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Abstract

We analyse the problem of approximating a multivariate function by dis-
crete least-squares projection on a polynomial space starting from random,
noise-free observations. An area of possible application of such technique
is Uncertainty Quantification (UQ) for computational models.

We prove an optimal convergence estimate, up to a logarithmic fac-
tor, in the monovariate case, when the observation points are sampled in
a bounded domain from a probability density function bounded away from
zero, provided the number of samples scales quadratically with the dimen-
sion of the polynomial space.

Several numerical tests are presented both in the monovariate and mul-
tivariate case, confirming our theoretical estimates. The numerical tests
also clarify how the convergence rate depends on the number of sampling
points, on the polynomial degree, and on the smoothness of the target
function.

1 Introduction

Given a smooth multivariate function ¢ = ¢(Y},...,Yy), where Y},..., Y are
random variables, we consider in this work the classical problem of approximat-
ing ¢ in a multivariate polynomial space, starting from noise-free observations
of ¢ on random samples of Y7,..., Y.



The motivation for such work come from the field of Uncertainty Quantifica-
tion (UQ) in computational models [25, 30], where often uncertainty is present
in many input parameters entering the mathematical model used to describe
some problem in engineering, physics, biology, etc. and can be characterized in
probabilistic terms by considering the input parameters as random variables.
The goal of the analysis is typically to compute statistics of the solution to the
mathematical model or some output quantities of interest.

It is assumed here that, for each value of the input parameters, the solu-
tion or output quantity can be accessed without errors. This is, of course, an
idealization as deterministic approximation-type errors will typically be present
whenever the model involves differential or integral operators. Also, round-off
errors will be present as well. However, these sources of errors are quite differ-
ent in nature from “measurement errors” appearing in an experimental setting,
which are usually modeled as random and statistically independent. In the con-
text of UQ in computational models, it is therefore reasonable to assume that
the approximation errors can be kept under control by some careful a-posteriori
error estimation and mesh refinement (see e.g. [1, 5] and references therein).

A technique that has received considerable attention in the last few years is
the so called generalized Polynomial Chaos expansion (gPC); see e.g. [20, 29]. It
consists in expanding the solution in polynomials of the input random variables.
The use of global polynomial spaces is sound in many situations, where the
input/output (parameters-to-solution) map is smooth. This is the case, for
instance, in elliptic PDEs with random diffusion coefficient [2, 13, 14, 6].

Once a truncated gPC expansion has been computed by some means, it can
be used later for inexpensive computations of solution statistics or as a reduced
model of the input/output map for “global sensitivity analysis” [15, 28], or
optimization under uncertainty [19].

As a tool to build such a gPC approximation, we consider in this work an
L? projection, starting from a random sample of the input parameters. Such
an idea has already been proposed in the framework of UQ and has been given
several names: Point Collocation [22, 17, 26], non intrusive gPC [25, 18]regression
[9, 10]. As a practical recipe, the number of samples drawn from the input
distribution is typically taken to be 2 to 3 times the dimension of the polynomial
space.

The proposed approach falls within the classical topic of polynomial regres-
sion estimation, i.e. minimization of the empirical L? risk within the given
polynomial space. We insist, however, that unlike the traditional statistical
approach, here we consider noise-free data evaluated in random points.

A relevant question is whether such a minimizer is “optimal” in the sense
that it achieves an approximation of the (unknown) function that is equivalent
to the “best approximation” in the polynomial space.

A lot of literature is available on regression estimations in the noisy case.
We recall here the book [21] that provides a general framework for analysis
of regression estimators with random design, as well as the works [8, 7] that



show optimality of the noisy regression when using piecewise constant or linear
functions. The aforementioned works give estimates on the expected L? error
under the assumption that the function is bounded in L* by some a priori fixed
constant. Other works in the field of distribution-free regression with noise have
derived convergence rates for the L? risk which are optimal up to logarithmic
factors, e.g. [23, 24, 4].

The L2-error in expectation is bounded by two terms: the (purely determin-
istic) best approximation error of the (unknown) function in the approximating
space, and the statistical error due to the random sampling and the noise in the
observations. The latter scales as 1/v/M if M is the number of samples. In
the aforementioned works, the statistical error does not vanish in the noise-free
setting.

Hence, the main question that we address in this paper: in the noise-free
polynomial approximation based on random samples, does the randomness of
the evaluation points introduce a statistical error O(1/v/M) or not?

We study theoretically the problem for a monovariate function f(Y') where
Y is a bounded random variable with probability density function bounded away
from zero. Denoting by #A the dimension of the polynomial space, we prove
that the L? projection on a polynomial space with random samples leads to
quasi optimal convergence rates (up to logarithmic factors) provided that the
number of samples scales as M ~ #A2.

Similar results have been derived very recently in [12]. However, the proof
proposed therein uses different techniques than ours.

We also show, in the general multivariate setting, the relation between the
optimality of the projection on random points and the condition number of the
corresponding design matrix, when using an orthonormal basis.

We present several numerical tests, both on monovariate and multivariate
functions, that clearly show that a choice M ~ #A? leads to a stable regres-
sion problem and an optimal approximation, whereas M ~ #A leads to an ill
conditioned problem when #A is large and, eventually, to a divergent approxi-
mation. Moreover, our numerical tests show some significant differences between
the one-dimensional and the multidimensional case.

The outline of the paper is the following: Section 2 introduces the approxima-
tion problem as an L? projection on a space of polynomials in N underlying vari-
ables; some common choices of polynomial spaces are described in Section 2.1.
The optimality of the random L? projection, in terms of a best approximation
constant, is shown in Section 2.2; the asymptotic behaviour of this best approx-
imation constant, as the number of random evaluation points goes to infinity, is
analyzed in Section 2.3. Next, Section 3 restricts the study to polynomial spaces
in one variable, with uniformly distributed random points; in this case, a bound
on the best approximation constant is derived and used to prove Theorem 2,
which given the maximal polynomial degree provides a rule for the number of
random points that makes the discrete random L? projection nearly optimal (up
to a logarithmic factor) with any prescribed confidence level. Section 4 gives the



algebraic formulation of the random projection problem, in view of its numerical
discretization. In particular, Section 4.1 provides an analysis of how the condi-
tion number of the design matrix depends on the best approximation constant
of the random L? projector. Finally, Section 5 complements the analysis in Sec-
tions 2—4 with numerical tests, both in the one-dimensional case and in higher
dimensions.

2 Discrete L? projection with random points

Let Y = [Y1,...,Yn] be a vector of N random variables, taking values in a
bounded set I' € RY. We assume that I has a tensor structure ' = 'y x - - - x 'y
and that the random vector Y has a probability density function p: ' — R™.

We consider a random variable Z = ¢(Y), where ¢ : I' — R is assumed to be
a smooth function. The goal of the analysis is to compute statistical moments
of Z. This will be achieved by first constructing a reduced model (approximate
response function); i.e. we approximate the function ¢(Y1,...,Yy) by a suitable
multivariate polynomial ¢ (Y7,...,Yy). We then compute statistical moments
using the approximate function ¢,.

