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Abstract

Standard studies of the cardiovascular system are based on advanced experimental and
imaging techniques, however, in the past few years, they are being complemented by com-
putational fluid dynamics simulations of blood flows with increasing level of details. The
vast majority of works dealing with the heart hemodynamics focus on the left ventricle,
both in patient specific and idealized geometries, while the fluid dynamics of the left atrium
is much less investigated. In this work we propose a computational model of a left atrium
suitable to provide physically meaningful fluid dynamics indications and other outputs as
the velocity profile at the mitral valve. A Variational Multiscale model is used to obtain
a stable formulation of the Navier-Stokes equations discretized by means of the Finite Ele-
ment method and to account for turbulence modeling within the framework of Large Eddy
Simulation (LES). We present and discuss numerical results regarding the fluid dynamics
of the left atrium with the focus on possible transitions to turbulence. We also provide a
comparison with the results obtained using a SUPG formulation.

Keywords: Left Atrium Hemodynamics, Numerical Simulation, Finite Element method,
VMS-LES, SUPG

1. Introduction

In Western Countries, cardiovascular related diseases represent nowadays the first cause
of death in the adult population [1]. Non-invasive experimental techniques, such as phase-
contrast magnetic resonance imaging (PC-MRI) and computational tomography (CT) scans,
allow to inspect the blood fluid-dynamics and displacement of blood vessels. These methods
are widely used to better understand the complex physiology of the cardiovascular system
as well as to investigate pathological conditions [2, 3]. However, such techniques do not
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allow to recover the spatial and temporal fine scales of the blood flow, such as small co-
herent structures and possible regions of transition to turbulence [4, 5]. For these reasons,
mathematical modeling and numerical simulations are largely employed to complement the
available imaging techniques in an effort to better understand the physiology and pathology
of the cardiovascular system [6, 7]. There are several works in literature concerning the
dynamics of the cardiovascular system as a whole, the studies of heart valves and arteries
and on many other subjects [6, 7, 8, 9, 10, 11, 12]. In particular, the most studied part
of the heart is the left ventricle that has been considered from the electro-mechanical and
fluid dynamical viewpoints, both for idealized and patient-specific data [8, 13, 14], while
the left atrium is less investigated [15, 16]. Understanding the blood flow behavior in the
left atrium can shed light on its functioning in physiological conditions. Moreover, this
can be regarded as a step towards the study of a complete left heart. The interest in con-
sidering idealized geometries for numerical simulations lies in the possibility of building a
parametrized model that allows to obtain medical indicators for several patients without
the need of performing expensive patient-specific simulations. To take into account the high
geometrical inter-patient variability, an accurate idealized computational model of the left
atrium can be parametrized based on patient-specific image acquisitions.

An open issue in the numerical simulation of hemodynamics is whether a transition to
turbulence occurs where the blood velocity increases and the interactions between vortexes
are strong. The Navier-Stokes equations are potentially appropriate to model both transi-
tional and turbulent flows. However, the spatial and temporal resolutions required to fully
capture the details of the flow features though a Direct Numerical Simulation for the dis-
cretized Navier-Stokes equations would require prohibitive computational resources [19]. For
this reason, usually a turbulence model is employed, like e.g. the Reynolds Averaged Navier-
Stokes equations (RANS models) and the Large Eddy Simulation (LES models) [19, 20, 21].
Some hybrid RANS-LES turbulence models have also been proposed to take advantage of
both approaches, however they are still in the developing phase [22]. From a theoretical
point of view, in a fluid flow it is possible to distinguish the eddies on the basis of the kinetic
energy associated with the eddy itself. The distribution of the kinetic energy as a function
of the eddy length scale (or wave number k, when a Fourier transform is applied to the
energy spectrum) follows some well established results in isotropic turbulence, such as the
k−5/3 rule for the energy spectrum in the inertial range [19, 23]. In RANS models one solves
for an average flow field in which only the large scale eddies containing the most energy
are considered, while the effect of the inertial range and of the fine scales is taken into ac-
count by adding a term, called Reynolds stress, in the Navier-Stokes equations. When using
isotropic models, the overall effect of the Reynolds stress term is to increase the viscosity
of the fluid with a turbulent viscosity that is added to the physical one. Therefore, these
models may become too dissipative and lead to unrealistic flows when used in transitional
or even laminar conditions. On the other hand, LES models aim at solving the large eddies
of the flow in the whole inertial range while modeling the effect of the fine scale dissipative
eddies. Stabilization methods of the Navier-Stokes equations to obtain a solution inf-sup
stable and free of numerical instabilities evolved towards the formulation of a Variational
Multiscale (VMS) framework, contextually yielding a LES model [24]. In this work, we use
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the VMS-LES model developed in [24] and later extended in [25] to stabilize the numerical
solution and to account for turbulence modeling. In particular, the formulation of [25] con-
siders time discretization based on BDF formulas and quasi-static approximation of the fine
scale solution. We also compare the results obtained with this model with those obtained
with a simpler Streamwise Upwind Petrov-Galerkin (SUPG) stabilization to check for the
differences in using these two types of stabilization techniques in the overall flow description.

