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Abstract

Recent years have seen an explosive growth in the recording of increas-
ingly complex and high-dimensional data. Classical statistical methods
are often unfit to handle such data, whose analysis calls for the definition
of new methods merging ideas and approaches from statistics, applied
mathematics and engineering. This work in particular focuses on data
displaying complex spatial dependencies, where the complexity can for
instance be due to the complex physics of the problem or the non-trivial
conformation of the domain where the data are observed.

1 Introduction

Today’s data are not only increasingly big, but also increasingly complex; see,
e.g., Secchi [2018], Wit [2018], Olhede and Wolfe [2018], and the various other
contributions to the special issue on The role of Statistics in the era of big data
[Sangalli, 2018]. The analysis of complex data structures poses new challenges
to modern research and it is fueling some of the most fascinating and fastest
growing fields of Statistics.

This article pays particular attention to data displaying complex spatial or
spatio-temporal dependencies. The sources of this complexity can be varied.
In engineering problems and in many applications in the physical sciences and
biosciences, the source of this complexity is the complex physics of the phe-
nomenon under study. One example is offered by Azzimonti et al. [2015] and
Arnone et al. [2019], that study blood flow velocity in human arteries, starting
from eco-color doppler data.

The complex structure of space-time dependencies may as well be driven
by external sources. Illustrative problems in this respect concern the study of
environmental and climate data, in presence of prevailing streams or winds.
Figure 1 for instance illustrates the analysis of oceanographic data recorded at
moored buoys in the Eastern Gulf of Mexico, taking into account the presence
of the Gulf stream, that determines a strong anisotropy and non-stationarity in
the phenomenon.

The complex spatial variation might also be the consequence of the non-
trivial conformation of the domain where the data are observed. The study
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Figure 1: Top left: the yellow and red markers indicate the location of moored
buoys in the Eastern Gulf of Mexico; various oceanographic measurements are
taken at each buoy. Top right: representation of the Gulf Stream via an
anisotropic and non-stationary transport field (figure adapted from the Ocean
Surface Currents, http://oceancurrents.rsmas.miami.edu). Bottom Left: trian-
gulation of the domain of interest. Bottom right: average monthly sea tem-
peratures from July 2018 to February 2019, observed at a subsample of the
buoys (each curve corresponds to one buoy; data from the National Oceanic
and Atmospheric Administration, http://www.ndbc.noaa.gov).

of buoys data in Figure 1 illustrates also this aspect. The Florida peninsula
determines in fact a strong concavity in the domain of interest, a portion of
the ocean, strongly influencing the phenomenon under study: the values of the
oceanographic measurements (e.g., sea temperatures) taken at two buoys lying
at opposite sides of the Florida peninsula can not influence each other as much
as the values taken at two buoys, having the same reciprocal distance, but both
lying in the same side of the peninsula.

In other applications the domain is a curved surface with a non-trivial ge-
ometry. Data distributed over two-dimensional manifold domains are in fact
common in varied contexts, ranging from geosciences and life sciences to engi-
neering. In engineering, for instance, especially in the in the automotive, naval,
aircraft and space sectors, quantities of interest are observed over the surface of
a designed three-dimensional object. An example is provided in Figure 2, which
illustrates the study of pressure and aerodynamic forces exerted by air on the
surface of a shuttle winglet; see Wilhelm and Sangalli [2016].

Figure 3 points to another fascinating example of data distributed over two
dimensional manifolds with formidably complicated geometries; see Lila et al.
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Figure 2: Left: profile of SOAR shuttle, described by Non-Uniform Rational B-
Splines [Courtesy of Swiss Space Systems Holding SA]; the winglet is highlighted
in yellow. Center: measurements of pressure coefficient obtained through pres-
sure probes on the shuttle winglet. Right: corresponding estimate of pressure
coefficient. See Wilhelm et al. [2016].

Figure 3: Left: Triangulated surface approximating the left hemisphere of the
cerebral cortex of a template brain; the mesh is composed by 32 000 nodes and by
64 000 triangles. Right: functional connectivity map obtained from a functional
magnetic resonance imaging scan on a healthy subject. See Lila et al. [2016a].