We denote by

B(Z):= [ o(¥)o(X)aX

the expected value of the random variable Z and by

P(A) == /A p(Y)dY

the probability of the event A € B(T'), where B(T') is the Borel o-algebra with
respect to the measure p(Y)dY. Throughout the paper we also assume that

Assumption 1. 0 < ppin < p(¥) < prmaz < 00, Yy € T

We introduce the space Lz of square integrable functions f : I' = R, endowed

with the norm
1/2
1fllrz = </f2(Y)p(Y)dY) .
I

Observe that under Assumption 1, the norm || - ||, is equivalent to the
;)

standard L? norm (with Lebesgue measure), i.e.

HUHL2(F)
—= < Pmax Vv e L?;

VPmin <

min >
”U||L2(F)

Let p = (p1,...,pn) be a multi-index and A € NV an index set which is
monotonous in the following sense:



Property 1 (Monotonicity of A). Consider two multi-indices p’, p"” € NV such
that pl' < pl,¥n =1,...,N. The multi-index set A is monotonous if the fol-
lowing holds:

peAN=p’'cA

We denote by P (T") the multivariate polynomial space

N
PA(T) = span{H ybr, with p € A} , (2.1)

n=1

and by #A = dim(P,) the dimension of the polynomial space, which corresponds
to the cardinality of the index set A. For convenience, the set A can be arranged
in lexicographical order:

Property 2 (Lexicographical order). Given p’,p” € A,

PP = >0 Gh<pl) AW, =pl Yn<h).

According to this order, we can let p’ denote the jth multi-index of A.
Sometimes we refer to the elements of A with the generic multi-index p, rather
than listing them by the lexicographical index.

Since the monomial basis in (2.1) is very ill-conditioned, in practice we use an
orthonormal polynomial basis. A typical choice is to take orthogonal polynomials
with respect to the measure p(Y)dY.

We introduce an N-dimensional orthonormal polynomial basis {lj};@1 of Py
with respect to the weighted inner product

()i = [ u(Y)(Y)p(¥)aY.

ie. (L) rz = 0ij. Assumption 1 guarantees that the orthonormal basis is
complete in L% when A = N¥,

In the case where the density factorizes as p(Y) = Hfj:l pn(Yy) the basis can
be constructed by tensorizing 1D orthogonal polynomials with respect to each
weight p, separately. Given n, let {(,O;L()}] be the orthogonal polynomials with
respect to p,. Picking the jth (according to Property 2) multi-index p? € A,
the corresponding jth multidimensional basis function is given by

N
lj(Y) = H @ZgL(Yn)- (2.2)
n=1

Thus, using the basis function provided by (2.2), the definition (2.1) of Pj be-
comes

PA(T) = span{l,, j = 1,...,#A}. (2.3)



Observe that in general (2.1) and (2.3) are equivalent only if the index set A
satisfies the Monotonicity Property 1.

To construct the polynomial approximation ¢, we first sample the exact
function ¢ in M > #A independent points yi,...,yu, i.e. y; are independent
identically distributed (i.i.d.) random vectors with probability density function
p. Then, we compute a discrete least square approximation of the values ¢(y;)
in the polynomial space Py, i.e.,

| M
ox = 06 = argmin - 3~ (#(yi) — v(y)’. (2.4)

UE]P’A(F) i=1

We will use the superscript (or subscript) w to denote a quantity that depends
on the random sample y1, ...,y (and therefore is random itself).
We now introduce the random discrete inner product

1 M
(’LL, U)M,w = M ; U(Yi)U(Yi)a (2'5)

and the corresponding norm ||u||pr. = (u,u)}\fw. Observe that this is actually

a norm in P if for all v € Py,
v(y;) =0, fori=1,.... M o v =0, (2.6)

which by Assumption 1 happens with probability one provided that M is large
enough. Then, the discrete least square problem can be written equivalently as

find Y90 € PAT) s.t. (1576, 0)arw = (6, 0)arw, Vo € PA(T).

2.1 Common multivariate polynomial spaces

Some of the most common choices of function spaces are, Tensor Product, Total
Degree, and Hyperbolic Cross, which are defined by the index sets below. We
index the set A by the subscript w denoting the maximum polynomial degree
used:

Tensor Product (TP), Ay = {p e NV max  pn < W}, (2.7)
N

Total Degree (TD), Ay = {p e NV an < W}, (2.8)
n=1

N
Hyperbolic Cross (HC), A, = {p c NV H(Pn +1)<w+ 1}. (2.9)
n=1

These spaces are isotropic and the maximum polynomial degree w is the same
in all spatial dimensions. Anisotropic versions could be considered as well [3].



The dimensions of TP and TD spaces are

#TP(w,N) = (w+ 1), (2.10)
#TD(w, N) = (N;W) (2.11)

The dimension of the HC space is harder to quantify, so we report its exact
dimension #HC(w, N) in Fig. 1, computed for some values of w and N. A
sharp upper bound, that holds when N = 2, is given by

#HC(w,2) < {(W +1)- (1 +log(w+ 1))J . (2.12)

[l —e—N=2

Fig. 1: Dimension of the HC space, N = 2,5, 10, 15, 20, 50, 100.

2 . . . 2 . .
2.2 L7 optimality of the random discrete L” projection

Let us first introduce the following quantity

vI1%
C“(M,A):=  sup .

Wl (2.13)
vEPA \{v=0} ”UH?\/[7UJ

Notice that this quantity depends on the random sample and is therefore a
random variable. The following result holds:

Proposition 1. With C¥(M,A) defined as in (2.13), it holds that

6~ Tyl < (1+ VEOLA) dnf o=l (214)

ePA(T)



Proof. Let v be an arbitrary polynomial in Py. Then

A A
I — 1" dllrz < Mo — vllzz + lv — My "¢l 1z

A7
lo = 11379l

— ¢ —vllzz +

2
A’
<l¢—vlz+ sup v — I  dll e
vePp\{v=0} V][ 1,0

= o = vllz3 + VCOL A ><||¢> ~vl3re — llé - HWH%W)
< (14 VL)) 16 = vl

The thesis follows from the arbitrariness of v. O

1
2

Clearly, the convergence property of the random discrete projection is strictly
related to the properties of the quantity C* (M, A). In Section 3 we will charac-
terize this quantity in the particular case of a one dimensional problem (N = 1)
and the uniform distribution. The extension to multivariate functions is an
ongoing work.

2.3 Asymptotic limit of C*(M,A)

Here we show that when M — oo, while A is kept fixed, the limit of C¥ (M, A) is

almost surely 1. For the purpose of this analysis we also introduce the constant
_ 2

CA = sup ||SOHgOO

pEPA H‘PH L2

< +o0. (2.15)

Remark 1. Given any A, the constant 5'1\ s always finite in any dimension N
since the space Py is finite dimensional and the domain is bounded. For example
in 1D, any v € Py(—1,1) can be expanded in Legendre series v = Z;'V:o ap;
with ||v]|2, = >0 a]z. Moreover, assuming a uniform distribution p on the
interval [—1,1],

w w

o1

wllzoe < laglllsllioe <D lasly/i+ 3
§=0 §=0

<\ et 2 (7 5) = 75 e = o Dl

w
J=0 J=0

S0 5/\ <w+1. One can tensorize the 1D case, to show that C~’A 1s bounded with
respect to the mazimum polynomial degree w also in higher dimensions.



