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Abstract

Recently, deep Convolutional Neural Networks (CNNs) have proven to be suc-
cessful when employed in areas such as reduced order modeling of parametrized
PDEs. Despite their accuracy and efficiency, the approaches available in the
literature still lack a rigorous justification on their mathematical foundations.
Motivated by this fact, in this paper we derive rigorous error bounds for the
approximation of nonlinear operators by means of CNN models. More pre-
cisely, we address the case in which an operator maps a finite dimensional
input µ ∈ Rp onto a functional output uµ : [0, 1]d → R, and a neural net-
work model is used to approximate a discretized version of the input-to-output
map. The resulting error estimates provide a clear interpretation of the hy-
perparameters defining the neural network architecture. All the proofs are
constructive, and they ultimately reveal a deep connection between CNNs
and the discrete Fourier transform. Finally, we complement the derived error
bounds by numerical experiments that illustrate their application.
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1 Introduction

Convolutional Neural Networks (CNNs) have become very popular after their tremen-
dous success in computer vision, with applications ranging from image processing
to generative models for images generation (Dosovitskiy, Tobias Springenberg, and
Brox, 2015; Sultana, Sufian, and Dutta, 2020). From a mathematical point of view,
image-like data are equivalent to discrete functional signals defined over rectangular
domains and vice versa.

Indeed, each continuous function u : [0, 1]2 → R can be discretized in matrix
form as

U :=

 u(x1,1) . . . u(x1,N )
. . . . . . . . .

u(xN,1) . . . u(xN,N )

 ∈ RN×N ,

where {xi,j}i,j=1,...,N are the vertices of some uniform grid defined over the unit
square. In light of this, CNNs have been recently employed for tasks that go be-
yond computer vision, such as operator learning and reduced order modelling of
parameter-dependent PDEs (Franco, Manzoni, and Zunino, 2021; Fresca, Dede,
and Manzoni, 2021; Fresca and Manzoni, 2022; Lee and Carlberg, 2020; Mücke,
Bohté, and Oosterlee, 2021).

As an example, let Ω = (0, 1)d and assume we are given an operator µ → uµ

that maps a finite dimensional input µ ∈ Rp onto some functional signal uµ :
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Ω → R. This is a classical set-up in parameter-dependent PDE models, where
each parameter instance is associated with the corresponding PDE solution. Once
a suitable, discrete grid of points {xi1,...,id}i1,...,id=1,...,N ⊂ Ω has been introduced,
the operator of interest can be expressed as

Rp ∋ µ → Uµ ∈ RN×···×N ,

denoting by Ui1,...,id
µ ≈ uµ(xi1,...,id). The final goal is then to construct a neural

network model

Φ : Rp → RN×···×N , such that Φ(µ) ≈ Uµ,

with the idea of replacing an operator that is otherwise computationally expen-
sive to evaluate. As previously mentioned, this task can be successfully achieved
by CNNs, as they allow to intrinsically account for underlying spatial correla-
tions. However, the literature still lacks a comprehensive mathematical analysis
and foundation motivating the remarkable performance shown by CNNs, and the
role played by each hyperparameter in a CNN model remains unclear. In this work,
we aim at addressing these critical points, showing rigorous estimates on the er-
ror E := supµ supj∈{1,...,N}d |uµ(xj) − Φj(µ)| generated when approximating the
operator of interest by means of CNNs.

Literature review

Neural Networks (NNs) were known to be universal approximators since Cybenko
(1989), however the design of effective NN architectures able to preserve desired ac-
curacy properties had not been in-depth investigated until recent years. A substan-
tial improvement was achieved in (Yarotsky, 2017), where a rigorous mathematical
meaning to structural NN properties such as width and depth of a NN model has
been first provided. In particular, Yarotsky proved that any s-differentiable scalar-
valued map f : [0, 1]p → R can be approximated uniformly with error ε > 0 by
some ReLU Deep Neural Network (DNN) with c log(1/ε) layers and cε−s/p log(1/ε)
active weights, where c = c(p, s, f) is some constant that depends on the derivatives
of f . This result was later extended to more general activation functions and differ-
ent norms, see e.g. Gühring, Kutyniok, and Petersen (2020); Gühring and Raslan
(2021); Siegel and Xu (2022), and adapted to the case of CNNs exploiting some
algebraic arguments that link dense and convolutional layers, see e.g. Zhou (2020);
He, Li, and Xu (2021).