[2016a]. This neuroscience study involves high-dimensional neuroimaging sig-
nals associated with neuronal activity in the cerebral cortex, a highly convoluted
thin sheet of neural tissue that constitutes the outermost part of the brain, and
where most neural activity is focused. When analyzing signals distributed over
the cerebral cortex, neglecting its morphology may lead to totally inaccurate
estimates, since functionally distinct areas, that are far apart along the cortex,
may in turn be close in three-dimensional Euclidean space, due to the highly
convoluted nature of the cortex.

Moreover, it is often the case that the phenomenon under study is charac-
terized by some specific conditions at the boundaries of the domain of interest.
For instance, in the study of blood-flow velocity, detailed by Azzimonti et al.
[2015] and Arnone et al. [2019], the blood-flow must be zero at the arterial walls,
that constitutes the boundary of the domain, due to friction between the blood
particles and the arterial wall. It is thus crucial that the estimation method can
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comply with such condition.
Classical methods for spatial data analysis [see, e.g., the textbooks Cressie,

2015, Cressie and Wikle, 2011, Diggle and Ribeiro, 2007] are unfit to handle
these data structures, since they typically work over rectangular or tensorized
domains. Recent proposals to handle data over non-trivial planar domains
are presented by Ramsay [2002], Lai and Schumaker [2007], Wang and Ranalli
[2007], Wood et al. [2008], Lindgren et al. [2011], Scott-Hayward et al. [2014],
Menafoglio et al. [2018]. With the exception of the technique proposed by Wood
et al. [2008], that can comply with some simple types of boundary conditions, the
remaining methods do not possess this ability. Concerning manifold domains,
most contributions focus on spheres [see, e.g., Gneiting, 2013, Castruccio and
Stein, 2013, Jeong and Jun, 2015, Porcu et al., 2016, Baramidze et al., 2006,
Lai et al., 2009, and references therein] and sphere-like domains [Wahba, 1981,
Lindgren et al., 2011], while Duchamp and Stuetzle [2003], Hagler et al. [2006],
Chung et al. [2005, 2017] can deal with more general two-dimensional curved
domains.

In our experience, one key to face the challenges posed by the analysis of
data characterized by complex spatial dependencies consists in developing meth-
ods that merge ideas and approaches from different scientific disciplines, with
an intense interplay of statistics, applied mathematics and engineering. This
work in particular offers an expository overview of an innovative class of mod-
els, named Spatial Regression with Partial Differential Equation regularization,
SR-PDE [Sangalli et al., 2013, Azzimonti et al., 2014, 2015, Ettinger et al., 2016,
Dassi et al., 2015, Wilhelm et al., 2016, Lila et al., 2016a, Wilhelm and Sangalli,
2016, Bernardi et al., 2017, 2018, Arnone et al., 2019]. These are regression
methods with regularization terms that involves a Partial Differential Equa-
tion (PDE). PDEs offer convenient descriptions of complex phenomena and are
commonly used in engineering and sciences. The PDE in the regularizing term
permits to model the space variation, in a way that can be directly suggested
by problem-specific knowledge on the phenomenon under study, coming for in-
stance from the physics, mechanics, chemistry or morphology of the problem.
Moreover, SR-PDE can efficiently handle data scattered over both planar and
curved domains with complex shapes, because it naturally considers distances
within the domain of interest, thus appropriately dealing with boundaries and
non-Euclidean geometries. Furthermore, boundary conditions can be included
in the model. Numerical analysis techniques, such as finite elements analy-
sis [see,e.g., the textbook Ciarlet, 2002] and isogeometric analysis [see,e.g., the
textbook Cottrell et al., 2009] are used to solve the estimation problem, making
the method highly computationally efficiency. An R/C++ library implement-
ing SR-PDE is available from The Comprehensive R Archive Network [R Core
Team, 2015]; see Lila et al. [2016b].

The work is organized as follows. Section 2 introduces SR-PDE, discussing
the modeling of spatial variation via the differential regularization and the inclu-
sion of boundary conditions. Section 3 discusses the solution of the estimation
problem via numerical techniques. Section 4 gives the form of the estimators,
and briefly discuss uncertainty quantification for the considered models. Sec-
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tion 5 outlines extensions of the models to generalized linear settings, spatio-
temporal data and different sampling schemes. Section 6 considers population
studies and presents a study of neuronal connectivity on the cerebral cortex.
Some concluding remarks are given in Section 7. Technical details are deferred
to the Appendix.