We recall that a sequence of functions {f,}, where f, : S — R converges
uniformly to f if and only if

lim sup |fn(s) — f(s)| =0.

n—oo seS

We denote the uniform convergence by f, unif f. We also recall the definition

of an equicontinuous sequence of functions:

Definition 1. Consider the usual e-§ definition of continuity for a real function
f in the point xy:

Ve>0 30 =0d(xg,f) >0 Vaedom(f):|r—xzo| <0 = |f(x)— f(xo)] <e.
(2.16)
We say that the family of continuous functions F' = {f;}; is

e cquicontinuous if 6 in (2.16) is independent of f;,
o uniformly equicontinuous if 6 in (2.16) is independent of f; and xy.

Now consider the set of functions Py = {v € P, : ”’UHL% =1} C L3. For
any outcome {y;}32; of the random variables {Y;}72, we define the sequence
{Tmw}nr of functionals, whose elements are defined as

2
I -Mar Py > RT. (2.17)

TM,UJ(') = 2
2,

Proposition 2. For any M and A the function Tar, in (2.17) is Lipschitz

continuous over Py.

Proof. Consider the constant Cy defined in (2.15). Clearly ||[vz~ < éAA for all
v € Py, so they are uniformly bounded. Taking arbitrary v; and ve in Py,

M

> [or(w)? = vaw)?]

7=1

<[~

TMw(V1) — TM,W(UQ)‘ <

I
<[ -

(2() + vaw)) (va() = valsy))|

1

<
I

M
1
< = (otllz + uzllz=) D o) = va(us)|
j=1
<20 [Joy = valz < 2C% [|vg — vl 12 (2.18)

O]



From Proposition 2 it follows immediately that the sequence {7as .} is uni-
formly equicontinuous. Moreover, from the Strong Law of Large Numbers, since
E[v(y;)?] < oo, it follows that

M +oo
loli3re = 07 Z 2R ()2 = o2,

almost surely; hence the sequence {7y} is also converging to 1 pointwise. We
have then the following result:

Proposition 3. Under the assumptions of Proposition 2 it holds

unif.

TMw(v) — 1, Yove P, a.s. (2.19)

Proof. For any outcome w, the sequence {TMw} 37— is (uniformly) equicontinu-

ous on ]P’A and converges almost surely on IP’A, therefore it converges uniformly
in Py (see e.g. [27, Theorem 7.25)). O

Theorem 1. Let C¥(M, A) be the constant defined in (2.13). Then

lim C¥(M,A)=1, a.s.
M—o0

Proof. We can extend the definition of 7/, in (2.17) to Pa \ {v = 0} using the
same formula. Then we rewrite the following supremum as

. [l : 0]
lim sup 5 1| = lim sup 5 — 1],
Moo 5 | [[v]] M=o yepy\ o=} | V172
and, by the continuity of Tas,(v) in Py,
unif.
TmMw(v) — 1, VovePy\{v=0}, (2.20)

from which we also deduce that

(TM,W(U))_l wik vy e Py \ {v=0).

But this implies

lim sup
M—+00 yep,\{v=0}

0172
Pl = ’

V113,

which is the thesis. O

10



3 Error Analysis in 1D for the Uniform Distribution

We restrict the analysis to the case N = 1 and consider the polynomial space
Py = span{y?, p=0,...,w}. For convenience, we rename the polynomial space
as Py, and the random discrete projector as IT,;*. The main result of this section
is Theorem 2. Its proof is postponed until the end of the section as we will need
several lemmas and intermediate results.

Theorem 2. For any o € (0,1), under the condition

M
3log((M +1)/a)

> 4/3w? (3.1)

holds

W,w M+1 .
P(\\qﬁ—ﬂM’ llzz < <l+m> inf H¢—vHLoo> >1—a. (3.2)

The previous theorem states that, with confidence level 1 — «, the discrete
projection with random points is (nearly) optimal up to a logarithmic factor in
M, provided M is large enough and satisfies the condition (3.1).

Now we proceed to derive some probabilistic results on the distribution of
order statistics for the standard uniform distribution.

3.1 Useful results on order statistics of the uniform distribution

To study order statistics of the uniform distribution it is more convenient to
consider standard uniform random variables in [0, 1] instead of [—1, 1]. Therefore,
we introduce a linear transformation 7 : [—1,1] — [0, 1] and define a new set of
ii.d. random variables

U, =T(Y,)=—"-——, i=1,...,M.

Thus we continue working with a sample of M independent random variables
from the standard uniform parent distribution,

Ui, ..., Uy "= 0(0,1). (3.3)
We know that the order statistics Uy < Ugg) < ... < Uy are
U(k)NBeta(k,M—i—l—k:), k=1,...,M,

where we recall that a Beta(k, M + 1 — k) random variable has distribution

1) = G el

11



Let us define =) = U(1)’ E(M) =1- U(M), and =) = U(k+1) — U(k) for
k=1,...,M—1. It can be shown that =, ~ Beta(1, M) for each k = 0,..., M;
see [16, page 14] where a more general result on the distribution of U; — Uj is
proved, namely

U; — U ~Beta(j —i,M —j+i+1), 1<i<j<M.

In particular, the distribution is independent of the values ¢ and j, and de-
pends only on their difference j — i. The following result gives a bound on the
probability distribution of maxy—o . ar E(k)-

Lemma 1. For any a € (0,1) and M € N4

= log((M+1)/a)
= < a.
P(k max (k) > <«

=0,...,M
M+1 1 M+1
Proof. Trivially, if 0 < a < + , then o8 (( )/a) >1 and
exp(M) M

P = >1]1 =0 .
<k%{??fM (k) ) <«

M+1
Consider now + < a < 1. Rewriting the random event
exp(M)
M
= 5} _ {E 5},
{kgg{%?fM (k) = U & >

we have, for 0 < d < 1,

M
P( max, =g >5) =P(J {=a) > 6})

k=0
M
< ZIP’(E(k) > 5) —(M+1)1-0M.  (34)
k=0
Therefore
log((M + 1)/a) log((M +1)/a)\ "
_ og « og Q
= < —
M log((M+1)/a)
og(( /o
4 ((1 RECES >>

< (M + 1) e los((MFD/e) —

O]

12



3.2 Relation between | - |[z2 and |- [[sw on Py([—1,1])

Here we go back to the uniform distribution in I' = [—1,1]. We are interested in
finding an inequality between the continuous norm || - || 1z and the discrete norm

| |40, i-e. finding a suitable C'};* such that
lollZ; < O3 Ivllire, Vo€ Pu(D). (3.5)

This will be the random constant appearing in Proposition 1. We will also need
an inverse inequality for the derivative (see e.g. [11]),

Wl Vo€ Pu(D). (3.6)

H oy L2(r)

In this case C = V3, while in general C (") depends on the length of I". The
same inequality holds replacing L?(T") with L%.

