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Abstract

In this work we address the reduction of face degrees of freedom (DOFs) for discrete elasticity
complexes. Specifically, using serendipity techniques, we develop a reduced version of a recently
introduced two-dimensional complex arising from traces of the three-dimensional elasticity complex.
The keystone of the reduction process is a new estimate of symmetric tensor-valued polynomial
fields in terms of boundary values, completed with suitable projections of internal values for higher
degrees. We prove an extensive set of new results for the original complex and show that the reduced
complex has the same homological and analytical properties as the original one. This paper also
contains an appendix with proofs of general Poincaré–Korn-type inequalities for hybrid fields.
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1 Introduction
The development of computationally viable discrete elasticity complexes is a long-standing problem in
numerical analysis. Finite element versions of the elasticity complex typically require a large number
of degrees of freedom (DOFs) to deal with the symmetry constraint on tensor-valued fields [1–4, 10,
25]. Particularly critical are DOFs attached to mesh faces, that cannot be efficiently eliminated via
static condensation. In this work, we study DOFs reduction through serendipity. Serendipity techniques
exploit the information on the boundary to fix the values of (a subset of) internal DOFs while preserving
polynomial consistency. When working with discrete complexes, this reduction must be carefully
designed in order to preserve key properties of the original complex.
With face DOFs reduction in mind, we focus on the two-dimensional div-div complex [11] that arises

when considering traces for the three-dimensional elasticity complex on polyhedra (see [10, Section
3.4]). Specifically, denoting byΩ ⊂ R2 a bounded connected polygonal set and by S the set of symmetric
2 × 2 matrices, this complex reads:

RT
1(Ω) 𝑯1(Ω;R2) 𝑯(div div,Ω;S) 𝐿2(Ω) 0,

sym curl div div 0
(1.1)

where “sym” denotes the symmetric part of a space or an operator, RT
1(Ω) ≔ P

0(Ω) + 𝒙P0(Ω) is
the lowest-order Raviart–Thomas space [24], and a definition of the sym curl and div div operators
in Cartesian coordinates is given in (2.1) below. A discrete version of the complex (1.1) has been
recently obtained in [13] following the discrete de Rham (DDR) paradigm [15, 18]. A salient feature of
DDR constructions is the native support of general polygonal/polyhedral meshes, which simplifies the
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Discrete space 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6

Triangle, 𝜂𝑇 = 3

𝑯1(Ω;R2) 24 • 20 (-17%) 36 • 30 (-17%) 50 • 42 (-16%) 66 • 56 (-15%)
𝑯(div div,Ω;S) 24 • 20 (-17%) 39 • 33 (-15%) 57 • 49 (-14%) 78 • 68 (-13%)

Quadrangle, 𝜂𝑇 = 4

𝑯1(Ω;R2) 30 • 24 (-20%) 44 • 34 (-23%) 60 • 46 (-23%) 78 • 60 (-23%)
𝑯(div div,Ω;S) 30 • 24 (-20%) 47 • 37 (-21%) 67 • 53 (-21%) 90 • 72 (-20%)

Pentagon, 𝜂𝑇 = 5

𝑯1(Ω;R2) 36 • 30 (-17%) 52 • 40 (-23%) 70 • 52 (-26%) 90 • 66 (-27%)
𝑯(div div,Ω;S) 36 • 30 (-17%) 55 • 43 (-22%) 77 • 59 (-23%) 102 • 78 (-24%)

Table 1: Number of DOFs for the full • serendipity discrete counterparts of the spaces 𝑯1(Ω;R2) and
𝑯(div div,Ω;S) on a triangle, quadrangle, and pentagon element 𝑇 for polynomial degrees 𝑘 ranging
from 3 to 6. The relative DOFs reduction is in parenthesis. The parameter 𝜂𝑇 is defined in Assumption
10 below.

discretisation of complex domain geometries and/or the capture of fine-scale features of the solution.
Alternative approaches to the use of polygonal/polyhedralmeshes in the finite element framework include
the fictitious domain method popularised by the work of Glowinski and coauthors; see, e.g., [19, 20]. In
this work, following the abstract framework of [16] (closely inspired, through the bridges constructed
in [7], by the ideas originally developed in [5, 6, 8]), we derive a reduced version of the DDR complex
of [13] that preserves both its homological and analytical properties. The keystone of this reduced
version is the estimate of tensor-valued polynomials established in Lemma 11 below, which provides
indications on which DOFs can be discarded while preserving polynomial consistency. A comparison
of the number of DOFs between the full and serendipity div-div complexes for various element shapes
is provided in Table 1, showing gains between 13% and 27% for the considered polynomial degrees 𝑘
and element shapes.
The rest of this work is organised as follows. In Section 2 we briefly recall the general setting. The

construction underlying the full DDR div-div complex is briefly recalled in Section 3, where we also
prove a complete set of analytical results (Poincaré inequalities, consistency, and adjoint consistency)
that complement the ones established in [13]. The serendipity version of the DDR div-div complex is
derived in Section 4. Through the sufficient conditions identified in [13], we establish, in Theorems
19 and 23 below, that the serendipity and full complexes have analogous homological and analytical
properties. Finally, Appendix A focuses on Poincaré–Korn type inequalities for hybrid vector fields that
are instrumental for the previous analysis.

2 Setting
2.1 Two-dimensional vector calculus operators
Consider the real plane R2 endowed with the Cartesian coordinate system (𝑥1, 𝑥2), and denote by
𝜕𝑖 the partial derivative with respect to the 𝑖th coordinate. We need the following two-dimensional

differential operators acting on smooth enough scalar-valued fields 𝑞, vector-valued fields 𝒗 =

(
𝑣1
𝑣2

)
, or
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matrix-valued fields 𝝉 =

(
𝜏11 𝜏12
𝜏21 𝜏22

)
:

curl 𝑞 ≔

(
𝜕2𝑞

−𝜕1𝑞

)
, rot 𝒗 ≔ 𝜕2𝑣1 − 𝜕1𝑣2,

div 𝒗 ≔ 𝜕1𝑣1 + 𝜕2𝑣2, grad 𝒗 ≔

(
𝜕1𝑣1 𝜕2𝑣1
𝜕1𝑣2 𝜕2𝑣2

)
, sym curl 𝒗 ≔

(
𝜕2𝑣1

−𝜕1𝑣1+𝜕2𝑣2
2

−𝜕1𝑣1+𝜕2𝑣2
2 −𝜕1𝑣2

)
,

div 𝝉 ≔

(
𝜕1𝜏11 + 𝜕2𝜏12
𝜕1𝜏21 + 𝜕2𝜏22

)
, rot 𝝉 ≔

(
𝜕2𝜏11 − 𝜕1𝜏12
𝜕2𝜏21 − 𝜕1𝜏22

)
.

(2.1)

Defining the fourth-order tensor C such that

C𝝉 =

(
𝜏12

−𝜏11+𝜏22
2−𝜏11+𝜏22

2 −𝜏21

)
∀𝝉 =

(
𝜏11 𝜏12
𝜏21 𝜏22

)
∈ R2×2, (2.2)

we have sym curl 𝒗 = C grad 𝒗.

2.2 Mesh and notation for inequalities up to a constant
We denote by Mℎ = Tℎ ∪ Eℎ ∪ Vℎ a polygonal mesh of Ω in the usual sense of [17], with Tℎ, Eℎ,
and Vℎ collecting, respectively, the elements, edges, and vertices and ℎ denoting the meshsize. For
all 𝑌 ∈ Mℎ, we let ℎ𝑌 denote its diameter so that, in particular, ℎ = max𝑇 ∈Tℎ ℎ𝑇 . Mℎ is assumed to
belong to a refined mesh sequence with regularity parameter bounded away from zero. We additionally
assume that each element 𝑇 ∈ Tℎ is contractible and denote by 𝒙𝑇 a point inside 𝑇 such that there exists
a disk contained in 𝑇 centered in 𝒙𝑇 and of diameter comparable to ℎ𝑇 uniformly in ℎ. The sets of
edges and vertices of 𝑇 are denoted by E𝑇 and V𝑇 , respectively. By mesh regularity, the number of
edges (and vertices) of mesh elements are bounded uniformly in ℎ. For each edge 𝐸 ∈ Eℎ, we denote by
V𝐸 the set of vertices corresponding to its endpoints and fix an orientation by prescribing a unit tangent
vector 𝒕𝐸 . This orientation determines two numbers (𝜔𝐸𝑉 )𝑉 ∈V𝐸

in {−1, +1} such that 𝜔𝐸𝑉 = +1
whenever 𝒕𝐸 points towards 𝑉 . The corresponding unit normal vector 𝒏𝐸 is selected so that ( 𝒕𝐸 , 𝒏𝐸 )
forms a right-handed system of coordinates, and, for each 𝑇 ∈ Tℎ such that 𝐸 ∈ E𝑇 , we denote by
𝜔𝑇 𝐸 ∈ {−1, +1} the orientation of 𝐸 relative to 𝑇 , defined so that 𝜔𝑇 𝐸𝒏𝐸 points out of 𝑇 .
From this point on, 𝑎 . 𝑏 means 𝑎 ≤ 𝐶𝑏 with 𝐶 only depending on Ω, the mesh regularity

parameter, and the polynomial degree 𝑘 of the complex (see (3.1) below). We also write 𝑎 ' 𝑏 as a
shorthand for “𝑎 . 𝑏 and 𝑏 . 𝑎”.

2.3 Polynomial spaces
Given 𝑌 ∈ Mℎ and an integer 𝑚 ≥ 0, we denote by P𝑚(𝑌 ) the space spanned by the restriction to
𝑌 of two-variate polynomials of total degree ≤ 𝑚, with the additional convention that P−1(𝑌 ) = {0}.
The symbolsP𝑚(𝑌 ;R2) andP𝑚(𝑌 ;S) denote, respectively, vector-valued and symmetric tensor-valued
functions over 𝑌 whose components are in P𝑚(𝑌 ). Finally, for each 𝑇 ∈ Tℎ, we denote by P𝑚(E𝑇 ) the
space of broken polynomials of total degree ≤ 𝑚 on E𝑇 . Vector and tensor versions of this space are
denoted in boldface and the codomain is specified.
Denoting by sym 𝝉 = 𝝉+𝝉>

2 the symmetrisation operator, the following decompositions hold:

P
𝑚(𝑇 ;S) = H

𝑚(𝑇) ⊕H
c,𝑚(𝑇)

withH𝑚(𝑇) ≔ hessP𝑚+2(𝑇) andHc,𝑚(𝑇) ≔ sym
(
(𝒙 − 𝒙𝑇 )⊥ ⊗ P

𝑚−1(𝑇 ;R2)
)
,

and
P

𝑚(𝑇 ;S) = C
𝑚(𝑇) ⊕ C

c,𝑚(𝑇)
with C𝑚(𝑇) ≔ sym curlP𝑚+1(𝑇 ;R2) and Cc,𝑚(𝑇) ≔ (𝒙 − 𝒙𝑇 ) (𝒙 − 𝒙𝑇 )>P𝑚−2(𝑇).

(2.3)

The following result will be needed in the analysis.
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Proposition 1 (Continuity of the inverses of local isomorphisms). Let𝑚 ≥ 1 and denote byP𝑚⊥1(𝑇) the
subspace of P𝑚(𝑇) spanned by polynomials that are 𝐿2-orthogonal to P1(𝑇). Then, rot : Hc,𝑚(𝑇) →
P

𝑚−1(𝑇 ;R2), and, if 𝑚 ≥ 2, div div : Cc,𝑚(𝑇) → P𝑚−2(𝑇) and hess : P𝑚⊥1(𝑇) ↦→ H
𝑚−2(𝑇) are

isomorphisms with continuous inverse, i.e.,

‖𝝊‖𝑳2 (𝑇 ;R2×2) . ℎ𝑇 ‖ rot 𝝊‖𝑳2 (𝑇 ;R2) ∀𝝊 ∈ Hc,𝑚(𝑇), (2.4)

‖𝝊‖𝑳2 (𝑇 ;R2×2) . ℎ2𝑇 ‖ div div 𝝊‖𝐿2 (𝑇 ) ∀𝝊 ∈ Cc,𝑚(𝑇), (2.5)

‖𝑞‖𝐿2 (𝑇 ) . ℎ2𝑇 ‖ hess 𝑞‖𝑳2 (𝑇 ;R2×2) ∀𝑞 ∈ P𝑚⊥1(𝑇). (2.6)

Proof. The proof hinges on a scaling argument analogous to the one used in [15, Lemma 9], not repeated
here for the sake of brevity. �

Given a polynomial (sub)space X𝑚(𝑌 ) on 𝑌 ∈ Mℎ, the corresponding 𝐿2-orthogonal projector is
denoted by 𝜋𝑚X,𝑌 . Boldface fonts will be used when the elements of X

𝑚(𝑌 ) are tensor- or vector-valued.

3 Full spaces and reconstructions
In this section we briefly recall the discrete div-div complex of [13], for which we prove a complete
panel of properties including Poincaré inequalities, consistency, and adjoint consistency results that
complement the ones established in the previous reference.

3.1 Spaces
Throughout the rest of the paper, the integer

𝑘 ≥ 3 (3.1)

will denote the polynomial degree of the discrete complex. The discrete counterparts of the spaces
𝑯1(Ω;R2) and 𝑯(div div,Ω;S) are, respectively,

𝑽𝑘
ℎ
≔

{
𝒗
ℎ
=

(
(𝒗𝑇 )𝑇 ∈Tℎ , (𝒗𝐸 )𝐸 ∈Eℎ , (𝒗𝑉 ,𝑮𝒗,𝑉 )𝑉 ∈Vℎ

)
:

𝒗𝑇 ∈ P𝑘−2(𝑇 ;R2) for all 𝑇 ∈ Tℎ,
𝒗𝐸 ∈ P𝑘−4(𝐸 ;R2) for all 𝐸 ∈ Eℎ,

𝒗𝑉 ∈ R2 and 𝑮𝒗,𝑉 ∈ R2×2 for all 𝑉 ∈ Vℎ

}
,

(3.2)

𝚺𝑘−1
ℎ ≔

{
𝝉
ℎ
=

(
(𝝉H,𝑇 , 𝝉

c
H,𝑇
)𝑇 ∈Tℎ , (𝜏𝐸 , 𝐷𝝉,𝐸 )𝐸 ∈Eℎ , (𝝉𝑉 )𝑉 ∈Vℎ

)
:

𝝉H,𝑇 ∈ H𝑘−4(𝑇) and 𝝉c
H,𝑇
∈ Hc,𝑘−1(𝑇) for all 𝑇 ∈ Tℎ,

𝜏𝐸 ∈ P𝑘−3(𝐸) and 𝐷𝝉,𝐸 ∈ P𝑘−2(𝐸) for all 𝐸 ∈ Eℎ,

𝝉𝑉 ∈ S for all 𝑉 ∈ Vℎ

}
.

(3.3)

The interpolators 𝑰𝑘𝑽 ,ℎ
: 𝑪1(Ω;R2) → 𝑽𝑘

ℎ
and 𝑰𝑘−1𝚺,ℎ : 𝑯2(Ω;S) → 𝚺𝑘−1

ℎ
are such that, for all

𝒗 ∈ 𝑪1(Ω;R2) and all 𝝉 ∈ 𝑯2(Ω;S),

𝑰𝑘𝑽 ,ℎ𝒗 ≔

(
(𝝅𝑘−2

P,𝑇
𝒗 |𝑇 )𝑇 ∈Tℎ , (𝝅𝑘−4

P,𝐸
𝒗 |𝐸 )𝐸 ∈E𝑇 ,

(
𝒗(𝒙𝑉 ), grad 𝒗(𝒙𝑉 )

)
𝑉 ∈V𝑇

)
,

𝑰𝑘−1𝚺,ℎ 𝝉 ≔

( (
𝝅𝑘−4
H,𝑇

𝝉 |𝑇 , 𝝅
c,𝑘−1
H,𝑇

𝝉 |𝑇
)
𝑇 ∈Tℎ ,

(
𝜋𝑘−3
P,𝐸
(𝝉 |𝐸𝒏𝐸 · 𝒏𝐸 ), 𝜋𝑘−2

P,𝐸
𝛿𝐸𝝉

)
𝐸 ∈E𝑇 ,

(
𝝉(𝒙𝑉 )

)
𝑉 ∈V𝑇

)
,

where 𝒙𝑉 denotes the coordinate vector of the vertex 𝑉 ∈ V𝑇 while, for all 𝐸 ∈ E𝑇 , 𝜕𝒕𝐸 denotes the
derivative along the edge 𝐸 in the direction of 𝒕𝐸 and we have set, for the sake of conciseness,

𝛿𝐸𝝉 ≔ 𝜕𝒕𝐸 (𝝉 |𝐸𝒏𝐸 · 𝒕𝐸 ) + (div 𝝉) |𝐸 · 𝒏𝐸 .
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As customary for DDRmethods, we denote the restrictions of spaces and operators to a mesh element or
edge 𝑌 ∈ Tℎ ∪ Eℎ by replacing the subscript “ℎ” with “𝑌”. Such restrictions are obtained collecting the
polynomial components on 𝑌 and its boundary. Given 𝑇 ∈ Tℎ, for 𝑽𝑘

ℎ
we will also need its restriction

𝑽𝑘
𝜕𝑇
to the boundary of 𝑇 , obtained collecting all the polynomial components that lie thereon.

3.2 Reconstructions
Let a mesh element 𝑇 ∈ Tℎ be fixed. The DDR method hinges on the reconstructions of differential
operators and of the corresponding potentials described below.

3.2.1 Symmetric curl and vector potential
The key integration by parts formula to reconstruct discrete counterparts of the symmetric curl and of
the corresponding vector potential is the following: For any 𝒗 : 𝑇 → R2 and any 𝝉 : 𝑇 → S smooth
enough, ∫

𝑇

𝒗 · rot 𝝉 = −
∫
𝑇

sym curl 𝒗 : 𝝉 +
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

∫
𝐸

𝒗 · (𝝉 𝒕𝐸 ). (3.4)

The full symmetric curl C𝑘−1
sym,𝑇 : 𝑽𝑘

𝑇
→ P

𝑘−1(𝑇 ;S) is such that, for all 𝒗
𝑇
∈ 𝑽𝑘

𝑇
,∫

𝑇

C𝑘−1
sym,𝑇 𝒗𝑇 : 𝝉𝑇 = −

∫
𝑇

𝒗𝑇 · rot 𝝉𝑇 +
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

∫
𝐸

𝒗E𝑇 · (𝝉𝑇 𝒕𝐸 ) ∀𝝉𝑇 ∈ P𝑘−1(𝑇 ;S), (3.5)

where 𝒗E𝑇 ∈ P𝑘 (E𝑇 ;R2) ∩ 𝑪0(𝜕𝑇 ;R2) is uniquely defined by the following conditions:

𝝅𝑘−4
P,𝐸
(𝒗E𝑇 ) |𝐸 = 𝒗𝐸 for all 𝐸 ∈ E𝑇 , 𝜕𝒕𝐸 (𝒗E𝑇 ) |𝐸 (𝒙𝑉 ) = 𝑮𝒗,𝑉 𝒕𝐸 for all 𝐸 ∈ E𝑇 and 𝑉 ∈ V𝐸 ,

and 𝒗E𝑇 (𝒙𝑉 ) = 𝒗𝑉 for all 𝑉 ∈ V𝑇 .
(3.6)

The discrete symmetric curl 𝑪𝑘−1
sym,𝑇

: 𝑽𝑘
𝑇
→ 𝚺𝑘−1

𝑇 , acting between the discrete spaces in the complex,
is obtained setting, for all 𝒗

𝑇
∈ 𝑽𝑘

𝑇
,

𝑪𝑘−1
sym,𝑇

𝒗
𝑇
≔

(
𝝅𝑘−4
H,𝑇

(
C𝑘−1
sym,𝑇 𝒗𝑇

)
, 𝝅c,𝑘−1

H,𝑇

(
C𝑘−1
sym,𝑇 𝒗𝑇

)
,(

𝜋𝑘−3
P,𝐸 (𝜕𝒕𝐸 𝒗E𝑇 · 𝒏𝐸 ), 𝜕2𝒕𝐸 𝒗E𝑇 · 𝒕𝐸

)
𝐸 ∈E𝑇 ,(

C𝑮𝒗,𝑉
)
𝑉 ∈V𝑇

)
,

(3.7)

with C as in (2.2). The global symmetric curl operator 𝑪𝑘−1
sym,ℎ

: 𝑽𝑘
ℎ
→ 𝚺𝑘−1

ℎ
is such that, for all

𝒗
ℎ
∈ 𝑽𝑘

ℎ
,

(𝑪𝑘−1
sym,ℎ

𝒗
ℎ
) |𝑇 = 𝑪𝑘−1

sym,𝑇
𝒗
𝑇

∀𝑇 ∈ Tℎ .
Notice that this definition makes sense since the discrete curl components at vertices and edges are
single-valued. The vector potential 𝑷𝑘

