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Abstract

Motivated by the numerical treatment of parametric and stochastic PDEs, we analyze the least-squares

method for polynomial approximation of multivariate functions based on random sampling according to

a given probability measure. Recent work has shown that in the univariate case and for the uniform

distribution, the least-squares method is optimal in expectation in [1] and in probability in [7], under the

condition that the number of samples scales quadratically with respect to the dimension of the polynomial

space. Here “optimal” means that the accuracy of the least-squares approximation is comparable with

that of the best approximation in the given polynomial space. In this paper, we discuss the optimality

of the polynomial least-squares method in arbitrary dimension. Our analysis applies to any arbitrary

multivariate polynomial space (including tensor product, total degree or hyperbolic crosses), under the

minimal requirement that its associated index set is downward closed. The optimality criterion only

involves the relation between the number of samples and the dimension of the polynomial space. We

extend our results to the approximation of Hilbert space-valued functions in order to apply them to the

approximation of parametric and stochastic elliptic PDEs. As a particular case, we discuss “inclusion

type” elliptic PDE models, and derive an exponential convergence estimate for the least-squares method.

Numerical results confirm our estimate, yet pointing out a gap between the condition necessary to achieve

optimality in the theory, and the condition that in practice yields the optimal convergence rate.

Keywords: approximation theory, polynomial approximation, least squares, parametric and stochastic

PDEs, high-dimensional approximation.

AMS classification: 41A10, 41A25, 65N35, 65N12, 65N15, 35J25

1 Introduction

In recent years, various strategies have been proposed for the numerical treatment of parametric and stochas-

tic partial differential equations

D(u, y) = 0, (1)
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where u 7→ D(u, y) is a partial differential operator depending on a d-dimensional parameter vector

y := (y1, . . . , yd) ∈ Γ ⊂ R
d. (2)

Depending on the application, the parameter vector may be deterministic or stochastic. In the latter case

y is a random variable distributed over Γ according a probability measure ρ. We denote by (Γ,Σ, ρ) the

corresponding probability space, where Σ is the Borel σ-algebra. In certain applications one has to deal with

a countable number of parameters y = (yj)j≥1 which means that d = +∞.

Assuming well-posedness of the problem in some Banach space X, the solution map

y 7→ u(y), (3)

is defined from the parameter domain Γ to the solution space X. In both deterministic and stochastic

settings, the main challenge is to approximate the function y 7→ u(y) with a reasonable cost. In the first

setting, one typically searches for approximations that are uniformly accurate over the parameter space Γ,

which amounts in measuring the error in L∞(Γ, X). In the second setting, one is typically interested in

approximations that are accurate in a probabilistic sense, such as in the least-squares sense which amounts

in measuring the error in L2(Γ, X, ρ).

Polynomial approximation methods of the solution map have been studied for various types of operators

D corresponding to various PDEs. In such methods, the solution map is approximated by polynomial maps

of the form

uΛ(y) =
∑

ν∈Λ

uνy
ν , (4)

where Λ ⊂ F is a finite set of (multi-)indices. The set of multi-indices F coincides with N
d
0 where N0 =

{0, 1, 2, . . . } in the case d < +∞ and denote the countable set of all finitely supported sequences ν =

(ν1, ν2, . . . , 0, 0, . . . ) ∈ N
N
0 in the case d = +∞. Also, in both cases, the polynomials y 7→ yν are defined by

yν :=

d∏

j=1

y
νj

j , (5)

with the convention 00 = 1. Note that the coefficients uν belong to the Banach space X and therefore the

construction of uΛ requires in principle the computation of #(Λ) such functions. The functions uΛ are thus

selected in XΛ := X ⊗ PΛ, where

PΛ := Span
{
yν : ν ∈ Λ

}
(6)

denotes the polynomial space associated with the index set Λ and with coefficients in R. Throughout this

paper, we only work with index sets Λ that have the following natural property.

Definition 1. The index set Λ is downward closed if

ν ∈ Λ and ν′ ≤ ν ⇒ ν′ ∈ Λ, (7)

where ν′ ≤ ν means that ν′j ≤ νj for all j ≥ 1.

Following a more concise and established terminology in the literature, we will also denote by lower set

a downward closed set. Note that a lower set always contains the null index

0F := (0, 0, . . . ). (8)
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Considering only polynomial spaces PΛ associated with such sets is very natural. In particular, the downward

closedness property of the set Λ allows us to replace the monomials yν in the definition of the spaces PΛ

by any other tensorized basis of the form Pν(y) =
∏

j≥1 Pνj
(yj) where (Pk)k≥0 is a sequence of univariate

polynomials such that P0 = 1 and Pk has degree exactly equal to k, for example the Legendre polynomials.

Polynomial spaces associated with lower index sets have been introduced in [18] in dimension d = 2 and in

[19] and [15] in higher dimension.

Polynomial approximation is well known to be effective when the solution map has some smoothness.

In certain instances, it can even provably break the curse of dimensionality, in the sense that an algebraic

convergence rate with respect to #(Λ) can be established even for functions of countably many parameters

d = +∞. Such results are proven in [5, 6, 3] for the model parametric elliptic equation

− div(a∇u) = f in D ⊂ R
q, u = 0 on ∂D, (9)

where D ⊂ R
q is a Lipschitz domain, f ∈ H−1(D), and the diffusion coefficient has the form

a(x, y) := ā(x) +
∑

j≥1

yjψj(x), (10)

with the functions ψj and ā in L∞(D), and y ∈ Γ := [−1, 1]N. Assuming the uniform ellipticity assumption

0 < r ≤ a(x, y) ≤ R < +∞, x ∈ D, y ∈ Γ, (11)

the solution map is well defined from Γ to the Hilbert space X := H1
0 (D). Then, it is proved in [3] that if

(‖ψj‖L∞)j≥1 ∈ ℓp(N) for some 0 < p < 1, there exists a sequence of lower sets

Λ1 ⊂ Λ2 ⊂ · · · ⊂ F , #(Λm) = m, (12)

such that

inf
v∈XΛm

‖u− v‖L∞(Γ,X) ≤ Cm−s, s :=
1

p
− 1 > 0. (13)

Similar results with a slightly improved convergence rate are obtained in [5, 6, 2] for the L2(Γ, X, ρ) norm,

where ρ denotes the uniform probability measure: under the same assumptions there exists a sequence of

lower sets such that

inf
v∈XΛm

‖u− v‖L2(Γ,X,ρ) ≤ Cm−s, s :=
1

p
− 1

2
> 0. (14)

These general convergence results are extended in [4] to other models than (9).