2 Spatial regression with differential regulariza-
tion

Consider n locations p1, . . . ,pn over a two-dimensional domain D. Assume that
at location pi we observe a variable of interest zi ∈ R, and possibly also a set
of covariates wi ∈ Rq. The core of SR-PDE is a regression model of the form

zi = wt
iβ + f(pi) + εi, i = 1, . . . , n (1)

where β ∈ Rq is an unknown vector of regression coefficients, that describes
the effect of the covariates on the variable of interest, f : D → R is unknown
deterministic field, that captures the spatial structure of the phenomenon under
study, and ε1, . . . , εn are uncorrelated errors, with zero mean and finite variance.
In the example of buoy data, for instance, we could consider as zi the sea
temperature, observed at the buoy location pi, and as wi other oceanographic
quantities, such as salinity, air temperature, etc., measured at the same buoy.
We can thus model the sea temperatures, considering their spatial structure
through the field f, and taking (if desired) into account the other oceanographic
quantities as covariates.

The key idea in SR-PDE is to estimate β and f by minimizing the regularized
least-square functional

n∑
i=1

(
zi −wt

iβ − f(pi)
)2

+ λ

∫
D

(
Lf − u

)2
dp (2)

where λ is a positive smoothing parameter and Lf = u is a PDE that formalizes
some partial problem-specific information about the phenomenon under study,
coming for instance from the physics, mechanics, chemistry or morphology of
the problem. The estimation functional (2) trades-off a data fidelity criterion,
the least-square term, and a model-fidelity criterion, the misfit with respect to
the PDE [see Azzimonti et al., 2015, 2014].

By the regularizing term we can model the spatial variation in an extremely
flexible and rich way. Specifically, L denotes here a differential operator that
can include second order terms, first order terms and zero order terms. The
second order terms model non-stationary (i.e., spatially in-homogeneous) and
anisotropic diffusion effects; the first order terms model non-stationary unidi-
rectional transport effects; the zero order terms model non-stationary shrinkage
effects. Considering the example of buoy data, we can for instance describe the
Gulf stream by a diffusion-transport differential equation, and use this PDE in
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the estimation functional (2): the resulting estimator will hence appropriately
account for the fact than sea temperatures at two nearby buoys, lying in the
direction of the current, are more strongly associated that sea temperature at
two buoys, that have the same reciprocal distance, but lie transversely with
respect to the current. Another example is offered by Azzimonti et al. [2015]
and Arnone et al. [2019], and concerns the study of blood flow velocity within
arteries, starting from eco-color doppler acquisitions. In this application the
PDE is based upon extensive problem-specific knowledge about fluid-dynamics,
and specifically about heamodynamics, and formalizes the main features of the
complex physics of the phenomenon under study. This enables to obtain physi-
ological estimates, that cannot instead be obtained using the classical methods.

Notice that we do not assume that the true f satisfies the PDE in the
regularizing term. Rather, we assume that the PDE carries partial information
about the true f , so that the misfit Lf − u is small. Hence we use the PDE to
regularize the estimate, with typically small values of the smoothing parameter
λ, rather than searching for the solution of the PDE that is closest to the data.

When no problem-specific knowledge is available, nor anisotropy is appre-

ciable in the data, we can set L to the Laplace operator Lf = ∆f = ∂2f
∂p2

1
(p) +

∂2f
∂p2

2
(p), for fields f defined over planar domains, or to the Laplace-Beltrami op-

erator, for fields f defined over curved domains (the Laplace-Bertami being the
generalization of the Laplacian to functions defined over surfaces); see Sangalli
et al. [2013] for planar domains and Ettinger et al. [2016], Lila et al. [2016a],
Wilhelm et al. [2016] for curved domains. The Laplace and Laplace-Beltrami
operators offer simple measures of the local curvature of f , with respect to the
domain where f is defined. Setting L to the Laplace or Laplace-Beltrami opera-
tor (and considering a null forcing term u), we are thus targeting the smoothness
in the estimated field: the higher the smooothing parameter λ, the smoother
will be the resulting estimate of the field; the smaller the smoothing parameter
λ, the more we are allowing for local curvature in the estimate of f to capture
the observed data.

Moreover, we can set various forms of boundary conditions that the field f
must satisfy at the boundaries of the domain of interest. These conditions may
concern the value of f and/or the value of the normal derivative of f at the
boundary of the domain. This permits a very flexible modeling of the behavior
of the field at the boundaries of the domain, and is crucial in many applications
to obtain meaningful estimates; see, e.g., Azzimonti et al. [2015], Arnone et al.
[2019].