The sampled points {y; }J]Vil are distinct almost surely. To each point y; we
associate an open interval I; satisfying the requirement that

M
(UI]-)mF:F. (3.7)

J=1

In other words, the family of intervals {I;}; is a (finite) covering of the domain
I". We order the points in increasing order

1<y <...<ym <1,

keeping the notation {y;}; it will be clear from the context if we refer to the
ordered points or to the originally sampled points.

In one dimension, it is easy to build a finite covering of mutually disjoint
intervals

Ij:<yj_ij_1,yj+ij), j=1,..., M, (3.8)
taking
’_1_y1‘7 ]:07
Ay; = |yj+12_yj|, j=1,...,.M—1, (3.9)
ll_yMlv ]:M

In general, the sets I; of this covering are not centered in the sample points. It
is useful to split each interval I ; n its left and right part,

I =Lin{yeR:y <y}, IF=Ln{yeR:y >y,

13



with measures |I;| = Ay;_; and |I]+] = Ayj, respectively.
We also define the random variable AY whose realizations are

Ay = j:T%?fM |1;]. (3.10)

The link between the random variable AY and the result given in the previ-
ous section is the following:

Lemma 2 (Corollary of Lemma 1). For any o € (0,1) and M € N

P<AY . 3log((M+1)/a)> cu

M
Proof. 1t is enough to notice that, for each realization (&g, ..., §,,) of the random
variables (5(0)7 .. ,E(M)), it holds
4] = Ay < 30
kﬁﬁﬁﬁk< y < 30,
and thus
P(AY >3)) <P = 0.
(AY > 30) < (k:r{)l?j.),(M (k) = )
O
We now define two events:
1 3log((M +1
EMZ{AYg _ } and EM:{Ayg og((M +1)/a)
4Cw? M
(3.11)

Observe that, taking M large enough, the probability of ¥y, can be made arbi-
trary close to 1. More precisely

Lemma 3. For any o € (0,1), under the condition

M

>4Cw?, (3.12)
3 log ((M + 1)/a)
the following inclusion holds
Y C Xw
and
PXy) >P(Xy)>1—a. (3.13)
Proof. Clearly, under (3.12)
AY < 3log((M +1)/«) Ay <
M 4Cw?2
and the inclusion Xj; C X is proved. The bound from below on the corre-
sponding probabilities is an immediate consequence of Lemma 2. ]

14



Now we are ready to formulate the main result of this subsection:
Theorem 3. Define on Xy the random variable

e __ MAY)2

bl ey 3.14
M _9AY Cw? (8:14)

Then, in Xy, it holds

2 9
o), < Ch

W3, Vo €PR(D). (3.15)
Moreover, under condition (3.12), in ¥y C Xy it holds
Cy <3log((M +1)/a).

Proof. For convenience the proof uses the standard L?(I') norm instead of the
weighted norm L%. Remember that in this case || - |2, = 3| - ||i2(r). To lighten
P

the notation we also introduce on each interval I;—L the short notation

R R
Il = ey

Take v € Py (T") arbitrarily. The following standard inequalities are used in
the sequel:

2 =

v(y)® — v(yj)Ql

)
JRCRIGS

Yi

Yy
‘/2wawaus
Y

J

2wl o'l Vy €I},

, 3 (3.16)
2ol o'l y el
Integrating (3.16) over I ; and I;r yields
/I v(y)’dy —v(y;)*|1; | = /I (v(y)* = v(y;)?) dy
j j
< /1— ‘v(y)2 - v(yj)Q(dy
j
<2115 ol I/l (317)
and similarly for Ij'."
|, 0Py = ol P < 210 ol 1 (315)
i

15



Summing (3.17) and (3.18) we get

] Py = Ll < 2015 el 100y + 1 el 1)
J

< 2| vl vz, (3.19)

which implies

[ oy < 151 (o()? + 20, 101, (3.20)
Ij

Summing over all the intervals we have

M r
ol = /I v(y)*dy substitute (3.20)}
j=1"1 .

M M -
< lo(y)? +2) (1ol [, |using (3-10)}
j=1 j=1 )

M M -
< Ay Y oly;)? + 28y > elly o/l [definition of |- ar.|
j=1 j=1 )
M _
= MAY||v3r + 289 D ol 1V]I1, Cauchy-Schwarz’s ineq.}
j=1 )

< MAy|olfire + 28y ol 2y [0l 2y |using (3.6)]
< MAy|v|ir. + 28y Cw? [[v]F2 - (3.21)
Rearranging the terms in (3.21) we obtain
(1 =28y Cw2)|[ol[2ry < MAY|0]3 . (3.22)

The coefficient in the left hand side is non zero on 3, so we have proved (3.14)-
(3.15). If we now restrict to ¥ under condition (3.12), then from Lemma 3 we

have
3log((M +1)/a)

1
AY < — and AY <

- 4Cw?2 M
so that MAY/2
CyY = ———"— <3log((M+1)/a
N = e < 3lor((M 4 1)/a)
and this concludes the proof. ]

Remark 2. Theorem 3 states that on Xy, which is an event of probability at

least 1 — a, the discrete and continuous norms are equivalent up to a logarithmic

factor if condition (3.12) is fulfilled, which, roughly speaking corresponds to M
2

W,

16



3.3 Proof of Theorem 2

The proof of this theorem is merely a collection of results from Proposition 1,
Theorem 3, and Lemma 2.

Proof of Theorem 2. We consider the event 3 defined in (3.11). From Lemma 2
we know that under condition (3.1) the probability of this event is at least 1 —av.
From Theorem 3 it holds

||UH%3, < Cyi“lvl3re in Su

uniformly with respect to v € Py (T') and the constant C;* < 3log((M +1)/a)
uniformly in 3. We then apply Proposition 1 in s to conclude that

6 o1z < (14 /O ) iuf 16 vllm. Vo€ (D), Vo€

Since under condition (3.1) the probability of X, is at least 1 —«, this concludes
the proof. O

4 Algebraic Formulation

The value of #A depends on the particular polynomial space (TP, TD, HC,
...), the maximal polynomial degree used, w, and the dimension of the physical
space, N. The number of points M must satisfy the constraint

M > #A,

to have an overdetermined problem (more data than unknowns). We have shown
in Section 2 that. for monovariate functions. M should scale as M o w? to have
a stable discrete projection. As a general rule to choose M for multivariate
functions and arbitrary polynomial spaces we consider the formula

M = c (#A)*, (4.1)

where ¢ is a positive constant, and a > 1 a real number. We restrict our
numerical tests in Section 5 to 1 < o < 2.

Given the polynomial space, we define the design matrix D¥ € RM>#A_ The
element DY; contains the jth L%—orthonormal basis function /; evaluated in the
ith sample point y;, that is

[D%]ij = 1i(yi)- (4.2)

The discrete random projection H]/\\J’“’(b can be expressed in terms of the or-
thonormal basis {/;}; as

#A
My e(Y) =" a%1;(Y). (4.3)
j=1
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Then the algebraic problem to determine the unknown coefficients {x;"} can be
formulated as:

¥ = argmin || DYz — b*||2 (4.4)
zER#A

where b* € RM*X1 contains the evaluations of the target function ¢ in the M
sample points: b“(i) = ¢(y;). The Normal Equations allow us to rewrite the
rectangular system embedded in (4.4) as a square system:

(DY D* 2% = (D¥) T~ (4.5)

We use problem (4.4) to calculate the approximation error, computing its
solution z¥ by QR factorization. On the other hand, formulation (4.5) will
be useful to measure the ill-conditioning of the problem, through the condition
number of the matrix (D“)TD®. Alternatively, one can also solve (4.5) by
Cholesky factorization.