The construction of sequences of sets (Λm)m≥1 which achieve the convergence rates (13) or (14), and

therefore of the polynomial spaces PΛm
, is critical in the design of algorithms for high-dimensional approxi-

mation. Sequences of quasi-optimal sets giving such rates, with possibly a suboptimal constant C > 0 can

either be derived from a-priori estimates in [5, 6, 12, 2, 4] or by an adaptive search [16, 3, 4]. The resulting

spaces PΛm
typically differ from the standard multivariate polynomial spaces Pk of fixed total degree.

Given a finite index set Λ, several strategies can be used to compute uΛ ∈ XΛ:

1. Taylor expansions [3] can be recursively computed in the case of problems with affine parameter

dependence such as (9). Adaptive methods based on such expansions have been proved to converge

uniformly with the same rate as in (13).

2. Projection methods [11, 12, 5, 16] produce near best approximations in XΛ for the metric L2(Γ, X, ρ)

where ρ is a chosen measure in the parameter space. In addition, in the Galerkin framework, it is

possible to use techniques of a-posteriori analysis in order to adaptively build the sequence of index

sets (Λm)m≥1. This approach was developed in [16] for the problem (9), and proved to converge with

the same rate as in (14).
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3. Collocation methods [10, 12, 7, 21, 22, 4] produce a polynomial approximation in XΛ based on the

data of particular solution instances ui := u(yi) for some chosen values yi ∈ Γ of the parameter vector

with i = 1, . . . , n. One significant advantage of this approach is that it is non intrusive: the ui can

be computed by any given numerical solver for the problem (1) and the polynomial approximation is

built from these solutions by numerical techniques similar to those employed for scalar-valued maps

such as interpolation or least-squares regression.

The convergence analysis of collocation methods is less satisfactory in the sense that convergence rates

similar to (13) and (14) do not seem to have been established for such methods. This is in part due to

the difficulty to control the stability of interpolation or least-squares projection for general multivariate

polynomial spaces. For interpolation methods, several results have been recently established in [4] showing

that the convergence rate in (13) can be achieved if the interpolation points are carefully selected. Least-

squares methods have been recently analyzed in [1, 7] in the stochastic setting, assuming that the samples yi

are independent realizations of the random variable y, therefore identically distributed according to ρ. This

analysis reveals that in the univariate case Γ = [−1, 1] and for the uniform distribution, the least-squares

method is stable and produces a near best approximation in the L2(Γ, X, ρ) norm, under the condition that

the number of samples n scales quadratically (up to a logarithmic factor) with respect to the dimension m

of the polynomial space Pm−1.

The objective of this paper is to address the problem of the stability and convergence of the polynomial

least-squares method in the general context of the spaces XΛ associated with arbitrary lower sets. We begin

in §2 by discussing the least-squares method for a real-valued function in a general framework not limited to

polynomials and recalling recent stability and approximation results established in [1]. In §3 we focus on the

particular framework of the multivariate polynomial spaces PΛ. Our analysis reveals in particular that, with

Γ = [−1, 1]d and the uniform distribution, the same scaling n ∼ (#(Λ))2 as in the univariate case, ensures

stability and near best approximation of the method independently of the dimension d.

Then in §4, we show how a similar analysis applies to X-valued functions, where X is a Hilbert space, and

therefore to the solutions of parametric and stochastic PDEs. As a relevant example, the equation (9) with

random inclusions in the diffusion coefficient is discussed in §5, and numerical illustration for this example

are given in §6.

2 Discrete least-squares approximations

Let (Γ,Σ, ρ) be a probability space. We denote by L2(Γ, ρ) the Hilbert space of real-valued square integrable

functions with respect to ρ and denote by 〈·, ·〉 and ‖ · ‖ the associated inner product and norm, i.e.

〈v, w〉 :=
∫

Γ

v(y)w(y)dρ(y), ‖v‖ :=
√
〈v, v〉, v, w ∈ L2(Γ, ρ). (15)

We consider Vm a finite dimensional space of L2(Γ, ρ) with dim(Vm) = m. We assume that the functions

belonging to Vm are defined everywhere over Γ. We let BL := (Lj)1≤j≤m be any orthonormal basis of

Vm with respect to the above inner product. The best approximation of a function u ∈ L2(Γ, ρ) in the

least-squares sense is given by

Pmu =
m∑

j=1

cjLj , cj = 〈u, Lj〉, (16)

and its best approximation error by

em(u) := inf
v∈Vm

‖u− v‖ = ‖u− Pmu‖. (17)

4



If u is unknown and if (zi)i=1,··· ,n are noiseless or noisy observations of u at the points (yi)i=1,··· ,n where the yi

are i.i.d. random variables distributed according to ρ, we introduce the discrete least-squares approximation

w := argmin
v∈Vm

n∑

i=1

|zj − v(yj)|2. (18)

This minimization problem always has a solution, which may not be unique. In particular, it is never unique

in the regime m > n. In the sequel, we only consider the regime m ≤ n. In the noise free case, zi = u(yi),

the solution may be viewed as the orthogonal projection of u onto Vm with respect to the inner product

〈·, ·〉n associated with the empirical semi-norm

‖v‖n =
( 1
n

n∑

i=1

|v(yi)|2
) 1

2

. (19)

In this case, we denote the solution w of the problem (18) by Pn
mu. The projection Pn

mu depends on the

sample (yj)1≤j≤n, so that Pn
mu is a “random” least-squares projector. In both the noisy and noiseless case,

the coordinate vector w ∈ R
m of w in the basis BL is the solution to the system

Gw = Jz, (20)

where G and J are the m×m and m× n matrices given by

Gij := 〈Li, Lj〉n, and Jij :=
Li(y

j)

n
(21)

and z ∈ R
n is the vector of coordinates zj . When G is not singular, then the solution w of (18) is given by

w =

n∑

j=1

zjπj . (22)

where Bπ := {π1, . . . , πn} are the elements of Vm given by

Bπ =
(
G−1J

)t BL, (23)

with the product matrix-basis to be understood in the obvious sense. In the case where G is singular, we

set by convention w := 0.