3 Use of numerical techniques to solve the esti-
mation problem

The estimation problem (2) cannot be solved analytically, and numerical tech-
niques such as finite element analysis or isogeometric analysis can be used to
obtain an approximate solution. In particular, the spatial domain of interest
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Figure 4: Examples of linear finite element bases on a planar (left) and non-
planar (right) triangulation.

D is approximated by an appropriate mesh T , and a finite system of bases,
ψ1, . . . , ψNT , associated with this mesh is hence considered. These bases are
then used to represent functions f : D → R, via basis expansions f = f tψ,
where ψ := (ψ1, . . . , ψNT )t and f is the vector of basis coefficients. The orig-
inal infinite-dimensional problem (2) is thus suitably approximated by a finite
dimensional-problem [see Azzimonti et al., 2014, 2015, Wilhelm et al., 2016, for
details]. These numerical techniques permit to consider domains with complex
shapes. For instance, the triangular mesh in the bottom left panel of Figure 1
offers a discretization of the Eastern Gulf of Mexico and is used for the analysis
of buoy data mentioned in the previous sections, while the non-planar triangular
mesh in the left panel of Figure 3 provides a discretization of the cerebral cortex
and is used for the analysis of the neuroimaging data described in Section 6.
The bases ψ1, . . . , ψNT are piecewise polynomials and have a local support, re-
stricted to only few elements of the mesh. This ensures the high computational
efficiency of the methods. In particular, the introduction of the numerical ap-
proximation reduces the estimation problem to the solution of a linear system
that is composed by highly sparse blocks.

In most applications we use finite elements over triangular meshes. Figure
4 illustrates a linear finite element basis on a planar and on a non-planar trian-
gulation. Wilhelm et al. [2016] explores instead the use of isogeometric analysis
based on Non-Uniform Rational B-Splines (NURBS), that are advanced non-
tensor product splines with high smoothness. The latter numerical solution is
particularly interesting for engineering applications. Indeed, NURBS are exten-
sively used in computer-aided design (CAD), manufacturing, and engineering,
to represent the three-dimensional surface of the designed item. Moreover, when
optimizing the design, especially in the space, aircraft, naval and automotive
sectors, it is crucial to study the distribution of some quantity of interest over
the surface of the designed item. Consider for instance the pressure exerted by
air over the surface of a shuttle winglet; see Figure 2. In this respect SR-PDE
based on NURBS can offer important in-built tools for uncertainty quantifica-
tion and for prediction, exploiting the same basis representation that is used to
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design the object.

4 Estimators

The estimators obtained from the discretization have very simple forms and
uncertainty quantification is fully available for these models. To give the form
of the estimators, we have to introduce the following notation. Let z be the
vector of observed data values, z := (z1, . . . , zn)t, and, for a function f : D →
R, let fn be the vector of evaluations of f at the n spatial locations, fn :=
(f(p1), . . . , f(pn))t. Moreover, if covariates are present, denote by W the n× q
matrix whose ith row is given by wt

i , the vector of q covariates associated with
observation zi at pi. Let Q be the matrix that projects into the orthogonal
complement of Rn with respect to the subspace of Rn spanned by the columns
of W , Q := I −W (W tW )−1W t. Moreover, let Ψ be the n ×NT whose ij−th
entry is the evaluation of the j−th basis function at the i−th spatial location,
ψj(pi). Then, the estimator of β has the least square form

β̂ = (W tW )−1W t(z− f̂n)

and the field estimator is given by f̂ = f̂ tψ, where f̂ has the penalized least-
square form

f̂ = (ΨtQΨ + λP )−1ΨtQ z (3)

and P represents the discretization of the penalty term in (2).
Moreover, we can predict the value for a new observation, at location pn+1

and with covariates wn+1, by

ẑn+1 = wt
n+1β̂ + f̂(pn+1) = wt

n+1β̂ + f̂ tψ(pn+1).

The above expressions highlight that the estimators β̂ and f̂ , as well as the
predicted value ẑn+1, are linear in the observed data values z. Exploiting the
simple forms of these estimators, we can derive their distributional properties
and some classical inferential tools, such as confidence intervals for β̂ and f̂(p)
and prediction intervals for new observations. See the Appendix for details.