In Section 2 we describe the turbulence model together with the numerical technique
employed and the modeling of the left atrium fluid dynamics problem based on physiological
data. In Section 3 we report and comment the numerical results obtained from the simulation
and in Section 4 we draw our conclusions.

2. Mathematical model

In this Section, we recall the mathematical model employed for the simulation of the
fluid dynamics in an idealized left atrium. First, we briefly review the equations and the
turbulence modeling and then we discuss the boundary conditions and volume variations
based on physiological data.

2.1. The Navier-Stokes equations in ALE formulation, numerical approximation

In large vessels, as well as in the heart chambers, blood can be regarded as a Newtonian
incompressible fluid and the presence of small particles suspended and carried by the plasma
can be neglected. In moving domains the Navier-Stokes equations can be reformulated in
an Arbitrary Lagrangian Eulerian (ALE) framework with a mesh-moving technique [26, 27].
In this work, we do not study the interactions between the fluid and the endocardium, but
we consider that the solid-fluid interface has a prescribed velocity which is equal to the fluid
one with no-slip conditions on the wall. Moreover, we use a standard harmonic extension of
the displacement in the fluid domain in order to maintain a good mesh quality while moving
it without the need of remeshing. Let Ωt be the fluid domain at a specific time instant t > 0
and Γt its boundary; in ALE framework the Navier-Stokes equations are:

∇ · v = 0 in Ωt, t > 0 , (1)

ρ
∂v

∂t
+ ρ (v −wALE) · ∇v = ∇ ·T in Ωt, t > 0 , (2)

where ρ is the fluid density and the stress tensor T = T(v, p) can be written as a function
of the fluid pressure p and of the strain rate tensor S(v) as:

S(v) =
1

2

(
∇v +∇vT

)
, (3)

T(v, p) = −pI + 2µS(v) , (4)

where µ is the dynamic viscosity.
Let us first recall the variational formulation of the Navier-Stokes equations. We intro-

duce the infinite dimensional functional spaces that are needed to write the variational or
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weak form of (1-2). Let the boundary Γt of Ωt be split in Γd
t , where a Dirichlet condition

is applied, and Γn
t , where a homogeneous Neumann condition is set; we have Γt = Γd

t ∪ Γn
t .

Then, we define the space of integrable functions in Ωt as L2(Ωt) and the spaces of weakly
differentiable functions Vd = {u ∈ H1(Ωt) : u = d on Γd

t }, where d is the Dirichlet data
on the boundary and V0 = {u ∈ H1(Ωt) : u = 0 on Γd

t }. The weak form of Navier-Stokes
equations in ALE framework is to find, for any t > 0, (v, p) ∈ Vd × L2(Ωt) such that for all
(w, q) ∈ V0 × L2(Ωt):∫

Ωt

∇ · v q dΩ = 0 , (5)∫
Ωt

[(
ρ
∂v

∂t
+ ρ(v −wALE) · ∇v

)
·w + T : ∇w

]
dΩ = 0 . (6)

We now assume a multiscale decomposition of the spaces Vd, V0 as V = V h⊕V ′ and L2(Ωt)
as L2(Ωt) = Qh ⊕ Q′ with V h, Qh suitable finite dimensional finite element spaces and V ′,
Q′ infinite dimensional ones. In this way, every function we have defined can be written as
the sum of a coarse scales and a fine scales function:

v = vh + v′ p = ph + p′ w = wh + w′ q = qh + q′ .

