, in Section 3.2, we test it on standard benchmark

data sets for classification in FDA. Next, we show in Section 3.3 its relevance by applying it

in two case studies, where the task of classification is notably harder than for the previous

known data sets.

For all experiments, the setup is the following. The classification accuracy on both

training and test set are obtained through 5-fold cross validation, ensuring that at each

fold the proportion of data belonging to each class is approximately the same (stratified

k-fold cross validation). The optimisation problem is solved from 20 starting points, and

the distribution across the 5 folds of the training set and test set classification accuracy

are the main result under study, with a total of 20 × 5 runs obtained in the experiment
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per training and per test data set, given the set necessary specifications of the tree. The

depth is fixed at D = 2, which allows both for each class to be represented in at least one

leaf node, and to construct an easy way to interpret the estimated tree.

Two hyper-parameters of the model are changed to explore the empirical distributions

of the performance measures. The first one is the weight of the penalisation in (8) given

by α, which is explored for α = 0, i.e. the case without penalisation and 10 different values

which are a common choice in the regularised learning setting:

α ∈ {0, 10−5, 10−4, 10−3, 10−2, 10−1, 0.5, 100, 5, 101}

These are usually incumbent values for the penalty hyper-parameter, cfr. the implementa-

tions by Pedregosa et al. (2011) and Friedman et al. (2010). Values of α are in the abscissa

of Figures 3, 4, 6 and 9.

The other hyper-parameter is the algorithm to provide those 20 starting points. We

utilise 4 different methods, namely the ones presented in Section 2.2.3: the trivial ini-

tialisation, km-silhouette, km-gini and the FLDA-inspired heuristic. In the fashion of the

experimental setting used by Consolo et al. (2025), for each of the 20 starting points, the

initialisation heuristic is run 40 times, for each of which a single initial solution is selected

according to the criterion given by the procedure The type of initialisation varies for each

column of plots in Figures 3, 4, 6 and 9. The analysis of the model’s interpretability, readily

available by the estimated splitting functions (11), is carried out only in the case studies,

as the difficulty and importance of these applications elicit more interest.

Another case-specific hyper-parameter of the model is the number J of selected Func-

tional Principal Components (FPCs), which in turn determines the number of variables

in the optimisation and thus has an impact on the difficulty to obtain a solution. J was

chosen according to standard scree plot evaluations, as done by James and Hastie (2002).
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Figure 2: Benchmark data sets for functional classification.

Code for the algorithm and the different initialisation heuristics, as well as the experiments

is available in Supplementary Material.

3.2 Benchmark data sets

The first set of experiments are carried out with real-world data which are widely used to

illustrate classification techniques in the FDA setting, viz. Berkley Growth (Tuddenham

1954), Canada Weather, Tecator, as pointed out by Ferraty (2006); to which we add Alcock
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Table 1: Summary of the benchmark data sets

Name N K Class numerosity Chosen J

Canada Weather 29 3 (15,19,15) 5

Berkeley Growth 40 2 (23,17) 5

Control Charts 50 3 (19,16,15) 8

Tecator 215 2 (77, 138) 4

et al. (1999)’s Control Charts simulated data set. The first three are provided by Ramos-

Carreño et al. (2024)’s Scikit-fda Python library, whereas the latter is made available online

by Dua and Graff (2019).

Some ad hoc modifications are made to render them suitable for our experiments. As

done by Ramos-Carreño et al. (2024) for the Canada Weather dataset the Arctic class was

discarded due to its scarce (N = 3) numerosity. For the Control Charts data set, only three

classes were kept, subsampling functions at random to retain in total N = 50, keeping both

the sample cardinality N and the number of different labels K in line with other benchmark

data sets. The data, illustrated in Figure 2, are summarised in Table 1.

For the sake of space in this Section we present the results only for Canada Weather.

Similar results have been obtained for the other three benchmark data sets and are re-

ported in Supplementary Material. In Figure 3, the distributions induced by 5-fold cross

validation and using 20 different starting points, for different values of α and initialisa-

tions are displayed. The plots on the first row correspond to the accuracy on the training

set: it is immediately recognisable that when a non-trivial initialisation is employed and

α grows, the accuracy increases, until it seemingly reaches a saturation point of α before
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it starts to descend again. This implies that employing the unsupervised term, there is an

improvement for the performance on the training set in the supervised task of classification.