When covariates are not included in the model, the field estimator f̂ is as
in (3), but with Q replaced by the identity matrix. Azzimonti et al. [2014]

shows that the field estimator is asymptotically unbiased. The estimator f̂ is
in fact affected by bias due to the discretization and to the presence of the
regularizing term. On the other hand, both sources of bias disappear as the
number n of observations increases, filling the domain of interest: the bias due
to discretization disappears if the mesh is suitably refined as n increases; the bias
due to the regularizing term disappears if the smoothing parameter λ decreases
as n increases. The latter appears to be a natural request, since having more
observations lessen the need to regularize. Moreover, Arnone [2018] has started
investigating the consistency of the estimators when λ decreases as n increases,
according to an appropriate rate.
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5 Some modelling extensions

The model described in the previous sections can be extended in a number of
directions.

Wilhelm and Sangalli [2016] extends the linear regression model in (1) and
(2) to a generalized linear model framework. This enables the modelling of
variables of interest having any distribution within the exponential family. The
exponential family includes most of the well-known distributions, both contin-
uous and discrete. This model generalization thus broadens enormously the
applicability of the proposed technique. Wilhelm and Sangalli [2016] for in-
stance shows an application to the analysis of crime data, modelled as Poisson
counts.

SR-PDE can also be extended to space-time data. As an example, in the
application to buoy data, instead of considering one single temperature value at
each buoy, we can consider multiple temperature values, observed across time.
The bottom right panel of Figure 1, for instance, shows the average temperature
values recorded over several months: each one of these curves corresponds to
one buoy. We can thus study the spatio-temporal variation of the phenomenon
(accounting as well for time-varying covariates observed at the same buoys, if
desired). The field f is in this case defined over a spatio-temporal domain. The
regularizing term can involve a time-dependent PDE, that jointly models the
spatio-temporal behavior of the phenomenon under study, as detailed in Arnone
et al. [2019]. Alternatively, the sum-of squared-error criterion can include two
regularizing terms that account separately for the regularity of the field in space
and in time; see Bernardi et al. [2017].

Moreover, different sampling designs can be considered. For instance, instead
of data referred to point-wise spatial locations, as considered in the previous sec-
tions, we can deal with areal data, i.e., data referred to areal subdomains. For
instance, Wilhelm and Sangalli [2016] study criminality analyzing crime counts
per municipality district. Furthermore, instead of data referred to specific tem-
poral instants, we can consider mean values over time intervals, or cumulative
values over time intervals. Various combinations of the sampling in space and
time can also be considered [see Arnone et al., 2019, for details].

6 Population studies

Suppose now that multiple realizations of the field are available, z1, . . . , zm,
corresponding to m statistical units, where zj := (zj1, . . . , zjnj )t, and zji is
the value assumed by the j−th statistical unit at location pji, j = 1, . . . ,m,
i = 1, . . . , nj . We are here interested in a population study. Suppose, in
particular, that we want to study the variability across the observed signals
z1, . . . , zm. To this aim, Lila et al. [2016a] proposes a method for functional
Principal Component Analysis (fPCA), which is based on SR-PDE. Likewise
standard multivariate principal component analysis, the method enables to es-
timate the main modes of variability in a population and to perform dimensional
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reduction. Moreover, thanks to the properties of SR-PDE, the proposal of Lila
et al. [2016a] is able to deal with functional signals observed over domains with
complex shapes.

Figure 5: From top to bottom, first, second and third principal components of
functional connettivity maps, obtained by regularized fPCA based on SR-PDE;
see Lila et al. [2016a].

Lila et al. [2016a] illustrates the method via an application to the study
of high-dimensional neuroimaging signals associated with neuronal activity in
the cerebral cortex. The dataset consists of resting state functional magnetic
resonance imaging scans from about 500 healthy volunteers, and is made avail-
able by the Human Connectome Project [Essen et al., 2012]. The left panel
of Figure 3 shows a triangular mesh representing the cortical surface of a tem-
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plate brain. The scans of the various subjects are mapped to this template,
to enable comparisons across subjects. The figure highlights the highly convo-
luted morphology of the cortex. While most neuroimaging analysis ignore the
morphology of the cortical surface, there is nowadays a growing awareness of
the need to include the complex brain morphology, to advance our still limited
knowledge about brain functioning [see, e.g., Glasser et al., 2013, and references
therein]. This has generated a strong momentum in the international commu-
nity for the development of methods able to accurately analyze data arising
from these complex imaging scans. As mentioned in the Introduction, classical
tools such as non-parametric smoothing have already been adapted to deal with
data observed over two-dimensional curved domains, such as the cortex [see,e.g.,
Hagler et al., 2006, Chung et al., 2005, 2017]. In this respect, Lila et al. [2016a]
offers the first method for population studies.