If u satisfies a uniform bound |u(y)| ≤ L over Γ, where L is known, we introduce the truncated least-

squares approximation

w̃ = TL(w), TL(t) := sign(t)min{L, |t|}, (24)

which we also denote by P̃n
mu in the noiseless case.

The analysis in [1, 7] investigates the minimal amount of sampling n(m) ≥ m that allows an accurate

approximation of the unknown function u by the random approximations w or w̃. The accuracy here is to be

understood in the sense of a comparison between the error ‖u−w‖ and the best approximation error em(u).

This analysis is based on probabilistic estimates comparing the norm ‖ · ‖ and its empirical counterpart ‖ · ‖n
uniformly over the space Vm. This comparison amounts in estimating the deviation of the random matrix

G from its expectation E(G) = I, where I is the m×m identity matrix, since for v ∈ Vm and v the vector

representing v in the basis BL, one has

‖v‖2n = vTGv and ‖v‖2 = vT Iv, (25)

5



so that, for any 0 < δ < 1,

|||G− I||| ≤ δ ⇔ |‖v‖2n − ‖v‖2| ≤ δ‖v‖2, v ∈ Vm, (26)

where ||| · ||| denotes the spectral norm of a matrix. For this purpose, one introduces the quantity

K(Vm) := sup
y∈Γ

m∑

j=1

|Lj(y)|2. (27)

One can easily check, using Cauchy-Schwartz inequality, that

K(Vm) = sup
v∈Vm,‖v‖=1

‖v‖2L∞(Γ), (28)

from which we deduce that K(Vm) does not depend on the choice of the orthonormal basis BL and only

depends on Vm and ρ.

The main results in [1] imply that for any r > 0 and the number of samples n large enough such that

n

lnn
≥ K(Vm)

κ
, κ :=

1− ln 2

2 + 2r
, (29)

the following hold:

� The deviation between G and I satisfies

Pr

{
|||G− I||| > 1

2

}
≤ 2n−r. (30)

� In the noiseless case, if u satisfies a uniform bound L over Γ, then

E(‖u− P̃n
mu‖2) ≤ (1 + ǫ(n))em(u)2 + 8L2n−r, (31)

where ǫ(n) := 4κ
ln(n) .

� In the noisy case, if u satisfies a uniform bound L over Γ, then

E(‖u− w̃‖2) ≤ (1 + 2ǫ(n))em(u)2 + 8
(
L2n−r + σ2m

n

)
, (32)

where σ2 := maxy∈Γ E(|z − u(y)|2|y) is the noise level.

It is also desirable to estimate the error between u and its estimator in probability rather than in

expectation. In the following we give such an estimate, in the noisless case and for the non-truncated

estimator w = Pn
mu, however using the best approximation error in the uniform norm

em(u)∞ := inf
v∈Vm

‖u− v‖L∞(Γ), (33)

which is obviously larger than em(u). The following result was stated in the particular case of polynomial

least squares in [7].

Theorem 1. Under condition (29), one has

Pr
(
‖u− Pn

mu‖ ≥ (1 +
√
2)em(u)∞

)
≤ 2n−r. (34)
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Proof: Introducing the event set Ωn
+ := {|||G − I||| ≤ 1

2}, we know from (30) that Pr(Ωn
+) ≥ 1 − 2n−r.

Given any draw in Ωn
+, we have for any v ∈ Vm

‖u− Pn
mu‖ ≤ ‖u− v‖+ ‖v − Pn

mu‖ ≤ ‖u− v‖+
√
2‖v − Pn

mu‖n, (35)

where we have used (26). By the orthogonality identity ‖u− v‖2n = ‖u− Pn
mu‖2n + ‖Pn

mu− v‖2n, we deduce

‖u− Pn
mu‖ ≤ ‖u− v‖+

√
2‖u− v‖n ≤ (1 +

√
2)‖u− v‖∞,

which completes the proof.

All these results above lead to the problem of understanding which minimal amount n of sample ensures

the validity of condition (29). In the one-dimensional case d = 1, with Vm = Pm−1 and ρ being the uniform

density over Γ = [−1, 1], elementary computations using the Legendre polynomials show that K(Vm) = m2

and therefore (29) holds for n
lnn ∼ m2, meaning that n scales like m2 up to a logarithmic factor. This

relation between n and m was also used in [7] to establish (30) and (34) by arguments which are more tied

to the use of univariate polynomials and the uniform measure. The next section discusses the implications

of condition (29) for the multivariate polynomial spaces PΛ.

3 Least-squares approximation with multivariate polynomials

In this section, we investigate the implications of the condition (29) in the setting of multivariate polynomial

spaces PΛ. We consider the domain Γ := [−1, 1]d with d ∈ N and the uniform measure ρ over Γ, i.e.

dρ := ⊗d
j=1

dyj
2
. (36)

We may also consider the case Γ := [−1, 1]N for which d = +∞ and ρ is the uniform measure defined over Γ

in the usual manner.

We use the notations L2(Γ, ρ), 〈·, ·〉 and ‖ · ‖ of the previous section and denote F the set of multi-indices

in the cases d < +∞ and d = +∞ as explained in the introduction. Given Λ a finite subset of F , u the

unknown function and (zi)i=1,··· ,n noiseless or noisy observations of u at the points (yi)i=1,··· ,n where the

yi are i.i.d. random variables distributed according to ρ, we introduce the polynomial discrete least-squares

approximation

wΛ := argmin
v∈PΛ

n∑

i=1

|zj − v(yj)|2, (37)

where the polynomial space PΛ is defined as in (6). In order to study the optimality of the least-squares

approximation, we need to investigate the growth of the quantity of interest K(PΛ) introduced in (27) in

the present setting. We shall show that, under the minimal requirement that the index set Λ is downward

closed, we have as in the one-dimensional case that K(PΛ) ≤ (#Λ)2.