To evaluate the approximation error, we have considered a cross-validation
approach: a random set of 100 cross-validating points is chosen at the beginning,
and the corresponding design matrix D,, is computed. The evaluations of ¢ in
these points are stored in b.,. Then the cross-validated error in oo-norm is
defined as

||¢_H][\x/[’w¢||cv = HDCUJZW _bchoo- (46)

Note that || - ||cy is not a norm on the function space of ¢; we abuse the norm
notation in the figures with cross-validation errors below to emphasize the de-
pendence on ¢. To estimate the variability of (4.6) due to the random sampling
of the M collocation points, we have repeated the calculation over R independent
sets of points {y;f”“, j=1,...,M}, with £k = 1,..., R and we have computed
the average error

_ ZkRzl [ Devm“* — bew|oo

E., = , 4.7
= (47)
as well as the sample standard deviation by
1 & —\2
55 = 4| 71 2 (IDevt = beulloo = Fow) (48)
k=1
We also aim to analyze the condition number of (D*)T D%,
Omax ((Dw)TDw)
cond((D“’)TD‘”) = , (4.9)
Omin <(Dw)TDw>

where opax(:) and omin(-) are the maximum and minimum singular values.
Again, denoting by D“* the design matrix built with the k-th set {y}"’c }i, we
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estimate the mean condition number K over the R repetitions as

ZkRzl cond ((Dwk )TD"-’k>

K= 4.10
R Y ( )
and the standard deviation as
R 2
sk = 4|3 cond((Dwk)TD‘%> K. (4.11)
R—-1 —

4.1 The condition number of (D*)T D¥

In the rest of the section we show how the condition number of problem (4.5)
relates to some quantities that already appeared previously. All the contents of
this section hold for a generic polynomial space, in any dimension. Accordingly,
we refer to the polynomial space as Py.

In addition to the constant C¥(M, A) already introduced in (2.13), we define
the constant ¢ (M, A) as

2
el

0€EPA\{p=0} ||<P”%g '

(M, A) = (4.12)

Proposition 4. The spectral condition number (2-norm) of the matriz (D*)* D,
as defined in (4.9) is equal to

K((DW)TDw) = (M, A) C¥(M, A). (4.13)

Proof. Each realization of the random matrix (D*)? D is almost surely a sym-
metric and positive definite matrix under Assumption 1 on p.
The ith element of the vector Dz is

#A
A
[D%a]i = Li(ya)z§ = i d(ys)- (4.14)
j=1
By definition (2.5) of the random discrete inner product

M
10131 = 27 > (T otwn)) (415)

i=1
and by (4.3) and the L2-ortonormality of {l;}

#A

()72 = 3" (a%) = T3 0l17. (4.16)
j=1
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Using in sequence (4.16), (4.14) and (4.15), yields

w Aw
@) D) DA S o) MU
w w o Aw - Aw : :
()T e, ol

This shows that (4.17) is the Rayleigh quotient of the matrix (D¥)TD“. So
the largest and smallest eigenvalues of (D*)TD¥ correspond to ¢¥(M,A) and
C¥(M,A)~", respectively. Since (D¥)TD“ is symmetric positive definite, its
singular values are also eigenvalues. The conclusion follows from the definition
(4.9) of the condition number. O

Remark 3. In 1D and for the uniform distribution we can easily establish a
norms equivalence between |||y, , and |||, collecting the results of Theorem 3

P
and Remark 1. Namely, under the condition (3.1), with probability 1 — o we have

1

M+1
2 2 2
T e < vl < 3log ( - )Ilv!M,w,

from which we get the bound on the condition number

log((M +1)/a)
w41

cond((Dw)TDw) < ,in S (4.18)
where Yy is the event defined in (3.11) that has probability at least 1 — «.

However, we have observed numerically that the bound (4.18) is very pes-
simistic as under condition (3.1) the condition number seems to be uniformly
bounded with respect to M and w.

A direct consequence of Theorem 1 is that
cond((D“)TDw> Moo 1, as.

This is confirmed numerically. Fig. 2 shows the numerical results obtained for a
1D problem with an overkilling rule M = 100 #A*%, to simulate the asymptotic
case M 1 oo.

5 Numerical Results

We present an illustrative selection of results from an extensive set of numerical
tests. The aim is to seek the correct relation between the number of points
to sample M and the dimension of the polynomial space to have a stable and
accurate approximation. The following issues are addressed:

e how the condition number (4.9) depends on w, N, ¢, @ and the choice of
the polynomial space;
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Condition number, N=1, M=100-#A"

10°%- —e—c=100

Fig. 2: Condition number (4.9), N = 1, M = 100 #A*. The continuous, marked,
lines show the mean condition number (4.10) over 200 repetitions. The dashed
lines show the mean (4.10) plus one standard deviation (4.11). The scale on the
y-axis ranges from 10 = 1 to 10%%4 = 1.0965

e analogously, how the cross-validation error (4.6) behaves.

In the convergence plots presented in the rest of this section we show the
average error (4.7) and condition number (4.10) as well as their average plus one
standard deviation.

5.1 One dimensional case

We first investigate the dependence of the condition number (4.9) on the rule
(4.1) used to select the number M (w) of sampling points. Observe that in the
one dimensional case #A = w + 1.

As seen in Fig. 3, the condition number behaves differently depending on
the rule chosen. In Fig. 3-Left we report results obtained with the linear rule
M = c#A, corresponding to o« = 1 in (4.1). We tested several values for ¢
ranging from 2 to 20. All cases show an exponential growth of the condition
number with respect to w, with rates decreasing with increasing ¢ (as one would
expect). Using R = 10000 repetitions the observed average condition number
still shows a large variability. This is due to the large standard deviations of the
condition number, as indicated in the figure in dashed line.

Note that the range of w goes up to 25, so in this range the choice of the
largest c¢ yields a linear rule which uses more sample points than some of the
quadratic rules (shown in Fig. 3-Right).

In contrast to the exponential growth observed when using the linear rule,

21



the results using the quadratic rule exhibit a condition number which is approx-
imately constant for w ranging from 1 to 40. Fluctuations become smaller when
c increases. This behavior is consistent with the theoretical results in Section 3.

. Condition number, N=1, M=c-#A . Condition number, N=1, M=c #A’
10— ; ! 10 ! : : : ! : . .
—6—c=2 L, —6—c=0.5
1a|| —c=3 N - " ——c=1
107K N feNeng 107 i
c=5 s K c=15
—a—c=10 ! —8—c=2
10"2H —9—c=20 102k —6—c=3 |

M(0) M(w)

cond (D”
3

Fig. 3: Condition number (4.9), N = 1. The continuous, marked, lines show the
mean condition number (4.10) over 10000 repetitions. The dashed lines show
the mean (4.10) plus one standard deviation (4.11). Left: M = c¢#A. Right:
M = c#A2.