By decomposing (5-6) into coarse and fine scale equations and integrating by parts the fine
scale terms into the coarse scale equations we obtain the coarse equations in which the fine
scale terms do not appear in differential operators [24, 25]. This is achieved by assuming that
the fine scale terms are null on the interfaces among elements [24, 25]. Since the fine scales
are still defined in an infinite dimensional space, we cannot solve the fine scale equations
exactly, but we solve them approximately by modeling the fine scales as:

v′ = −τM(vh) rm(vh, ph) , (7)

p′ = −τd(vh) rd(v
h) , (8)

where rm(vh, ph) and rd(v
h) are the strong residuals of (2) and (1), respectively. The defi-

nition of the stabilization parameters τ is [24, 25]:

τM(vh) =

(
ρ2σ2

∆t2
+ ρ2 vh

a · G vh
a + Crµ

2 G : G
)− 1

2

, (9)

τd(v
h) =

1

τM(vh)g · g
, (10)

where G is the metric tensor and g is the metric vector. To sum up, the variational multiscale
formulation with LES modeling is to find (vh, ph) ∈ Vh

d × Qh(Ωt), for any t > 0, such that
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for all (wh, qh) ∈ Vh
0 ×Qh(Ωt):∫

Ωt

(
∇ · vh qh − v′ · ∇qh

)
dΩ = 0 , (11)∫

Ωt

[(
∂vh

∂t
+ ρ(vh −wALE) · ∇vh

)
·wh + Th(vh, ph) : ∇wh

]
dΩ (12)

−
∫

Ωt

[
v′ · (ρ(vh −wALE) · ∇wh)− p′∇ ·wh

]
dΩ

−
∫

Ωt

v′ · (ρ(vh −wALE) · (∇wh)T ) dΩ

−
∫

Ωt

(v′ ⊗ v′) : ∇wh dΩ = 0 .

We remark that in (12) the first integral is the residual of the momentum equation, the
second integral accounts for a SUPG stabilization term, the third integral is a stabilization
term due to the VMS model and the fourth integral is the Reynolds stress term, which is
modeled in a LES fashion using (7).

We remark that the equations are written in ALE framework; since the domain Ωt

changes with time, the velocity wALE is prescribed in the whole domain. To extend smoothly
wALE in the domain Ωt, we compute at each time step an harmonic extension for this variable
on Ωt with a prescribed Dirichlet data on the boundary Γt:

−∇ · (K∇wALE) = 0 in Ωt , (13)

wALE = wdALE on Γt ,

where K is a positive-definite tensor that can be properly set to better tune the harmonic
extension operator, for example depending on the mesh size as done in [27]. The ALE
velocity is then integrated in time in order to obtain the mesh displacement l by using the
definition

∂l

∂t
= wALE . (14)

There are several non linear terms in the momentum equation and stabilization terms.
The standard way to solve a non-linear problem is to use the Newton’s method to solve,
at each time step, a problem obtained from the chosen discretization in time and the cor-
responding Jacobian computation. However, this approach involves multiple solutions of a
linear system to obtain the convergence of the Newton’s method for each time step. Since
we plan to solve the system (11-12) for very large scale simulations we use a semi-implicit
approach to handle the non linear terms. We use BDF to discretize the problem in time and
extrapolate vh in the non-linear terms by means of the Newton-Gregory backward polyno-
mials of appropriate order. By doing so we can solve a single linear problem at each time
step and speed up the computations significantly. The error made on the approximation of
the non-linear terms gives an upper bound on the time step ∆t that can be used. For more
details on this implementation and on its strengths and flaws the interested reader can see
[25].
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2.2. Left atrium model

Figure 1: The idealized left atrium geometry from two different points of view. The mitral valve section is
labeled MV, the pulmonary veins with PV and the left atrial appendage with LAA.
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Figure 2: Blood flow through the mitral valve section (MV) and in each pulmonary vein (PV) as a function
of time (left). Idealized left atrium volume as a function of time (right).

The left atrium is a chamber located in the left part of the heart over the left ventricle,
connected to the pulmonary circulation system through the pulmonary veins and to the ven-
tricle through the mitral valve. The position, dimension and even the number of pulmonary
veins is patient-specific but there are usually four veins situated in the upper part of the
atrium in a perpendicular direction with respect to the mitral valve axis which is placed
at the bottom of the atrium. The left atrial appendage is a small chamber located on one
side of the atrium and connected to the main region through an orifice. In Figure 1 we
report the geometry of the idealized left atrium that is used for the numerical simulations.
The geometry is similar to the one used in [28] to study electro-physiology on a human left
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atrium. The mitral valve section is marked with MV, the pulmonary veins are considered
equal in sectional area and are labeled PV and the left atrial appendage LAA. The section
area of the mitral valve is 6.74 cm2 while the area of each pulmonary vein is 0.78 cm2.