However, all these results are limited to the approximation of scalar-valued maps
and they are not suited for operator learning. To this end, it is worth to note the
following aspect. Assume that we are interested in approximating a vector-valued
map f : [0, 1]p → Rn, f(µ) = [f1(µ), . . . , fn(µ)], with a DNN model Φ. Clearly, we
could exploit the aforementioned results to approximate each fi with some DNN
ϕi, and then stack together the models to get Φ := [ϕ1, . . . , ϕn]. However, with
this construction the number of active weights in Φ would grow linearly with n as
n → +∞. In our context, where we deal with functional outputs and n = Nd comes
from having discretized Ω = (0, 1)d with a computational grid with N nodes per
side, this would be rather undesirable.

Nevertheless, new approaches are now appearing in the literature, in a first attempt
to employ NNs for operator learning. Some of these, such as Neural Operators (Ko-
vachki, Li, Liu, Azizzadenesheli, Bhattacharya, Stuart, and Anandkumar, 2021) and
DeepONets (Lu, Jin, Pang, Zhang, and Karniadakis, 2021), work with a continuous
functional output space, while a second class of approaches relies on a discretization
of the output space, see e.g. Kutyniok, Petersen, Raslan, and Schneider (2021). In
this work, we focus on the latter family of approaches.
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Neural Operators provide a novel framework for building models between infinite-
dimensional spaces, and are essentially based on integral operators. Among them,
those that have been mostly investigated are Fourier Neural Operators, for which
several error estimates have been derived, see, e.g., Kovachki, Lanthaler, and Mishra
(2021). Conversely, DeepONets are a class of models based on a separation of vari-
ables approach, which decouples the input parameter and the space variable at
output. Error estimates for DeepONets are also available, see Lanthaler, Mishra,
and Karniadakis (2022), and they are mostly settled on the aforementioned results
in the scalar case and on those by Schwab and Zech (2019) for high-dimensional
inputs.

Besides these methods, deep learning approaches that discretize the functional
output space are also available. This need usually arises, for instance, when dealing
with parameter-dependent PDEs, whose solutions are usually computed through
numerical discretization schemes like, e.g., the finite element method. In this case,
the functional output space – usually given by a Sobolev space – is replaced by
a finite-dimensional trial space (e.g., the space of finite elements of degree r built
over a triangulation of the spatial domain Ω). Deep learning approaches of this
type were proposed in Bhattacharya, Hosseini, Kovachki, and Stuart (2020) and
Kutyniok et al. (2021). The former relies on linear reduction methods to deal with
the functional component at output, and it is able to recover mesh independence.
The second one, instead, is purely based on DNNs. Both works provide error es-
timates, most of which are derived by exploiting the results in the scalar-case and
projection arguments.

This flourishing literature indicates a growing interest aimd at understanding
the properties of DNN models and their potential in operator learning. However,
at the best of our knowledge, no comprehensive study has been proposed for CNN
models yet, despite these latter are extremely popular in practical applications. One
reason might be that CNN architectures can be traced back to sparse versions of
dense models, which led researchers to focus on deriving error bounds for DNNs, see
e.g. Petersen and Voigtlaender (2020). Moreover, CNN models have been mostly
studied for handling high-dimensional data at input and not as output, as in He
et al. (2021). As a consequence, the available literature is left with a missing piece,
which is to understand the approximation properties of convolutional layers when
reconstructing functional signals. In the present work, we aim at addressing this
issue.

Our contribution

Let µ → uµ be some nonlinear operator whose output are functions uµ : [0, 1]d → R
defined over the unit hypercube. We provide error bounds for the approximation of

such an operator via a CNN model Φ : Rp →
(
RN
)d
. In particular, we characterize

the model architecture in terms of the approximation error

E := sup
µ∈Θ

sup
j∈{1,...,N}d

|uµ(xj)− Φj(µ)|,

where Θ ⊂ Rp is some parameter space and {xj}j ⊂ [0, 1]d is a suitable N ×· · ·×N
grid. By doing so, we also provide a clear interpretation to the model hyperparam-
eters, including the number of dense and convolutional layers, the amount of active
weights and the convolutional channels. In the present work, we limit ourselves to
the 1-dimensional case, d = 1, even if the ideas at the core of our proofs can be
extended to higher-dimensions with little effort.