We now proceed to illustrate the convergence of the error for few functions
of varying regularity in Figs. 4-7.
We focus on three target functions: an exponential function

oY) =exp(Y), Y e[-1,1], (5.1)

a meromorphic function

1

“1iay Y e [-1,1], (5.2)

oY)
that is a function which is analytic provided that 8 € (—1,1), and a function

with lower regularity
P(Y) =Y. (5.3)

Fig. 4 shows the error computed as in (4.6), in approximating the exponential
function (5.1) with different choices of ¢ and « in the rule (4.1). The quadratic
rule (to the right) displays the same exponential, optimal, convergence with
respect to w independently of the constant ¢. The convergence is up to the
machine precision.

In contrast, the linear rule (on the left) displays a deterioration of the con-
vergence using small values of ¢. The deterioration is due to the ill-conditioning
of the matrix Df/[(w)D M(w) when w increases. As noted before, the largest value
of ¢ yields at least as many sample points as the quadratic rule with the smallest
value of ¢ in the shown range and the errors behave accordingly. Again the
fluctuations in the average error decrease with increasing c.
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Error ¢(Y)=exp(Y), N=1, M=c#A Error ¢(Y)=exp(Y), N=1, M=c #A?
T T T T T T T T T T T

M)
-T2 |
=

|[—e—c=2

107 °H
—k—c=3
c=5

1074l —=—c=10 - 5

——c=20 S99 0

: | 1 f 1 1

1 5 10 15 20 25

Fig. 4: Error (4.6) for the function (5.1). The continuous marked lines show the
mean error (4.7) over 10000 repetitions. The dashed lines show the mean (4.7)
plus one standard deviation (4.8). Left: M = c#A. Right: M = c#A2.

The use of the meromorphic function (5.2) with 5 = 0.5 (Fig. 5) and 5 = 0.9
(Fig. 6) yields analogous error graphs, but with a slower convergence rate.

Error ¢(Y)=1/(1+0.5Y), N=1, M=c#A Error ¢(Y)=1/(1+0.5Y), N=1, M=c #A?
T T T T T T T T T T T T T

——c=2
—*—c=3
1070 c=5
—&—c=10
14| —9—c=20 1

: i i i i
1 5 10 15 20 25

Fig. 5: Error (4.6) for the function (5.2) with 5 = 0.5. The continuous marked
lines show the mean error (4.7) over 10000 repetitions. The dashed lines show
the mean (4.7) plus one standard deviation (4.8). Left: M = c#A. Right:
M = c#A>.

Unlike the function (5.2), which is analytic in [—1, 1], the function (5.3) is only
in C?([-1,1]), but not in C3([—1,1]). This decreased regularity manifests in the
slower decay of the approximation error in Fig. 7. Note that the dependence of
the error on the polynomial degree w is displayed in log-log scale, so that the
error no longer decreases exponentially with respect to w.

When taking the number of sample points according to the quadratic rule
(Fig. 7-Right), the error decreases like w—3, and in this range of w the error
shows no tendency to blow up for any of the studied values of c.

On the other hand, using the linear rule (Fig. 7-Left) yields a deterioration:
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2
T

T T T
7

Error ¢(Y)=1/(1+0.9Y), N=1, M=c#A Error ¢(Y)=1/(1+0.9Y), N=1, M=c#A
T T T T

ol

]—[M(L«))
W
3
T

[~

—e—c=2
101 —H—c=3
—v—c=5
—=—c=10
1071 —6—c=20
1 5 10 15 20 25

Fig. 6: Error (4.6) for the function (5.2) with 5 = 0.9. The continuous marked
lines show the mean error (4.7) over 10000 repetitions. The dashed lines show
the mean (4.7) plus one standard deviation (4.8). Left: M = c#A. Right:
M = c#A2.

the critical w, above which the error starts to grow, increases with increasing c.

Note, in particular, that sooner or later the error starts to blow up for all
shown constants. This is a clear indication that the linear rule does not lead to
a stable and convergent approximation.

Error ¢(Y):IY|3, N=1, M=c#A Error d)(Y):IYI}, N=1, M=c #A®

— slope -2,
0> == slope -3|

: 9
w=15 w=20w=25

Fig. 7: Error (4.6) for the function (5.3). The continuous marked lines show the
mean error (4.7) over 10000 repetitions. The dashed lines show the mean (4.7)
plus one standard deviation (4.8). Left: M = c#A. Right: M = c#A2.

From a practical point of view, we are mainly interested in the error as a
function of the computational work, not the polynomial degree itself. Fig. 8
shows how the error depends on the total number of sampling points, when we
consider the function (5.2) with 8 = 0.5. Note that Fig. 8 shows the same errors
as Fig. 5 but with M instead of w on abscissas.

In Fig. 8-Left we show the linear case: the error decays exponentially with
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increasing M in an initial phase, until the error starts to deteriorate. The con-
vergence is faster for small values of ¢, but the deterioration also happens earlier,
which prevents higher accuracies.

In Fig. 8-Right we show the quadratic case. In contrast to the linear case the
convergence becomes subexponential with respect to M. On the other hand, all
choices of ¢ > 1 avoid the deterioration of the errors that we see using the linear
rule, and the approximation remains stable and convergent. Fig. 9 compares
the convergence of the error obtained with the linear and quadratic rules, with
respect to M.

We remark that, even though the error deteriorates for high w when using
the linear rule with a small ¢, we can still obtain an accuracy that suffices in
many applications.

Error ¢ (Y)=1/(1+0.5Y), N=1, M=c #A Error ¢(Y)=1/(1+0.5Y), N=1, M=c #A®
1o L —o—c=2 || 10° 4 —e—c=0.5}
—h—c=3 g —h—c=1
c=5 y c=15
107 —=—c=10|| 0 —&—c=2 ||
——c=20

——c=3

" ; : WA e et g0 =040~
0 200 400 0 500 1000 2000 3000 4000 5000
M M

Fig. 8: Dependence of the error (4.6) on the number of sample points M. The
function is (5.2) with 8 = 0.5. The continuous marked lines show the mean
error (4.7) over 10000 repetitions. The dashed lines show the mean (4.7) plus
one standard deviation (4.8). Left: M = c#A. Right: M = c#A2.

The plots in Fig. 8 show how the convergence speed is affected by the ratio
between M and w. The convergence is fastest with the lowest constant ¢ = M /w
up to a certain point when blow up occurs.

A lower number of repetitions only turns out in an amplified variance in the
results. In view of the multiD section, where we choose R = 100, we report also
in Fig. 10 the same graph of Fig. 3-Right, but with R = 200.