We introduce (Lk)k≥0 the univariate Legendre polynomials normalized according to

∫ 1

−1

|Lk(t)|2
dt

2
= 1, (38)

and introduce (Lν)ν∈F the multivariate Legendre polynomials defined by

Lν(y) :=

d∏

j=1

Lνj
(yj). (39)
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The family (Lν)ν∈F is an orthonormal basis of the space L2(Γ, ρ). Using the remarks on lower sets given in

the introduction, one has that (Lν)ν∈Λ is an orthonormal basis of PΛ if the index set Λ is downward closed.

Therefore

K(PΛ) :=
∑

ν∈Λ

‖Lν‖2L∞(Γ). (40)

To lighten the notation, we have shortened K(PΛ) to K(Λ). Since the univariate Legendre polynomials

satisfy ‖Lk‖L∞([−1,1]) =
√
2k + 1, then

K(Λ) =
∑

ν∈Λ

∏

j:νj 6=0

(2νj + 1) (41)

Theses quantities have already been studied in [4] and proved to have moderate growth for finite lower sets.

To keep our document self contained, we recall the result of [4] with its proof in the case d = +∞. The case

d < +∞ is a straightforward consequence.

Lemma 1. For any finite lower set Λ ⊂ F , the quantity K(Λ) satisfies

#(Λ) ≤ K(Λ) ≤ (#(Λ))2. (42)

Proof: The first inequality is obvious. To prove the second inequality, we use induction on nΛ := #(Λ) ≥ 1.

When nΛ = 1, then Λ = {0F} and an equality holds. Let n ≥ 1 and Λ denote a lower set with nΛ = n+ 1.

Without loss of generality, we suppose that ν1 6= 0 for some ν ∈ Λ. We introduce the index sets

Λk :=

{
ν̂ ∈ F : (k, ν̂) ∈ Λ

}
, k ≥ 0. (43)

Here (k, ν̂) denote the multi-index (k, ν̂1, ν̂2, · · · ). Since Λ is downward closed and finite, then it is easy to

check that the sets Λk are finite, downward closed (when not empty) and satisfy

· · · ⊂ Λk ⊂ · · · ⊂ Λ1 ⊂ Λ0. (44)

Let us also remark that there exists J ≥ 0 such that Λk = ∅ for any k > J and that #(Λ0) ≤ nΛ − 1 = n

since ν1 6= 0 for some ν ∈ Λ. Therefore the induction hypothesis applied to the sets Λk, implies

K(Λ) =

J∑

k=0

(2k + 1)K(Λk) ≤
J∑

k=0

(2k + 1)(#(Λk))
2 . (45)

Now, by the nestedness of the sets Λk, we have

k(#(Λk))
2 ≤ #(Λk)#(Λ0) + ...+#(Λk)#(Λk−1), 1 ≤ k ≤ J. (46)

Therefore

K(Λ) ≤
J∑

k=0

(#(Λk))
2 + 2

J∑

k=1

k−1∑

k′=0

#(Λk)#(Λk′) =
( J∑

k=0

#(Λk)
)2
. (47)

Since #(Λ) =
∑J

k=0 #(Λk), we conclude the proof.

The previous bound is valid for any lower set independently of its shape. In addition, the inequality is

sharp, in the sense that the equality holds for certain types of lower sets. Indeed, given ν ∈ F supported in

{1, · · · , J} and considering the rectangle index set

Rν := {µ ∈ F : µ ≤ ν}, (48)
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one has

K(Rν) =
∑

µ≤ν

∏

1≤j≤J

(2µj + 1) =
∏

1≤j≤J

∑

µj≤νj

(2µj + 1) =
∏

1≤j≤J

(νj + 1)2 = (#(Rν))
2. (49)

However, we expect this bound to be pessimistic for lower sets that have shapes very different from rectangles.

For instance, let k ≥ 1 and consider the lower set

Sk,d := {ν ∈ N
d
0 : |ν| ≤ k}, (50)

where |ν| :=∑d
j=1 νj , associated with the polynomial space PSk,d

of total degree k in dimension d.

By the inequality between the arithmetic and geometric means, one has for any ν ∈ Sk,d

∏

1≤j≤d

(2νj + 1) ≤
(1
d

∑

1≤j≤d

(2νj + 1)
)d

=
(2|ν|
d

+ 1
)d

≤
(2k
d

+ 1
)d
. (51)

Therefore (see also [23, Chapter 2 and Chapter 3])

K(Sk,d) ≤
(2k
d

+ 1
)d

#(Sk,d), (52)

and
(

2k
d + 1

)d
is very small compared to #(Sk,d) =

(
d+k
k

)
for large values of d. On Figure 1, we provide a

comparison between #(Sk,d), K(Sk,d) and (#(Sk,d))
2 for various dimensions.
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Figure 1: Comparison between #(Λ), K(Λ) and (#(Λ))2 in the case where Λ = Sk,d (see (50)). Left: d = 2.

Center: d = 4. Right: d = 8.

In light of Lemma 1, given a finite lower set Λ, if the number of samples n scales like (#(Λ))2 up to a

logarithmic factor, according to
n

lnn
≥ (#(Λ))2

κ
, κ :=

1− ln 2

2 + 2r
, (53)

then the results (30), (31), (32) and (34) hold in the the present setting of multivariate polynomial least-

squares approximation.

It is interesting to see if the estimates on the quantity K(PΛ) can be improved when using other standard

probability measures over Γ. In what follows, we study this quantity when the measure ρ is the tensorized

Chebyshev measure, i.e.

dρ := ⊗d
j=1̺(yj)dyj , with ̺(t) :=

1

π

1√
1− t2

. (54)
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Using in this case the notation KT (Λ) = K(PΛ), we have

KT (Λ) :=
∥∥∥
∑

ν∈Λ

|Tν |2
∥∥∥
L∞(Γ)

, (55)

where Tν(y) =
∏

j≥1 Tνj
(yj) is the tensorization of the Chebyshev polynomials (Tk)k≥0 normalized according

to ∫ 1

−1

|Tk(t)|2̺(t)dt = 1. (56)

It is easily checked that these polynomials are related to the classical Chebyshev polynomials of the first

kind by Tk(cos θ) =
√
2 cos(kθ) for any k ≥ 1 and T0 = 1. It follows that

KT (Λ) :=
∑

ν∈Λ

2#(supp(ν)) (57)

where supp(ν) := {1 ≤ j ≤ d : νj 6= 0} is the support of ν ∈ F . Given ν in Λ, with Λ being a lower set, the

multi-index µ that has the same support as ν and has entries 1 satisfies µ ≤ ν, so that µ ∈ Λ and Rµ ⊂ Λ.