We report below our main result, Theorem 2, in which we characterize the
approximation error in terms of the complexity of a DNN model comprised of a
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dense and a convolutional block. In what follows, we denote by Hs(Ω) the Sobolev
space of s-times weakly-differentiable maps with square-integrable derivatives.

Theorem 2 Let Ω := (0, 1) and let {xj}Nh
j=1 ⊂ Ω be a uniform grid with stepsize

h = 2−k. Let Θ ⊂ Rp ∋ µ → uµ ∈ Hs(Ω) be a (nonlinear) operator, where Θ is a
compact domain and s ≥ 1. For some r ≥ 0, assume that the operator is r-times
Fréchet differentiable and that its r-derivative is Lipschitz continuous. Then, for
any 0 < ε < 1, there exists a Deep Neural Network Φ : Rp → RNh such that

|uµ(xj)− Φj(µ)| < ε

uniformly for all µ ∈ Θ and all j = 1, . . . , Nh. Additionally, Φ can be defined to
have at most

i) C log(1/ε) dense layers, with ReLU activation, and C log(1/h) convolutional
layers,

ii) Cε−2/(2s−1)
[
ε−p/(r+1) log(1/ε) + log(1/h)

]
active weights,

iii) Cε−2/(2s−1) channels in input and output,

where C > 0 is some constant dependent on Θ and on the operator µ → uµ, thus
also on s, r, p.

In particular, the above result shows that:

(i) The number of dense layers depends logarithmically on the desired accuracy,
while that of the convolutional layers depends logarithmically on the mesh
resolution, i.e. on the number of discretization points.

(ii) The width of the dense block is related to the regularity of the operator itself,
with smooth operators requiring less neurons.

(iii) The number of convolutional features depends on the regularity of the signals
uµ at output.

We mention that, while being the ultimate focus of our work, Theorem 2 is only
proved at the end of the paper, as we first need to derive some preliminary results.
More precisely, the paper is organized as follows. First, in Section 2 we establish
a link between convolutional layers and the Fourier transform. Then, in Section
3, we exploit these results to build a CNN model capable of reconstructing any
functional output. Finally, in Section 4, we resort to the parametrized setting and
we prove rigorously Theorem 2. In addition, we report in Section 5 some numerical
experiments, where we assess the predicted error bounds. A discussion on possible
extensions of our results to higher-dimensions can be found in Section 6; on the
other hand, preliminary notions, such as the formal definition of CNN models, are
reported in the Appendix to make the paper self-contained.

2 Interpolation of Fourier modes

Convolution operations are intimately connected to the Fourier transform via the
so-called Convolution Theorem, see e.g. Katznelson (1976). Here, we further in-
vestigate this connection by deriving some preliminary results that will serve as
building blocks for Theorems 1 and 2. The idea can be stated as follows. Given
any dyadic partition of the unit interval,

{xj}Nh
j=1 := {(j − 1)2−k}Nh

j=1,
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where Nh := 2k + 1, and any positive integer m, we construct a CNN model Sm

that interpolates the (discrete) map

[z−m, · · · , zm] →

[
m∑

k=−m

zke
2πikx0 , . . . ,

m∑
k=−m

zke
2πikxNh

]

associating the coefficient zk ∈ C, k = −m, . . . ,m, to the truncated Fourier trans-
form at the points xj , j = 1 , . . . , Nh, with i the imaginary unit. The construction
of Sm is detailed step-by-step, starting at Lemma 1 and concluding with Lemma
3. The proofs are constructive, as they explicitly describe how to implement Sm.
In particular, we are able to characterize the complexity of Sm in terms of those
specific features that are typical of CNNs, such as depth, kernel size, stride, dilation,
padding, and number of input-output channels. For instance, we show in Lemma
3 that the depth of Sm grows logarithmically with the grid resolution, while the
active weights grow linearly with m. These observations will play a key role for
deriving the upper bounds in Theorems 1 and 2.

In what follows, we make use of the embedding C ↪→ R4,

z → [Re(z), Im(z),Re(z), Im(z)],

to represent complex numbers. This will come in handy when trying to mimic the
algebra of elements of C by using neural networks. With this convention, we also
let Cn ↪→ R4×n in the obvious way.