𝑽 ,𝑇
: 𝑽𝑘

𝑇
→ P

𝑘 (𝑇 ;R2) is such that, for all 𝒗
𝑇
∈ 𝑽𝑘

𝑇
,∫

𝑇

𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 ·rot 𝝉𝑇 = −

∫
𝑇

C𝑘−1
sym,𝑇 𝒗𝑇 : 𝝉𝑇 +

∑︁
𝐸 ∈E𝑇

𝜔𝑇 𝐸

∫
𝐸

𝒗E𝑇 · (𝝉𝑇 𝒕𝐸 ) ∀𝝉𝑇 ∈ Hc,𝑘+1(𝑇). (3.8)

We recall the following polynomial consistency property from [13]:

𝑷𝑇
𝑽 ,𝑇 𝑰

𝑘
𝑽 ,𝑇 𝒗 = 𝒗 ∀𝒗 ∈ P𝑘 (𝑇 ;R2). (3.9)

Remark 2 (Validity of (3.8)). Relation (3.8) remains valid for all 𝝉𝑇 ∈ H𝑘−1(𝑇) ⊕Hc,𝑘+1(𝑇), as can be
checked taking 𝝉𝑇 = hess 𝑞𝑇 with 𝑞𝑇 ∈ P𝑘+1(𝑇) and noticing that both sides vanish (use rot hess = 0
for the left-hand side and the definition (3.5) of C𝑘−1

sym,𝑇 with 𝝉𝑇 = hess 𝑞𝑇 along with rot hess = 0

for the right-hand side). This implies, in particular, that (3.8) holds for all 𝝉𝑇 ∈ P
𝑘−1(𝑇 ;S) ⊂

H
𝑘−1(𝑇) ⊕H

c,𝑘+1(𝑇).
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3.2.2 Div-div and tensor potential

The starting point for reconstructions in𝚺𝑘−1
𝑇 is the following integration by parts formula, corresponding

to [12, Eq. (2.4)] (see also [9, Eq. (2)]) and valid for all tensor-valued functions 𝝉 : 𝑇 → S and all
scalar-valued functions 𝑞 : 𝑇 → R smooth enough:∫

𝑇

div div 𝝉 𝑞 =

∫
𝑇

𝝉 : hess 𝑞 −
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

[∫
𝐸

(𝝉𝒏𝐸 · 𝒏𝐸 ) 𝜕𝒏𝐸
𝑞 −

∫
𝐸

𝛿𝐸𝝉 𝑞

]
−

∑︁
𝐸 ∈E𝑇

𝜔𝑇 𝐸

∑︁
𝑉 ∈V𝐸

𝜔𝐸𝑉 (𝝉𝒏𝐸 · 𝒕𝐸 ) (𝒙𝑉 ) 𝑞(𝒙𝑉 ).
(3.10)

For all 𝝉
𝑇
∈ 𝚺𝑘−1

𝑇 , the discrete div-div operator DD𝑘−2
𝑇 : 𝚺𝑘−1

𝑇 → P𝑘−2(𝑇) is such that∫
𝑇

DD𝑘−2
𝑇 𝝉

𝑇
𝑞𝑇 =

∫
𝑇

𝝉H,𝑇 : hess 𝑞𝑇 −
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

(∫
𝐸

𝜏𝐸 𝜕𝒏𝐸
𝑞𝑇 −

∫
𝐸

𝐷𝜏,𝐸 𝑞𝑇

)
−

∑︁
𝐸 ∈E𝑇

𝜔𝑇 𝐸

∑︁
𝑉 ∈V𝐸

𝜔𝐸𝑉 (𝝉𝑉 𝒏𝐸 · 𝒕𝐸 ) 𝑞𝑇 (𝒙𝑉 ) ∀𝑞𝑇 ∈ P𝑘−2(𝑇), (3.11)

while the tensor potential 𝑷𝑘−1
𝚺,𝑇 : 𝚺𝑘−1

𝑇 → P𝑘−1(𝑇 ;S) satisfies, for all (𝑞𝑇 , 𝝊𝑇 ) ∈ P𝑘+1(𝑇)×Hc,𝑘−1(𝑇),∫
𝑇

𝑷𝑘−1
𝚺,𝑇 𝝉𝑇 : (hess 𝑞𝑇 + 𝝊𝑇 ) =

∫
𝑇

DD𝑘−2
𝑇 𝝉

𝑇
𝑞𝑇 +

∑︁
𝐸 ∈E𝑇

𝜔𝑇 𝐸

(∫
𝐸

𝑃𝑘−1
𝚺,𝐸𝝉𝐸 𝜕𝒏𝐸

𝑞𝑇 −
∫
𝐸

𝐷𝝉,𝐸 𝑞𝑇

)
+

∑︁
𝐸 ∈E𝑇

𝜔𝑇 𝐸

∑︁
𝑉 ∈V𝐸

𝜔𝐸𝑉 (𝝉𝑉 𝒏𝐸 · 𝒕𝐸 ) 𝑞𝑇 (𝒙𝑉 ) +
∫
𝑇

𝝉c
H,𝑇

: 𝝊𝑇 . (3.12)

Above, for all 𝐸 ∈ E𝑇 , denoting by 𝝉𝐸 ≔
(
𝜏𝐸 , 𝐷𝝉,𝐸 , (𝝉𝑉 )𝑉 ∈V𝐸

)
the restriction of 𝝉

𝑇
to 𝐸 , 𝑃𝑘−1

𝚺,𝐸𝝉𝐸 ∈
P𝑘−1(𝐸) uniquely defined by the following conditions:

𝑃𝑘−1
𝚺,𝐸𝝉𝐸 (𝒙𝑉 ) = 𝝉𝑉 𝒏𝐸 · 𝒏𝐸 for all 𝑉 ∈ V𝐸 and 𝜋𝑘−3

P,𝐸
(
𝑃𝑘−1
𝚺,𝐸𝝉𝐸

)
= 𝜏𝐸 .

We recall for future use the following result proved in [13, Lemma 4]:

𝑷𝑘−1
𝚺,𝑇 ◦ 𝑪

𝑘−1
sym,𝑇

= C𝑘−1
sym,𝑇 , (3.13)

expressing the commutativity of the following diagram:

𝑽𝑘
𝑇

P
𝑘−1(𝑇 ;S)

𝚺𝑘−1
𝑇

C𝑘−1
sym,𝑇

𝑪𝑘−1
sym,𝑇

𝑷𝑘−1
𝚺,𝑇

The global div-div operator DD𝑘−2
ℎ : 𝚺𝑘−1

ℎ
→ P𝑘−2(Tℎ) acting between spaces in the discrete complex

is such that, for all 𝝉
ℎ
∈ 𝚺𝑘−1

ℎ
,

(DD𝑘−2
ℎ 𝝉

ℎ
) |𝑇 ≔ DD𝑘−2

𝑇 𝝉
𝑇

∀𝑇 ∈ Tℎ .
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3.3 𝐿2-products and norms

The discrete 𝐿2-products in𝑽𝑘
ℎ
and𝚺𝑘−1

ℎ
are defined setting: For all𝒘

ℎ
, 𝒗

ℎ
∈ 𝑽𝑘

ℎ
and all 𝝊

ℎ
, 𝝉

ℎ
∈ 𝚺𝑘−1

ℎ
,

(𝒘
ℎ
, 𝒗

ℎ
)𝑽 ,ℎ ≔

∑︁
𝑇 ∈Tℎ
(𝒘

𝑇
, 𝒗

𝑇
)𝑽 ,𝑇 , (𝝊

ℎ
, 𝝉

ℎ
)𝚺,ℎ ≔

∑︁
𝑇 ∈Tℎ
(𝝊

𝑇
, 𝝉

𝑇
)𝚺,𝑇 ,

where, for all 𝑇 ∈ Tℎ,

(𝒘
𝑇
, 𝒗

𝑇
)𝑽 ,𝑇 ≔

∫
𝑇

𝑷𝑘
𝑽 ,𝑇 𝒘𝑇

· 𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 + 𝑠𝑽 ,𝑇 (𝒘𝑇

, 𝒗
𝑇
), (3.14)

(𝝊
𝑇
, 𝝉

𝑇
)𝚺,𝑇 ≔

∫
𝑇

𝑷𝑘−1
𝚺,𝑇 𝝊𝑇 : 𝑷𝑘−1

𝚺,𝑇 𝝉𝑇 + 𝑠𝚺,𝑇 (𝝊𝑇 , 𝝉𝑇 ). (3.15)

Above, 𝑠𝑽 ,𝑇 : 𝑽𝑘
𝑇
× 𝑽𝑘

𝑇
→ R and 𝑠𝚺,𝑇 : 𝚺𝑘−1

𝑇 × 𝚺𝑘−1
𝑇 → R are local stabilisation bilinear forms. We

refer to [13, Section 4.2] for the precise expression of 𝑠𝚺,𝑇 and we set

𝑠𝑽 ,𝑇 (𝒘𝑇
, 𝒗

𝑇
) ≔ ℎ𝑇

∑︁
𝐸 ∈E𝑇

∫
𝐸

(𝑷𝑘
𝑽 ,𝑇 𝒘𝑇

− 𝒘E𝑇 ) · (𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 − 𝒗E𝑇 ). (3.16)

By (3.9), this stabilisation bilinear form satisfies the following polynomial consistency property:

𝑠𝑽 ,𝑇 (𝑰𝑘𝑽 ,𝑇 𝒘, 𝒗𝑇 ) = 0 ∀(𝒘, 𝒗
𝑇
) ∈ P𝑘 (𝑇 ;R2) × 𝑽𝑘

𝑇
,

so that
(𝑰𝑘𝑽 ,𝑇 𝒘, 𝒗𝑇 )𝑽 ,𝑇 =

∫
𝑇

𝒘 · 𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 ∀(𝒘, 𝒗

𝑇
) ∈ P𝑘 (𝑇 ;R2) × 𝑽𝑘

𝑇
. (3.17)

We define the following 𝐿2-product norms: For • ∈ Tℎ ∪ {ℎ} and all (𝒗•, 𝝉•) ∈ 𝑽
𝑘
• × 𝚺

𝑘−1
• ,

‖𝒗•‖𝑽 ,• ≔ (𝒗•, 𝒗•)
1/2
𝑽 ,•, ‖𝝉•‖𝚺,• ≔ (𝝉•, 𝝉•)

1/2
𝚺,•. (3.18)

Given 𝑇 ∈ Tℎ, we also define the local component norms |||·|||𝑽 ,𝑇 on 𝑽𝑘
𝑇
and |||·|||𝚺,𝑇 on 𝚺𝑘−1

𝑇
such that,

for all (𝒗
𝑇
, 𝝉

𝑇
) ∈ 𝑽𝑘

𝑇
× 𝚺𝑘−1

𝑇 ,

|||𝒗
𝑇
|||2𝑽 ,𝑇 ≔ ‖𝒗𝑇 ‖2𝑳2 (𝑇 ;R2) +

∑︁
𝐸 ∈E𝑇

ℎ𝑇 ‖𝒗𝐸 ‖2𝑳2 (𝐸;R2) +
∑︁

𝑉 ∈V𝑇

(
ℎ2𝑇 |𝒗𝑉 |2 + ℎ4𝑇 |𝑮𝒗,𝑉 |2

)
, (3.19)

|||𝝉
𝑇
|||2𝚺,𝑇 ≔ ‖𝝉H,𝑇 ‖2𝑳2 (𝑇 ;R2×2) + ‖𝝉

c
H,𝑇
‖2
𝑳2 (𝑇 ;R2×2) +

∑︁
𝐸 ∈E𝑇

(
ℎ𝑇 ‖𝜏𝐸 ‖2𝐿2 (𝐸) + ℎ

3
𝑇 ‖𝐷𝝉,𝐸 ‖2𝐿2 (𝐸)

)
(3.20)

+
∑︁

𝑉 ∈V𝑇

ℎ2𝑇 |𝝉𝑉 |2.

The corresponding global component norms, respectively denoted by |||·|||𝑽 ,ℎ and |||·|||𝚺,ℎ, are obtained
summing the squares of the local norms on every 𝑇 ∈ Tℎ and taking the square root of the result. The
following equivalences hold uniformly in ℎ: For all • ∈ Tℎ ∪ {ℎ} and all (𝒗•, 𝝉•) ∈ 𝑽

𝑘
• × 𝚺

𝑘−1
• ,

‖𝒗•‖𝑽 ,• ' |||𝒗• |||𝑽 ,•, ‖𝝉•‖𝚺,• ' |||𝝉• |||𝚺,•. (3.21)

The second equivalence has been proved in [13, Lemma 9]. The first one follows from similar arguments,
not detailed here for the sake of conciseness.
For future use, we note the following boundedness properties of the local interpolators, that can be

proved using trace inequalities:

|||𝑰𝑘𝑽 ,𝑇 𝒗 |||𝑽 ,𝑇 . ‖𝒗‖𝑳2 (𝑇 ;R2) + ℎ𝑇 |𝒗 |𝑯1 (𝑇 ;R2) + ℎ2𝑇 |𝒗 |𝑯2 (𝑇 ;R2) + ℎ3𝑇 |𝒗 |𝑯3 (𝑇 ;R2) ∀𝒗 ∈ 𝑯3(𝑇 ;R2),
(3.22a)

|||𝑰𝑘−1𝚺,𝑇 𝝉 |||𝚺,𝑇 . ‖𝝉‖𝑳2 (𝑇 ;R2×2) + ℎ𝑇 |𝝉 |𝑯1 (𝑇 ;R2×2) + ℎ2𝑇 |𝝉 |𝑯2 (𝑇 ;R2×2) ∀𝝉 ∈ 𝑯2(𝑇 ;S).
(3.22b)
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3.4 Poincaré inequalities
The goal of this section is to prove the following result.

Lemma 3 (Poincaré inequalities). The following properties hold:

1. For all 𝒗
ℎ
∈ 𝑽𝑘

ℎ
such that ∑︁

𝑇 ∈Tℎ

∫
𝑇

𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 · 𝒘 = 0 ∀𝒘 ∈ RT

1(Ω), (3.23)

it holds, with hidden constant independent of 𝒗
ℎ
,

|||𝒗
ℎ
|||𝑽 ,ℎ . |||𝑪𝑘−1

sym,ℎ
𝒗
ℎ
|||𝚺,ℎ; (3.24)

2. Denote by [·, ·]𝚺,ℎ an inner product in 𝚺𝑘−1
ℎ

with induced norm equivalent to |||·|||𝚺,ℎ uniformly
in ℎ. Then, for all 𝝉

ℎ
∈ 𝚺𝑘−1

ℎ
such that

[𝝉
ℎ
, 𝜼

ℎ
]𝚺,ℎ = 0 ∀𝜼

ℎ
∈ kerDD𝑘−2

ℎ ,

it holds, with hidden constant independent of 𝝉
ℎ
,

|||𝝉
ℎ
|||𝚺,ℎ . ‖DD𝑘−2

ℎ 𝝉
ℎ
‖𝐿2 (Ω) . (3.25)

Remark 4 (Poincaré inequality for the symmetric curl). The standard 𝐿2-product in (3.23) could be
replaced by a weighted version and (3.24) would still hold.

3.4.1 Preliminary results
This section contains preliminary results required in the proof of Lemma 3.

Proposition 5 (Estimate of the 𝐿2-norm of one-variate functions). Let 𝐸 ∈ Eℎ and, for a given
polynomial degree 𝑚 ≥ 0, 𝜑 ∈ P𝑚(𝐸). Then,

‖𝜑‖𝐿2 (𝐸) . ‖𝜋𝑚−2P,𝐸𝜑‖𝐿2 (𝐸) + ℎ
1/2
𝐸

∑︁
𝑉 ∈V𝐸

|𝜑(𝒙𝑉 ) |. (3.26)

Proof. Let 𝜑𝐸 ≔ 1
ℎ𝐸

∫
𝐸
𝜑 denote the average value of 𝜑 over 𝐸 . Inserting 𝜑𝐸 and using a triangle

inequality, we can write

‖𝜑‖𝐿2 (𝐸) ≤ ‖𝜑 − 𝜑𝐸 ‖𝐿2 (𝐸) + ‖𝜑𝐸 ‖𝐿2 (𝐸) ≕ 𝔗1 + 𝔗2. (3.27)

To estimate the first term we start with a Poincaré–Wirtinger inequality to write 𝔗1 . ℎ𝐸 ‖𝜑′‖𝐿2 (𝐸) ,
where 𝜑′ ≔ 𝜕𝒕𝐸𝜑. We then notice that, for all 𝜓 ∈ P𝑚−1(𝐸),

∫
𝐸
𝜑′ 𝜓 = −

∫
𝐸
𝜋𝑚−2P,𝐸𝜑 𝜓 ′ +∑

𝑉 ∈V𝐸
𝜔𝐸𝑉 𝜑(𝒙𝑉 ) 𝜓(𝒙𝑉 ), where the introduction of 𝜋𝑚−2P,𝐸 inside the integral is justified by its def-

inition after observing that 𝜓 ′ ∈ P𝑚−2(𝐸) and 𝜔𝐸𝑉 is the orientation of 𝑉 relative to 𝐸 . Taking
𝜓 = 𝜑′, using Cauchy–Schwarz and discrete trace inequalities in the right-hand side, simplifying and
multiplying by ℎ𝐸 , we obtain ℎ𝐸 ‖𝜑′‖𝐿2 (𝐸) . ‖𝜋𝑚−2P,𝐸𝜑‖𝐿2 (𝐸) + ℎ

1/2
𝐸

∑
𝑉 ∈V𝐸

|𝜑(𝒙𝑉 ) |, hence

𝔗1 . ‖𝜋𝑚−2P,𝐸𝜑‖𝐿2 (𝐸) + ℎ
1/2
𝐸

∑︁
𝑉 ∈V𝐸

|𝜑(𝒙𝑉 ) |. (3.28)

To estimate𝔗2 we distinguish two cases. If𝑚 ≥ 2, then𝔗2 = ‖𝜋0P,𝐸𝜑‖𝐿2 (𝐸) = ‖𝜋0P,𝐸 (𝜋
𝑚−2
P,𝐸𝜑)‖𝐿2 (𝐸) ≤

‖𝜋𝑚−2P,𝐸𝜑‖𝐿2 (𝐸) by 𝐿2-boundedness of 𝜋0P,𝐸 . If, on the other hand, 𝑚 ∈ {0, 1}, 𝜑𝐸 = 1
2

∑
𝑉 ∈V𝐸

𝜑(𝒙𝑉 ),
so that 𝔗2 ≤ ℎ

1/2
𝐸

∑
𝑉 ∈V𝐸

|𝜑(𝒙𝑉 ) |. In all the cases, we therefore have 𝔗2 . ‖𝜋𝑚−2P,𝐸𝜑‖𝐿2 (𝐸) +
ℎ
1/2
𝐸

∑
𝑉 ∈V𝐸

|𝜑(𝒙𝑉 ) |, which, used together with (3.28) in (3.27), yields (3.26). �
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Let 𝒗
𝜕𝑇
∈ 𝑽𝑘

𝜕𝑇
and let 𝒗E𝑇 be given by (3.6). For all 𝐸 ∈ E𝑇 , we decompose it into its tangential

and normal components as 𝒗E𝑇 |𝐸 = 𝑣𝒏,𝐸𝒏𝐸 + 𝑣𝒕 ,𝐸 𝒕𝐸 and, for • ∈ {𝒏, 𝒕}, we let 𝑣•,𝜕𝑇 ∈ P𝑘 (E𝑇 ) be
such that (𝑣•,𝜕𝑇 ) |𝐸 = 𝜔𝑇 𝐸𝑣•,𝐸 for all 𝐸 ∈ E𝑇 . We additionally denote by 𝜕𝒕𝜕𝑇 the piecewise tangential
derivative on 𝜕𝑇 such that (𝜕𝒕𝜕𝑇 ) |𝐸 ≔ 𝜔𝑇 𝐸𝜕𝒕𝐸 for all 𝐸 ∈ E𝑇 .

Proposition 6 (Estimate of the tangential derivative of the boundary reconstruction). Let 𝑇 ∈ Tℎ,
𝒗
𝜕𝑇
∈ 𝑽𝑘

𝜕𝑇
, and 𝒗E𝑇 given by (3.6) be such that

∫
𝜕𝑇

𝜕𝒕𝜕𝑇 𝑣𝒕 ,𝜕𝑇 = 0. Then,

‖𝜕𝒕𝜕𝑇 𝒗E𝑇 ‖𝑳2 (𝜕𝑇 ;R2) . ‖𝜋𝑘−3
P,E𝑇 (𝜕𝜕𝑇 𝑣𝒏,𝜕𝑇 )‖𝐿2 (𝜕𝑇 )+ℎ𝑇 ‖𝜕2𝒕𝜕𝑇 𝑣𝒕 ,𝜕𝑇 ‖𝐿2 (𝜕𝑇 )+ℎ

1/2
𝑇

∑︁
𝑉 ∈V𝑇

|C𝑮𝒗,𝑉 |, (3.29)

where 𝜋𝑘−3
P,E𝑇 denotes the 𝐿2-orthogonal projector on P𝑘−3(E𝑇 ).