This implies that 2#(supp(ν)) = #(Rµ) ≤ #(Λ). Therefore we obtain

KT (Λ) ≤ (#(Λ))2, (58)

which is the same bound as for the uniform measure.

Sharper bounds can be established by a finer analysis. We first prove an elementary lemma.

Proposition 1. For any real positive numbers a0 ≥ a1 ≥ ... ≥ ak and any α ≥ ln 3
ln 2 , one has

aα0 + 2(aα1 + . . .+ aαk ) ≤ (a0 + . . .+ ak)
α. (59)

Proof: We use induction on k. For k = 0, an equality holds in (59). For k = 1, since the function

x 7→ (x+ a1)
α − xα is increasing in [a1,+∞[ then its value at a0 is greater than its value at a1, that is

2aα1 ≤ (2α − 1)aα1 ≤ (a0 + a1)
α − aα0 (60)

where we have used 2α > 3. Now let k ≥ 1 and a0 ≥ a1 ≥ ... ≥ ak+1 be real positive numbers. By the

induction hypothesis at steps 1 and k, we infer

(a0 + ...+ ak+1)
α =

(
(a0 + ...+ ak) + ak+1

)α

≥ (a0 + ...+ ak)
α + 2aαk+1

≥ aα0 + 2(aα1 ...+ aαk ) + 2aαk+1

= aα0 + 2(aα1 ...+ aαk+1).

(61)

The proof is then complete.

Lemma 2. For any lower set Λ ⊂ F , the quantity KT (Λ) satisfies

KT (Λ) ≤ (#(Λ))β , with β =
ln 3

ln 2
. (62)

Proof: We use induction on nΛ := #(Λ). When nΛ = 1, then Λ = {0F} and an equality holds. Let n ≥ 1

and Λ denote a lower set with nΛ = n + 1. Without loss of generality, we suppose that ν1 6= 0 for some

10



ν ∈ Λ. Defining J ≥ 0 and the sets Λk as in the proof of Lemma 1 and using the induction hypothesis with

these sets, we obtain

KT (Λ) =

J∑

k=0

γ(k)KT (Λk) ≤
J∑

k=0

γ(k)(#(Λk))
ln 3
ln 2 , (63)

where γ is defined by γ(0) = 1 and γ(k) = 2 for k ≥ 1. Using (59), we infer

KT (Λ) ≤ (#(Λ0))
ln 3
ln 2 + 2

J∑

k=1

(#(Λk))
ln 3
ln 2 ≤

(
#(Λ0) + #(Λ1) + · · ·+#(ΛJ)

) ln 3
ln 2

= (#(Λ))
ln 3
ln 2 . (64)

The proof is then complete.

The bound (62) is sharp for certain type of lower sets. For instance if ν is the multi-index such that

ν1 = · · · = νJ = 1 and νj = 0 for j > J , then

KT (Rν) =
∑

µ≤ν

2#(supp(µ)) =
∑

µ≤ν

2µ1+···+µJ =

J∏

j=1

(1 + 2) = 3J = (2J)β = (#(Rν))
β . (65)

In the case of finite dimension d < +∞, the following bound can be easily obtained from the result of

Lemma 2:

KT (Λ) ≤ min
{
(#(Λ))

ln 3
ln 2 , 2d#(Λ)

}
.

Let us note that algebraic bounds can also be obtained for the quantity K(PΛ) when the measure ̺ is

any measure of the type

̺(t) =
(1− t)α1(1 + t)α2

Wα1,α2

, Wα1,α2 :=

∫ 1

−1

(1− t)α1(1 + t)α2dt, α1, α2 > −1. (66)

Indeed, for such measures, the Jacobi polynomials (Pα1,α2

k )k≥0 that are orthonormal with respect to ̺ satisfy

Pα1,α2

0 = 1 and

‖Pα1,α2

k ‖L∞[−1,1] ≤ C(k + 1)θ, k ≥ 1, (67)

for some constant C ≥ 1, depending on α1 and α2, and some constant θ ≥ 0 . Using similars arguments to

the proof of Lemmas 1 and 2, one can derive in this case the algebraic bound

K(PΛ) ≤ (#(Λ))β , β = 2θ +
ln(C2 + 1)

ln 2
. (68)

4 Discrete least-squares approximation of Hilbert-valued func-

tions

In sections 2 and 3, the functions that we propose to approximate using the least-squares method are real

valued. Motivated by the application to parametric PDEs, we investigate the applicability of the least-

squares method in the approximation of X-valued functions, with X being any Hilbert space. Similar to §2,
we work in the abstract setting of a probability space (Γ,Σ, ρ). We study the least-squares approximation

of functions u belonging to the Bochner space

L2(Γ, X, ρ) :=

{
u : Γ → X, ‖u‖ :=

∫

Γ

‖u(y)‖2Xdρ(y) < +∞
}
. (69)

11



Therefore L2(Γ, X, ρ) = X ⊗ L2(Γ, ρ) and we are interested in the least-squares approximation in spaces of

type X⊗Vm where Vm is anm-dimensional subspace of L2(Γ, ρ). Given u ∈ L2(Γ, X, ρ) an unknown function

and (zi)i=1,··· ,n noiseless or noisy observations of u at the points (yi)i=1,··· ,n where the yi are i. i. d. random

variables distributed according to ρ, we consider the discrete least-squares approximation

w := argmin
v∈X⊗Vm

n∑

i=1

‖zj − v(yj)‖2X . (70)

The purpose of this section is to briefly discuss the extension of the results from §2 to this framework.

Let BL be an orthonormal basis of the space Vm with respect to the measure ρ and consider the matrices

G and J and the family Bπ ⊆ Vm obtained from the basis BL and the points (yi)i=1,··· ,n as in §2. When the

matrix G is not singular, we claim that the solution to (70) has the same form

n∑

k=1

zkπk, (71)

with zk ∈ X for all k = 1, . . . , n, as in the real-valued case. Indeed, for any g ∈ X, the real-valued function

wg :=
∑n

k=1〈zk, g〉πk ∈ Vm is the solution to the least-squares problem

wg = argmin
h∈Vm

n∑

i=1

|〈zi, g〉 − h(yi)|2, (72)

which implies the orthogonality relations

n∑

i=1

〈
n∑

k=1

zkπk(y
i), gLj(y

i)〉 =
n∑

i=1

〈zi, gLj(y
i)〉, g ∈ X, j ∈ {1, · · · ,m}, (73)

showing that
∑n

k=1 z
kπk is the solution to (70). When the matrix G is singular, the solution (70) is non-

unique and we set by convention w := 0.