Lemma 1 For any k ∈ N and any z ∈ C there exists a convolutional neural network

ϕk
z : C2k−1 → C2k such that

i) it is linear (no activation at any level),

ii) it only employs 1D convolutional and reshaping operations,

iii) it has an architecture of at most six layers,

iv) the input and the output of its convolutional layers have at most 8 channels,

v) the kernels of the convolutional layers have size at most equal to 2,

and such that

ϕk
z([w1, . . . ,w2k−1 ]) = [w1, zw1, . . . ,w2k−1 , zw2k−1 ]

for all w1, . . . ,w2k−1 ∈ C.

Proof. Let n = 2k−1 be the (complex) input dimension. Let f1 be a 1D transposed
convolutional layer with the following specifics. The layer has four channels at input
and four channels at output. It uses a 2-sized window that acts with a stride of 2.
The layer has no bias and its weight matrix W1 ∈ R4×4×2, which is obtained by
stacking together the convolutional kernels, is zero at all but six entries. These are
given by the relations below

W1,1,1
1 W1,1,2

1

W2,2,1
1 W2,2,2

1

W3,3,1
1 W3,3,2

1

W4,4,1
1 W4,4,2

1

 =


1 0

0 1

Re(z) Im(z)

−Im(z) Re(z)

 .

Note that above we are also listing some of the zero entries in W1. In this way,
it is easier to see what the purpose of f1 is. The first block in W1 is used to
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mimic the action of the identity matrix. Conversely, the second block encodes a
2 × 2 matrix representation of the complex number z. The idea is that these two
blocks should provide a way of computing the map w → [w, zw]. However, for
these computations to be actually carried out, we also need a further layer that
performs a suitable summation of the outputs given by f1. To this end, we define
the second layer, f2, as a 1D convolution that maps 4-channeled inputs onto 2-
channeled outputs. The latter uses a 1-sized window that acts with a stride of 1.
The layer has no bias and its weight matrix W1 ∈ R2×4×1 contains either zeros or
ones. The positive entries are

W1,1,1
2 , W1,2,1

2 , W2,3,1
2 , W2,4,1

2 = 1.

Then, f2 ◦ f1 : R4×n → R2×2n, and, upto some basic calculations, we have

(f2 ◦ f1) ([w1, . . . ,wn]) =[
Re(w1), Im(w1), . . . , Re(wn), Im(wn)
Re(zw1), Im(zw1), . . . , Re(zwn), Im(zwn)

]
.

In practice, the desired output of ϕk
z is already there, but we need to adjust the the

output dimension in order to match our convention for complex numbers.
To this end, we start by introducing a reshape operation R1 : R2×2n → R1×4n

that flattens the whole output. Then, we add a third convolutional layer, f3, whose
purpose is to double the entries in input. More precisely, we define f3 has a 1D
convolution that has 1 channel at input and 4 at output. The layer uses a 2-sized
kernel that acts with a stride of 2. Once again, the layer introduces no bias and has
a weight matrix W3 ∈ R4×1×2 given by

W3 = [[[1, 0]], [[0, 1]], [[1, 0]], [[0, 1]]].

With the notation adopted to represent complex numbers, the current action of
f3 ◦R1 ◦ f2 ◦ f1 becomes

[w1, . . . ,wn] → [w1, . . . ,wn, zw1, . . . , zwn] .

Let us now act further on the output to sort the entries in the desired order. To do
so, we introduce a 1D convolutional layer, f4, that has a dilation factor of 2k (this
is because we want to group w1 with zw1, which is 2k entries faraway, and so on).
We let f4 go from 4 to 8 channels, and employ a kernel of size 2 with unit stride.
Once again, f4 does not have a bias term, while its weight matrix satisfies

Wi,j,k
4 =

{
1 if i = j + 4(k − 1)

0 otherwise.

At this point we have,

f4 ◦ f3 ◦R1 ◦ f2 ◦ f1 : [w1, . . . ,wn] →
[

w1, . . . , wn

zw1, . . . , zwn

]
,

and we only need to add a final reshaping operation R2. We let R2 to act as follows.
First, it transposes the input by mapping R8×n → Rn×8. Then, it performs the
reshaping Rn×8 → R2n×4, where entries are read by rows, and finally it transposes

back the input so that it ends up in R4×2n ∼= C2k . Finally, letting ϕk
z := R2 ◦ f4 ◦

f3 ◦R1 ◦ f2 ◦ f1 concludes the proof. □
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Lemma 2 Let k ∈ N and h = 2−k. Let {x1, . . . , xNh
} be an uniform partition of

[0, 1] with stepsize h. For any ω ∈ R, there exists a convolutional neural network
Fω : C → CNh−1 such that

i) Fω is linear (no activation at any level),

ii) Fω has at most depth C log(1/h),

iii) Fω has at most C log(1/h) active weights,

iv) Fω(w) = [weiωx1 , . . . ,weiωxNh−1 ].

where C > 0 is a constant independent on h and ω. Furthermore, up to reshape
operations, Fω only uses 1D convolutional layers that have at most 8 channels at
both input and output. Moreover, the kernel size of all convolutional layers in Fω

is at most 2.