5.2 Multidimensional case

We now proceed to the multidimensional case, where we have an increased free-
dom to choose the space Py (I'). We will restrict our examples to isotropic
versions of the TP, TD and HC spaces mentioned above. In this section we
choose R = 100 repetitions to estimate the variability of the error and condition
number. In the linear case, the values assumed by ¢ are 1.1,1.25,2,5,20. In the
multidimensional case a constant c slightly larger than 1 is enough to have a
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Condition number, N=1, M=c #A’
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Error ¢(Y)=1/(1+0.5Y), N=1, M=c #A* 107 T T T
T T T T T T T T c=0.5
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Fig. 10: Condition number (4.9), N = 1.
The continuous, marked, lines show the
mean condition number (4.10) over 200
repetitions. The dashed lines show the

mean (4.10) plus one standard deviation
(4.11). M = c#A2%.

Fig. 9: Dependence of the error (4.6)
on the number of sample points M. Se-
lected data from Fig. 8 corresponding
to the rules M = 2#A, M = 20#A,
M =1#A?% and M = 3#A2.

good approximation. This is in contrast to the 1D case, where the linear rule
with a constant ¢ = 2 features a fast growth of the condition number and a large
variability of the polynomial approximation.

5.2.1 Condition number

Fig. 11 shows the behavior of the condition number for the 2D TP space. We
see again an exponential growth of the condition number when M is chosen
according to the linear rule. Note that the dimension of the PC space is equal
to (w + 1)? here.

As in the one dimensional case, choosing the number of sample points M
like M o #A? yields condition numbers that are approximately constant in the
studied range of w. Compared to the one dimensional results of Fig. 3, the two
dimensional results exhibit a lower variability.

Changing the polynomial space to TD we obtain Fig. 12, which looks similar
to Fig. 11. The same holds with the HC space (Fig. 13). Therefore, the choice
of the space does not seem to play a major role in the behavior of the condition
number (4.9). Note that the lowest value of ¢ on the left of Fig. 13 is 1, instead
of 1.1.

The situation is similar in higher dimensions; see Figs. 14— 16. In addition,
we observe a lower variability and a slower growth of the condition number with
the linear rule, which, however, is still clearly exponential. Lastly, the HC space
with the linear rule shows a very slow growth of the condition number also for
very low values of c.
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Condition number, TP, N=2, M=c#A’

" Condition number, TP, N=2, M=c#A
10 T T T T T T T
—e—c=1.1 —e—c=0.5
|| *—c=1.25 - . —*—c=1
10" o2 P 10°k —v—c=2 ||

M(0) M(w)
3,
T

cond (D

Fig. 11: Condition number (4.9), TP, N = 2. The continuous, marked, lines
show the mean condition number (4.10) over 100 repetitions. The dashed lines
show the mean (4.10) plus one standard deviation (4.11). Left: M = c#A.

Right: M = c#A2.

Condition number,

TD, N=2, M=c#A

Condition number, TD, N=2, M=c‘#A2

10 : T T T
—e—c=1.1 —6—c=0.5
—k—c=1.25 " —h—c=1

1ol| 107 ——c=2 ||

Dy (@
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cond (D"
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Fig. 12: Condition number (4.9), TD, N = 2. The continuous, marked, lines
show the mean condition number (4.10) over 100 repetitions. The dashed lines
show the mean (4.10) plus one standard deviation (4.11). Left: M = c#A.
Right: M = c#A2.
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Condition number, HC, N=2, M=c-#A Condition number, HC, N=2, M=c‘#A2
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Fig. 13: Condition number (4.9), HC, N = 2. The continuous, marked, lines
show the mean condition number (4.10) over 100 repetitions. The dashed lines
show the mean (4.10) plus one standard deviation (4.11). Left: M = c#A.
Right: M = c#A2.

Condition number, TP, N=3, M=c#A Condition number, TP, N=4, M=c#A
——c=1.1 . 10'%] —8—c=1.1
1081 —A—c=1.25 e 4 —k—c=1.25
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14 10|| —B—c=5
1 y i
[ 10 —6—c=20
~ 107} 1 ~
g NG
o 4ol 4 o
] g .
ees Wl i BES 10° -
g ©
§ 18
o 0 10* |

Fig. 14: Condition number (4.9), TP, M = c#A. The continuous, marked, lines
show the mean condition number (4.10) over 100 repetitions. The dashed lines
show the mean (4.10) plus one standard deviation (4.11). Left: N = 3. Right:
N =4.
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Condition number, TD, N=4, M=c#A Condition number, TD, N=4, M=c‘#A2
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Fig. 15: Condition number (4.9), TD, N = 4. The continuous, marked, lines
show the mean condition number (4.10) over 100 repetitions. The dashed lines
show the mean (4.10) plus one standard deviation (4.11). Left: M = c#A.
Right: M = c#A2.

Condition number, HC, N=4, M=c#A Condition number, HC, N=8, M=c#A
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Fig. 16: Condition number (4.9), HC, M = c¢#A. The continuous, marked, lines
show the mean condition number (4.10) over 100 repetitions. The dashed lines
show the mean (4.10) plus one standard deviation (4.11). Left: N = 4. Right:
N =8.
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5.2.2 Approximation error

Let us consider the error in approximating the target function

1

oY) = , Y e [-1,1]7, (5.4)

B B N
1+ 52z Y

which is a multidimensional generalization of (5.2), and inherits its regularity.
We take 8 = 0.5 and start by considering the quadratic rule. Fig. 17 shows
the optimal convergence rates. The TP space (Fig. 17-Left) seems to converge
faster than the TD space (Fig. 17-Center), but looking at the dimension #A of
the space we recognize that spaces of the same dimension (TP or TD) introduce
similar approximation errors (see Tables 1 and 2). Instead, we see in Fig. 17-
Right that the convergence of the HC space is slower, also when looking at the
effective dimension of the space, in Table 3.

TD, N=2, M=c#A® HC, N=2, M=c#A’

Err.c,b(Y):l/(l+(U.5/N)*(sumj Yi)), TP, N=2, M=c#A’ Err.¢(Y):1/(1+(0.5/N)*(sum1 yl)), Err.ciu(‘1):1/(1+(0.5/N)*(suml Yi))'
T 10" = T 10f T
\ —e—c=0.5 A ' —e—c=05 N —e—c=0.5
et A ——c-1 M oot
\ c=2 107 1 =2 107 1 T
L R
N, 10 \ 10

\\ = \ =
W, 10 \ 10
1§ = . =
L 8 Lo w, I
% = X =
e o
X\K 10 » 10
N %

H H sl H H H H H H H ol H H H H H
10 15 20 1 5 10 15 20 25 30 33 1 5 10 20 30 40
w w w

Fig. 17: Error (4.6) with the function (5.4), 8 = 0.5, N = 2, M = c#A2. The
continuous marked lines show the mean error (4.7) over 100 repetitions. The
dashed lines show the mean (4.7) plus one standard deviation (4.8). Spaces: TP
(left), TD (center), HC (right).

(0 BT Bo  J[wBETH  Bo |[w#FHG  Fu |
5136 | 0.790-10~* 7136 | 1.354-10°% || 12| 37 | 7.505-10~%
7 | 64 | 1.456-107% || 10| 66 | 1.688-1076 || 19| 66 | 7.971-107°
10 | 121 | 0.724-1078 || 14 | 120 | 0.512-1078 || 31 | 119 | 8.788-10~©
11 | 144 | 1.108-107° || 16 | 153 | 5.513-1010 || 40 | 160 | 1.889- 107
15 | 256 | 0.876-10712 || 21 | 253 | 1.123-1012

Table 3: Selected error
values for HC and M =
2#HC from Fig. 17-
Right.