The analysis focuses on functional connectivity maps. Specifically, a func-
tional connectivity map is computed for each subject, starting from magnetic
resonance imaging data. The map highlights the areas of the cortex that are
more highly connected to a region of interest, chosen on the template brain,
and common across subjects. For this analysis, we consider a region within the
Precuneus. The right panel of Figure 3 displays the functional connectivity map
for one subject in the dataset.

Figure 5 shows the first three principal components estimated by the regular-
ized fPCA technique proposed in Lila et al. [2016a]. These functions, computed
over the cortical surface, identify the first three main connectivity patterns
across subjects. Moreover, they can be used to perform dimensional reduction
of this highly dimensional dataset. The principal components combine a desired
smoothness with the ability to capture strongly localized features in the modes
of variation. Lila et al. [2016a] shows that the proposed method outperforms
standard multivariate PCA, that return estimates characterized by excessive
local variation, neglecting the shape of the domain; the proposed method is also
proved superior to the classical pre-smoothing approach, where each subject-
specific map is smoothed previous to performing the multivariate PCA.

7 Discussion

Various other extensions of the described models can be considered. Of par-
ticular interest, for instance, is the generalization towards data distributed in
volumetric domains with complex shapes. Such a generalization would consti-
tute a crucial advance with respect to the available techniques, which only work
on parallelepiped domains. For instance, in the neurosciences, an extension of
SR-PDE to three-dimensional domains would enable the study of neuroimag-
ing signals arising from the grey matter, respecting its formidably complicated
morphology, characterized by complicated internal and external boundaries and
holes. SR-PDE can also be generalized to more articulated regression frame-
works, including for instance mixed effect settings, and lasso or ridge penaliza-
tions of the parametric part of the models.
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As discussed in the previous sections, SR-PDE merges approaches from
statistics, mathematics and engineering. Thanks to this powerful blend, the
method have important advantages with respect to classical techniques and and
they are able to handle data structures for which no other method is currently
available. Moreover, the use of advanced numerical analysis techniques makes
SR-PDE highly computationally efficient.

We are confident these methods will prove highly valuable in a number of
applications in the engineering and sciences.
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8 Appendix

Denote by S the n× n matrix

S = Ψ(ΨtQΨ + λP )−1ΨtQ.

Using this notation,

f̂n = S z

β̂ = (W tW )−1W t
{
I − S

}
z .

If we assume that the random errors ε1, . . . , εn in model (1) are uncorrelated,
with zero mean and finite constant variance σ2, then E[z] = Wβ + fn and
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V ar(z) = σ2 I. Moreover, exploiting the properties of the matrices Q and W ,

we can derive the following means and variances of β̂ and f̂n:

E[β̂] = β + (W tW )−1W t
(
I − S

)
fn

V ar(β̂) = σ2(W tW )−1 + (4)

σ2(W tW )−1W t
{
S St

}
W (W tW )−1

and

E[f̂n] = S fn

V ar(f̂n) = σ2 S St. (5)

Now consider the estimator of the field f at any location p ∈ Ω:

f̂(p) = ψ(p)t(ΨtQΨ + λP )−1ΨtQz.

Its mean and variance are given by

E[f̂(p)] = ψ(p)t(ΨtQΨ + λP )−1ΨtQfn

V ar[f̂(p)] =

σ2ψ(p)t(ΨtQΨ + λP )−1ΨtQΨ(ΨtQΨ + λP )−1ψ(p).

The covariance at any two locations p1,p2 ∈ Ω is given by:

Cov[f̂(p1), f̂(p2)] =

σ2ψ(p1)t(ΨtQΨ + λP )−1ΨtQΨ(ΨtQΨ + P )−1ψ(p2).

The above expressions highlight that both the first order structure of f̂ , i.e., its
mean, and the second order structure of f̂ , i.e., its covariance, depend on the
regularization being considered.

A robust estimate of σ2 is given by

σ̂2 =
1

n− (q + tr(S))

(
z− ẑ

)t(
z− ẑ

)
.

This estimate, together with expressions (4) and (5), may be used to obtain
approximate confidence intervals for β, approximate confidence bands for f,
and approximate prediction intervals for new observations.
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