Proof. Let z ∈ C. For all j = 1, . . . , k, define the CNNs ϕj

z2j−1 as in Lemma 1. For
the sake of simplicity assume that k ≥ 2. Then it is straightforward to check that
ϕ1
z : w → [w,wz], while ϕ2

z2 ◦ ϕ1
z : w → [w,wz2,wz,wz3] and so on. In particular,

ϕk
z2k−1 ◦ · · · ◦ ϕ1

z : w → π
(
[w,wz,wz2, . . . ,wz2

k

]
)

where π : CNh−1 → CNh−1 is some map that acts as a permutation over the entries.
Let now z := eiωh and define Fω := π−1 ◦ ϕk

z2k−1 ◦ · · · ◦ ϕ1
z. Then,

Fω : w → [weiω0h,weiω1h, . . . ,weiω(Nh−2)h],

and the conclusion follows. □

Lemma 3 Let k ∈ N and h = 2−k. Let {x1, . . . , xNh
} be a uniform partition of

[0, 1] with stepsize h. For any positive integer m, there exists a convolutional neural
network Sm : C2m+1 → CNh such that

i) Sm is linear (no activation at any level),

ii) Sm has at most depth C log(1/h),

iii) Sm has at most Cm log(1/h) active weights,

iv) Sm uses convolutional layers with at most Cm channels,

v) for any complex vector Z = [z−m, . . . , zm] ∈ C2m+1 one has

Sm(Z)i =

m∑
k=−m

zke
2πikxi ,

for all i = 1, . . . , Nh, where Sm(Z)i is the ith component of the output vector
Sm(Z).

Here, C > 0 is a universal constant independent on h and m. Furthermore, up to
reshape operations, Sm only uses 1D convolutional layers whose kernel size does not
exceed 8.
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Proof. Fix any k ∈ {−m, . . . ,m}. Let F(k) be the CNN in Lemma 2 when ω = 2πk.
We note that, as k varies, the structure of F(−m), . . .F(m) does not change: these
architectures have the same depth and they employ convolutional layers with the
same specifics. Also, the reshaping operations entailed by the networks occur at
the same locations.

Therefore, we can stack all these models on top of each other to obtain a global
CNN S̃m such that

S̃m(Z) =
[
F(−m)(z−m), . . . ,F(m)(zm)

]
where Z = [z−m, . . . , zm] ∈ C2m+1 is a generic input vector. This can be done as
follows.

To stack 2m+1 convolutional layers with cin channels at input and cout channels
at output each, we define a single CNN layer with (2m + 1)cin channels at input
and (2m+ 1)cout at output. Then, to avoid the introduction of redundant kernels,
we constrain the new layer to group its kernels in subsets of (2m+1). This ensures
the wished behavior, i.e. that we actually stack the outputs of the 2m+ 1 original
layers as if they work in parallel (thus each seeing only the part of interest of the
input). Similarly, reshaping and transpositions can be easily stacked together. For
instance, stacking (2m+1) transpositions of the form ϕ : Ra×b → Rb×a results in a
map from R(2m+1)×a×b to R(2m+1)×b×a.

Since S̃m takes values in C(2m+1)×(Nh−1), our next purpose is to append a further
layer L such that

(L ◦ S̃m)(Z) =

m∑
k=−m

F(k)(zk) ∈ CNh−1.

It is easy to see that L can be obtained with a convolutional layer having (2m+ 1)
channels at input and 1 at output, no stride or dilation, and a kernel of size 1 whose
weight is constantly equal to 1.

Finally, we note that for all k ∈ {−m, . . . ,m} we have

e2πikx1 = e2πik0 = 1 = e2πik = e2πikxNh

due to periodicity. Therefore, we may simply define Sm := A ◦L ◦ S̃m, where A has
the only purpose of appending a copy of its first output at the end, that is

A(w1, . . . ,wNh−1) = [w1, . . . ,wNh−1,w1].