Table 2: Selected error
values for TD and M =
2#TD from Fig. 17-
Center.

Table 1: Selected error
values for TP and M =
2#TP from Fig. 17-
Left.

Fig. 18 shows the error in approximating the function (5.4) in TP (on the
left) or TD (on the right) space, for N = 2. We observe a lower variability in
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the error due to the reduced variability in the corresponding condition number.
Despite the reduced variability we observe also in this case that the linear rule
eventually leads to divergence when w increases if ¢ is chosen too small. This
effect will be much more dramatic for low regularity functions, as shown later
on.

Err.¢(Y)=1/(1+(0.5/N)*(sum, Y.)), TP, N=2, M=c#A Err.¢ (v)=1/(1+(0.5/N) * (sum, Y)), TD, N=2, M=c#A

Fig. 18: Error (4.6) with the function (5.4), N =2, M = c#A. The continuous
marked lines show the mean error (4.7) over 100 repetitions. The dashed lines
show the mean (4.7) plus one standard deviation (4.8). Left: TP space. Right:
TD space.

A further comparison can be made between Fig. 18-Left and Fig. 19-Left. In
the latter case N is increased to 4 (TP space), and this yields a faster convergence
with respect to w. Note however, that a larger amount of sample points is used,
for corresponding w values.

Analogously, the comparison of Figs. 18-Right and Fig. 19-Right concerning
the TD space reveals that in higher dimension the convergence is faster and more
stable.

We also consider the function,

N
¢(Y) = Z |Yi|37 Y e [ila 1]N7 (55)
=1

which is a multidimensional extension of (5.3). Fig. 20 shows that the optimal
convergence rate achieved by the quadratic rule does not depend on the choice
of the space (i.e. TP, TD, or HC). In addition, for the linear rule Fig. 21 shows
that the same convergence behavior is obtained when increasing the dimension
N, but with a significantly decreased variability. Note that we even allowed c to
take the value 1 in the linear rule.
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Error ¢ (Y)=sum, |Y |, TP, N=2, M=c#A’

Err.¢(v)=1/(1+(0.5/N)*(sum  Y,)), TP, N=4, M=c#A Err.¢(v)=1/(1+(0.5/N)* (sum  Y,)), TD, N=4, M=c#A

Fig. 19: Error (4.6) with the function (5.4), 8 = 0.5, N =4, M = c¢#A. The
continuous marked lines show the mean error (4.7) over 100 repetitions. The

dashed lines show the mean (4.7) plus one standard deviation (4.8). Spaces: TP
(left), TD (right).

Error ¢(Y)=sum, |Y |’, TD, N=2, M=c#A® ?

Error ¢(Y)=sum; |y)|3, HC, N=2, M=c#A®
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Fig. 20: Error (4.6) with the function (5.5), N = 2, M = c#A?. The continuous
marked lines show the mean error (4.7) over 100 repetitions. The dashed lines

show the mean (4.7) plus one standard deviation (4.8). Spaces: TP (left), TD
(center), HC (right).
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Error ¢ (Y)=sum, |Y |®, HC, N=2, M=c#A Error ¢ (Y)=sum_ |Y,|’, HC, N=4, M=c#A Error ¢(¥)=sum_ |Y |°, HC, N=8, M=c#A

Fig. 21: Error (4.6) with the function (5.5), HC space. The continuous marked
lines show the mean error (4.7) over 100 repetitions. The dashed lines show the
mean (4.7) plus one standard deviation (4.8). M = c#A. N =2 (left), N =4
(center), N = 8 (right).

5.2.3 A function with lower regularity across a circle
Now we give an example of a function which is hard to approximate in the TD
spaces. When N = 2, we consider the target function

3
. Ye[-1,17 (5.6)

2

> Y?-05

i=1

¢(Y) =

which features a discontinuity in its derivatives over the circle with radius equal
to /0.5 and centered in the origin. Note that (5.6) is a continuous function.

Choosing the quadratic rule leads to the expected theoretical convergence
rates for both TP and TD spaces; see Fig. 22. However, the TD space exhibits
a suboptimal convergence rate already when w < 5.

When choosing the linear rule (Fig. 23), the results obtained with the TP
space slightly differ from those obtained with the TD space. In particular, the
convergence rate is slower than the theoretically predicted one (Fig. 23-Right).

6 Conclusions

In this work we have analysed the problem of approximating a multivariate
function by discrete L? projection on a polynomial space starting from random,
noise-free observations.

In the 1D case with sampling points drawn from a bounded domain and a
probability density function bounded away from zero, we have shown that the
discrete L? projection leads to optimal convergence rates, equivalent to the best
approximation error in L, up to a logarithmic factor, provided the number of
samples M scales quadratically with the dimension of the polynomial space #A.
We have also shown how this result reflects on the condition number of the
design matrix.
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Error (b(Y):\sum‘ Yf - 0.5\3, TP, N=2, M=c#A?

Error ¢(Y):\sum‘ Yf - 0.5\3, TD, N=2, M=c#A®

== slope -2
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Fig. 22: Error (4.6) with the function

w=1

(5.6), N =2, M = c#A2%. The continuous

marked lines show the mean error (4.7) over 100 repetitions. The dashed lines
show the mean (4.7) plus one standard deviation (4.8). Left: TP. Right: TD.

Error <IJ(Y)=|sumi Yi - 0.5\3, TP, N=2, M=c#A

Error gt)(\{)=|sumi Yi - O.5|3, TD, N=2, M=c#A
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Fig. 23: Error (4.6) with the function (5.6), N =2, M = c¢#A. The continuous
marked lines show the mean error (4.7) over 100 repetitions. The dashed lines
show the mean (4.7) plus one standard deviation (4.8). Left: TP. Right: TD.
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The numerical tests we have performed confirm the theoretical results corre-
sponding to a uniform distribution of sample points. In our 1D tests, we clearly
see that the condition M ~ #A? guarantees a condition number of the design
matrix bounded independently of the polynomial degree and an optimal con-
vergence rate. On the other hand, the relation M ~ #A leads to a condition
number growing exponentially fast with the polynomial degree and a convergece
plot that features initially a suboptimal rate up to a critical polynomial de-
gree beyond which divergence is observed. In addition, the sensitivity on the
proportionality constant has been examinated.

In high dimension we observe numerically in many cases that a choice M ~
#A does lead to optimal convergence rate within all reasonable tolerances (up
to machine precision). Whether this is an indication that in high-D the relation
M ~ #A is enough to have a stable and optimal approximation or just that the
blow up of the error occurs much further (at tolerances below machine precision)
is still an open question and a topic of current research.

In this work we have considered only functions with values in R. In the
field of UQ, one is often interested in functions with values in some Banach
space, representing the solution of a (possibly non-linear) differential or intergral
problem. Future research directions will include the extension of these results
to Banach-valued functions.
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