The explicit formula of the least-squares approximation (70) being established, we are interested in the

stability and accuracy of the approximation. Similarly to the analysis in §2, we investigate the comparability

over X ⊗ Vm of the norm ‖ · ‖ and its empirical counterpart ‖ · ‖n defined by

‖v‖n =
( 1
n

n∑

j=1

‖v(yj)‖2X
) 1

2

, v ∈ L2(Γ, X, ρ). (74)

It is easily checked that given v :=

m∑

j=1

vjLj ∈ X ⊗ Vm, one has

‖v‖2n − ‖v‖2 =

m∑

i=1

m∑

j=1

(G− I)ij〈vi, vj〉X = 〈v, (G− I)v〉Xm , (75)

where v := (v1, · · · , vm)t ∈ Xm and the matrix-vector product is defined as in the real case. Here the

inner product 〈·, ·〉Xm is the standard inner product over Xm constructed from 〈·, ·〉X . Note that we have

‖v‖ = ‖v‖Xm . We next observe that if M is an m×m real symmetric matrix, one has

sup
‖v‖Xm=1

|〈v,Mv〉Xm | = |||M|||, (76)
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where |||M||| is the spectral norm of M (this is immediately checked by diagonalizing M in an orthonormal

basis). Therefore it holds that

‖v‖2n − ‖v‖2 ≤ |||G− I||| ‖v‖2, (77)

and, similarly to the results discussed in §2, we find that under condition (29) the norm ‖·‖ and its counterpart

‖ · ‖n are equivalent over X ⊗ Vm with probability greater than 1− 2n−r, with

∣∣∣‖v‖2n − ‖v‖2
∣∣∣ ≤ 1

2
‖v‖2. (78)

We now compare the accuracy of the least-squares approximation (70) with the error of best approximation

em(u) := inf
v∈X⊗Vm

‖u− v‖ = ‖u− Pmu‖, (79)

where Pm is the orthogonal projector onto X ⊗ Vm. We again use the notation Pn
mu for the least-squares

solution in the noiseless case. If u satisfies a unifom bound ‖u(y)‖X ≤ L over Γ where L is known, we define

the truncated least-squares approximation

w̃ = TL(w), (80)

also denoted by P̃n
mu in the noiseless case, where TL is the trunction operator, now defined as follows

TL(v) =





v if ‖v‖ ≤ L,

v
‖v‖L if ‖v‖ > L.

(81)

Note that TL is the projection map onto the closed disc {‖v‖ ≤ L} and is therefore Lipschitz continuous

with constant equal to 1. The following counterparts to the results of §2 are proven in the same way and

therefore we only state them:

� Under condition (29), and if u satisfies a unifom bound ‖u(y)‖X ≤ L over Γ, one has

E(‖u− P̃n
mu)‖2) ≤ (1 + ǫ(n))em(u)2 + 8L2n−r. (82)

� In the noisy case, and under the same conditions as above, one has

E(‖u− w̃‖2) ≤ (1 + 2ǫ(n))em(u)2 + 8
(
L2n−r + σ2m

n

)
, (83)

where σ2 := maxy∈Γ E(‖z − u(y)‖2X |y) is the noise level.

� Under condition (29), one has

Pr
(
‖u− Pn

mu‖ ≥ (1 +
√
2)em(u)∞

)
≤ 2n−r, (84)

where em(u)∞ = infv∈X⊗Vm
‖u− v‖L∞(Γ,X).

As a general example of application, consider the model stochastic elliptic boundary value problem (9)

with a diffusion coefficient given by (10) and satisfying (11). As recalled in the introduction, if (‖ψj‖L∞(D))j≥1 ∈
ℓp(N) for some p < 1, then there exists a nested sequence of lower sets

Λ1 ⊂ Λ2 ⊂ · · · ⊂ F , #(Λm) = m, (85)

13



such that with X := H1
0 (D) and Vm := PΛm

one has

em(u) ≤ Cm−s, s :=
1

p
− 1

2
> 0. (86)

Since the solution satisfies the uniform bound ‖u(y)‖X ≤ L := ‖f‖V ∗

r , we can compute its trunctated least-

squares approximation P̃n
mu based on n observations ui = u(yi) where the yi are i.i.d. with respect to the

uniform measure over Γ := [−1, 1]N. Combining (82) and (42), it follows that

E(‖u− P̃n
mu)‖2) ≤ (1 + ǫ(n))C2m−2s + 8L2n−r, (87)

provided that n
lnn ≥ m2

κ with κ := 1−ln 2
2+2r . In particular, taking r = s, we obtain the estimate

E(‖u− P̃n
mu)‖2) <∼ m−2s. (88)

Taking the minimal amount of sample n such that n
lnn ≥ m2

κ , this gives the convergence estimate

E(‖u− P̃n
mu)‖2) <∼

( n

lnn

)−s

. (89)

Remark 1. An analysis of the Chebyshev coefficients of u reveals that the same approximation rate as (86)

holds for the L2 norm with respect to the tensorized Chebyshev measure. However, in view of (62), the

condition between m and n is now n
lnn ≥ mβ

κ with β := ln 3
ln 2 . It follows that the rate in (89) can be improved

into

E(‖u− P̃n
mu)‖2) <∼

( n

lnn

)− 2 ln 3
ln 2 s

, (90)

if we use samples yi that are i.i.d. with respect to the tensorized Chebyshev measure and if we use the L2

error with respect to this measure.