Regarding the performances on the test sets, α shows to mitigate overfitting for all cases

except that of the trivial initialisation.

Complementarily to these results, the values of the expected misclassification cost (i.e.

the first term in objective function (8)) obtained at the end of the optimisation procedure

for the same experiments whose accuracies are displayed in Figure 4. It is worth noting

that including the unsupervised term (α > 0) the first term (viz. the misclassification

cost) in (8) achieves better objective function values. Therefore, the idea of including an

unsupervised term in the objective function not only mitigates the overfitting, but also

leads to better solutions (and as a consequence also a better performance on the training

set) in the optimisation of the problem.

Concerning the choice of the initialisation method, it is evinced from Figure 3 that the

FLDA initialisation shows the best results on benchmark data sets both on training and

test set accuracies (column 4, α = 10−2 for Canada Weather in Figure 3), with better

values than km-gini, km-silhouette and of course trivial procedures. Indeed, not only the

median and mean classification metrics are better, but the variability in their values with

respect to different starting points is lower. Inspecting that same figure, the k-means based

initialisations, the change in the accuracies as the weight of the unsupervised term varies

(as α > 0 increases) is more pronounced. A possible explanation could be that since the

chosen basis expansion is FLDA, suggesting as initial splits the subsampled and bootstrap-

aggregated FLDA directions is in direct alignment with the optimisation task. Methods

km-silhouette and km-gini, which perform similarly to each other, do not possess such a

strong link with the FLDA basis, rely more on the synergy between the supervised and the

unsupervised term: the latter homogenises leaf nodes, and since functions of the same class
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should be homogeneous according to some criterion, the misclassification cost (supervised

term) is lowered by including the unsupervised term (α > 0).

Another aspect of importance is the actual performance of the POST -FD classifier,

once the 20 different solutions have been obtained after optimisation. As mentioned in

Section 2.2.3, the solution with the best objective function value is the one that is utilised

for inference. Hence, the accuracy values present at each boxplot in Figure 3 contain the

values of all 20 solutions for each of the 5 folds, whereas in practice only the accuracy

corresponding to the best objective function value would be the one the model attains.

To illustrate this effect, Table 2, shows the accuracies on training and test set of the best

solution, averaged across the 5 folds, as both the initialisation method (each column) and

α vary. The accuracies, both in the training and test set are higher than when considering

all the 20 solutions per fold (Figure 3). As expected by the inspection of Figure 3, the best

accuracy is obtained with the FLDA initialisation, with α = 10−3. That happens because

the objective function is the penalised misclassification cost in just the training set, and

the unsupervised term helps mitigate overfitting. As a reference, the 5-fold mean of the

accuracies of a quadratic FLDA classifier were (100%, 79%).

3.3 Case studies

3.3.1 Knee injury data

Tengman, Grip, Stensdotter, and Häger (2015) investigate reduced dynamic knee stability

in one-leg hops on patients who had suffered an anterior cruciate ligament (ACL) injury.

In the past, several authors have studied the problem with tools from the FDA setting, see

for e.g. Hébert-Losier et al. (2015)’s, and more recently Abramowicz et al. (2018)’s publi-

cations. The latter proposes a functional-on-scalar regression model, where the regressed
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Figure 3: Canada Weather: 5-fold cross validation accuracy in train and test set with

different initialisation and α values.