Proof. Denote, for the sake of brevity, by N𝜕𝑇 (𝒗E𝑇 ) the quantity in the right-hand side of (3.29). We
start using a triangle inequality along with Hölder inequalities and the fact that 𝒕𝐸 and 𝒏𝐸 are unit
vectors to write

‖𝜕𝒕𝜕𝑇 𝒗E𝑇 ‖𝑳2 (𝜕𝑇 ;R2) . ‖𝜕𝒕𝜕𝑇 𝑣𝒏,𝜕𝑇 ‖𝐿2 (𝜕𝑇 ) + ‖𝜕𝒕𝜕𝑇 𝑣𝒕 ,𝜕𝑇 ‖𝐿2 (𝜕𝑇 ) ≕ 𝔗1 + 𝔗2. (3.30)

By (3.26) applied to each 𝐸 ∈ E𝑇 with 𝜑 = 𝜕𝒕𝐸 𝑣𝒏,𝐸 and 𝑚 = 𝑘 − 1, it is readily inferred that

𝔗1 . ‖𝜋𝑘−3
P,E𝑇 (𝜕𝒕𝜕𝑇 𝑣𝒏,𝜕𝑇 )‖𝐿2 (𝜕𝑇 ) + ℎ

1/2
𝑇

∑︁
𝐸 ∈E𝑇

∑︁
𝑉 ∈V𝐸

|𝜕𝒕𝐸 𝑣𝒏,𝐸 (𝒙𝑉 ) | . N𝜕𝑇 (𝒗E𝑇 ), (3.31)

where the conclusion follows noticing that, for all 𝐸 ∈ E𝑇 and all 𝑉 ∈ V𝐸 , |𝜕𝒕𝐸 𝑣𝒏,𝐸 (𝒙𝑉 ) | =
|𝑮𝒗,𝑉 𝒕𝐸 · 𝒏𝐸 | = |C𝑮𝒗,𝑉 𝒏𝐸 · 𝒏𝐸 | . |C𝑮𝒗,𝑉 | and using card(E𝑇 ) . 1.
Let us now turn to 𝔗2. Let 𝜑 ∈ P𝑘 (E𝑇 ) be such that

∫
𝜕𝑇

𝜑 = 0. For all 𝑉 ∈ V𝑇 shared by the edges
𝐸1, 𝐸2 ∈ E𝑇 numbered so that 𝐸2 follows 𝐸1 travelling along 𝜕𝑇 according to its orientation, define
the jump [𝜑]𝑉 ≔ 𝜑 |𝐸2 − 𝜑𝐸1 . Then, it holds

‖𝜑‖𝐿2 (𝜕𝑇 ) . ℎ𝑇 ‖𝜕𝒕𝜕𝑇 𝜑‖𝐿2 (𝜕𝑇 ) + ℎ
1/2
𝑇

∑︁
𝑉 ∈V𝑇

| [𝜑]𝑉 |. (3.32)

Apply this inequality to 𝜑 = 𝜕𝒕𝜕𝑇 𝑣𝒕 ,𝜕𝑇 and denote by 𝔗2,1 and 𝔗2,2 the terms in the right-hand side.
Clearly, 𝔗2,1 = ‖𝜕2𝒕𝜕𝑇 𝑣𝒕 ,𝜕𝑇 ‖𝐿2 (𝜕𝑇 ) ≤ N𝜕𝑇 (𝒗E𝑇 ). For the second contribution, we start by noticing that,
for all 𝐸 ∈ E𝑇 and all𝑉 ∈ V𝐸 , 𝜕𝒕𝜕𝑇 𝑣𝒕 ,𝜕𝑇 (𝒙𝑉 ) = −C𝑮𝒗,𝑉 𝒏𝐸 · 𝒕𝐸 + 1

2 tr𝑮𝒗,𝑉 so that, in particular, for all
𝑉 ∈ V𝑇 , [𝜕𝒕𝜕𝑇 𝑣𝒕 ,𝜕𝑇 ]𝑉 = C𝑮𝒗,𝑉 𝒏𝐸1 · 𝒕𝐸1 − C𝑮𝒗,𝑉 𝒏𝐸2 · 𝒕𝐸2 . Using this fact along with card(E𝑇 ) . 1,
we conclude that |𝔗2,2 | . ℎ

1/2
𝑇

∑
𝑉 ∈V𝑇

|C𝑮𝒗,𝑉 | ≤ N𝜕𝑇 (𝒗E𝑇 ). Gathering the above estimates on 𝔗2,1

and 𝔗2,2 finally gives 𝔗2 . N𝜕𝑇 (𝒗E𝑇 ) which, combined with (3.31), yields (3.29). �

Proposition 7 (Estimate of the discrete sym-curl norm of the vector potential). For all 𝑇 ∈ Tℎ and all
𝒗
𝑇
∈ 𝑽𝑘

𝑇
, it holds

‖ sym curl 𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 ‖𝑳2 (𝑇 ;R2×2) +

∑︁
𝐸 ∈E𝑇

ℎ
−1/2
𝑇
‖𝑷𝑘

𝑽 ,𝑇 𝒗𝑇 − 𝒗E𝑇 ‖𝑳2 (𝐸;R2) . |||𝑪𝑘−1
sym,𝑇

𝒗
𝑇
|||𝚺,𝑇 . (3.33)

Proof. Recalling Remark 2 to write (3.8) for 𝝉 ∈ P𝑘−1(𝑇 ;S) and using the integration by parts formula
(3.4) for the left-hand side of the resulting expression, we have∫

𝑇

sym curl 𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 : 𝝉 =

∫
𝑇

C𝑘−1
sym,𝑇 𝒗𝑇 : 𝝉 +

∑︁
𝐸 ∈E𝑇

𝜔𝑇 𝐸

∫
𝐸

(𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 − 𝒗E𝑇 ) · (𝝉 𝒕𝐸 ).

9



Taking 𝝉 = sym curl 𝑷𝑘
𝑽 ,𝑇

𝒗
𝑇
, using Cauchy–Schwarz and discrete trace inequalities in the right-hand

side, and simplifying, we infer that

‖ sym curl 𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 ‖𝑳2 (𝑇 ;R2×2) . ‖C𝑘−1

sym,𝑇 𝒗𝑇 ‖𝑳2 (𝑇 ;R2×2) +
∑︁

𝐸 ∈E𝑇
ℎ
−1/2
𝑇
‖𝑷𝑘

𝑽 ,𝑇 𝒗𝑇 − 𝒗E𝑇 ‖𝑳2 (𝐸;R2)

≕ 𝔗1 + 𝔗2.

(3.34)
We proceed to estimate the terms in the right-hand side.
(i) Estimate of 𝔗1. Using, in this order, (3.13), the definitions (3.18) of ‖·‖𝚺,𝑇 and (3.15) of the discrete
𝐿2-product in 𝚺𝑘−1

𝑇 , and the norm equivalence (3.21), we can write: For all 𝒗
𝑇
∈ 𝑽𝑘

𝑇
,

𝔗1 = ‖𝑷𝑘−1
𝚺,𝑇𝑪

𝑘−1
sym,𝑇

𝒗
𝑇
‖𝑳2 (𝑇 ;R2×2) ≤ ‖𝑪𝑘−1

sym,𝑇
𝒗
𝑇
‖𝚺,𝑇 . |||𝑪𝑘−1

sym,𝑇
𝒗
𝑇
|||𝚺,𝑇 . (3.35)

(ii) Estimate of 𝔗2. Let 𝒘 ∈ RT
1(𝑇) be such that∫

𝜕𝑇

𝒘 =

∫
𝜕𝑇

𝒗E𝑇 and
∫
𝜕𝑇

𝜕𝒕𝜕𝑇 𝑤𝒕 ,𝜕𝑇 =

∫
𝜕𝑇

𝜕𝒕𝜕𝑇 𝑣𝒕𝜕𝑇 . (3.36)

To check that it is possible to match these conditions, write 𝒘(𝒙) = 𝒛 + (𝒙 − 𝒙𝜕𝑇 )𝑞 with 𝒛 ∈ R2, 𝑞 ∈ R,
and 𝒙𝜕𝑇 ≔ 1

|𝜕𝑇 |
∫
𝜕𝑇

𝒙, and notice that the first condition in (3.36) yields 𝒛 = 1
|𝜕𝑇 |

∫
𝜕𝑇

𝒗E𝑇 , while the
second one is fulfilled taking 𝑞 = 1

|𝜕𝑇 |
∫
𝜕𝑇

𝜕𝒕𝜕𝑇 𝑣𝒕𝜕𝑇 .
Using a triangle inequality, we have

𝔗2 .
∑︁

𝐸 ∈E𝑇
ℎ
−1/2
𝑇
‖𝒘 − 𝒗E𝑇 ‖𝑳2 (𝐸;R2) +

∑︁
𝐸 ∈E𝑇

ℎ
−1/2
𝑇
‖𝑷𝑘

𝑽 ,𝑇 𝒗𝑇 − 𝒘‖𝑳2 (𝐸;R2) ≕ 𝔗2,1 + 𝔗2,2.

Starting with 𝔗2,1, noticing that 𝒘 − 𝒗E𝑇 ∈ 𝑪0(𝜕𝑇 ;R2) has zero average on 𝜕𝑇 , applying a Poincaré–
Wirtinger inequality on 𝜕𝑇 as in [16, Point 1. of Lemma 7], and concluding with Proposition 6
gives

𝔗2,1 . ℎ
1/2
𝑇
‖𝜕𝒕𝜕𝑇 (𝒗E𝑇 − 𝒘)‖𝑳2 (𝜕𝑇 ;R2) . |||𝑪𝑘−1

sym,𝑇
(𝒗

𝑇
− 𝑰𝑘𝑽 ,𝑇 𝒘) |||𝚺,𝑇 = |||𝑪𝑘−1

sym,𝑇
𝒗
𝑇
|||𝚺,𝑇 , (3.37)

where, in the second step, we have additionally used the consistency of the boundary reconstruction (3.6)
applied to 𝑰𝑘𝑽 ,𝑇

𝒘, while the conclusion follows recalling that 𝑪𝑘−1
sym,𝑇

𝑰𝑘𝑽 ,𝑇
𝒘 = 0 by the local complex

property for the DDR sequence.
Let us now consider 𝔗2,2. By polynomial consistency (3.9) of 𝑷𝑘

𝑽 ,𝑇
, it holds 𝑷𝑘

𝑽 ,𝑇
𝑰𝑘𝑽 ,𝑇

𝒘 = 𝒘,
hence

𝔗2,2 =
∑︁

𝐸 ∈E𝑇
ℎ
−1/2
𝑇
‖𝑷𝑘

𝑽 ,𝑇 (𝒗𝑇 − 𝑰𝑘𝑽 ,𝑇 𝒘)‖𝑳2 (𝐸;R2) . ℎ−1𝑇 ‖𝑷𝑘
𝑽 ,𝑇 (𝒗𝑇 − 𝑰𝑘𝑽 ,𝑇 𝒘)‖𝑳2 (𝑇 ;R2) , (3.38)

where the conclusion follows from discrete trace inequalities along with card(E𝑇 ) . 1. Taking, in the
definition (3.8) of 𝑷𝑘

𝑽 ,𝑇
, 𝝉 ∈ H

c,𝑘+1(𝑇) such that rot 𝝉 = 𝑷𝑘
𝑽 ,𝑇
(𝒗

𝑇
− 𝑰𝑘𝑽 ,𝑇

𝒘) (this is possible since
rot : Hc,𝑘+1(𝑇) → P

𝑘 (𝑇) is surjective by Proposition 1) and using Cauchy–Schwarz and discrete
trace inequalities in the right-hand side along with (2.4) to write ‖𝝉‖𝑳2 (𝑇 ;R2×2) . ℎ𝑇 ‖ rot 𝝉‖𝑳2 (𝑇 ;R2) =

ℎ𝑇 ‖𝑷𝑘
𝑽 ,𝑇
(𝒗

𝑇
− 𝑰𝑘𝑽 ,𝑇

𝒘)‖𝑳2 (𝑇 ;R2) , we obtain, after simplification,

‖𝑷𝑘
𝑽 ,𝑇 (𝒗𝑇 − 𝑰𝑘𝑽 ,𝑇 𝒘)‖𝑳2 (𝑇 ;R2) . ℎ𝑇

(
‖C𝑘−1

sym,𝑇 𝒗𝑇 ‖𝑳2 (𝑇 ;R2×2) + ℎ
−1/2
𝑇
‖𝒗E𝑇 − 𝒘‖𝑳2 (𝜕𝑇 ;R2)

)
. ℎ𝑇 |||𝑪𝑘−1

sym,𝑇
𝒗
𝑇
|||𝚺,𝑇 ,
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where the conclusion follows using, respectively, (3.35) and (3.37) to estimate the terms in parentheses.
Plugging this estimate into (3.38), we finally get𝔗2,2 . |||𝑪𝑘−1

sym,𝑇
𝒗
𝑇
|||𝚺,𝑇 , which, combined with (3.37),

gives
𝔗2 . |||𝑪𝑘−1

sym,𝑇
𝒗
𝑇
|||𝚺,𝑇 . (3.39)

(iii) Conclusion. Plug (3.35) and (3.39) into (3.34) to estimate the first term in the left-hand side of (3.33)
and notice that the estimate of the second term in the left-hand side of (3.33) is precisely (3.39). �

3.4.2 Proof of the discrete Poincaré inequalities

Proof of Lemma 3. (i) Poincaré inequality (3.24) for 𝑪𝑘−1
sym,ℎ

. Let 𝒗
ℎ
∈ 𝑽𝑘

ℎ
be such that

∫
Ω
𝑷𝑘
𝑽 ,ℎ

𝒗
ℎ
· 𝒘 =

0 for all 𝒘 ∈ RT
1(Ω), with the global reconstruction operator 𝑷𝑘

𝑽 ,ℎ
defined such that (𝑷𝑘

𝑽 ,ℎ
𝒗
ℎ
) |𝑇 =

𝑷𝑘
𝑽 ,𝑇

𝒗
𝑇
for all 𝑇 ∈ Tℎ. Owing to the uniform norm equivalence (3.21), the definitions (3.18) of the

‖·‖𝑽 ,𝑇 -norm and (3.16) of the stabilisation bilinear form, and the fact that ℎ𝑇 . 1 for all 𝑇 ∈ Tℎ, we
infer

|||𝒗
ℎ
|||2𝑽 ,ℎ . ‖𝒗ℎ ‖

2
𝑽 ,ℎ = ‖𝑷𝑘

𝑽 ,ℎ𝒗ℎ ‖
2
𝑳2 (Ω;R2) +

∑︁
𝑇 ∈Tℎ

𝑠𝑽 ,𝑇 (𝒗𝑇 , 𝒗𝑇 )

. ‖𝑷𝑘
𝑽 ,ℎ𝒗ℎ ‖

2
𝑳2 (Ω;R2) +

∑︁
𝑇 ∈Tℎ

∑︁
𝐸 ∈E𝑇

ℎ−1𝑇 ‖𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 − 𝒗E𝑇 ‖

2
𝑳2 (𝐸;R2) .

(3.40)

We notice that, for all neighboring elements 𝑇1, 𝑇2 ∈ Tℎ sharing the internal edge 𝐸 , we have (𝒗E𝑇1 ) |𝐸 =

(𝒗E𝑇2 ) |𝐸 ≕ 𝒗̂𝐸 . Letting, for any boundary edge 𝐸 ⊂ 𝜕𝑇 , 𝒗̂𝐸 ≔ (𝒗E𝑇 ) |𝐸 and applying the second
inequality of Proposition 26 below to the hybrid vector field 𝒖

ℎ
=

(
(𝑷𝑘

𝑽 ,𝑇
𝒗
𝑇
)𝑇 ∈Tℎ , (𝒗̂𝐸 )𝐸 ∈Eℎ

)
, we

obtain

‖𝑷𝑘
𝑽 ,ℎ𝒗ℎ ‖

2
𝐿2 (Ω;R2) .

∑︁
𝑇 ∈Tℎ

(
‖ sym curl 𝑷𝑘

𝑽 ,𝑇 𝒗𝑇 ‖
2
𝑳2 (Ω;R2×2) +

∑︁
𝐸 ∈E𝑇

ℎ−1𝑇 ‖𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 − 𝒗E𝑇 ‖

2
𝑳2 (𝐸;R2)

)
.

Plugging the previous bound into (3.40) and using Proposition 7, (3.24) follows.

(ii) Poincaré inequality (3.25) for DD𝑘−2
ℎ . Let 𝝉

ℎ
∈

(
kerDD𝑘−2

ℎ

)⊥, where the space (
kerDD𝑘−2

ℎ

)⊥ ⊂
𝚺𝑘−1
ℎ
denotes the orthogonal of kerDD𝑘−2

ℎ with respect to the inner product [·, ·]𝚺,ℎ. Owing to the
surjectivity of the operator div div : 𝑯2(Ω;S) → 𝐿2(Ω) (cf. [23, Theorem 3.25]), the commutation
property stated in [13, Eq. (19)], and the boundedness of the global interpolator 𝑰𝑘−1𝚺,ℎ resulting from
(3.22b), we infer the existence of a tensor field 𝝉 ∈ 𝑯2(Ω;S) such that

DD𝑘−2
ℎ 𝝉

ℎ
= div div 𝝉 = DD𝑘−2

ℎ (𝑰𝑘−1𝚺,ℎ 𝝉) and |||𝑰
𝑘−1
𝚺,ℎ 𝝉 |||𝚺,ℎ . ‖𝝉‖𝑯2 (Ω;S) . ‖DD𝑘−2

ℎ 𝝉
ℎ
‖𝑳2 (Ω) . (3.41)

Therefore, we have that 𝝉
ℎ
− 𝑰𝑘−1𝚺,ℎ 𝝉 ∈ kerDD

𝑘−2
ℎ , i.e.,

[𝝉
ℎ
− 𝑰𝑘−1𝚺,ℎ 𝝉, 𝝊ℎ

]𝚺,ℎ = 0 ∀𝝊
ℎ
∈

(
kerDD𝑘−2

ℎ

)⊥
,

namely, 𝝉
ℎ
can be seen as the [·, ·]𝚺,ℎ-orthogonal projection of 𝑰𝑘−1𝚺,ℎ 𝝉 on the space

(
kerDD𝑘−2

ℎ

)⊥. Thus,
the norm induced by [·, ·]𝚺,ℎ of 𝝉ℎ is bounded by that of 𝑰

𝑘−1
𝚺,ℎ 𝝉, and the assumed uniform equivalence

between the induced norm and |||·|||𝚺,ℎ along with the inequality in (3.41) yields the result. �

11



3.5 Consistency of the discrete 𝐿2-products
Lemma 8 (Consistency of the discrete 𝐿2-products). The discrete 𝐿2-products satisfy the following
consistency properties:

1. For all 𝒘 ∈ 𝑯3(Ω;R2), define the linear form 𝔈𝑽 ,ℎ (𝒘; ·) : 𝑽𝑘
ℎ
→ R such that

𝔈𝑽 ,ℎ (𝒘; 𝒗ℎ) ≔
∑︁
𝑇 ∈Tℎ

∫
𝑇

𝒘 · 𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 − (𝑰

𝑘
𝑽 ,ℎ𝒘, 𝒗ℎ)𝑽 ,ℎ ∀𝒗

ℎ
∈ 𝑽𝑘

ℎ
.

Then, under the additional regularity 𝒘 ∈ 𝑯𝑘+1(Tℎ;R2), it holds

sup
𝒗
ℎ
∈𝑽 𝑘

ℎ
\{0}

𝔈𝑽 ,ℎ (𝒘; 𝒗ℎ)
‖𝒗

ℎ
‖𝑽 ,ℎ

. ℎ𝑘+1 |𝒗 |𝑯 𝑘+1 (Tℎ ;R2) . (3.42)

2. For all 𝝊 ∈ 𝑯2(Ω;S), define the linear form 𝔈𝚺,ℎ (𝝊; ·) : 𝚺𝑘−1
ℎ
→ R such that

𝔈𝚺,ℎ (𝝊; 𝝉ℎ) ≔
∑︁
𝑇 ∈Tℎ

∫
𝑇

𝝊 : 𝑷𝑘−1
𝚺,𝑇 𝝉𝑇 − (𝑰

𝑘−1
𝚺,ℎ 𝝊, 𝝉ℎ)𝚺,ℎ ∀𝝉

ℎ
∈ 𝚺𝑘−1

ℎ .