This can be seen as a form of reshaping or padding.
By construction, Sm satisfies (v). Similarly, (i) and (iv) hold. In fact, each of the

F(k) has length C log(1/h), where C is a common constant. Since we stacked them

in parallel to get S̃m, our final model has depth C log(1/h) + 2 = C̃ log(1/h). Also,
the CNNs F(k) featured at most 8 channels, thus Sm uses no more than (2m+1)8 =

C̃m channels at input-output. Property (iii) follows similarly by recalling that we
grouped the CNNs kernels in order to properly stack the architectures. □

3 Approximation of a single function

We shall now exploit the theory developed in Section 2 in order to derive suitable
error bounds for CNNs. To this end, our primal goal is to show that, for any
desired accuracy, there exists a single CNN architecture that is able to provide as
output an approximation for any function belonging to a given class in terms of
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smoothness. More precisely, let s ≥ 1 be a smoothness index, and fix some m ∈ N.
Let also {xj}Nh

j=1 be some dyadic grid defined over Ω = (0, 1). We build a CNN

model Ψ : C2m+1 → RNh such that

∀f ∈ Hs(Ω) ∃Zf ∈ C2m+1 such that

sup
j=1,...,Nh

|f(xj)−Ψj(Zf )| < Cm1/2−s||f ||sH(Ω),

where C = C(s) > 0 is some constant and Ψj is the jth component of the CNN
output. The above states that any smooth function f can be well approximated by
Ψ, provided that the model is fed with a suitable input vector. As for Lemma 3, we
characterize the network complexity in terms of depth, channels and active weights.
Furthermore, we show that the map f → Zf can be realized by some continuous
linear operator that depends, at most, on s. Before stating this rigorously in The-
orem 1, it is worth to remark that this result concerns the approximation of any
functional output in Hs(Ω). In particular, although the proof is based on classical
estimates coming from the literature of Fourier series, no periodicity is required.

Theorem 1 Let k ∈ N and h = 2−k. Let {xj}Nh
j=1 be a uniform partition of Ω :=

(0, 1) with stepsize h, so that Nh = 2k + 1. For any positive integer m and a
universal constant C independent on m and h, there exists a linear convolutional
neural network Ψ : C2m+1 → RNh with

i) at most C log(1/h) layers,

ii) at most Cm log(1/h) active weights,

iii) at most 8m channels in input and output, with kernels grouped by m,

such that for any s ≥ 1 and all f ∈ Hs(Ω) one has

sup
j=1,...,Nh

|f(xj)−Ψj(Tf)| ≤ cm1/2−s||f ||Hs(Ω).

Here, c = c(s) > 0 and T : Hs(Ω) → C2m+1 are a positive constant and a continuous
linear operator that depend on s, respectively.

Proof. Let us denote by T the 1-dimensional torus, T := R/Z, so that the spaces
Ck(T) refer to those functions that are k-times differentiable on the torus, namely

Ck(T) =
{
f ∈ Ck[0, 1], f (j)(0) = f (j)(1) ∀j = 1, . . . , k

}
.

We start by defining an operator T0 : Hs(Ω) → Hs(Ω) ∩ Cs−1(T) that turns any
input function into a periodic signal. To this end, we recall that there exist poly-
nomials p1, . . . , ps−1 of degree 2s− 1 such that

p
(k)
j (0) = δj,k, p

(k)
j (1) = 0

for j, k ∈ {1, . . . , s− 1}, see e.g. Spitzbart (1960). Then, the linear operator

v → Pv :=

s−1∑
j=1

vjpj

maps any input vector v ∈ Rs−1 into a periodic signal in Hs(Ω) ∩ Cs−1(T). In
fact, while the s-derivative of Pv may not be periodic, it is still continuous over the
unwrapped domain Ω = (0, 1).
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By recalling that Hs(Ω) ↪→ Cs−1(Ω) thanks to classical Sobolev inequalities, we
are then allowed to define

T0 : f → f + P [f (0)(1)− f (0)(0), . . . , f (s−1)(1)− f (s−1)(0)]

so that T0 : Hs(Ω) → Hs(Ω)∩ Cs−1(T) as desired. We now introduce the following
notation. For any f ∈ Hs(Ω) we let f̃ be defined as

f̃(x) =

{
(T0f)(2x) 0 ≤ x ≤ 1/2

f(2x− 1) 1/2 < x ≤ 1
. (1)