Figure 4: Canada Weather: 5-fold cross validation of only the first term in (8) (expected

misclassification cost). If the proposed unsupervised term is included (α > 0), better

objective function values for the supervised term are obtained.
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Table 2: 5-fold mean of the accuracies of the fitted trees with best objective function values

alpha trivial km-silhouette km-gini flda-gini

0 (1.000, 0.893) (1.000, 0.893) (1.000, 0.893) (1.000, 0.860)

10−5 (1.000, 0.860) (1.000, 0.893) (1.000, 0.893) (1.000, 0.860)

10−4 (1.000, 0.893) (1.000, 0.893) (1.000, 0.893) (1.000, 0.827)

10−3 (1.000, 0.893) (1.000, 0.893) (1.000, 0.893) (1.000, 0.927)

10−2 (1.000, 0.827) (1.000, 0.860) (1.000, 0.860) (1.000, 0.860)

0.05 (0.957, 0.827) (0.957, 0.827) (0.957, 0.827) (0.957, 0.860)

10−1 (0.957, 0.900) (0.957, 0.827) (0.957, 0.860) (0.931, 0.833)

0.5 (0.655, 0.567) (0.620, 0.627) (0.630, 0.580) (0.664, 0.627)

100 (0.612, 0.473) (0.612, 0.667) (0.629, 0.667) (0.655, 0.660)

5 (0.604, 0.447) (0.595, 0.620) (0.621, 0.767) (0.621, 0.560)

10 (0.612, 0.547) (0.603, 0.733) (0.620, 0.667) (0.586, 0.553)

24



Figure 5: Knee jump data set.

variables are the functions describing one-leg jumps of different patients, so that in the

abscissa there is the time of the jump (I = [0, 1]) and on the ordinate the percentage of

knee extension. In particular, they perform interval-wise permutation tests for the signifi-

cance of a variety of factors. In this work, we focus on the group each patient belongs to

(patients who suffered an ACL injury 23± 2 years ago, which we denote ACL, the control

group who have never suffered such injury, denoted control; hence K = 2 classes), since

in that study it was determined to be a statistically significant factor, whence the sense to

perform classification using it as a label.

Since the above-mentioned interval-wise procedure not only detects significance but also

on which part of the domain the factor is significant, we subdivide the data set into two.

By taking two subsets of the dominion of the whole jump, two classification data sets are

obtained by focusing on the takeoff phase (I1) and the landing phase (I2). This choice is
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illustrated in Figure 5. We also consider the functional data set analysed by Abramowicz

et al. (2018), where the ACL patients are subsampled at random so that the numerosity

of both labels is the same, avoiding the nuances of imbalanced classification: N = 62 with∣∣{i : yi = control}
∣∣ =

∣∣{i : yi = ACL}
∣∣ = 31

The data, as provided in the fdahotelling R package (Stamm 2017), have already been

smoothed with a B-spline basis with 150 equally spaced knots. Each functional datum is

evaluated on an equally-spaced grid of p = 298 points throughout I. FPCA is performed on

both (sub) data sets, keeping K = 5 throughout. Concerning the dissimilarity, motivated

by the fact that the model fit in Abramowicz et al. (2018) estimates the functional regressor

for the factor I{yi = control} as a constant function, the L2 distance is chosen.

Figure 6 shows the results for the jumping phase I1. Those for the landing phase are

available in Supplementary Material. A first remark is that just as in Section 3.2, the

adoption of a non trivial initialisation strategy yields better results both in the training

and testing set. Similarly to the benchmark data experiments, the train set accuracy

increases as α increases until a saturation point is reached, which justifies the inclusion of

the unsupervised term in (8). Results are less pronounced regarding the performance in the

test set. Yet there still exists some α > 0 such that the distribution of the test set accuracy

is better than without the unsupervised term, in particular for values α ∈ {10−1, 0.5, 100}

in Figure 6.

We recall that the accuracy values correspond to all 20 solutions per fold, whilst in

practice only those corresponding to the best objective function value would be used for

inference, as seen in Section 3.2, Table 2.

Another important aspect to analyse is the interpretability. As explained in Section

2.2.2, an advantage of choosing the FPCA as basis is that the splitting functions inherit

their interpretation as perturbations of the (functional) mean of the original data sample.

26



Figure 6: Results for the jumping phase classification.

Figure 7 displays, for the root node t0, the estimated splitting function (marked by the ”+”

sign) added to the sample mean (continuous line), corresponding to the best (in terms of

objective function value) of the 20 runs for the tree with α = 10−3. It shows that functions

that tend to have an overall constant level above the mean will have a higher value as input

to the link function (6) and hence a higher probability of descending leftwards of such node.