In physiological conditions, during diastole, blood is ejected from the atrium into the
ventricle through the open mitral valve with a first strong ejection and a second weaker one,
strengthened by an atrial contraction known also as atrial kick. This process is characterized
by a volume reduction of about 25% of the initial volume. The first blood ejection from
the atrium is called Early wave (E-wave) while the atrial kick is also known as After wave
(A-wave). During systole the mitral valve closes and the atrium is filled with blood coming
from the pulmonary veins, enlarging to reach the original volume.

In literature the mitral valve flow has been studied and measured in both physiological
and pathological conditions on several patients [2, 5, 6, 32]. The MV net flow rate is
prescribed in this study as a function of time as reported in Figure 2 (left). The first peak
during diastole is the E-wave while the second one is the A-wave. During systole the flow
through the mitral valve is zero because the valve is closed. The heart cycle considered in
this work corresponds to a rest condition at 60 bpm, i.e. the period is equal to Tcycle = 1 s.
The diastole lasts for Tdias = 0.68 s and the systole for the remaining Tsyst = 0.32 s. The
volume variation of the atrium is based on the presence of the two ejection phases, so the
volume decrease is modeled in two phases corresponding to the E and A waves. The LA
filling phase is shorter and is accomplished with a continuous rise of the volume. The atrium
volume as a function of time V (t) is reported in Figure 2 on the right [16]. To obtain the
volume variation we assume that the LA is a sphere; its volume is a function of the radius
r(t), and we obtain the derivative of the radius with respect to time as

∂r(t)

∂t
=

1

3
V (t)−

2
3
∂V (t)

∂t
.

Then we assume that the wall velocity follows this trend in time and set the wdALE on the
wall Γ as

wdALE = f(x)
∂r(t)

∂t
,

where the function of space f(x) contains the direction of wdALE and allows to decrease
the wall velocity near the pulmonary veins in order to keep them fixed. By positioning the
geometry with the approximate center of the atrium at the center of a Cartesian coordinate
system with x = x x̂ + y ŷ + z ẑ, we define the function f(x)

f(x) = C (x x̂ + y ŷ + 0.6 z ẑ) , (15)

with C defined as

C =



0.5 z ∈ [0, 2.5]

0.5

(
2.5− z

0.72
+ 1

)
z ∈ [2.5, 3.22]

0 z ∈ [3.22, 10]

(16)
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The boundary conditions to be prescribed at the pulmonary veins and mitral valve
sections are quite involved since we simulate the valve as open or closed with a given total
flux without prescribing the velocity profile on the mitral valve section because this is one
of the results of our simulations. On the other hand the velocity on the pulmonary vein
sections can be well approximated with a Poiseuille profile. Therefore, during diastole we
set a homogeneous Neumann boundary condition on the mitral section and we impose the
inlet flow QPV at each pulmonary vein using a parabolic velocity profile that has an integral
given by the incompressibility constraint

4QPV = QMV +
∂V

∂t
, (17)

with the convention that QPV is positive when the fluid enters the atrium through the PV
and QMV is positive when the fluid leaves the atrium from the MV. The blood flux QPV

corresponds to the one of a single pulmonary vein. During systole the mitral valve is closed,
therefore the flux QMV = 0 and the same approach could be used to set the boundary
conditions. However, since we are setting a global flux at the mitral valve, we cannot
control the local behavior of the flow and we could end up with unphysical blood backflows.
To avoid this situation we switch the boundary condition at the mitral valve boundary
section to a homogeneous Dirichlet one during systole to model the wall-like behavior of
the valve. In order to correctly set the pressure in the atrium during systole we use a
homogeneous Neumann boundary condition on one of the pulmonary veins while keeping a
Dirichlet boundary condition with assigned flux given by (17) on the other three. By setting
the boundary conditions as explained we obtain the fluxes through the mitral valve section
and through each pulmonary vein as reported in Figure 2. In our numerical simulations we
have found that during systole the velocity profile of the pulmonary vein in which we impose
the Neumann boundary condition resembles a Poiseuille profile, and numerical oscillations
due to the incompressibility constraint are strongly reduced with this boundary conditions
choice.