Then, under the additional regularity 𝝊 ∈ 𝑯𝑘 (Tℎ;S), it holds

sup
𝝉
ℎ
∈𝚺𝑘−1

ℎ
\{0}

𝔈𝚺,ℎ (𝝊; 𝝉ℎ)
‖𝝉

ℎ
‖𝚺,ℎ

. ℎ𝑘 |𝝊 |𝑯 𝑘 (Tℎ ;R2×2) . (3.43)

Proof. (i) Proof of (3.42). By the polynomial consistency (3.17) of the discrete 𝐿2-product in 𝑽𝑘
𝑇
, we

can write
𝔈𝑽 ,ℎ (𝒘; 𝒗ℎ) =

∑︁
𝑇 ∈Tℎ

(𝔗1(𝑇) + 𝔗2(𝑇)) , (3.44)

where, recalling that 𝝅𝑘
P,𝑇
denotes the 𝐿2-orthogonal projector on P𝑘 (𝑇),

𝔗1(𝑇) ≔
∫
𝑇

(𝒘 − 𝝅𝑘
P,𝑇

𝒘 |𝑇 ) · 𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 , 𝔗2(𝑇) ≔ (𝑰𝑘𝑽 ,𝑇 (𝒘 − 𝝅𝑘

P,𝑇
𝒘 |𝑇 ), 𝒗𝑇 )𝑽 ,𝑇 .

For the first term, a Cauchy–Schwarz inequality followed by the approximation properties of 𝝅𝑘
P,𝑇
(see,

e.g., [14, Lemma 3.4] or [17, Section 1.3.3]) and the definition (3.18) of the ‖·‖𝑽 ,𝑇 -norm give

|𝔗1(𝑇) | ≤ ‖𝒘 − 𝝅𝑘
P,𝑇

𝒘 |𝑇 ‖𝑳2 (𝑇 ;R2) ‖𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 ‖𝑳2 (𝑇 ;R2) . ℎ𝑘+1𝑇 |𝒘 |𝑯 𝑘+1 (𝑇 ;R2) ‖𝒗𝑇 ‖𝑽 ,𝑇 . (3.45)

For the second term, a Cauchy–Schwarz inequality, the local norm equivalence expressed by (3.21) with
• = 𝑇 along with the boundedness (3.22a) of 𝑰𝑘𝑽 ,𝑇

, and again the approximation properties of 𝝅𝑘
P,𝑇
give

|𝔗2(𝑇) | ≤ ‖𝑰𝑘𝑽 ,𝑇 (𝒘 − 𝝅𝑘
P,𝑇

𝒘 |𝑇 )‖𝑽 ,𝑇 ‖𝒗𝑇 ‖𝑽 ,𝑇

.

(
3∑︁
𝑖=0

ℎ𝑖𝑇 |𝒘 − 𝝅𝑘
P,𝑇

𝒘 |𝑇 |𝑯 𝑖 (𝑇 ;R2)

)
‖𝒗

𝑇
‖𝑽 ,𝑇

. ℎ𝑘+1𝑇 |𝒘 |𝑯 𝑘+1 (𝑇 ;R2) ‖𝒗𝑇 ‖𝑽 ,𝑇 .

(3.46)

Using (3.45) and (3.46) to bound the terms in the right-hand side of (3.44), we obtain (3.42) after
applying a discrete Cauchy–Schwarz inequality on the sum over 𝑇 ∈ Tℎ.
(ii) Proof of (3.43). The proof coincides with the estimate the term 𝔗1 in the proof of [16, Lemma 15]
with ℓ = 𝑘 + 1, to which we refer for further details. �
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3.6 Adjoint consistency of the discrete differential operators
To state the following theorem, we denote by 𝒏 the normal vector field on 𝜕Ω pointing out of Ω and by
𝒕 the tangent vector field oriented so that ( 𝒕, 𝒏) forms a right-handed coordinate system.

Lemma 9 (Adjoint consistency). The discrete differential operators defined in Section 3.2 satisfy the
following adjoint consistency properties:

1. Given 𝝊 ∈ 𝑯2(Ω;S) such that 𝝊𝒕 = 0 on 𝜕Ω, we define the sym curl adjoint consistency error
𝔈sym curl,ℎ : 𝑽𝑘

ℎ
→ R by: For all 𝒗

ℎ
∈ 𝑽𝑘

ℎ
,

𝔈sym curl,ℎ (𝝊; 𝒗ℎ) ≔ (𝑰
𝑘−1
𝚺,ℎ 𝝊,𝑪

𝑘−1
sym,ℎ

𝒗
ℎ
)𝚺,ℎ +

∑︁
𝑇 ∈Tℎ

∫
𝑇

rot 𝝊 · 𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 .

Then, further assuming 𝝊 ∈ 𝑯𝑘 (Tℎ;S), it holds: For all 𝒗
ℎ
∈ 𝑽𝑘

ℎ
,

|𝔈sym curl,ℎ (𝝊; 𝒗ℎ) | . ℎ𝑘 |𝝊 |𝑯 𝑘 (Tℎ ;R2×2) ‖𝑪
𝑘−1
sym,ℎ

𝒗
ℎ
‖𝚺,ℎ . (3.47)

2. Given 𝑞 ∈ 𝐻2(Ω) such that 𝑞 = 𝜕𝒏𝑞 = 0 on 𝜕Ω, we define the div-div adjoint consistency error
𝔈div div,ℎ : 𝚺𝑘−1

ℎ
→ R by: For all 𝝉

ℎ
∈ 𝚺𝑘−1

ℎ
,

𝔈div div,ℎ (𝑞; 𝝉ℎ) ≔
∫
Ω

𝑞 DD𝑘−2
ℎ 𝝉

ℎ
−

∑︁
𝑇 ∈Tℎ

∫
𝑇

hess 𝑞 : 𝑷𝑘−1
𝚺,𝑇 𝝉𝑇 . (3.48)

Then, further assuming 𝑞 ∈ 𝐻𝑘+2(Ω), it holds: For all 𝝉
ℎ
∈ 𝚺𝑘−1

ℎ
,

|𝔈div div,ℎ (𝑞; 𝝉ℎ) | . ℎ𝑘 |𝑞 |𝐻 𝑘+2 (Tℎ) ‖𝝉ℎ ‖𝚺,ℎ . (3.49)

Proof. (i) Proof of (3.47). By definition (3.15) of the local discrete 𝐿2-product in 𝚺𝑘−1
ℎ
and the com-

mutation property (3.13), it holds that

𝔈sym curl,ℎ (𝝊; 𝒗ℎ) =
∑︁
𝑇 ∈Tℎ

[ ∫
𝑇

𝑷𝑘−1
𝚺,𝑇 𝑰

𝑘−1
𝚺,𝑇 𝝊 |𝑇 : C𝑘−1

sym,𝑇 𝒗𝑇 + 𝑠𝚺,𝑇 (𝑰
𝑘−1
𝚺,𝑇 𝝊 |𝑇 ,𝑪

𝑘−1
sym,𝑇

𝒗
𝑇
)

+
∫
𝑇

rot 𝝊 · 𝑷𝑘
𝑽 ,𝑇 𝒗𝑇

]
. (3.50)

Accounting for Remark 2, it holds, for all (𝝉𝑇 )𝑇 ∈Tℎ ∈
>

𝑇 ∈Tℎ P
𝑘−1(𝑇),∑︁

𝑇 ∈Tℎ

[ ∫
𝑇

𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 · rot 𝝉𝑇 +

∫
𝑇

C𝑘−1
sym,𝑇 𝒗𝑇 : 𝝉𝑇 −

∑︁
𝐸 ∈E𝑇

𝜔𝑇 𝐸

∫
𝐸

𝒗E𝑇 · (𝝉𝑇 𝒕𝐸 )
]
= 0.

Subtracting this expression from (3.50), we obtain

𝔈sym curl,ℎ (𝝊; 𝒗ℎ) =
∑︁
𝑇 ∈Tℎ

[ ∫
𝑇

(
𝑷𝑘−1
𝚺,𝑇 𝑰

𝑘−1
𝚺,𝑇 𝝊 |𝑇 − 𝝉𝑇

)
: C𝑘−1

sym,𝑇 𝒗𝑇 + 𝑠𝚺,𝑇 (𝑰
𝑘−1
𝚺,𝑇 𝝊 |𝑇 ,𝑪

𝑘−1
sym,𝑇

𝒗
𝑇
)
]

+
∑︁
𝑇 ∈Tℎ

[ ∫
𝑇

rot(𝝊 − 𝝉𝑇 ) · 𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 +

∑︁
𝐸 ∈E𝑇

𝜔𝑇 𝐸

∫
𝐸

𝒗E𝑇 · (𝝉𝑇 − 𝝊) 𝒕𝐸
]
,

where we have additionally introduced 𝝊 |𝐸 𝒕𝐸 into the boundary term using the fact that this quantity is
single-valued if 𝐸 is an internal edge while it vanishes if 𝐸 ⊂ 𝜕Ω. Applying the integration by parts
formula (3.4) to the third term leads to
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𝔈sym curl,ℎ (𝝊; 𝒗ℎ) =
∑︁
𝑇 ∈Tℎ

[ ∫
𝑇

(
𝑷𝑘−1
𝚺,𝑇 𝑰

𝑘−1
𝚺,𝑇 𝝊 |𝑇 − 𝝉𝑇

)
· C𝑘−1

sym,𝑇 𝒗𝑇 + 𝑠𝚺,𝑇 (𝑰
𝑘−1
𝚺,𝑇 𝝊 |𝑇 ,𝑪

𝑘−1
sym,𝑇

𝒗
𝑇
)
]

−
∑︁
𝑇 ∈Tℎ

[ ∫
𝑇

(𝝊 − 𝝉𝑇 ) · sym curl 𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 −

∑︁
𝐸 ∈E𝑇

𝜔𝑇 𝐸

∫
𝐸

(𝒗E𝑇 − 𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 ) · (𝝉𝑇 − 𝝊) · 𝒕𝐸

]
. (3.51)

Take now 𝝉𝑇 = 𝝅𝑘−1
P,𝑇

𝝊 |𝑇 for all 𝑇 ∈ Tℎ. Using Cauchy-Schwarz inequalities in the right-hand side of
(3.51) followed by the approximation properties of 𝑷𝑘−1

𝚺,𝑇 and 𝝅
𝑘−1
P,𝑇
(see, respectively, [13, Proposition

14] and [17, Theorem 1.45]) as well as the consistency property of the stabilisation term proved in [13,
Proposition 12], we get

|𝔈sym curl,ℎ (𝝊; 𝒗ℎ) | . ℎ𝑘 |𝝊 |𝑯 𝑘 (Tℎ ;R2×2)

[ ∑︁
𝑇 ∈Tℎ

(
‖C𝑘−1

sym,𝑇 𝒗𝑇 ‖
2
𝑳2 (𝑇 ;R2×2) + 𝑠𝚺,𝑇 (𝑪

𝑘−1
sym,𝑇

𝒗
𝑇
,𝑪𝑘−1

sym,𝑇
𝒗
𝑇
)

+ ‖ sym curl 𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 ‖

2
𝑳2 (𝑇 ;R2×2) + ℎ

−1
𝑇

∑︁
𝐸 ∈E𝑇

‖𝒗E𝑇 − 𝑷𝑘
𝑽 ,𝑇 𝒗𝑇 ‖

2
𝑳2 (𝐸;R2)

)]
.

Let us consider the factor in square brackets. Using, respectively, (3.13) along with (3.35) for the first
term, the definition (3.18) of the 𝐿2-product norm on 𝚺𝑘−1

ℎ
for the second term, and (3.33) for the third

and fourth terms, this factor is . ‖𝑪𝑘−1
sym,ℎ

𝒗
ℎ
‖𝚺,ℎ, thus concluding the proof of (3.47).

(ii) Proof of (3.49). Combining the definitions (3.48) of the adjoint consistency error and (3.12) of the
tensor potential, it is inferred that, for all (𝑞𝑇 )𝑇 ∈Tℎ ∈

>
𝑇 ∈Tℎ P

𝑘+1(𝑇),

𝔈div div,ℎ (𝑞, 𝝉ℎ) =
∑︁
𝑇 ∈Tℎ

[ ∫
𝑇

(𝑞 − 𝑞𝑇 )DD𝑘−2
𝑇 𝝉

𝑇
−

∫
𝑇

hess(𝑞 − 𝑞𝑇 ) : 𝑷𝑘−1
𝚺,𝑇 𝝉𝑇

]
+

∑︁
𝑇 ∈Tℎ

𝜔𝑇 𝐸

∑︁
𝐸 ∈E𝑇

[∫
𝐸

𝑃𝑘−1
𝚺,𝐸𝝉𝐸 𝜕𝒏𝐸

(𝑞 − 𝑞𝑇 ) −
∫
𝐸

𝐷𝝉,𝐸 (𝑞 − 𝑞𝑇 )
]

+
∑︁
𝑇 ∈Tℎ

∑︁
𝐸 ∈E𝑇

𝜔𝑇 𝐸

∑︁
𝑉 ∈V𝐸

𝜔𝐸𝑉 (𝝉𝑉 𝒏𝐸 · 𝒕𝐸 ) (𝑞 − 𝑞𝑇 ) (𝒙𝑉 ),

where the insertion of 𝑞 and 𝜕𝒏𝐸
𝑞 into the boundary integrals is possible since these quantities are

continuous at internal edges and vanish on boundary edges. Taking 𝑞𝑇 = 𝜋𝑘+1
P,𝑇 𝑞 for all 𝑇 ∈ Tℎ and

using Cauchy–Schwarz inequalities followed by the approximation properties of 𝜋𝑘+1
P,𝑇 , it is inferred that

|𝔈div div,ℎ (𝑞, 𝝉ℎ) | . ℎ𝑘 |𝑞 |𝐻 𝑘+2 (Tℎ)

{ ∑︁
𝑇 ∈Tℎ

[
ℎ4𝑇 ‖DD𝑘−2

𝑇 𝝉
𝑇
‖2
𝐿2 (𝑇 ) + ‖𝑷

𝑘−1
𝚺,𝑇 𝝉𝑇 ‖

2
𝑳2 (𝑇 ;R2×2)

+
∑︁

𝐸 ∈E𝑇

(
ℎ𝑇 ‖𝑃𝑘−1

𝚺,𝐸𝝉𝐸 ‖
2
𝐿2 (𝐸) + ℎ

3
𝑇 ‖𝐷𝝉,𝐸 ‖2𝐿2 (𝐸) +

∑︁
𝑉 ∈V𝐸

ℎ2𝑇 |𝝉𝑉 |2
)]} 1

2

.

Using [13, Eq. (57)–(59)] for the first three terms and the definition (3.20) for the last two, we infer
that the quantity in braces is . |||𝝉

𝑇
|||𝚺,𝑇 , hence . ‖𝝉𝑇 ‖𝚺,𝑇 by the norm equivalence (3.21) written for

• = 𝑇 , thus concluding the proof of (3.49). �
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4 Serendipity DDR complex
Denote, as in the previous section, by 𝑘 ≥ 3 the polynomial degree of the discrete complex. Following
[16], we consider the construction illustrated in the following diagram:

RT
1(Ω) 𝑽𝑘

ℎ
𝚺𝑘−1
ℎ

P𝑘−2(Tℎ) 0

RT
1(Ω) 𝑽

𝑘

ℎ
𝚺
𝑘−1
ℎ P𝑘−2(Tℎ) 0,

𝑰 𝑘𝑽 ,ℎ

𝑹̂𝑽 ,ℎ

𝑪𝑘−1
sym,ℎ

𝑹̂𝚺,ℎ

DD𝑘−2
ℎ 0

𝑰̂
𝑘

𝑽 ,ℎ

𝑬𝑽 ,ℎ

𝑪
𝑘−1
sym,ℎ

𝑬𝚺,ℎ

D̂D
𝑘−2
ℎ 0

(4.1)

where, according to [16, Eqs. (2.2) and (2.4)], we have set

𝑰̂
𝑘

𝑽 ,ℎ ≔ 𝑹̂𝑽 ,ℎ 𝑰
𝑘
𝑽 ,ℎ, 𝑪

𝑘−1
sym,ℎ

≔ 𝑹̂𝚺,ℎ𝑪
𝑘−1
sym,ℎ

𝑬𝑽 ,ℎ, D̂D
𝑘−2
ℎ ≔ DD𝑘−2

ℎ 𝑬𝚺,ℎ . (4.2)

The purpose of the rest of this section is to

• provide a precise definition of the extension and reduction operators 𝑬𝑽 ,ℎ, 𝑹̂𝑽 ,ℎ, 𝑬𝚺,ℎ, 𝑹̂𝚺,ℎ as
well as the spaces and operators that appear in the bottom (serendipity) complex;

• prove that the properties of the top complex are inherited by the bottom complex.

This latter point makes the object of Theorems 19 and 23 below, which are therefore the main results of
this section.
As most of the developments are local, in what follows we denote by 𝑇 ∈ Tℎ a generic mesh element

without necessarily specifying this fact at each occurrence. As usual, a local version of diagram (4.1)
on 𝑇 is obtained taking the restriction of the spaces and operators collecting the components attached to
𝑇 and, when present, to the edges and nodes that lie on its boundary.

4.1 Estimate of symmetric tensor-valued polynomials
Throughout the rest of this section, we work under the following assumption:

Assumption 10 (Boundaries selection for serendipity spaces). For each 𝑇 ∈ Tℎ element of the mesh,
we select a set Ê𝑇 of 𝜂𝑇 ≥ 2 edges that are not pairwise aligned and such that, for all 𝐸 ∈ Ê𝑇 , 𝑇 lies
entirely on one side of the hyperplane 𝐻𝐸 spanned by 𝐸 . For all 𝐸 ∈ Ê𝑇 , denoting by 𝒙𝐸 its middle
point and defining the scaled distance function to 𝐻𝐸 by 𝑑𝐸 (𝒙) = ℎ−1

𝐸
𝜔𝑇 𝐸 (𝒙 − 𝒙𝐸 ) · 𝒏𝐸 , we assume

the existence of a real number 𝜃 > 0 such that 𝑑𝐸 (𝒙𝐸′) ≥ 𝜃 for all 𝐸 , 𝐸 ′ ∈ Ê𝑇 , 𝐸 \ {𝐸 ′}.

From this point on, the hidden constant in 𝑎 . 𝑏 (see Section 2.2) will possibly depend also on the
boundaries selection regularity parameter 𝜃.

Lemma 11 (Estimate of symmetric tensor-valued polynomials). Let 𝑚 ≥ 0 and let Assumption 10 hold.
Let 𝑇 ∈ Tℎ be a mesh element. Then, for all 𝝉 ∈ P𝑚(𝑇 ;S), it holds

‖𝝉‖𝑳2 (𝑇 ;R2×2) . ‖𝝅𝑚−3
H,𝑇

𝝉‖𝑳2 (𝑇 ;R2×2) + ‖𝝅
c,𝑚+2−𝜂𝑇
H,𝑇

𝝉‖𝑳2 (𝑇 ;R2×2)

+
∑︁

𝐸 ∈E𝑇

(
ℎ
1/2
𝑇
‖𝜋𝑚−2P,𝐸 (𝝉 |𝐸𝒏𝐸 · 𝒏𝐸 )‖𝐿2 (𝐸) + ℎ

3/2
𝑇
‖𝛿𝐸𝝉‖𝐿2 (𝐸)

)
+ ℎ𝑇

∑︁
𝑉 ∈V𝑇

|𝝉(𝒙𝑉 ) |. (4.3)

Remark 12 (Reduction by serendipity). Lemma 11 clearly shows which polynomial components 𝚺𝑘−1
𝑇

can be reduced by serendipity, namely the ones in Hc,𝑘−1(𝑇). As will become clear in what follows,
in order to preserve the homological properties, a corresponding reduction of the components of 𝑽𝑘

𝑇
in

P𝑘−2(𝑇) is required; see Remark 14 below.
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Proof of Lemma 11. Let 𝝉 ∈ P
𝑚(𝑇 ;S) and denote, for the sake of brevity, by N𝑇 (𝝉) the right-hand

side of (4.3).
We start by estimating div div 𝝉. Using the integration by parts formula (3.10) with 𝑞 ∈ P𝑚−2(𝑇),

inserting 𝝅𝑚−3
H,𝑇

in front of 𝝉 in the first term in the right-hand side (since hess 𝑞 ∈ H
𝑚−4(𝑇) ⊂

H
𝑚−3(𝑇)) and 𝜋𝑚−2P,𝐸 in front of 𝝉𝒏𝐸 · 𝒏𝐸 in the second term (since 𝜕𝒏𝐸

𝑞 ∈ P𝑚−3(𝐸) ⊂ P𝑚−2(𝐸)),
and using Cauchy–Schwarz along with discrete trace and inverse inequalities, we infer

∫
𝑇
div div 𝝉 𝑞 .