This is in direct agreement towards Abramowicz et al. (2018)’s estimation of the regressor

of I{yi = control} being mostly a positive constant function in the jumping phase.

3.3.2 Aneurisk data

The AneuRisk project (cfr. Sangalli et al. (2014)’s data description), has the goal of finding

factors that indicate the formation of cerebral aneurysmata. The data were collected at
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Figure 7: Estimated splitting function with α = 10−1 in the jumping phase

Ospedale Niguarda Ca’ Grande Milano between 2002 and 2005 from 65 patients deemed at

risk for an aneurysm in the Internal Carotid Artery (ICA). Geometrical measurements such

as radius, curvature, wall shear stress, amongst others concerning the artery were made,

and they have in turn been preprocessed and registered by Passerini et al. (2012) and (also

explored in detail by means of FDA tools) by Sangalli et al. (2009). For the present case

study, we follow the same setting as Pini et al. (2018), videlicet only 50 of the original 65

patients are analysed, and only the radius along the last 5cm of the ICA. Moreover, two

classes of patients (K = 2) are considered: high-risk patients, due to the presence of an

aneurysm in the skull, and low-risk patients, with either an aneurysm outside the skull or

none at all. The numerosity per class type coincides at 25 each. The data are displayed in

Figure 8.

Besides the well-established relevance of the AneuRisk project, the choice of such ap-

plication for the present work is motivated by the fact that both Passerini et al. (2012)

and Pini et al. (2018) demonstrate that the two groups present significance whilst testing

for differences in the functional distributions of the radius of the ICA, thus justifying the
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Figure 8: The AneuRisk data set: radius and the derivative of radius of the last 5cm of

the ICA

treatment of these data as a classification data set.

Upon inspection of the derivative (cfr. Figure 8), the (absolute) variation across

both groups could be hypothesised to be different across groups. Therefore, for data

{l, j ∈ {1, . . . , N} : l 6= j} we chose, after assuming that xi belong to Sobolev space ∈ H1(I)

(so that the first derivative lies in L2)

djl =

∫ 0

−5
|x′j(r)− x̄′j|dr −

∫ 0

−5
|x′l(r)− x̄′l|dr (12)

where x′j(r) denotes the derivative of the jth datum, and x̄′j is the mean value of the

derivative of such datum, i.e. x̄′j =
∫ 0

−5 x
′
j(r)dr. The calculations of such integrals were ap-

proximated through operations in RJ , as outlined in Section 2.2, to avoid the computational

bottleneck.

Results can be visualised in Figure 9. As in the previous case study and benchmark

experiments, the inclusion of the unsupervised term (when α > 0) is justified. Indeed, the

29



Figure 9: Results for the classification problem with the AneuRisk data

same pattern of an increase in the performance in the train set as α increases is observed.

Regarding the test set, again the effect of the unsupervised term as a penalisation that

mitigates overfitting is verified: there exist values of α > 0 for which there are in mean

higher accuracies in the test set. Regarding the different initialisation heuristics, in this

case the k-means-Gini, seems to perform best (see in particular when α = 10−3), since both

training and test set accuracies are higher than for all other values of α. Similar results

happen for km-silhouette, which is to be expected given that the only difference between

these two methods is the selection criterion for each starting point. The improvement

yielded by the unsupervised term α > 0 seem less pronounced in this case, yet the means in

test set accuracy for α ∈ {10−5, 104} are higher than the case without the unsupervised term
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Figure 10: Estimated splitting functions for classifying the AneuRisk data, α = 10−3

(α = 0). A possible explanation could be that since the separation is aided by promoting

homogeneity in the variation of the derivative, the alignment between the optimisation task

and the FLDA initialisation (remarked in Section 3.2) becomes feebler.

Figure 9 also displays high variability in the train and test set accuracies, with some

values below 30% as α > 100 seems to be too large. Such values would be filtered out by

taking the best (in terms of objective function value) run for each fold, as outlined in the

benchmark data experiments.

Concerning the interpretability of our soft tree for functional data, Figure 10 displays

the splitting functions of the three first nodes of the trees as perturbations of the mean.