3. Numerical results and discussion

We report the numerical results obtained using the finite element library LifeV for the
solution of the fluid dynamics in the idealized left atrium as modeled in the previous Sec-
tions [29]. The computations have been performed on the cluster Deneb, SCITAS, École
Polytechnique Fédérale of Lausanne (EPFL). We study the problem with two computational
meshes, a coarse one (M1) with 1’067’338 tetrahedral Lagrangian linear elements and a fine
one (M2) with 8’201’647 tetrahedral Lagrangian linear elements. The physical properties
of the blood are set as for a Newtonian fluid with a constant density ρ = 1.06 g/cm3 and
dynamic viscosity µ = 0.035 g/(cm s). With the mesh M2 we simulate 5 heart beats start-
ing from a zero velocity initial condition with a simple SUPG stabilization and a VMS-LES
model. Using the mesh M1 we simulate 8 heart beats again with SUPG and VMS-LES
stabilizations. With regard to the time discretization of the linear terms we use BDF of
order σ = 2 with a time step of dt = 0.0005 s and BDF of order σ = 1 with a time step
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Figure 3: Velocity magnitude on a slice cutting two pulmonary veins at different time instants. Results
obtained with the VMS-LES model on the fine mesh with the BDF2 scheme for temporal discretization.

of dt = 0.00025 s for a validation of the time discretization scheme. We extrapolate the
nonlinear terms from previous time steps with an extrapolation formula of corresponding
order [25].

In Figure 3 we report the velocity magnitude of the blood on a slice cutting two pul-
monary veins at different time instants corresponding to the diastolic peak of the E-wave,
the plateau between E and A-waves, the A-wave and the filling during systole. The maxi-
mum velocity attained in our simulations is of the order of 90 cm/s during the E-wave. The
jets coming from the pulmonary veins impact one on each other, as it can be seen at time
4.2.

In Figure 4 the velocity in the atrium is shown with a volume rendering at the same time
instants as in Figure 3. The jets impact several times during the heart cycle, corresponding
to the E-wave, the A-wave and the re-filling phases. The strongest impact is visible during
the E-wave. Many vortexes are still present during the low-velocity phase and the flow shows
quite complex features. Interestingly, the main features of the blood flow that are found in
a patient-specific model can be recovered in this idealized atrium, see [16, 30].

After introducing the scalar function

Q = 0.5(|A|2 − |S|2) , (18)

where A (S) is the skew-symmetric (symmetric) part of the velocity gradient, the so-called
Q-criterion consists in analyzing the iso-contours of the positive part of Q with the aim
of visualizing the coherent vortex structures. We plot the iso-contours corresponding to
Q = 1000 in Figure 5 and color them according to the velocity magnitude. The main
feature of this flow is the formation of vortex rings out of the pulmonary veins when the

9



Figure 4: Velocity magnitude in the atrium at different time instants. Results obtained with the VMS-LES
model on the fine mesh with the BDF2 scheme for temporal discretization.

blood enters the main chamber. These rings mutually interact when the corresponding jets
impact and then form structures that become smaller and smaller until disappearing by
completely dissipating their energy. In the figure corresponding to time t = 4.2 s it is shown
the impact between the first strong jets, then at time t = 4.4 s the structures are becoming
smaller and they have nearly completely disappeared as the new jet enters at time t = 4.6 s
forming four well visible vortex rings around the pulmonary veins sections. At the last time
shown t = 4.8 s the vortex rings are again visible with some residual structures still present
at the center of the chamber.

The velocity profile at the mitral valve is an interesting output of this computation since
this is a data employed for the simulation of the left ventricle hemodynamics [31, 32]. In
Figure 6 we report the magnitude of the fluid velocity normal to the mitral valve section. A
positive velocity corresponds to an outflow through the mitral valve and a negative one to
a backflow from the ventricle to the atrium. We notice that the velocity profile we obtain is
highly variable in time and, more importantly, the velocity shows a flat profile only at some
specific instants, such as at t = 4.1 s. Even when the flow is strong, such as at t = 4.2 s
or t = 4.6 s the profile is never flat but the presence of vortexes above the mitral section
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Figure 5: Iso-contours of Q = 1000 in the atrium at different time instants. Results obtained with the
VMS-LES model on the fine mesh with the BDF2 scheme for temporal discretization.

produces low velocity regions. During the time between the two waves the integrated outflow
is positive as can be seen in Figure 6 but some recirculating velocities with negative values
reaching v = −15 cm/s are visible in some spots.