ℎ−2
𝑇
N𝑇 (𝝉)‖𝑞‖𝐿2 (𝑇 ) . Taking 𝑞 = div div 𝝉, simplifying, and multiplying both sides by ℎ2

𝑇
yields

ℎ2𝑇 ‖ div div 𝝉‖𝐿2 (𝑇 ) . N𝑇 (𝝉). (4.4)

By (2.3), 𝝉 can be decomposed as follows:

𝝉 = sym curl 𝒗 + 𝝊, (4.5)

with 𝒗 ∈ P𝑚+1(𝑇 ;R2) and 𝝊 ∈ Cc,𝑚(𝑇). Since 𝒗 is defined up to a function in RT
1(𝑇), we can assume

that ∫
𝜕𝑇

𝒗 = 0 and
∫
𝜕𝑇

𝜕𝒕 ,𝜕𝑇 𝑣𝒕 ,𝜕𝑇 = 0, (4.6)

where we remind the reader that, as in Section 3.4.1, 𝜕𝒕 ,𝜕𝑇 and 𝑣𝒕 ,𝜕𝑇 are, respectively, the broken
tangential derivative and tangential component of 𝒗 on 𝜕𝑇 .
We next proceed to estimate the 𝐿2-norms of the terms in the right-hand side of (4.5). To estimate

‖𝝊‖𝑳2 (𝑇 ;R2×2) , we start with (2.5), notice that div div 𝝊 = div div 𝝉 (since div div sym curl = 0), then
invoke (4.4) to write

‖𝝊‖𝑳2 (𝑇 ;R2×2) . ℎ2𝑇 ‖ div div 𝝊‖𝐿2 (𝑇 ) = ℎ2𝑇 ‖ div div 𝝉‖𝐿2 (𝑇 ) . N𝑇 (𝝉). (4.7)

To estimate ‖ sym curl 𝒗‖𝑳2 (𝑇 ;R2×2) , we start by using a discrete inverse inequality followed by [16,
Lemma 13] to write

‖ sym curl 𝒗‖𝑳2 (𝑇 ;R2×2) . ℎ−1𝑇 ‖𝒗‖𝑳2 (𝑇 ;R2) . ℎ−1𝑇

(
‖𝝅𝑚+1−𝜂𝑇

P,𝑇
𝒗‖𝑳2 (𝑇 ;R2) + ℎ

1/2
𝑇
‖𝒗‖𝑳2 (𝜕𝑇 ;R2)

)
. (4.8)

We next proceed to estimate the terms in parentheses, starting with ‖𝒗‖𝑳2 (𝜕𝑇 ;R2) . Since 𝒗 has zero
average on 𝜕𝑇 , by a Poincaré–Wirtinger inequality we infer

‖𝒗‖𝑳2 (𝜕𝑇 ;R2) . ℎ𝑇 ‖𝜕𝒕𝜕𝑇 𝒗‖𝑳2 (𝜕𝑇 ;R2) . (4.9)

Decomposing 𝒗𝜕𝑇 into its normal and tangential components, and using triangle and Hölder inequalities
along with the fact that 𝒏𝐸 and 𝒕𝐸 are unit vectors, we get

‖𝜕𝒕𝜕𝑇 𝒗‖𝑳2 (𝜕𝑇 ;R2) ≤ ‖𝜕𝒕𝜕𝑇 𝑣𝒏,𝜕𝑇 ‖𝐿2 (𝜕𝑇 ) + ‖𝜕𝒕𝜕𝑇 𝑣𝒕 ,𝜕𝑇 ‖𝐿2 (𝜕𝑇 ) , (4.10)

where we remind the reader that 𝑣𝒏,𝜕𝑇 denotes the normal component of 𝒗 on 𝜕𝑇 . Since, for all 𝐸 ∈ E𝑇 ,
𝜕𝒕𝐸 𝑣𝒏,𝐸 = (sym curl 𝒗)𝒏𝐸 · 𝒏𝐸 = (𝝉 − 𝝊)𝒏𝐸 · 𝒏𝐸 (cf., respectively, [9, Eq. (3)] and (4.5)), we can use
a triangle inequality to write

‖𝜕𝒕𝜕𝑇 𝑣𝒏,𝜕𝑇 ‖2𝐿2 (𝜕𝑇 )

.
∑︁

𝐸 ∈E𝑇

(
‖𝝉 |𝐸𝒏𝐸 · 𝒏𝐸 ‖2𝐿2 (𝐸) + ‖𝝊 |𝐸𝒏𝐸 · 𝒏𝐸 ‖2𝐿2 (𝐸)

)
.

∑︁
𝐸 ∈E𝑇

(
‖𝜋𝑚−2P,𝐸 (𝝉 |𝐸𝒏𝐸 · 𝒏𝐸 )‖2𝐿2 (𝐸) + ℎ𝐸

∑︁
𝑉 ∈V𝐸

|𝝉(𝒙𝑉 )𝒏𝐸 · 𝒏𝐸 |2 + ‖𝝊 |𝐸𝒏𝐸 · 𝒏𝐸 ‖2𝐿2 (𝐸)

)
. ℎ−1𝑇 N𝑇 (𝝉)2,

(4.11)
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where the second line follows from (3.26) applied to 𝜑 = 𝝉 |𝐸𝒏𝐸 · 𝒏𝐸 , while the conclusion follows
using the definition ofN𝑇 (𝝉) for the first two terms and a discrete trace inequality followed by (4.7) for
the last term. To estimate ‖𝜕𝒕𝜕𝑇 𝑣𝒕 ,𝜕𝑇 ‖𝐿2 (𝜕𝑇 ) , we proceed in a similar way as for the estimate of 𝔗2 in
Proposition 6 (using the fact that 𝜕𝒕𝜕𝑇 𝑣𝒕 ,𝜕𝑇 has zero average on 𝑇) to infer

‖𝜕𝒕𝜕𝑇 𝑣𝒕 ,𝜕𝑇 ‖𝐿2 (𝜕𝑇 ) . ℎ𝑇 ‖𝜕2𝒕𝜕𝑇 𝑣𝒕 ,𝜕𝑇 ‖𝐿2 (𝜕𝑇 ) + ℎ
1/2
𝑇

∑︁
𝑉 ∈V𝑇

| sym curl 𝒗(𝒙𝑉 ) |

= ℎ𝑇

( ∑︁
𝐸 ∈E𝑇

‖𝛿𝐸 (𝝉 − 𝝊)‖2𝐿2 (𝐸)

)1/2

+ ℎ1/2
𝑇

∑︁
𝑉 ∈V𝑇

|𝝉(𝒙𝑉 ) − 𝝊(𝒙𝑉 ) |

. ℎ𝑇

( ∑︁
𝐸 ∈E𝑇

‖𝛿𝐸𝝉‖2𝐿2 (𝐸)

)1/2

+ ℎ1/2
𝑇

∑︁
𝑉 ∈V𝑇

|𝝉(𝒙𝑉 ) | + ℎ−
1/2

𝑇
‖𝝊‖𝑳2 (𝑇 ;R2×2) ,

where, to pass to the second line, we have used [9, Eq. (4)] to write 𝜕2𝒕𝐸 𝑣𝒕 ,𝐸 = 𝛿𝐸 sym curl 𝒗 = 𝛿𝐸 (𝝉−𝝊)
for the first term and (4.5) for the second, while, to pass to the third line, we have used triangle inequalities
followed by discrete inverse and trace inequalities along with card(E𝑇 ) = card(V𝑇 ) . 1 to treat the
terms containing 𝝊. Combining the definition of N𝑇 (𝝉) with (4.7), we conclude that

‖𝜕𝒕𝜕𝑇 𝑣𝒕 ,𝜕𝑇 ‖𝐿2 (𝜕𝑇 ) . ℎ
−1/2
𝑇
N𝑇 (𝝉). (4.12)

Plugging (4.11) and (4.12) into (4.10) and the resulting inequality into (4.9), we conclude that

‖𝒗‖𝑳2 (𝜕𝑇 ;R2) . ℎ
1/2
𝑇
N𝑇 (𝝉). (4.13)

It only remains to estimate ‖𝝅𝑚+1−𝜂𝑇
P,𝑇

𝒗‖𝑳2 (𝑇 ;R2) in (4.8). To this end, we start using the integration
by parts formula (3.4) to write, for all 𝝓 ∈ Hc,𝑚+2−𝜂𝑇 (𝑇),∫

𝑇

𝒗 · rot 𝝓 = −
∫
𝑇

sym curl 𝒗 : 𝝓 +
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

∫
𝐸

𝒗 · (𝝓 𝒕𝐸 )

= −
∫
𝑇

𝝅c,𝑚+2−𝜂𝑇
H,𝑇

𝝉 : 𝝓 +
∫
𝑇

𝝊 : 𝝓 +
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

∫
𝐸

𝒗 · (𝝓 𝒕𝐸 ),

where we have used (4.5) to pass to the second line and invoked its definition to insert 𝝅c,𝑚+2−𝜂𝑇
H,𝑇

into
the first term. We then apply Cauchy–Schwarz and discrete trace inequalites to get����∫

𝑇

𝒗 · rot 𝝓
���� . (
‖𝝅c,𝑚+2−𝜂𝑇

H,𝑇
𝝉‖𝑳2 (𝑇 ;R2×2) + ‖𝝊‖𝑳2 (𝑇 ;R2×2) + ℎ

−1/2
𝑇
‖𝒗‖𝑳2 (𝜕𝑇 ;R2)

)
‖𝝓‖𝑳2 (𝑇 ;R2×2)

. ℎ𝑇N𝑇 (𝝉)‖ rot 𝝓‖𝑳2 (𝑇 ;R2) ,

where the conclusion follows using the definition ofN𝑇 (𝝉) along with (4.7) and (4.13) for the first factor
and (2.4) for the second. Taking the supremum over 𝝓 ∈ Hc,𝑚+2−𝜂𝑇 (𝑇) such that ‖ rot 𝝓‖𝑳2 (𝑇 ;R2) = 1
finally yields

‖𝝅𝑚+1−𝜂𝑇
P,𝑇

𝒗‖𝑳2 (𝑇 ;R2) . ℎ𝑇N𝑇 (𝝉).

Plugging this result and (4.13) into (4.8) gives ‖ sym curl 𝒗‖𝑳2 (𝑇 ;R2×2) . N𝑇 (𝝉) which, combined with
(4.7), gives (4.3) after taking the 𝐿2-norm of (4.5) and using a triangle inequality in the right-hand
side. �
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4.2 Serendipity problem
Recalling Assumption 10, we let

ℓ𝑇 ≔ 𝑘 − 𝜂𝑇 ≤ 𝑘 − 2; (4.14)

Given a linear form L𝑇 : P𝑘−1(𝑇 ;S) ×H
c,ℓ𝑇 +1(𝑇) → R, we consider the following problem: Find

(𝝈, 𝝀) ∈ P𝑘−1(𝑇 ;S) ×Hc,ℓ𝑇 +1(𝑇) such that

A𝑇 ((𝝈, 𝝀), (𝝉, 𝝁)) = L𝑇 (𝝉, 𝝁) ∀(𝝉, 𝝁) ∈ P𝑘−1(𝑇 ;S) ×Hc,ℓ𝑇 +1(𝑇), (4.15)

where the bilinear form A𝑇 :
[
P

𝑘−1(𝑇 ;S) ×Hc,ℓ𝑇 +1(𝑇)
]2 → R is such that

A𝑇 ((𝝊, 𝝂), (𝝉, 𝝁)) ≔ ℎ4𝑇

∫
𝑇

div div 𝝊 div div 𝝉

+ ℎ𝑇
∑︁

𝐸 ∈E𝑇

∫
𝐸

𝜋𝑘−3
P,𝐸 (𝝊𝒏𝐸 · 𝒏𝐸 ) 𝜋𝑘−3

P,𝐸 (𝝉𝒏𝐸 · 𝒏𝐸 ) + ℎ3𝑇
∑︁

𝐸 ∈E𝑇

∫
𝐸

𝛿𝐸𝝊 𝛿𝐸𝝉

+ ℎ2𝑇
∑︁

𝑉 ∈V𝑇

𝝊(𝒙𝑉 ) : 𝝉(𝒙𝑉 ) +
∫
𝑇

𝝊 : 𝝁 −
∫
𝑇

𝝉 : 𝝂.

(4.16)

Lemma 13 (Inf-sup condition and well-posedness of the serendipity problem). The following inf-sup
condition holds: For all (𝝊, 𝝂) ∈ P𝑘−1(𝑇 ;S) ×Hc,ℓ𝑇 +1(𝑇),

‖(𝝊, 𝝂)‖𝑇 . sup
(𝝉,𝝁) ∈P𝑘−1 (𝑇 ;S)×Hc,ℓ𝑇 +1 (𝑇 )\{(0,0) }

A𝑇 ((𝝊, 𝝂), (𝝉, 𝝁))
‖(𝝉, 𝝁)‖𝑇

≕ $, (4.17)

where ‖(𝝊, 𝝂)‖𝑇 ≔ ‖𝝊‖𝑳2 (𝑇 ;R2×2) + ‖𝝂‖𝑳2 (𝑇 ;R2×2) . Hence, denoting by ‖L𝑇 ‖𝑇 the norm of L𝑇 dual to
‖·‖𝑇 , problem (4.15) admits a unique solution that satisfies

‖(𝝈, 𝝀)‖𝑇 . ‖L𝑇 ‖𝑇 . (4.18)

Proof. The existence and uniqueness of a solution to (4.15) as well as the a priori estimate (4.18)
classically follow from (4.17). Let us establish the latter condition for a given (𝝊, 𝝂) ∈ P

𝑘−1(𝑇 ;S) ×
H

c,ℓ𝑇 +1(𝑇). Taking (𝝉, 𝝁) = (𝝊, 𝝂) in the expression (4.16) of A𝑇 , we obtain, after using the uniform
bound on the number of edges and vertices of 𝑇 that holds by mesh regularity,

ℎ4𝑇 ‖ div div 𝝊‖2𝐿2 (𝑇 ) +
∑︁

𝐸 ∈E𝑇

(
ℎ𝑇 ‖𝜋𝑘−3

P,𝐸 (𝝊𝒏𝐸 · 𝒏𝐸 )‖2𝐿2 (𝐸) + ℎ
3
𝑇 ‖𝛿𝐸𝝊‖2𝐿2 (𝐸)

)
+ ℎ2𝑇

∑︁
𝑉 ∈V𝑇

|𝝊(𝒙𝑉 ) |2 = A𝑇 ((𝝊, 𝝂), (𝝊, 𝝂)) ≤ $‖(𝝊, 𝝂)‖𝑇 . (4.19)

We next observe that, for any 𝑞 ∈ P𝑘−2⊥1(𝑇), writing the integration by parts formula (3.10) and
inserting the appropriate 𝐿2-orthogonal projectors according to their definition, it holds∫

𝑇

𝝅𝑘−4
H,𝑇

𝝊 : hess 𝑞 =

∫
𝑇

div div 𝝊 𝑞 +
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

(∫
𝐸

𝜋𝑘−3
P,𝑇 (𝝊𝒏𝐸 · 𝒏𝐸 ) 𝜕𝒏𝐸

𝑞 −
∫
𝐸

𝛿𝐸𝝊 𝑞

)
+

∑︁
𝐸 ∈E𝑇

𝜔𝑇 𝐸

∑︁
𝑉 ∈V𝐸

𝜔𝐸𝑉 (𝝊(𝒙𝑉 )𝒏𝐸 · 𝒕𝐸 ) 𝑞(𝒙𝑉 ).

By Proposition 1, we can select 𝑞 such that hess 𝑞 = 𝝅𝑘−4
H,𝑇

𝝊 and ‖𝑞‖𝐿2 (𝑇 ) . ℎ2
𝑇
‖ hess 𝑞‖𝑳2 (𝑇 ;R2×2) .

Applying Cauchy–Schwarz and discrete trace and inverse inequalities to estimate the right hand side of
the resulting expression, simplifying, and raising to the square, we obtain
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‖𝝅𝑘−4
H,𝑇

𝝊‖2
𝑳2 (𝑇 ;R2×2) . ℎ4𝑇 ‖ div div 𝝊‖2𝐿2 (𝑇 ) +

∑︁
𝐸 ∈E𝑇

(
ℎ𝑇 ‖𝜋𝑘−3

P,𝐸 (𝝊𝒏𝐸 · 𝒏𝐸 )‖2𝐿2 (𝐸) + ℎ
3
𝑇 ‖𝛿𝐸𝝊‖2𝐿2 (𝐸)

)
+ ℎ2𝑇

∑︁
𝑉 ∈V𝑇

|𝝊(𝒙𝑉 ) |2 . $‖(𝝊, 𝝂)‖𝑇 , (4.20)

where the conclusion follows from (4.19).
Finally, writing the definition (4.16) of A𝑇 with (𝝉, 𝝀) = (0, 𝝅c,ℓ𝑇 +1

H,𝑇
𝝊), we get

‖𝝅c,ℓ𝑇 +1
H,𝑇

𝝊‖2
𝑳2 (𝑇 ;R2×2) = A𝑇 ((𝝊, 𝝂), (0, 𝝅c,ℓ𝑇 +1

H,𝑇
𝝊)) ≤ $‖(0, 𝝅c,ℓ𝑇 +1

H,𝑇
𝝊)‖𝑇 ≤ $‖(𝝊, 𝝂)‖𝑇 , (4.21)

where the conclusion follows from the uniform 𝐿2-boundedness of 𝝅c,ℓ𝑇 +1
H,𝑇

. Summing (4.19), (4.20),
and (4.21) and recalling (4.3), we infer

‖𝝊‖2
𝑳2 (𝑇 ;R2×2) . $‖(𝝊, 𝝂)‖𝑇 . (4.22)

To estimate the 𝐿2-norm of 𝝂, we take (𝝉, 𝝁) = (−𝝂, 0) in the expression (4.16) of A𝑇 (this
is possible since 𝝂 ∈ H

c,ℓ𝑇 +1(𝑇) ⊂ P
𝑘−1(𝑇 ;S) owing to (4.14)) and, after using Cauchy–Schwarz,

discrete trace, and inverse inequalities, simplifying, and raising to the square, we obtain

‖𝝂‖2
𝑳2 (𝑇 ;R2×2) . $ + $‖(𝝊, 𝝂)‖𝑇 . (4.23)

Summing (4.22) and (4.23), using Young’s inequality for the rightmost term in (4.23), and taking the
square root of the resulting expression gives (4.17). �

4.3 Serendipity spaces
Recalling the definition (4.14) of ℓ𝑇 , the local serendipity spaces are:

𝑽
𝑘

𝑇
≔

{
𝒗̂
𝑇
=

(̂
𝒗𝑇 , (𝒗̂𝐸 )𝐸 ∈Eℎ , (𝒗̂𝑉 ,𝑮𝒗,𝑉 )𝑉 ∈Vℎ

)
:

𝒗̂𝑇 ∈ Pℓ𝑇 (𝑇 ;R2),
𝒗̂𝐸 ∈ P𝑘−4(𝐸 ;R2) for all 𝐸 ∈ E𝑇 ,

𝒗̂𝑉 ∈ R2 and 𝑮 𝒗̂,𝑉 ∈ R2×2 for all 𝑉 ∈ V𝑇

}
,

𝚺
𝑘−1
𝑇 ≔

{
𝝉̂
𝑇
=

(
(𝝉̂H,𝑇 , 𝝉̂

c
H,𝑇 , (𝜏̂𝐸 , 𝐷𝝉̂,𝐸 )𝐸 ∈Eℎ , (𝝉̂𝑉 )𝑉 ∈Vℎ

)
:

𝝉̂H,𝑇 ∈ H𝑘−4(𝑇) and 𝝉̂cH,𝑇 ∈ H
c,ℓ𝑇 +1(𝑇),

𝜏̂𝐸 ∈ P𝑘−3(𝐸) and 𝐷𝝉̂,𝐸 ∈ P𝑘−2(𝐸) for all 𝐸 ∈ E𝑇 ,

𝝉̂𝑉 ∈ S for all 𝑉 ∈ V𝑇

}
.