Interestingly, the the third one is directly associated to the finding by Pini et al. (2018)

regarding the therein called Clinical Question 2: patients at lower risk are those who

posses ICA with enough variation in the sense that just before reaching the brain, the

radius becomes wider to avoid slowing down blood flow upon entrance to the Circle of
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Willis. The other splitting functions could be of aid to domain experts, and the absence of

a clear interpretation could provide grounds for pruning the tree, i.e., to decrease its depth.

4 Conclusion

We have proposed a new objective function for globally-optimised Soft Classification Trees

that contains both a supervised and an unsupervised term, designed to perform classifica-

tion of Functional Data utilising an FPCA basis. The second term penalises heterogene-

ity in the leaf nodes of the tree, requiring the choice of a dissimilarity statistic between

functions that allows adaptation for case-specific modelling. Fitting is performed through

Interior Point methods, and we have also proposed novel initialisation heuristics that are

statistically driven in order to obtain better objective function values. The model features

interpretable splitting functions at each internal node of the tree.

We have evaluated our proposed model with a simulation study on benchmark data

sets for classification in the FDA setting, as well as two case studies. The results have

demonstrated that the inclusion of the unsupervised term works synergically with the non-

trivial initialisations, leading to better objective function values and mitigating overfitting.

Indeed, for all benchmark data sets and in both the case studies, scenarios where α > 0

(i.e. the unsupervised term) led to better in training and test sets. Another positive effect

was aiding the optimisation to converge to objective function values of the supervised

term which are better thanks to the inclusion of the unsupervised term. In addition, the

adaptiveness thanks to the choice of the dissimilarity, as well as the interpretability of the

yielded splitting functions have been shown to be coherent to other works that worked with

the same cases studies.

Future work aimed at improving the POST -FD classifier could be to guide the choice
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of the model’s hyperparameters. Common to most regularised algorithms to our knowl-

edge, the weight α of the unsupervised (penalty) term could be trivially chosen by standard

hyperparameter tuning techniques (cfr. Yang and Shami (2020)), yet further insights re-

garding the correct balance between the supervised and the unsupervised term in (8) could

be pursued. A possibility would be to modify the Interior Point algorithm to dynamically

update the α value, depending on the objective function value through, for e.g. trust re-

gion methods (Nocedal and Wright 1999). Regarding the choice of depth D, inspecting the

estimated splitting functions could be a possibility, but drawing insights from the pruning

methodologies for tree learning as done by Mingers (1989) might be worth exploring.

Another possible extension could be towards non-differentiable dissimilarities. Indeed,

the statistic that Pini et al. (2018) use to significantly separate (by means of a permutation

test) the two groups of the AneuRisk data set (Section 3.3), which is non-smooth due to

the sup operator, would have been an interesting choice, yet since Interior Points methods

rely on the gradient, alternatives would be needed. Lastly, (asymptotic) theoretical results

concerning the classification capability of the model, as well as analytical knowledge re-

garding the role of the homogeneity penalisation introduced in the unsupervised term could

be fruitful.
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SUPPLEMENTARY MATERIAL

Github respository for POST-FD: Github repository containing source code and all

simulation results (https://github.com/alfredo-g-zapiola/POST-FD)

References
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Báıllo, A., A. Cuevas, and R. Fraiman (2011). Classification methods for functional data,

pp. 259–293. Oxford University Press.

Belli, E. and S. Vantini (2022). Measure inducing classification and regression trees for

functional data. Statistical Analysis and Data Mining: The ASA Data Science Jour-

nal 15 (5), 553–569.

Berrendero, J. R., A. Cuevas, and J. L. Torrecilla (2018). On the use of reproducing

kernel hilbert spaces in functional classification. Journal of the American Statistical

Association 113 (523), 1210–1218.

34



Bertsimas, D. and J. Dunn (2017, July). Optimal classification trees. Machine Learn-

ing 106 (7), 1039–1082.

Blanquero, R., E. Carrizosa, C. Molero-Ŕıo, and D. R. Morales (2021). Optimal randomized

classification trees. Computers & Operations Research 132, 105281.
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