Since the problem is periodic we analyze the output of the numerical simulations with a
phase-averaging filter in order to obtain average quantities on one representative cycle. These
phase-averaged variables give an insight into the main characteristics of the periodic blood
flow. By studying these quantities one can identify the regions where the flow experiences
the highest variability among different cycles, which can be an indicator of transition to
turbulence. The phase average of a periodic quantity φ over N cycles, each of period T , can
be defined as

φ(x, t) =
1

N

N∑
j=1

φ(x, t+ j T ) . (19)

We discard the first three cycles and compute the phase average of the velocity and the
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Figure 6: Velocity profile at the mitral valve section. Results obtained with the VMS-LES model on the
fine mesh with the BDF2 scheme for temporal discretization.

pressure over the last cycles. We compute also their root mean square values defined as

vrms
i (x, t) =

1

N

N∑
j=1

√
v2
i (x, t+ j T )− vi2(x, t) for i = 1, 2, 3 . (20)

With this phase-averaged velocity we can compute some quantities, such as the Wall Shear
Stress, a vector field that we indicate as WSS, and a few scalar fields: the Time Averaged
Wall Shear Stress denoted TAWSS, the Oscillatory Shear Index (OSI) and the Relative
Residence Time (RRT) [16, 33, 34]. With the Wall Shear Stress we compute the Time
Averaged Wall Shear Stress as the integral over the time period of the magnitude of the
WSS,

TAWSS =
1

T

∫ T

0

|WSS|2 dt , (21)

where |·|2 denotes the Euclidean modulus of a vector. The Oscillatory Shear Index is defined
as [33]

OSI = 0.5

1−

∣∣∣∫ T

0
WSSdt

∣∣∣
2∫ T

0
|WSS|2 dt

 , (22)

and it is higher in regions where the Wall Shear Stress changes much during a heart cycle.
Finally the Relative Residence Time is an indicator of how much time a particle spends in
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Figure 7: Wall Shear Stress (WSS) magnitude computed on the surface of the atrium at different time
instants by using the phase averaged variables. Results obtained with the VMS-LES model on the coarse
mesh with the BDF2 scheme for temporal discretization.

the vicinity of a wall and it is defined as [34]

RRT =

(
(1− 2OSI)

1

T

∫ T

0

|WSS|2 dt
)−1

. (23)

In Figure 7 we report the Wall Shear Stress magnitude as computed on the surface of the
atrium at different time instants by using the phase averaged variables and the VMS-LES
model on the coarse mesh. We choose the coarse mesh since in this setting we were able to
simulate 8 heart beats so that we assume that the phase-averaged results should be more
accurate. The highest values of the Wall Shear Stress magnitude are attained during the
E-wave in the middle of the surface of the atrium, towards the mitral valve. This region
corresponds to where the vortexes impact and are pushed towards the atrium wall. During
the rest of the cycle the WSS values are quite low, high value are attained only in the
pulmonary veins and in the lower part of the atrium.

We show the Time Averaged Wall Shear Stress in Figure 8 computed by using the phase
averaged variables and the results obtained with the mesh M1 and the VMS-LES model.
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Figure 8: Time Averaged Wall Shear Stress on the surface of the atrium computed by using the phase
averaged variables. Results obtained with the VMS-LES model on the coarse mesh with the BDF2 scheme
for temporal discretization.

Figure 9: Oscillatory Shear Index (OSI) on the surface of the atrium computed by using the phase averaged
variables. Results obtained with the VMS-LES model on the coarse mesh with the BDF2 scheme for
temporal discretization.