Global spaces onMℎ are obtained enforcing the single-valuedness of polynomial components located
at internal edges and nodes.
Remark 14 (Serendipity DOFs reduction). Comparing the above expressions with those of the cor-
responding full spaces (i.e., the restrictions of (3.2) and (3.3) to 𝑇) shows that the serendipity DOFs
reduction acts on the components 𝒗̂𝑇 and 𝝉̂cH,𝑇 , whose polynomial degrees are reduced from (𝑘−2, 𝑘−1)
to (ℓ𝑇 , ℓ𝑇 + 1). Recalling (4.14), the choice 𝜂𝑇 = 2 therefore corresponds to no serendipity.
In what follows, the component norms defined in Section 3.3 are applied to the elements of the

serendipity spaces 𝑽
𝑘

ℎ
and 𝚺

𝑘−1
ℎ after observing that the latter inject in the full spaces 𝑽𝑘

ℎ
and 𝚺𝑘−1

ℎ

(notice that, by (4.14), Pℓ𝑇 (𝑇 ;R2) ⊂ P
𝑘−2(𝑇 ;R2) andHc,ℓ𝑇 +1(𝑇) ⊂ H

c,𝑘−1(𝑇) for all 𝑇 ∈ Tℎ).
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4.4 Serendipity operators

The serendipity operators 𝑺𝑘−1
𝑽 ,𝑇 : 𝑽

𝑘

𝑇
→ P

𝑘−1(𝑇 ;S) and 𝑺𝑘−1
𝚺,𝑇 : 𝚺

𝑘−1
𝑇 → P

𝑘−1(𝑇 ;S) are such that, for
all (𝒗̂

𝑇
, 𝝉̂

𝑇
) ∈ 𝑽

𝑘

𝑇
× 𝚺

𝑘−1
𝑇 , 𝑺𝑘−1

𝑽 ,𝑇 𝒗̂𝑇 and 𝑺
𝑘−1
𝚺,𝑇 𝝉̂𝑇 are the first components of the solutions of problem

(4.15) with right-hand side linear form L𝑇 respectively equal to

L𝑽 ,𝑇 (𝒗̂𝑇 ; 𝝉, 𝝁) = ℎ𝑇

∑︁
𝐸 ∈E𝑇

∫
𝐸

𝜋𝑘−3
P,𝐸 (𝜕𝒕𝐸 𝒗̂E𝑇 · 𝒏𝐸 ) 𝜋𝑘−3

P,𝐸 (𝝉𝒏𝐸 · 𝒏𝐸 )

+ ℎ3𝑇
∑︁

𝐸 ∈E𝑇

∫
𝐸

(𝜕2𝒕𝐸 𝒗̂E𝑇 |𝐸 · 𝒕𝐸 ) 𝛿𝐸𝝉

+ ℎ2𝑇
∑︁

𝑉 ∈V𝑇

C𝑮 𝒗̂,𝑉 : 𝝉(𝒙𝑉 ) −
∫
𝑇

𝒗̂𝑇 · rot 𝝁 +
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

∫
𝐸

𝒗̂E𝑇 · (𝝁𝒕𝐸 )

(4.24)

and

L𝚺,𝑇 (𝝊̂𝑇 ; 𝝉, 𝝁) = ℎ4𝑇

[ ∫
𝑇

𝝊̂H,𝑇 : hessdiv div 𝝉

−
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

(∫
𝐸

𝜐̂𝐸 𝜕𝒏𝐸
(div div 𝝉) −

∫
𝐸

𝐷𝝊̂,𝐸 div div 𝝉

)
−

∑︁
𝐸 ∈E𝑇

𝜔𝑇 𝐸

∑︁
𝑉 ∈V𝐸

𝜔𝐸𝑉 (𝝊̂𝑉 𝒏𝐸 · 𝒕𝐸 ) div div 𝝉(𝒙𝑉 )
]

+ ℎ𝑇
∑︁

𝐸 ∈E𝑇

∫
𝐸

𝜐̂𝐸 𝜋𝑘−3
P,𝐸 (𝝉𝒏𝐸 · 𝒏𝐸 ) + ℎ3𝑇

∑︁
𝐸 ∈E𝑇

∫
𝐸

𝐷𝝊̂,𝐸 𝛿𝐸𝝉

+ ℎ2𝑇
∑︁

𝑉 ∈V𝑇

𝝊̂𝑉 : 𝝉(𝒙𝑉 ) +
∫
𝑇

𝝊̂c
H,𝑇 : 𝝁.

(4.25)

Remark 15 (Alternative expression for L𝚺,𝑇 (𝝊̂𝑇 ; ·)). Using the injection 𝚺
𝑘−1
𝑇 ↩→ 𝚺𝑘−1

𝑇 to apply the
operator DD𝑘−2

𝑇 defined by (3.11) to elements of 𝚺
𝑘−1
𝑇 , we have the following equivalent reformulation

of L𝚺,𝑇 (𝝊̂𝑇 ; ·): For all (𝝉, 𝝁) ∈ P
𝑘−1(𝑇 ;S) ×Hc,ℓ𝑇 +1(𝑇),

L𝚺,𝑇 (𝝊̂𝑇 ; 𝝉, 𝝁) = ℎ4𝑇

∫
𝑇

DD𝑘−2
𝑇 𝝊̂

𝑇
div div 𝝉

+ ℎ𝑇
∑︁

𝐸 ∈E𝑇

∫
𝐸

𝜐̂𝐸 𝜋𝑘−3
P,𝐸 (𝝉𝒏𝐸 · 𝒏𝐸 ) + ℎ3𝑇

∑︁
𝐸 ∈E𝑇

∫
𝐸

𝐷𝝊̂,𝐸 𝛿𝐸𝝉

+ ℎ2𝑇
∑︁

𝑉 ∈V𝑇

𝝊̂𝑉 : 𝝉(𝒙𝑉 ) +
∫
𝑇

𝝊̂c
H,𝑇 : 𝝁.

(4.26)

4.5 Reduction and extension operators

The restriction operators 𝑹̂𝑽 ,𝑇 : 𝑽𝑘
𝑇
→ 𝑽

𝑘

𝑇
and 𝑹̂𝚺,𝑇 : 𝚺𝑘−1

𝑇 → 𝚺
𝑘−1
𝑇 are defined taking 𝐿2-orthogonal

projections on the reduced component spaces: For all (𝒗
𝑇
, 𝝉

𝑇
) ∈ 𝑽𝑘

𝑇
× 𝚺𝑘−1

𝑇 ,

𝑹̂𝑽 ,𝑇 𝒗𝑇 ≔

(
𝝅ℓ𝑇
P,𝑇

𝒗𝑇 , (𝒗𝐸 )𝐸 ∈E𝑇 , (𝒗𝑉 ,𝑮𝒗,𝑉 )𝑉 ∈V𝑇

)
, (4.27)

𝑹̂𝚺,𝑇 𝝉𝑇 ≔

(
𝝉H,𝑇 , 𝝅

c,ℓ𝑇 +1
H,𝑇

𝝉c
H,𝑇

, (𝜏𝐸 , 𝐷𝝉,𝐸 )𝐸 ∈E𝑇 , (𝝉𝑉 )𝑉 ∈V𝑇

)
. (4.28)
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According to [16, Eq. (2.4)], the interpolators on the spaces 𝑽
𝑘

𝑇
and 𝚺

𝑘−1
𝑇 are respectively given by

𝑰̂
𝑘

𝑽 ,𝑇 ≔ 𝑹̂𝑽 ,𝑇 𝑰
𝑘
𝑽 ,𝑇 and 𝑰̂

𝑘−1
𝚺,𝑇 ≔ 𝑹̂𝚺,𝑇 𝑰

𝑘−1
𝚺,𝑇 . (4.29)

The extension operators 𝑬𝑽 ,𝑇 : 𝑽
𝑘

𝑇
→ 𝑽𝑘

𝑇
and 𝑬𝚺,𝑇 : 𝚺

𝑘−1
𝑇 → 𝚺𝑘−1

𝑇 are such that, for all

(𝒗̂
𝑇
, 𝝉̂

𝑇
) ∈ 𝑽𝑘

𝑇
× 𝚺𝑘−1

𝑇 ,

𝑬𝑽 ,𝑇 𝒗̂𝑇 ≔

(
𝑬𝑘−2

P,𝑇
𝒗̂
𝑇
, (𝒗̂𝐸 )𝐸 ∈E𝑇 , (𝒗̂𝑉 ,𝑮 𝒗̂,𝑉 )𝑉 ∈V𝑇

)
, (4.30)

𝑬𝚺,𝑇 𝝉̂𝑇 ≔

(
𝝉̂H,𝑇 , 𝝅

c,𝑘−1
H,𝑇

𝑺𝑘−1
𝚺,𝑇 𝝉̂𝑇 , (𝜏̂𝐸 , 𝐷𝝉̂,𝐸 )𝐸 ∈E𝑇 , (𝝉̂𝑉 )𝑉 ∈V𝑇

)
, (4.31)

where 𝑬𝑘−2
P,𝑇

: 𝚺
𝑘−1
𝑇 → P

𝑘−2(𝑇) is such that, for all 𝒗̂
𝑇
∈ 𝑽𝑘

𝑇
,∫

𝑇

𝑬𝑘−2
P,𝑇

𝒗̂
𝑇
· rot 𝝉 = −

∫
𝑇

𝑺𝑘−1
𝑽 ,𝑇 𝒗̂𝑇 : 𝝉 +

∑︁
𝐸 ∈E𝑇

𝜔𝑇 𝐸

∫
𝐸

𝒗̂E𝑇 · (𝝉𝒕𝐸 ) ∀𝝉 ∈ Hc,𝑘−1(𝑇). (4.32)

The fact that 𝑬𝑘−2
P,𝑇

𝒗̂
𝑇
is uniquely defined by the above equation follows from the fact that rot :

H
c,𝑘−1(𝑇) → P

𝑘−2(𝑇) is an isomorphism (see Proposition 1). Owing to the definition of the serendipity
operator 𝑺𝑘−1

𝑽 ,𝑇 and bound (4.18), it can be checked that, for all 𝑇 ∈ Tℎ,

|||𝑬𝑽 ,𝑇 𝒗̂𝑇 |||𝑽 ,𝑇 . |||̂𝒗𝑇 |||𝑽 ,𝑇
. (4.33)

4.6 Preliminary results
Lemma 16 (Polynomial consistency of the serendipity and extension operators). It holds:

𝑺𝑘−1
𝑽 ,𝑇 𝑰̂

𝑘

𝑽 ,𝑇 𝒗 = sym curl 𝒗 ∀𝒗 ∈ P𝑘 (𝑇 ;R2), (4.34)

𝑬𝑽 ,𝑇 𝑰̂
𝑘

𝑽 ,𝑇 𝒗 = 𝑰𝑘𝑽 ,𝑇 𝒗 ∀𝒗 ∈ P𝑘 (𝑇 ;R2), (4.35)

𝑺𝑘−1
𝚺,𝑇 𝑰̂

𝑘−1
𝚺,𝑇 𝝊 = 𝝊 ∀𝝊 ∈ P𝑘−1(𝑇 ;S), (4.36)

𝑬𝚺,𝑇 𝑰̂
𝑘−1
𝚺,𝑇 𝝊 = 𝑰𝑘−1𝚺,𝑇 𝝊 ∀𝝊 ∈ P𝑘−1(𝑇 ;S). (4.37)

Proof. (i) Proof of (4.34). Let 𝒗̂
𝑇
≔ 𝑰̂

𝑘

𝑽 ,𝑇 𝒗. It suffices to show that (sym curl 𝒗, 0) solves the problem
defining 𝑺𝑘−1

𝑽 ,𝑇 𝒗̂𝑇 , i.e., (4.15) with linear form L𝑇 (·) = L𝑽 ,𝑇 (𝒗̂𝑇 ; ·) given by (4.24). Recalling the
definition (4.16) of the bilinear form A𝑇 , we have, for all (𝝉, 𝝁) ∈ P𝑘−1(𝑇 ;S) ×Hc,ℓ𝑇 +1(𝑇),

A𝑇 ((sym curl 𝒗, 0), (𝝉, 𝝁)) = ℎ4𝑇

∫
𝑇
(((((((((
div div sym curl 𝒗 div div 𝝉

+ ℎ𝑇
∑︁

𝐸 ∈E𝑇

∫
𝐸

𝜋𝑘−3
P,𝐸 (sym curl 𝒗𝒏𝐸 · 𝒏𝐸︸                   ︷︷                   ︸

𝜕𝒕𝐸 𝒗 |𝐸 ·𝒏𝐸

) 𝜋𝑘−3
P,𝐸 (𝝉𝒏𝐸 · 𝒏𝐸 )

+ ℎ3𝑇
∑︁

𝐸 ∈E𝑇

∫
𝐸

𝛿𝐸 sym curl 𝒗︸           ︷︷           ︸
𝜕2
𝒕𝐸

𝒗 |𝐸 ·𝒕𝐸

𝛿𝐸𝝉 + ℎ2𝑇
∑︁

𝑉 ∈V𝑇

sym curl 𝒗(𝒙𝑉 ) : 𝝉(𝒙𝑉 ),

+
∫
𝑇

sym curl 𝒗 : 𝝁.
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where we have used [9, Lemma 2.2] for the second and third term. Using the integration by parts
formula (3.4), observing that rot 𝝁 ∈ Pℓ𝑇 (𝑇) to insert 𝝅ℓ𝑇

P,𝑇
into the first term and that 𝒗 |𝜕𝑇 = 𝒗̂E𝑇 by

polynomial consistency of this trace reconstruction,∫
𝑇

sym curl 𝒗 : 𝝁 = −
∫
𝑇

𝝅ℓ𝑇
P,𝑇

𝒗︸ ︷︷ ︸
= 𝒗̂𝑇

· rot 𝝁 +
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

∫
𝐸

𝒗̂E𝑇 · (𝝁 𝒕𝐸 ).

Using the above relation, again 𝒗 |𝜕𝑇 = 𝒗̂E𝑇 , and further noticing that sym curl 𝒗(𝒙𝑉 ) = C𝑮 𝒗̂,𝑉 for all
𝑉 ∈ V𝑇 by definition of the interpolator, we have, recalling the definition (4.24) of L𝑽 ,𝑇 (𝒗̂𝑇 ; ·),

A𝑇 ((sym curl 𝒗, 0), (𝝉, 𝝁)) = L𝑽 ,𝑇 (𝒗̂𝑇 ; (𝝉, 𝝁)) ∀(𝝉, 𝝁) ∈ P𝑘−1(𝑇 ;S) ×Hc,ℓ𝑇 +1(𝑇).

Since problem (4.15) is well-posed, this shows that (sym curl 𝒗, 0) is its unique solution and, as a result,
(4.34) holds.

(ii) Proof of (4.35). Set again 𝒗̂
𝑇

≔ 𝑰̂
𝑘

𝑽 ,𝑇 𝒗. Starting from (4.32), using (4.34) to write 𝑺𝑘−1
𝑽 ,𝑇 𝒗̂𝑇 =

sym curl 𝒗 along with the polynomial consistency of the trace 𝒗̂E𝑇 = 𝒗 |𝜕𝑇 , and concluding applying the
integration by parts formula (3.4) to the right-hand side of the resulting expression, we have∫

𝑇

𝑬𝑘−2
P,𝑇

𝒗̂
𝑇
· rot 𝝉 =

∫
𝑇

𝒗 · rot 𝝉 ∀𝝉 ∈ Hc,𝑘−1(𝑇).

Recalling that rot : Hc,𝑘−1(𝑇) → P
𝑘−2(𝑇) is an isomorphism, this shows that 𝑬𝑘−2

P,𝑇
𝒗̂
𝑇

= 𝝅𝑘−2
P,𝑇

𝒗.
Noticing that the other components of the local interpolator are not affected by the serendipity reduction
process, (4.35) follows.
(iii) Proof of (4.36). It suffices to show that (𝝊, 0) solves the problem defining 𝑺𝑘−1

𝚺,𝑇 𝑰̂
𝑘−1
𝚺,𝑇 𝝊, i.e., (4.15)

with linear form L𝑇 (·) = L𝚺,𝑇 ( 𝑰̂
𝑘−1
𝚺,𝑇 𝝊; ·) given by (4.25). To this end, we use the alternative expression

(4.26) of L𝚺,𝑇 (𝝊̂𝑇 ; ·) based on the restriction of the operator DD
𝑘−2
𝑇 to 𝚺

𝑘−1
𝑇 resulting from the

injection 𝚺
𝑘−1
𝑇 ↩→ 𝚺𝑘−1

𝑇 . Since this operator only depends on the polynomial components of 𝚺
𝑘−1
𝑇

left unchanged by the serendipity reduction, by [16, Eq. (19)] it holds DD𝑘−2
𝑇 𝑰̂

𝑘−1
𝚺,𝑇 𝝊 = div div 𝝊.

Plugging this relation into (4.26) and recalling the definition (4.29) of 𝑰̂
𝑘−1
𝚺,𝑇 , we obtain: For all (𝝉, 𝝁) ∈

P
𝑘−1(𝑇 ;S) ×Hc,ℓ𝑇 +1(𝑇),

L𝚺,𝑇 ( 𝑰̂
𝑘−1
𝚺,𝑇 𝝊; 𝝉, 𝝁) = ℎ4𝑇

∫
𝑇

div div 𝝊 div div 𝝉

+ ℎ𝑇
∑︁

𝐸 ∈E𝑇

∫
𝐸

𝜋𝑘−3
P,𝐸 (𝝊𝒏𝐸 · 𝒏𝐸 ) 𝜋𝑘−3

P,𝐸 (𝝉𝒏𝐸 · 𝒏𝐸 ) + ℎ3𝑇
∑︁

𝐸 ∈E𝑇

∫
𝐸�

��𝜋𝑘−2
P,𝐸𝛿𝐸𝝊 𝛿𝐸𝝉

+ ℎ2𝑇
∑︁

𝑉 ∈V𝑇

𝝊(𝒙𝑉 ) : 𝝉(𝒙𝑉 ) +
∫
𝑇
����𝝅c,ℓ𝑇 +1

H,𝑇
𝝊 : 𝝁,

where the cancellation of the projectors is made possible by their definition. Comparing with the
definition (4.16) of A𝑇 , we have thus proved that

A𝑇 ((𝝊, 0), (𝝉, 𝝁)) = L𝚺,𝑇 ( 𝑰̂
𝑘−1
𝚺,𝑇 𝝊; (𝝉, 𝝁)) ∀(𝝉, 𝝁) ∈ P𝑘−1(𝑇 ;S) ×Hc,ℓ𝑇 +1(𝑇).

By uniqueness of the solution to (4.15), this proves the assertion.

(iv) Proof of (4.37). Immediate consequence of (4.36) along with the definition (4.31) of 𝑬𝚺,𝑇 . �
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Lemma 17 (Projections of extension and serendipity operators). It holds, for all 𝑇 ∈ Tℎ,

𝝅ℓ𝑇
P,𝑇

𝑬𝑘−2
P,𝑇

𝒗̂
𝑇
= 𝒗̂𝑇 ∀̂𝒗

𝑇
∈ 𝑽𝑘

𝑇
, (4.38)

𝝅c,𝑘−1
H,𝑇

C𝑘−1
sym,𝑇 𝑬𝑽 ,𝑇 𝒗̂𝑇 = 𝝅c,𝑘−1

H,𝑇
𝑺𝑘−1
𝑽 ,𝑇 𝒗̂𝑇 , ∀̂𝒗

𝑇
∈ 𝑽𝑘

𝑇
, (4.39)

𝝅c,ℓ𝑇 +1
H,𝑇

𝑺𝑘−1
𝚺,𝑇 𝝉̂𝑇 = 𝝉̂c𝑇 ∀𝝉̂

𝑇
∈ 𝚺𝑘−1

𝑇 . (4.40)

Proof. (i) Proof of (4.38). For any 𝝁 ∈ H
c,ℓ𝑇 +1(𝑇), taking tests functions of the form (0, 𝝁) with

𝝁 ∈ Hc,ℓ𝑇 +1(𝑇) in the problem defining 𝑺𝑘−1
𝑽 ,𝑇 (i.e., (4.15) with L𝑇 (·) = L𝑇 (𝒗̂𝑇 ; ·) given by (4.24)), it

is inferred that ∫
𝑇

𝑺𝑘−1
𝑽 ,𝑇 𝒗̂𝑇 : 𝝁 = −

∫
𝑇

𝒗̂𝑇 · rot 𝝁 +
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

∫
𝐸

𝒗̂E𝑇 · (𝝁𝒕𝐸 ). (4.41)

On the other hand, by definition (4.32) of 𝑬𝑘−2
P,𝑇
, and since 𝝁 ∈ H

c,ℓ𝑇 +1(𝑇) ⊂ H
c,𝑘−1(𝑇) (recall that

ℓ𝑇 + 1 ≤ 𝑘 − 1 by (4.14)), we have

−
∫
𝐸

𝑬𝑘−2
P,𝑇

𝒗̂
𝑇
· rot 𝝁 =

∫
𝑇

𝑺𝑘−1
𝑽 ,𝑇 𝒗̂𝑇 : 𝝁 −

∑︁
𝐸 ∈E𝑇

𝜔𝑇 𝐸

∫
𝐸

𝒗̂E𝑇 · (𝝁𝒕𝐸 ). (4.42)

Summing (4.41) and (4.42), (4.38) follows recalling that rot : Hc,ℓ𝑇 +1(𝑇) → P
ℓ𝑇 (𝑇) is an isomorphism.