5 Application to elliptic PDEs with random inclusions

5.1 The case of non-overlapping inclusions: approximation in total degree poly-

nomial spaces

In this section, we focus on the subclass of stochastic PDEs (9)–(10) characterized by the fact that the

functions ψj have nonoverlapping support. This situation allows to model, for instance, the diffusion process

in a medium with nonoverlapping inclusions of random conductivity (see e.g. Fig. 2). In this case, a priori

estimates on the Legendre coefficients have been obtained e.g. in [9] and have been shown numerically to be

quite sharp. They read:

‖uν‖X ≤ C
d∏

j=1

exp{−νj gj}, ∀ ν = (ν1, . . . , νd) ∈ N
d
0,

with X = H1
0 (D). Explicit expressions for the constant C can be found in [9, Corollary 8]. The coefficients

(gj)1≤j≤d can be estimated through an a posteriori procedure, that requires to solve only “one-dimensional”

problems, i.e. analyzing the convergence when considering one random variable at a time and freezing all

other variables to their expected value. As a consequence, quasi-optimal index sets associated with the

problems in the aforementioned class are of the form

Λw =
{
ν ∈ N

d
0 :

d∑

j=1

gjνj ≤ w
}
, w = 1, 2, . . .
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and correspond to anisotropic total degree spaces, i.e. the anisotropic variants of (50). Analogous estimates,

showing the optimality of the total degree space, have been presented in [3].

In the next discussion, we consider the simple isotropic case where gj = g for all j = 1, . . . , d. For

convenience we introduce the quantities τ, φ defined as:

τ :=
gd

e
, (91)

φ :=
Ĉ2

Leg

(1− e−g)d
exp

{
2 e2 (1− e−1) τ

5

}
. (92)

The expression of ĈLeg can be recovered from [9, Corollary 8] and depends on d and g.

Lemma 3. In the isotropic case, i.e. gj = g for all j = 1, . . . , d, the following estimate on the error of the

L2 projection Pm on the quasi-optimal TD set (91) with #(Λ) = m, it holds

‖u− Pmu‖2 ≤ φ exp
{
−τm 1

d

}
(93)

for m > (2e/5)d.

Proof. The following estimate has been obtained in [9, Theorem 22]:

‖u− PΛu‖2 ≤
Ĉ2

Leg

(1− e−g)d
exp

{
−τ ln

(
(1− η(m))

−1
)
m

1
d

}
, (94)

with

η(m) = (1− e−1)

(
1− 2e

5m
1
d

)
. (95)

When (2e/5)d < m then (1− η(m)) < 1, and moreover limm→+∞ (1− η(m))

(

τm
1
d

)

= 0. Introducing the

change of variable z as

z = m
1
d , (96)

using the definition of τ in (91) and replacing η by (95), then the exponential term on the right side in (94)

can be manipulated as

(
e−1 +

2 e (1− e−1)

5 z

)τ z

=

(
1 +

2 e2 (1− e−1)

5 z

)τ z

· e−τ z < e
2 e2 (1−e−1)

5 τ · e−τ z. (97)

Notice from (96) that the limit m → +∞ is equivalent to z → +∞. Thanks to (97) we can bound the

exponential term on the right hand side of (94), and using the definition (92) of φ we obtain (93).

5.2 Convergence of the discrete least-squares approximation

In this subsection we derive an estimate for the expected L2 error E(‖u−P̃n
mu‖2) of the discrete least-squares

approximation in terms of the number of sampling points n. To do this we rely on the estimates regarding the

exact L2 projection on total degree polynomial spaces that have been recalled in Section 5.1. To begin with,

we will use the isotropic estimate (93). The extension to anisotropic problems can be obtained following the

estimates presented in [9].

To lighten the notation we introduce the constant

ζ :=
1− ln 2

2
≈ 0.15 (98)
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and the factor

ϕ = ϕ(n) :=
(
1 + ǫ(n)

)
φ. (99)

Notice that ǫ = ǫ(n) is a decreasing function converging to zero as n increases, and in practice its value is

such that ϕ ≈ φ.

Theorem 2. In the aforementioned PDE model class, the convergence rate of the discrete least-squares

approximation with an optimal choice of the polynomial space satisfies

E

(
‖u− P̃n

mu‖2
)
≤ (ϕ+ 8L2) exp

{
−
(
τ2d ζ n

2

) 1
2d+1

}
, (100)

with τ as in (91) and ζ as in (98).

Proof. The first step to characterize the optimal convergence rate with respect to n is to impose a relation

between n, ζ, r andm to have a stable least-squares approximation. In the case of polynomial approximation,

the relation (29) holds choosing the multi-index set Λ such that

m =

⌊
ζ

r + 1

n

lnn

⌋ 1
2

. (101)

Therefore, the constraint (101) prescribes how to enlarge the dimension of the polynomial space as n increases,

to ensure stability and optimality of the discrete least-squares projection thanks to (30). The value of r can

be chosen optimally, and we will pursue this strategy in the following. Replacing m with (101) in the right

hand side of (93) we have

‖u− Pmu‖2 ≤ φ exp

{
−τ
(

ζn

(r + 1) lnn

) 1
2d

}
≤ φ exp

{
−τ
(

ζn

2r lnn

) 1
2d

}
, for r > 1. (102)

Since we embedded the stability condition (29) as a constraint, then we can apply (82) and use (102) to

bound the error on the right hand side, obtaining

E

(
‖u− P̃n

mu‖2
)
≤ ϕe−τ( ζn

2r lnn )
1
2d

+ 8L2 e−r lnn. (103)

Notice the factor r lnn in both the exponents of (103). Now we can choose r = r(n, d) so that the exponents

of the two exponential terms in (103) are equal, i.e.,

r =
1

lnn

(
τ2d ζ n

2

) 1
2d+1

. (104)

Finally, substituting the expression (104) of r in (103), we obtain the convergence rate (100) optimized with

respect to r.

Looking at (100) we observe that:

� the error converges to zero sub-exponentially as exp{−αn 1
2d+1 } with α := (dg/e)

2d
2d+1 (ζ/2)

1
2d+1 ,

� the dimension d appears in α in favor of the convergence, and in the exponent of n
1

2d+1 which slows

down the convergence,

� The error of the best m-term approximation converges to zero with the rate exp
{
− τm

1
d

}
(see (93)),

whereas the error of the random discrete projection converges to zero with the rate exp
{
− αn

1
2d+1

}
,

with n ∼ m2.
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6 Numerical experiments

In this section we present some numerical examples that confirm the theoretical findings presented in Sec-

tions 2–5. In particular, we check that the convergence rate (100) is sharp when the number of sampling

points n is chosen as

n =
2τ

ζ

(
m
)
(
2+ 1

d

)

, (105)

that comes from the optimal choice of r prescribed by (104). To investigate the sensitivity with respect to

ζ, we denote again ζ = ζ(δ), for different choices of δ such that ζ = 0.15 or ζ = 0.25.