In Figure 9 we report the Oscillatory Shear Index computed in the same settings of Figure
8. The TAWSS is about constant in the main chamber while it is low in the appendage.
The OSI is high on the top of the atrium where a large recirculation is present and on the
bottom of the appendage. These indicators are interesting from a medical point of view
since endothelial cells are affected by both the magnitude in the wall shear stress and by
its trend in time tending to produce new tissue, forming plaques and promoting neointimal
hyperplasia [33]. The Relative Residence Time is reported in Figure 10 where it is clearly
visible that the highest values of this quantity are attained in the bottom of the appendage.
This result is consistent with precedent findings [16] and we suggest it to be related to the
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Figure 10: Relative Residence Time (RRT) on the surface of the atrium computed by using the phase
averaged variables. Results obtained with the VMS-LES model on the coarse mesh with the BDF2 scheme
for temporal discretization.
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Figure 11: Total kinetic energy in the left atrium for different stabilization methods and for the two meshes.

shape and position of the appendage in which the blood does not enter and recirculate and
the velocities are very low.

We define some variables integrated on the whole domain that, in some cases, can be
compared with experimental results in order to validate the computations. We compute the
total kinetic energy of the flow by using the phase-averaged velocity as Ek = 1

2
ρ
∫

Ωt
v2dΩ.

The values for the total kinetic energy of the flow are known experimentally for the left
ventricle but could be useful indicators also for the left atrium. We also define the total fluc-
tuating kinetic energy of the flow as Ekf = 1

2
ρ
∫

Ωt
v2
rmsdΩ which is an indicator of transition

to turbulence [5, 31]. Finally, we define the enstrophy of the flow as S = 1
2
ρ
∫

Ωt
(∇× v)2dΩ.

This is another indicator of a transitional flow [35, 36].
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Figure 12: Fluctuating kinetic energy in the left atrium for different stabilization methods and for the two
meshes.
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Figure 13: Enstrophy in the left atrium for different stabilization methods and for the two meshes.

In Figure 11 we report the total kinetic energy obtained with SUPG and VMS-LES
stabilization models and with the two meshes. The kinetic energy shows three main peaks,
the first two during diastole corresponding to the E- and A-waves and the third, which is
smoother, during the refilling phase in the systole. The use of a SUPG stabilization or a
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VMS-LES one does not affect the intensity of the peaks although some small differences
can be seen in the decreasing shape. We remark that the results obtained with the two
computational meshes are not directly comparable since the phase averaging is performed
on a different number of cycles, two for the mesh M2 and four for the mesh M1. However,
the obtained kinetic energy does not exhibit large differences also among different meshes so
that it seems to be unaffected by these parameters. We report in Figure 12 the fluctuating
kinetic energy again for the two stabilization models and meshes. This quantity varies more
among the methods but it shows a common pattern. A first peak is visible at a time just
after the E-wave which probably corresponds to the breakup of the first vortexes impacting
one on each other. The breakup of the vortexes produced during the E-wave is the one with
the highest variability among cycles. Another peak is present at the end of the systole which
corresponds to the dissipation of the structures formed during the re-filling phase, as shown
in Figure 5 on the bottom-right. Finally, in Figure 13 we report the enstrophy as a function
of time. Again, three peaks are visible corresponding to the high energy phases and some
differences among different models. The enstrophy is an indicator of the energy dissipation
and it is linked to the possibility of transition to turbulence. By looking at the enstrophy
we understand that the transition to turbulence can happen during diastole and it can be
triggered by the impact of the jets during the E-wave.

4. Conclusions

In this paper, we simulated the hemodynamics of an idealized human left atrium. We
have used a standard SUPG method and the VMS-LES model to yield stable, discrete
formulations of the Navier-Stokes equations approximated by means of the Finite Element
method. The results obtained have shown some characteristic features of this flow. The
formation of vortex rings from the pulmonary veins is the main process occurring in this
chamber. The impact among these vortexes produces a high wall shear stress in the wall
nearby the impact regions and a high variability among cycles is induced by the breakup of
the vortexes. We obtained a velocity profile at the mitral valve section very different from
the common assumption of a flat or a Poiseuille profile at the inflow of the left ventricle
that is often made for the simulation of left ventricle hemodynamics [31, 32]. This profile
is highly affected by the geometry and by the direction of the pulmonary vein jets. The
use of a SUPG or a VMS-LES stabilization technique does not show significant differences
in the computation of the total kinetic energy, however when looking at the fluctuating
kinetic energy some differences are visible. The VMS-LES model is more able to capture
the breakup of the vortexes and the overall variability among cycles decreases when using
this model.
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[32] A. Tagliabue, L. Dedè and A. Quarteroni, Complex blood flow patterns in an idealized left ventricle:
a numerical study, Politecnico di Milano, MOX report No. 15 & École Polytechnique Fédérale de
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