(ii) Proof of (4.39). Using the definition (3.5) of C𝑘−1
sym,𝑇 for 𝒗𝑇 = 𝑬𝑽 ,𝑇 𝒗̂𝑇 and recalling the definition

(4.30) of 𝑬𝑽 ,𝑇 , we can write, for any 𝝉 ∈ H
c,𝑘−1(𝑇),∫

𝑇

C𝑘−1
sym,𝑇 𝑬𝑽 ,𝑇 𝒗̂𝑇 : 𝝉 = −

∫
𝐸

𝑬𝑘−2
P,𝑇

𝒗̂
𝑇
· rot 𝝉 +

∑︁
𝐸 ∈E𝑇

𝜔𝑇 𝐸

∫
𝐸

𝒗̂E𝑇 · (𝝉𝒕𝐸 ) =
∫
𝐸

𝑺𝑘−1
𝑽 ,𝑇 𝒗̂𝑇 : 𝝉,

where the conclusion follows from the definition (4.32) of 𝑬𝑘−2
P,𝑇
. Then, (4.39) follows by definition of

the 𝐿2-orthogonal projector onHc,𝑘−1(𝑇).

(iii) Proof of (4.40). It suffices to take test functions of the form (0, 𝝁) with 𝝁 spanningHc,ℓ𝑇 +1(𝑇) in
the problem defining 𝑺𝑘−1

𝚺,𝑇 , that is (4.15) with linear form L𝑇 (·) = L𝚺,𝑇 (𝝉̂𝑇 ; ·) given by (4.25). �

4.7 Commutation property for the serendipity operators
Lemma 18 (Commutation property for the serendipity operators). Recalling that, according to (4.2),
𝑪

𝑘−1
sym,𝑇

= 𝑹̂𝚺,𝑇𝑪
𝑘−1
sym,𝑇

𝑬𝑽 ,𝑇 , it holds

𝑺𝑘−1
𝚺,𝑇𝑪

𝑘−1
sym,𝑇

𝒗̂
𝑇
= 𝑺𝑘−1

𝑽 ,𝑇 𝒗̂𝑇 ∀̂𝒗
𝑇
∈ 𝑽𝑘

𝑇
, (4.43)

so that the following diagram commutes:

𝑽
𝑘

𝑇
P

𝑘−1(𝑇 ;S)

𝚺
𝑘−1
𝑇

𝑺𝑘−1
𝑽 ,𝑇

𝑪
𝑘−1
sym,𝑇

𝑺𝑘−1
𝚺,𝑇
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Proof. Let 𝒗̂
𝑇
∈ 𝑽

𝑘

𝑇
and set 𝒗

𝑇
≔ 𝑬𝑽 ,𝑇 𝒗̂𝑇 . Recalling (4.30), we have 𝒗𝐸 = 𝒗̂𝐸 for all 𝐸 ∈ E𝑇 and

(𝒗𝑉 ,𝑮𝒗,𝑉 ) = (𝒗̂𝑉 ,𝑮 𝒗̂,𝑉 ) for all 𝑉 ∈ V𝑇 . We next analyse the expression (4.25) of L𝚺,𝑇 (𝝊̂𝑇 ; ·) when
𝝊̂
𝑇
≔ 𝑪

𝑘−1
sym,𝑇

𝒗̂
𝑇
= 𝑹̂𝚺,𝑇𝑪

𝑘−1
sym,𝑇

𝒗
𝑇
with the aim of showing that

L𝚺,𝑇 (𝝊̂𝑇 ; (𝝉, 𝝁)) = L𝑽 ,𝑇 (𝒗̂𝑇 ; (𝝉, 𝝁)) ∀(𝝉, 𝝁) ∈ P𝑘−1(𝑇 ;S) ×Hc,ℓ𝑇 +1(𝑇). (4.44)

The conclusion follows from this relation proceeding as in [16, Lemma 20].
We start by observing that, for all 𝑞 ∈ P𝑘−2(𝑇),∫
𝑇

𝝊̂H,𝑇 : hess 𝑞 −
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

(∫
𝐸

𝜐̂𝐸 𝜕𝒏𝐸
𝑞 −

∫
𝐸

𝐷𝝊̂,𝐸 𝑞
∑︁

𝑉 ∈V𝐸

𝜔𝐸𝑉 (𝝊̂𝑉 𝒏𝐸 · 𝒕𝐸 ) 𝑞(𝒙𝑉 )
)

=

∫
𝑇

𝝅𝑘−4
H,𝑇

C𝑘−1
sym,𝑇 𝒗𝑇 : hess 𝑞

−
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

(∫
𝐸

𝜋𝑘−3
P,𝐸 (𝜕𝒕𝐸 𝒗E𝑇 · 𝒏𝐸 ) 𝜕𝒏𝐸

𝑞 −
∫
𝐸

(𝜕2𝒕𝐸 𝒗E𝑇 · 𝒕𝐸 ) 𝑞
)

−
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

∑︁
𝑉 ∈V𝐸

𝜔𝐸𝑉 (C𝑮𝒗,𝑉 𝒏𝐸 · 𝒕𝐸 ) 𝑞(𝒙𝑉 )

=

∫
𝑇

DD𝑘−2
𝑇 𝑪𝑘−1

sym,𝑇
𝒗
𝑇
𝑞 = 0,

(4.45)

where the second equality follows from the definitions (3.7) of 𝑪𝑘−1
sym,𝑇

and (3.11) of DD𝑘−2
𝑇 , while the

conclusion is a consequence of the fact that (4.1) defines a complex. This implies that the terms in the
first three lines of (4.25) vanish since div div 𝝉 ∈ P𝑘−3(𝑇) ⊂ P𝑘−2(𝑇). Additionally, from property
(4.39) it follows that 𝝊̂c

H,𝑇 = 𝝅c,ℓ𝑇 +1
H,𝑇

𝑪𝑘−1
sym,𝑇

𝑬𝑽 ,𝑇 𝒗̂𝑇 = 𝝅c,ℓ𝑇 +1
H,𝑇

𝑺𝑘−1
𝑽 ,𝑇 𝒗̂𝑇 . Hence, for all 𝝁 ∈ H

c,ℓ𝑇 +1(𝑇),∫
𝑇

𝝊̂c
H,𝑇 : 𝝁 =

∫
𝑇

𝑺𝑘−1
𝑽 ,𝑇 𝒗̂𝑇 : 𝝁 = −

∫
𝑇

𝒗̂𝑇 · rot 𝝁 +
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

∫
𝐸

𝒗̂𝐸 · (𝝁𝒕𝐸 ), (4.46)

where the conclusion follows from the definition of 𝑺𝑘−1
𝑽 ,𝑇 . Plugging (4.45)–(4.46) into (4.25) and

comparing with (4.24) proves (4.44). �

4.8 Homological properties of the serendipity DDR sequence
Theorem 19 (Homological properties of the serendipity DDR sequence). The following properties
hold:

1. Complex properties:

𝑬𝑽 ,ℎ 𝑹̂𝑽 ,ℎ𝒗ℎ = 𝒗
ℎ

∀𝒗
ℎ
∈ Ker(𝑪𝑘−1

sym,ℎ
), (4.47)

𝑬𝚺,ℎ 𝑹̂𝚺,ℎ𝝉ℎ − 𝝉ℎ ∈ Im(𝑪
𝑘−1
sym,ℎ

) ∀𝝉
ℎ
∈ 𝚺𝑘−1

ℎ ; (4.48)

2. Cochain map properties for the reduction and extension maps:

𝑬𝑽 ,ℎ 𝑰̂
𝑘

𝑽 ,ℎ𝒗 = 𝑰𝑘𝑽 ,ℎ𝒗 ∀𝒗 ∈ RT
1(Ω), (4.49)

𝑪
𝑘−1
sym,ℎ

𝑹̂𝑽 ,ℎ𝒗ℎ = 𝑹̂𝚺,ℎ𝑪
𝑘−1
sym,ℎ

𝒗
ℎ

∀𝒗
ℎ
∈ 𝑽𝑘

ℎ
, (4.50)

𝑬𝚺,ℎ𝑪
𝑘−1
sym,ℎ

𝒗̂
ℎ
= 𝑪𝑘−1

sym,ℎ
𝑬𝑽 ,ℎ 𝒗̂ℎ ∀̂𝒗

ℎ
∈ 𝑽𝑘

ℎ
; (4.51)
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3. Isomorphism properties for the cohomology groups:

𝑹̂𝑽 ,ℎ𝑬𝑽 ,ℎ 𝒗̂ℎ = 𝒗̂
ℎ

∀̂𝒗
ℎ
∈ 𝑽𝑘

ℎ
, (4.52)

𝑹̂𝚺,ℎ𝑬𝚺,ℎ 𝝉̂ℎ = 𝝉̂
ℎ

∀𝝉̂
ℎ
∈ 𝚺𝑘−1

ℎ . (4.53)

Hence, the cohomologies of the top and bottom complexes in (4.1) are isomorphic.

Remark 20 (Homological properties). The respective role of the above properties is the following: the
complex properties ensure that the serendipity DDR sequence is a cochain complex; thanks to the
cochain map properties, the reduction and extension maps are cochain maps; finally, the isomorphism
properties guarantee that the cohomology groups of the DDR and serendipity DDR complexes are
isomorphic. We additionally notice, in passing, that:

• It would suffice for property (4.48) to hold for all 𝝉
ℎ
∈ Ker(DD𝑘−2

ℎ ) to ensure that the serendipity
DDR sequence is a cochain complex;

• The cochain property for 𝑹̂𝑽 ,ℎ (i.e., 𝑹̂𝑽 ,ℎ 𝑰
𝑘
𝑽 ,ℎ

𝒘 = 𝑰̂
𝑘

𝑽 ,ℎ𝒘 for all𝒘 ∈ RT
1(Ω)), holds by definition

(4.2) of 𝑰̂
𝑘

𝑽 ,ℎ, and is therefore not listed in point 2.;

• Property (4.52) (resp., (4.53)) could be restricted to 𝒗̂
ℎ
∈ Ker(𝑪𝑘−1

sym,ℎ
) (resp., 𝝉̂

ℎ
∈ Ker(D̂D

𝑘−2
ℎ ))

for the isomorphism in cohomology to hold.

Proof of Theorem 19. The isomorphism between the cohomologies of the top and bottom complexes
in (4.1) is a straightforward consequence of [15, Proposition 2] once we prove properties (4.47)–(4.53),
which we do next.

(i) Proof of (4.47). We notice that 𝑪𝑘−1
sym,ℎ

𝒗
ℎ
= 0 implies 𝑪𝑘−1

sym,𝑇
𝒗
𝑇
= 0 for all 𝑇 ∈ Tℎ. The exactness

of the local DDR complex proved in [13, Theorem 3] then implies, for any 𝑇 ∈ Tℎ, the existence of
𝒘𝑇 ∈ RT

1(𝑇) such that 𝒗
𝑇

= 𝑰𝑘𝑽 ,𝑇
𝒘𝑇 . We can then write 𝑬𝑽 ,𝑇 𝑹̂𝑽 ,𝑇 𝒗𝑇 = 𝑬𝑽 ,𝑇 𝑹̂𝑽 ,𝑇 𝑰

𝑘
𝑽 ,𝑇

𝒘𝑇 =

𝑬𝑽 ,𝑇 𝑰̂
𝑘

𝑽 ,𝑇 𝒘𝑇 = 𝑰𝑘𝑽 ,𝑇
𝒘𝑇 , where we have used the definition (4.2) of 𝑰̂

𝑘

𝑽 ,𝑇 in the second step and the
polynomial consistency property (4.35) (after observing that 𝒘𝑇 ∈ P𝑘 (𝑇 ;R2)) to conclude.

(ii) Proof of (4.48). Let 𝝉
ℎ
∈ 𝚺𝑘−1

ℎ
and set 𝝉̂

ℎ
≔ 𝑹̂𝚺,ℎ𝝉ℎ. The components of 𝝉ℎ and 𝑬𝚺,ℎ 𝝉̂ℎ on

the mesh vertices and edges, as well as on H𝑘−4(𝑇), 𝑇 ∈ Tℎ, coincide by definition of the restriction
and extension operators (see (4.31) and (4.28)). Since DD𝑘−2

𝑇 only depends on these components (see
(3.11)), this implies DD𝑘−2

ℎ 𝑬𝚺,ℎ 𝝉̂ℎ = DD𝑘−2
ℎ 𝝉

ℎ
, i.e.

𝑬𝚺,ℎ 𝝉̂ℎ − 𝝉ℎ =
(
(0, 𝝅c,𝑘−1

H,𝑇
𝑺𝑘−1
𝚺,𝑇 𝝉̂𝑇 − 𝝉

c
H,𝑇
)𝑇 ∈Tℎ , (0, 0)𝐸 ∈Eℎ , (0)𝑉 ∈Vℎ

)
∈ Ker(DD𝑘−2

ℎ ). (4.54)

By exactness of the local DDR complex (see [13, Theorem 3]), for all 𝑇 ∈ Tℎ there exists 𝒗𝑇 ∈ 𝑽𝑘
𝑇
,

defined up to the interpolate on 𝑽𝑘
𝑇
of an element of RT

1(𝑇), such that 𝑬𝚺,𝑇 𝝉̂𝑇 − 𝝉
𝑇

= 𝑪𝑘−1
sym,𝑇

𝒗
𝑇

which additionally satisfies, by (4.54),

𝝅𝑘−3
P,𝐸

𝜕𝒕𝐸 (𝒗E𝑇 · 𝒏𝐸 ) = 0 and 𝜕2𝒕𝐸 (𝒗E𝑇 · 𝒕𝐸 ) = 0 for all 𝐸 ∈ E𝑇
and C𝑮𝒗,𝑉 = 0 for all 𝑉 ∈ V𝑇 .

Under these conditions, [16, Point 1. of Theorem 3] yields the existence of 𝒘𝑇 ∈ RT
1(𝑇) such that

𝒗E𝑇 = 𝒘𝑇 |𝜕𝑇 . Possibly up to the substitution 𝒗
𝑇
← 𝒗

𝑇
− 𝑰𝑘𝑽 ,𝑇

𝒘𝑇 , we can therefore assume that
𝒗E𝑇 = 0. Hence, the 𝒗

𝑇
, 𝑇 ∈ Tℎ, can be patched together on internal edges to form an element of 𝑽𝑘

ℎ
.

This concludes the proof of (4.48).

(iii) Proof of (4.49). The cochain map property (4.49) for 𝑬𝑽 ,ℎ immediately follows from (4.35) applied
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to polynomials in RT
1(𝑇) ⊂ P

𝑘 (𝑇 ;R2) for all 𝑇 ∈ Tℎ.

(iv) Proof of (4.50). Let 𝒗
ℎ
∈ 𝑽𝑘

ℎ
and set, for the sake of brevity 𝒘

ℎ
≔ 𝑬𝑽 ,ℎ 𝑹̂𝑽 ,ℎ𝒗ℎ. By (4.2),

𝑪
𝑘−1
sym,ℎ

𝑹̂𝑽 ,ℎ𝒗ℎ = 𝑹̂𝚺,ℎ𝑪
𝑘−1
sym,ℎ

𝒘
ℎ
. The components of 𝒘

ℎ
and 𝒗

ℎ
on the mesh vertices and edges

coincide by definitions (4.30) of 𝑬𝑽 ,ℎ and (4.27) of 𝑹̂𝑽 ,ℎ, hence so do the components of their discrete
symmetric curls on the edges and vertices, as well as those on H𝑘−4(𝑇), 𝑇 ∈ Tℎ (notice that the first
term in the right-hand side of (3.5) vanishes for 𝝉 ∈ H

𝑘−4(𝑇) since rot hess = 0). It only remains to
prove the equality of the components onHc,ℓ𝑇 +1(𝑇), 𝑇 ∈ Tℎ, which follows if we prove that:

𝝅c,ℓ𝑇 +1
H,𝑇

C𝑘−1
sym,𝑇 𝒘𝑇

= 𝝅c,ℓ𝑇 +1
H,𝑇

C𝑘−1
sym,𝑇 𝒗𝑇 for all 𝑇 ∈ Tℎ . (4.55)

Set 𝒗̂
𝑇

≔ 𝑹̂𝑽 ,𝑇 𝒗𝑇 . By virtue of (4.39), it suffices to prove that 𝝅
c,ℓ𝑇 +1
H,𝑇

𝑺𝑘−1
𝑽 ,𝑇 𝒗̂𝑇 = 𝝅c,ℓ𝑇 +1

H,𝑇
C𝑘−1
sym,𝑇 𝒗𝑇 .

This relation can be established taking test functions of the form (0, 𝝁) with 𝝁 ∈ H
c,ℓ𝑇 +1(𝑇) in the

problem defining 𝑺𝑘−1
𝑽 ,𝑇 𝒗𝑇 (i.e., (4.15) with linear form L𝑇 (·) = L𝑽 ,𝑇 (𝒗̂𝑇 ; ·)) to write∫

𝑇

𝑺𝑘−1
𝑽 ,𝑇 𝒗̂𝑇 : 𝝁 = −

∫
𝑇 �

��𝝅ℓ𝑇
P,𝑇

𝒗𝑇 · rot 𝝁 +
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

∫
𝐸

𝒗𝑇 · (𝝁𝒕𝐸 ) =
∫
𝑇

C𝑘−1
sym,𝑇 𝒗𝑇 : 𝝁,

where we have used the fact that, by (4.27), 𝒗̂𝑇 = 𝝅ℓ𝑇
P,𝑇

𝒗𝑇 and 𝒗̂E𝑇 = 𝒗E𝑇 in the first step (and also
cancelled the projector since rot 𝝁 ∈ Pℓ𝑇 (𝑇)), while the conclusion follows from the definition (3.5) of
C𝑘−1
sym,𝑇 . This concludes the proof of (4.55) and, therefore, of (4.50).

(v) Proof of (4.51).By (4.2), (4.51) amounts to proving that 𝑬𝚺,ℎ 𝑹̂𝚺,ℎ𝑪
𝑘−1
sym,ℎ

𝑬𝑽 ,ℎ 𝒗̂ℎ = 𝑪𝑘−1
sym,ℎ

𝑬𝑽 ,ℎ 𝒗̂ℎ.
Since 𝑬𝚺,ℎ and 𝑹̂𝚺,ℎ leave the components onmesh vertices, edges, aswell as those onH

𝑘−4(𝑇),𝑇 ∈ Tℎ,
unaltered, the equality of this components in (4.51) is immediate. It only remains to prove the equality
of the components on Hc,𝑘−1(𝑇), 𝑇 ∈ Tℎ. To this purpose, it suffices to invoke (4.43) and (4.39) to
write: For all 𝑇 ∈ Tℎ,

𝝅c,𝑘−1
H,𝑇

𝑺𝑘−1
𝚺,𝑇𝑪

𝑘−1
sym,𝑇

𝒗̂
𝑇
= 𝝅c,𝑘−1

H,𝑇
𝑺𝑘−1
𝑽 ,𝑇 𝒗̂𝑇 = 𝝅c,𝑘−1

H,𝑇
C𝑘−1
sym,𝑇 𝑬𝑽 ,𝑇 𝒗̂𝑇 .

(vi) Proof of (4.52) and (4.53). These relations are immediate consequences of, respectively, (4.38) and
(4.40) along with the definitions (4.27) and (4.28) of the restrictions. �

4.9 Analytical properties of the serendipity complex

Following [16, Eq. (2.3)], for • ∈ Tℎ ∪ {ℎ}, the discrete 𝐿2-products and norms on 𝑽
𝑘

• and 𝚺
𝑘−1
• are

defined setting, for all 𝒘•, 𝒗̂• ∈ 𝑽
𝑘

• and 𝝊̂•, 𝝉̂• ∈ 𝚺
𝑘−1
• ,

(𝒘•, 𝒗̂•)𝑽 ,• ≔ (𝑬𝑽 ,•𝒘•, 𝑬𝑽 ,•𝒗̂•)𝑽 ,• and ‖ 𝒗̂•‖𝑽 ,• ≔ ‖𝑬𝑽 ,•𝒗̂•‖𝑽 ,•, (4.56)

(𝝊̂•, 𝝉̂•)𝚺,• ≔ (𝑬𝚺,•𝝊̂•, 𝑬𝚺,•𝝉̂•)𝚺,• and ‖𝝉̂•‖𝚺,• ≔ ‖𝑬𝚺,•𝝊̂•‖𝚺,•. (4.57)

Lemma 21 (Equivalence of norms on 𝑽𝑘

𝑇
). It holds ‖·‖𝑽 ,𝑇

' |||·|||𝑽 ,𝑇 on 𝑽
𝑘

𝑇
.