We consider the elliptic model (9) on the bounded domain D ⊂ R
2 shown in Fig. 2, with the random

diffusion coefficient a defined in (106) by means of the geometry displayed in Fig. 2. The eight inclusions

D1, . . . , D8 are circles with radius equal to 0.13, and are centered in the points x = (0.5, 0.5 ± 0.3), x =

(0.5 ± 0.3, 0.5) and x = (0.5 ± 0.3, 0.5 ± 0.3). The 0.2-by-0.2 inner square D0 lies in the center of D. The

forcing term f is equal to 100 in D0 and zero in D \ D0. The random diffusion coefficient depends on a

multivariate uniform random variable Y ∼ U([−1, 1]d), and is defined as

a(x,Y) =




0.395

(
Yi + 1

)
+ 0.01, x ∈ Di, i = 1, . . . , 8,

1, x ∈ D0,
(106)

such that each random variable is associated with an inclusion. The range of variation of the coefficient in

each inclusion is therefore [0.01, 0.8]. This test case has been used in [12], and allows a direct comparison

of our results with those obtained when employing the classical Stochastic Galerkin method. The mono-

dimensional convergence rate g = 1.9 of this example has been estimated in [9, Fig.7-left]. Notice that the

coefficient a in (106) satisfies Assumption 11.

We consider the following Quantity of Interest, related to the solution of the elliptic model (9):

QOI1(u(Y)) =
1

|D|

∫

D

u(x,Y) dx,

and present the results obtained when approximating this function on TD polynomial spaces. Similar results

hold also with other Quantities of Interest, e.g.

QOI2(u(Y)) =
1

|Ω|

∫

Ω

∣∣∣∇u(x,Y)
∣∣∣
2

dx, QOI3(u(Y)) =
1

|Ω0|

∫

Ω0

u(x,Y) dx,

which will not be shown here. We consider three cases with d = 2, d = 4, d = 8 independent random

variables. In the case d = 2, the first random variable describes the diffusion coefficient in the four inclusions

at the top, bottom, left, right of the center square D0. The second random variable describes the diffusion

coefficient in the other four inclusions. In the case d = 4, each one of the four random variables is associated

with two opposite inclusions with respect to the center of the domain. When d = 8 each one of the random

variables is associated with a different inclusion.

The Figs. 3, 4, 5 show the convergence plots obtained by the discrete least-squares approximation using

a number of samples as in (105) with two different choices of ζ (i.e. ζ = 0.15 and ζ = 0.25). The theoretical

bound (100) is also shown as well as the reference slope n−1/2 of a standard Monte Carlo method. In the

same figures we also show the convergence plots obtained when using a simple linear rule n = 3m or n = 10m.

The approximation error of the discrete least-squares projection

is approximated as

E

(
‖QOI1(u)− P̃n

mQOI1(u)‖
)
≈ E

(
‖QOI1(u)− P̃n

mQOI1(u)‖cv
)
,
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Figure 2: Mesh discretization and geometries of the inclusions. The domain D is the unitary square. The

inner square is named D0, the eight circular inclusions are D1, . . . , D8.
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dash line is the Monte Carlo convergence rate n−1/2.
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Figure 4: Error E(‖u− P̃n
mu‖2) in the case d = 4. Different relations between the number of samples n and

the dimension of the polynomial space m are tested. The black dash line is the bound (100). The magenta

dash line is the Monte Carlo convergence rate n−1/2.
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Figure 5: Error E(‖u− P̃n
mu‖2) in the case d = 8. Different relations between the number of samples n and

the dimension of the polynomial space m are tested. The black dash line is the bound (100). The magenta

dash line is the Monte Carlo convergence rate n−1/2.
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employing the cross-validation procedure described in [7, Section 4], where the expectation in the previ-

ous formula has been replaced by a sample average of the discrete least-squares approximation using 1000

independent samples of size n.

The results presented in Figs. 3, 4, 5 show that the bound (100) proposed predicts very sharply the error

E(‖u− P̃n
mu‖2), when the number of sampling points n is chosen according to (105). The bound accurately

describes the effect of the dimension d as well, in the cases of moderately high dimensions.

On the other hand, a faster convergence of the error E(‖u− P̃n
mu‖2) with respect to n is observed, with

the linear scaling n ∼ m that yields a lower number of sampling points than (105), for a given set Λ. The

efficiency of the linear scaling has been pointed out in [8], and its importance is motivated by the impossibility

to employ the number of sampling points (105) when the dimension d is large. Fig. 5 shows that already

when d = 8, the exponential gain of the bound (100) with respect to a Monte Carlo rate becomes perceivable

only with an astronomical number of samples, making the choice (105) less attractive for the applications,

whereas a linear scaling, even with n = 3m leads to very good results.

7 Conclusion

In this work the approximation technique based on least squares with random evaluations has been analyzed.

The condition between the number of sampling points and the dimension of the polynomial space, which is

necessary to achieve stability and optimality, has been extended to any lower set of multi-indices identifying

the polynomial space, in any dimension of the parameter set, and with the uniform and Chebyshev densities.

When the density is uniform, this condition requires the number of sampling points to scale as the square

of the dimension of the polynomial space.

Afterwards, this technique has been applied to a class of “inclusion-type” elliptic PDE models with

stochastic coefficients, and an exponential convergence rate in expectation has been derived. This estimate

clarifies the dependence of the convergence rate on the number of sampling points and on the dimension

of the parameter set. Moreover, this estimate establishes a relation between the convergence rate of the

least-squares approximation with random evaluations and the convergence rate of the best m-term “exact”

L2 projection.

The numerical tests presented show that the proposed estimate is sharp, when the number of sampling

points is chosen according to the condition that ensures stability and optimality. In addition, these results

show that, in the aforementioned model class, a linear scaling of the number of sampling points with respect

to the dimension seems to be sufficient to ensure the stability of the discrete projection, thus leading to

faster convergence rates, although we have no rigourous explaination of this fact.
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