Proof. For all 𝒗̂
𝑇
∈ 𝑽𝑘

𝑇
, we have

‖ 𝒗̂
𝑇
‖𝑽 ,𝑇

= ‖𝑬𝑽 ,𝑇 𝒗̂𝑇 ‖𝑽 ,𝑇 . |||𝑬𝑽 ,𝑇 𝒗̂𝑇 |||𝑽 ,𝑇 . |||̂𝒗𝑇 |||𝑽 ,𝑇 ,

where the first inequality comes from the norm equivalence (3.21), while the conclusion is (4.33).
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To prove the converse inequality, we use (4.38) to write:

|||̂𝒗
𝑇
|||2𝑽 ,𝑇 = ‖𝝅ℓ𝑇

P,𝑇
𝑬𝑘−2

P,𝑇
𝒗̂
𝑇
‖2
𝑳2 (𝑇 ;R2) +

∑︁
𝐸 ∈E𝑇

ℎ𝑇 ‖ 𝒗̂𝐸 ‖2𝑳2 (𝐸;R2) +
∑︁

𝑉 ∈V𝑇

(
ℎ2𝑇 |̂𝒗𝑉 |2 + ℎ4𝑇 |𝑮 𝒗̂,𝑉 |2

)
≤ ‖𝑬𝑘−2

P,𝑇
𝒗̂
𝑇
‖2
𝑳2 (𝑇 ;R2) +

∑︁
𝐸 ∈E𝑇

ℎ𝑇 ‖ 𝒗̂𝐸 ‖2𝑳2 (𝐸;R2) +
∑︁

𝑉 ∈V𝑇

(
ℎ2𝑇 |̂𝒗𝑉 |2 + ℎ4𝑇 |𝑮 𝒗̂,𝑉 |2

)
= |||𝑬𝑽 ,𝑇 𝒗̂𝑇 |||

2
𝑽 ,𝑇 ,

where the inequality follows from the 𝐿2-boundedness of 𝝅ℓ𝑇
P,𝑇
, while the conclusion is an immediate

consequence of the definitions (3.19) of |||·|||𝑽 ,𝑇 and (4.30) of 𝑬𝑽 ,𝑇 . We then continue with the
equivalence of norms (3.21) and with (4.56) to write |||𝑬𝑽 ,𝑇 𝒗̂𝑇 |||2𝑽 ,𝑇

. ‖𝑬𝑽 ,𝑇 𝒗̂𝑇 ‖2𝑽 ,𝑇
= ‖ 𝒗̂

𝑇
‖2
𝑽 ,𝑇
. �

Remark 22 (Equivalence of norms on 𝚺
𝑘−1
𝑇 ). The uniform equivalence of ‖·‖𝚺,𝑇 defined in (4.57) and

|||·|||𝚺,𝑇 can be established in a similar way. Since this result is not needed in what follows, the details
are left to the reader.

Theorem 23 (Analytical properties of the serendipity DDR complex). The following properties hold:
1. Continuity of the reductions:

‖ 𝑹̂𝑽 ,ℎ𝒗ℎ ‖𝑽 ,ℎ
. ‖𝒗

ℎ
‖𝑽 ,ℎ ∀𝒗

ℎ
∈ 𝑽𝑘

ℎ
, (4.58)

‖ 𝑹̂𝚺,ℎ𝝉ℎ ‖𝚺,ℎ . ‖𝝉ℎ ‖𝚺,ℎ ∀𝝉
ℎ
∈ 𝚺𝑘−1

ℎ ; (4.59)

2. Polynomial consistency: For all 𝑇 ∈ Tℎ,

𝑬𝑽 ,𝑇 𝑹̂𝑽 ,𝑇 𝑰
𝑘
𝑽 ,𝑇 𝒗 = 𝒗 ∀𝒗 ∈ P𝑘 (𝑇 ;R2), (4.60)

𝑬𝚺,𝑇 𝑹̂𝚺,𝑇 𝑰
𝑘−1
𝚺,𝑇 𝝉 = 𝝉 ∀𝝉 ∈ P𝑘−1(𝑇 ;S). (4.61)

Hence, Lemmas 3, 8, and 9 hold with (𝑽𝑘
𝑇
,𝚺𝑘−1

𝑇 ) replaced by (𝑽𝑘

𝑇
,𝚺

𝑘−1
𝑇 ).

Proof. The fact that Lemmas 3, 8, and 9 hold with (𝑽𝑘
𝑇
,𝚺𝑘−1

𝑇 ) replaced by (𝑽𝑘

𝑇
,𝚺

𝑘−1
𝑇 ) is a consequence

of Theorem 19 along with the continuity of the interpolators (3.22) and [16, Propositions 4–9] once
properties (4.58)–(4.61) have been proved. We therefore turn to the latter.

(i) Proof of (4.58) and (4.59). Using the norm equivalence in Lemma 21 and the definitions (3.19) of
the component norm |||·|||𝑽 ,𝑇 and (4.27) of 𝑹̂𝑽 ,𝑇 𝒗𝑇 , we infer

‖ 𝑹̂𝑽 ,𝑇 𝒗𝑇 ‖
2

𝑽 ,𝑇
. ||| 𝑹̂𝑽 ,𝑇 𝒗𝑇 |||

2
𝑽 ,𝑇

= ‖𝝅ℓ𝑇
P,𝑇

𝒗𝑇 ‖2𝑳2 (𝑇 ;R2) +
∑︁

𝐸 ∈E𝑇
ℎ𝑇 ‖𝒗𝐸 ‖2𝑳2 (𝐸;R2) +

∑︁
𝑉 ∈V𝑇

(
ℎ2𝑇 |𝒗𝑉 |2 + ℎ4𝑇 |𝑮𝒗,𝑉 ) |2

)
. ‖𝒗𝑇 ‖2𝑳2 (𝑇 ;R2) +

∑︁
𝐸 ∈E𝑇

ℎ𝑇 ‖𝒗𝐸 ‖2𝑳2 (𝐸;R2) +
∑︁

𝑉 ∈V𝑇

(
ℎ2𝑇 |𝒗𝑉 |2 + ℎ4𝑇 |𝑮𝒗,𝑉 ) |2

)
where the second line results from the 𝐿2-boundedness of 𝝅ℓ𝑇

P,𝑇
. Noticing that the expression in the last

line is precisely |||𝒗
𝑇
|||2𝑽 ,𝑇

and invoking the uniform norm equivalence (3.21) with • = 𝑇 concludes the
proof of (4.58). The proof of (4.58) is similar and we omit the details for the sake of conciseness.

(ii) Proof of (4.60) and (4.61). Recalling the definition (4.29) of the interpolators on the serendipity
spaces, properties (4.60) and (4.61) are nothing but (4.35) and (4.37), respectively. �
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A Poincaré–Korn type inequalities in hybrid spaces
The proof of the functional inequality for hybrid vector fields that is used to establish point (i) of Lemma
3 (see Section 3.4.2) is presented below. First, we introduce some additional notations concerning tensor
calculus in three dimensions. For a bounded, Lipschitz domain 𝐷 ⊂ R3 and for a sufficiently regular
tensor field 𝑷 : 𝐷 → R3×3, we define

Curl 𝑷 ≔
©­«
𝜕2𝑃13 − 𝜕3𝑃12 𝜕3𝑃11 − 𝜕1𝑃13 𝜕1𝑃12 − 𝜕2𝑃11

𝜕2𝑃23 − 𝜕3𝑃22 𝜕3𝑃21 − 𝜕1𝑃23 𝜕1𝑃22 − 𝜕2𝑃21

𝜕2𝑃33 − 𝜕3𝑃32 𝜕3𝑃31 − 𝜕1𝑃33 𝜕1𝑃32 − 𝜕2𝑃31

ª®¬ .
For later use, we also introduce the space RM3 ≔ {𝒂 × 𝒙 + 𝒃 : 𝒂, 𝒃 ∈ R3} of three-dimensional
rigid-body motions and the operator Anti : R3 → R3×3 given by

Anti 𝒂 ≔
©­«

0 −𝑎3 𝑎2
𝑎3 0 −𝑎1
−𝑎2 𝑎1 0

ª®¬ ∀𝒂 ∈ R3.

The discrete functional inequalities below hinge on [21, Theorem 3.3], which the authors refer to
as incompatible Korn type inequality for 𝐿 𝑝-regular tensor fields. For the sake of clarity, we recall the
statement of this key result.

Lemma 24 (Incompatible Korn type inequality). Let 𝐷 ⊂ R3 be a bounded, Lipschitz domain and let
𝑝 ∈ (1,∞). Then, there exists 𝐶IK > 0 depending only on 𝐷 and 𝑝 such that, for all 𝑷 ∈ 𝐿 𝑝 (𝐷;R3×3),

inf
𝒘∈RM3

‖𝑷 −Anti𝒘‖𝑳𝑝 (𝐷;R3×3) ≤ 𝐶IK

(
‖ sym 𝑷‖𝑳𝑝 (𝐷;R3×3) + ‖ symCurl 𝑷‖𝑾 −1, 𝑝 (𝐷;R3×3)

)
. (A.1)

It has been observed in [21, 22] that the previous result can be seen as a generalisation of both the
Poincaré–Wirtinger and Korn’s second inequalities. In the following Proposition, we apply Lemma 24
to some particular cases in which the tensor field 𝑷 is skew-symmetric and assuming 𝑝 = 2.

Proposition 25 (Poincaré–Korn inequalities for 𝐿2-regular vector fields). Let 𝐷 ⊂ R𝑛, with 𝑛 ∈ {2, 3}
be a bounded, Lipschitz domain. Then, the following inequalities hold:

inf
𝒖∈P0 (𝐷;R𝑑)

‖𝒖 − 𝒖‖𝑳2 (𝐷;R𝑑) . 𝐶IK‖ grad 𝒖‖𝑯−1 (𝐷;R𝑛×𝑑) ∀𝒖 ∈ 𝑳2(𝐷;R𝑑) with 1 ≤ 𝑑 ≤ 𝑛;

(A.2)
inf

𝒗∈RT1 (𝐷)
‖𝒗 − 𝒗‖𝑳2 (𝐷;R2) . 𝐶IK‖ sym curl 𝒗‖𝑯−1 (𝐷;R2×2) ∀𝒗 ∈ 𝑳2(𝐷;R2) with 𝑛 = 2; (A.3)

inf
𝒘∈RM𝑑

‖𝒘 − 𝒘‖𝑳2 (𝐷;R𝑑) . 𝐶IK‖ sym grad𝒘‖𝑯−1 (𝐷;R𝑑×𝑑) ∀𝒘 ∈ 𝑳2(𝐷;R𝑑) with 𝑑 = 𝑛. (A.4)

Proof. In order to establish (A.2) for 1 ≤ 𝑑 ≤ 𝑛 ≤ 3, it suffices to consider the case 𝑛 = 3 and 𝑑 = 1.
Hence, we let 𝑢 : 𝐷 → R and apply Lemma 24 with 𝑷 such that 𝑃3,2 = −𝑃2,3 = 𝑢 and all the other
components set to zero. Therefore, we clearly have sym 𝑷 = 0 and

inf
𝒘∈RM3

‖𝑷 −Anti𝒘‖𝑳𝑝 (𝐷;R3×3) = inf
𝑢∈R
‖𝑷 −Anti(𝑢, 0, 0)‖𝑳𝑝 (𝐷;R3×3) =

√
2 inf
𝑢∈R
‖𝑢 − 𝑢‖𝐿2 (𝐷) .

Moreover, it is observed that

symCurl 𝑷 =
1

2

©­«
0 −𝜕2𝑢 −𝜕3𝑢
−𝜕2𝑢 2𝜕1𝑢 0
−𝜕3𝑢 0 2𝜕1𝑢

ª®¬ =⇒ ‖ symCurl 𝑷‖𝑯−1 (𝐷;R3×3) ≤ 2‖ grad 𝑢‖𝑯−1 (𝐷;R3) .
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As a result, we get the conclusion.
We now proceed with the proof of (A.3). We let 𝑛 = 2, 𝒗 ∈ 𝑳2(𝐷;R2), and define a skew-symmetric

tensor field 𝑷 such that

𝑷 =
©­«
0 0 𝑣1
0 0 𝑣2
−𝑣1 𝑣2 0

ª®¬ =⇒ symCurl 𝑷 =

(
sym curl 𝒗 0

0 rot 𝒗

)
=

(
sym curl 𝒗 0

0 tr(sym curl 𝒗)

)
.

Therefore, it is inferred that ‖ symCurl 𝑷‖𝑯−1 (𝐷;R3×3) ≤ 2‖ sym curl 𝒗‖𝑯−1 (𝐷;R3) . Additionally, since
𝒗 does not depend on 𝑥3 and due to the position of the non-zero entries in 𝑷, it is readily inferred that

inf
𝒘∈RM3

‖𝑷−Anti𝒘‖𝑳𝑝 (𝐷;R3×3) = inf
𝒗∈RT1 (𝐷)

‖𝑷−Anti(𝒗, 0)‖𝑳𝑝 (𝐷;R3×3) =
√
2 inf
𝒗∈RT1 (𝐷)

‖𝒗−𝒗‖𝑳2 (𝐷;R2) .

Hence, the conclusion follows again by using (A.1).
The proof of (A.3) is obtained with similar arguments by using Lemma 24 with

𝑷 =
©­«

0 0 𝑤2

0 0 −𝑤1

−𝑤2 𝑤1 0

ª®¬ and 𝑷 =
©­«

0 −𝑤3 𝑤2

𝑤3 0 −𝑤1

−𝑤2 𝑤1 0

ª®¬ ,
for the case 𝑛 = 𝑑 = 2 and 𝑛 = 𝑑 = 3, respectively. �

We are now ready to establish the main result of this Section. For the sake of simplicity, we detail the
result only for the two dimensional case, but we refer to Remark 27 for some possible generalisations.

Proposition 26 (Poincaré–Korn inequalities for hybrid vector fields). Let

𝑼𝑘
ℎ
≔

{
𝒖
ℎ
=

(
(𝒖𝑇 )𝑇 ∈Tℎ , (𝒖𝐸 )𝐸 ∈Eℎ ,

)
: 𝒖𝑇 ∈ P𝑘 (𝑇 ;R2) ∀𝑇 ∈ Tℎ, 𝒖𝐸 ∈ P𝑘 (𝐸 ;R2) ∀𝐸 ∈ Eℎ

}
and, for all 𝒖

ℎ
∈ 𝑼𝑘

ℎ
, denote by 𝒖ℎ the piecewise polynomial field on Tℎ such that (𝒖ℎ) |𝑇 ≔ 𝒖𝑇 for all

𝑇 ∈ Tℎ. Then, there is a constant 𝐶PK > 0, only depending on Ω and the mesh regularity parameter,
such that

1. For all 𝒖
ℎ
∈ 𝑼𝑘

ℎ
satisfying

∫
Ω
𝒖ℎ = 0,

‖𝒖ℎ ‖2𝑳2 (Ω;R2) ≤ 𝐶PK

∑︁
𝑇 ∈Tℎ

(
‖ grad 𝒖𝑇 ‖2𝑳2 (𝑇 ;R2×2) +

∑︁
𝐸 ∈E𝑇

ℎ−1𝑇 ‖𝒖𝑇 − 𝒖𝐸 ‖2𝑳2 (𝐸;R2)

)
; (A.5)

2. For all 𝒖
ℎ
∈ 𝑼𝑘

ℎ
satisfying

∫
Ω
𝒖ℎ · 𝒘 = 0 for all 𝒘 ∈ RT

1(Ω),

‖𝒖ℎ ‖2𝑳2 (Ω;R2) ≤ 𝐶PK

∑︁
𝑇 ∈Tℎ

(
‖ sym curl 𝒖𝑇 ‖2𝑳2 (𝑇 ;R2×2) +

∑︁
𝐸 ∈E𝑇

ℎ−1𝑇 ‖𝒖𝑇 − 𝒖𝐸 ‖2𝑳2 (𝐸;R2)

)
; (A.6)

3. For all 𝒖
ℎ
∈ 𝑼𝑘

ℎ
satisfying

∫
Ω
𝒖ℎ · 𝒘 = 0 for all 𝒘 ∈ RM2,

‖𝒖ℎ ‖2𝑳2 (Ω;R2) ≤ 𝐶PK

∑︁
𝑇 ∈Tℎ

(
‖ sym grad 𝒖𝑇 ‖2𝑳2 (𝑇 ;R2×2) +

∑︁
𝐸 ∈E𝑇

ℎ−1𝑇 ‖𝒖𝑇 − 𝒖𝐸 ‖2𝑳2 (𝐸;R2)

)
. (A.7)
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Proof. We only detail the proof of (A.6), which is used in the proof of Lemma 3, since (A.5) and (A.7)
can be obtained by reasoning in a similar way. Let 𝒖

ℎ
∈ 𝑼𝑘

ℎ
and observe that the condition

∫
Ω
𝒖ℎ ·𝒘 = 0

for all 𝒘 ∈ RT
1(Ω) implies

inf
𝒗∈RT1 (Ω)

‖𝒖ℎ − 𝒗‖𝑳2 (Ω;R2) = ‖𝒖ℎ ‖𝑳2 (Ω;R2) .

Therefore, applying the second inequality in Proposition 25, it follows that

‖𝒖ℎ ‖𝑳2 (Ω;R2) . ‖ sym curl 𝒖ℎ ‖𝑯−1 (Ω;R2×2) = sup
𝜼∈𝑯1

0 (Ω;S) , ‖𝜼 ‖𝑯1 (Ω;R2×2 )=1

∫
Ω

𝒖ℎ · (rot 𝜼)

= sup
𝜼∈𝑯1

0 (Ω;S) , ‖𝜼 ‖𝑯1 (Ω;R2×2 )=1

∑︁
𝑇 ∈Tℎ

(
−

∫
𝑇

curl 𝒖𝑇 : 𝜼 +
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

∫
𝐸

𝒖𝑇 · (𝜼 𝒕𝐸 )
)

= sup
𝜼∈𝑯1

0 (Ω;S) , ‖𝜼 ‖𝑯1 (Ω;R2×2 )=1

∑︁
𝑇 ∈Tℎ

(
−

∫
𝑇

sym curl 𝒖𝑇 : 𝜼 +
∑︁

𝐸 ∈E𝑇
𝜔𝑇 𝐸

∫
𝐸

(𝒖𝑇 − 𝒖𝐸 ) · 𝜼 𝒕𝐸

)
,

where we have integrated by parts element by element and used the fact that 𝜼 has continuous tangential
traces across interedges and vanishing tangential traces on the boundary in order to insert 𝒖𝐸 into
the boundary term. Applying a Cauchy–Schwarz inequality on the integrals and invoking a discrete
Cauchy–Schwarz inequality on the sum over 𝑇 ∈ Tℎ, we infer that

‖𝒖ℎ ‖𝑳2 (Ω;R2) . sup
𝜼∈𝑯1

0 (Ω;S) , ‖𝜼 ‖𝑯1 (Ω;R2×2 )=1

( ∑︁
𝑇 ∈Tℎ

‖ sym curl 𝒖𝑇 ‖2𝑳2 (𝑇 ;R2×2)

) 1
2

‖𝜼‖𝑳2 (Ω;R2×2)

+
( ∑︁
𝑇 ∈Tℎ

∑︁
𝐸 ∈E𝑇

ℎ−1𝑇 ‖𝒖𝑇 − 𝒖𝐸 ‖2𝑳2 (𝐸;R2)

) 1
2
( ∑︁
𝑇 ∈Tℎ

∑︁
𝐸 ∈E𝑇

ℎ𝑇 ‖𝜼 𝒕𝐸 ‖𝑳2 (𝐸;R2)

) 1
2

.

[ ∑︁
𝑇 ∈Tℎ

(
‖ sym curl 𝒖𝑇 ‖2𝑳2 (𝑇 ;R2×2) +

∑︁
𝐸 ∈E𝑇

ℎ−1𝑇 ‖𝒖𝑇 − 𝒖𝐸 ‖2𝑳2 (𝐸;R2)

)] 1
2

×

�����������������:1

sup
𝜼∈𝑯1

0 (Ω;S) , ‖𝜼 ‖𝑯1 (Ω;R2×2 )=1

‖𝜼‖𝑯1 (Ω;S) ,

where, in the second inequality, we have used the continuous trace inequality [17, Lemma 1.31]. �

Remark 27 (Generalisations). The results of Proposition 26 admit several extensions that we have
decided not to include for the sake of brevity. First, (A.5) and (A.7) can also be established in the
three-dimensional case simply by replacing the interedges with interfaces. Second, since the starting
argument given by Lemma 24 holds for all Lebesgue indices 𝑝 ∈ (1,∞), we can generalise the discrete
Poincaré–Korn inequalities to the Banach setting. The main modification required in the proof consists
in replacing Cauchy–Schwarz inequalities with suitable versions of Hölder inequalities. Finally, we
notice that in the proof of Proposition 26 we are not using any inverse inequality requiring the hybrid
vector fields to be polynomials. Thus, the previous Poincaré–Korn inequalities can be extended to vector
fields with piecewise Sobolev regularity.
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