It is straightforward to see that f̃ ∈ Hs(Ω) ∩ Cs−1(T). Also, the mapping f → f̃
is linear and continuous, in the sense that for some constant C > 0 depending only
on s we have

||f̃ ||Hs(Ω) ≤ C||f ||Hs(Ω) (*)

for all f ∈ Hs(Ω). For any positive integer m, let Smf̃ be the m truncated Fourier
series of the function f̃ , (

Smf̃
)
(x) =

m∑
j=−m

ck
f̃
e2πikx

where

ck
f̃
:=

∫
Ω

f̃(x)e−2πikxdx.

Since f̃ ∈ Cs−1(T) and its s-derivative is in L2(T), we have

||f̃ − Smf̃ ||L∞(Ω) ≤
√

2

2s− 1
m1/2−s||f̃ ||Hs(Ω) (**)

by exploiting classical estimates of Fourier analysis. Let now T : Hs(Ω) → C2m+1

be defined as
T : f →

[
c−m

f̃
, . . . , cm

f̃

]
,

so that T maps each signal into the Fourier coefficients of its periodic alias. Let
{y0, . . . , y2Nh−1} be a uniform partition of (0,1) that is twice as fine as the original
one {x0, . . . , xNh

}, that is yj+1 − yj = h/2. With this partition as a reference, let
then Sm be the CNN in Lemma 3. By definition, we have(

Smf̃
)
(yi) = Sm(Tf)i.

Finally, let Ψ := E ◦R ◦ Sm, where

• R is a reshape truncation layer,

R(w1, . . . ,w2Nh−1) = [wNh
, . . . ,w2Nh−1],

that we use to remove the undesired output. Note in fact that, the signal f̃
over (1/2, 1) is practically f over (0, 1). Thus, in light of (**), we are only
interested in the second half of the output.

• E : CNh → RNh is the embedding that only keeps the real part of the input.
This can also be seen as a reshape layer with a truncation at the end. Since
f , and thus f̃ , are real valued, so are Smf̃ and Sm(Tf). Therefore, we are
not losing any information.
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Figure 1: Numerical validation of the upper bounds in Theorem 1. The two panels
show the results obtained for signals of different smoothness, respectively H1(0, 1)
on the left and H2(0, 1) on the right. The results are reported for different grid
resolutions, the mesh stepsize being h = 2−k.

Finally, let j ∈ {1, . . . , Nh}. We have

|f(xj)−Ψj(Tf)|
= |f(xj)− Sm(Tf)2j−1|

= |f̃(y2j−1)− Sm(Tf)2j−1|

=
∣∣∣f̃(y2j−1)−

(
Smf̃

)
(y2j−1)

∣∣∣ .
Thus, by putting together (**) and (*) we get

|f(xj)−Ψj(Tf)| ≤ · · · ≤ Cm1/2−s||f̃ ||Hs(Ω)

≤ Cm1/2−s||f ||Hs(Ω).

□

We remark that, as for the results in the previous Section, the proof is construc-
tive. The pictures in Figure 1 show the approximation rates obtained by the actual
implementation of Ψ (and T ) along the lines detailed in the proof. The code used
to obtain these results – as well as all the other results reported in the paper – is
written in Python3 by exploiting the Pytorch library for CNNs, and it is available
upon request. Note that we do not train the network, as we directly initialize Ψ
with the wished weights and biases. The left panel in Figure 1 shows the results
obtained for a mildly smooth signal, f(x) = |x − 1/5|. In this case we have s = 1,
and the L∞ error between the desired output, f , and the CNN approximation, is
shown to decay at the expected rate, that is 1/

√
m. This is also true regardless

of the grid resolution, coherently with Theorem 1. Indeed, we obtained nearly the
same results for Nh = 33, 65, 129. Finally, the right panel in Figure 1 refers to a
smoother case, f(x) = |x|3/2, where s = 2. Here we can remark, once again, the
expected behavior.

4 Learning operators in a parametrized setting

We now extend the results in Section 3 to the parameter dependent setting. Let
Θ ⊂ Rp be some compact parameter space. We are interested in the approximation
of an operator

Θ ∋ µ → uµ ∈ Hs(Ω).

11



This framework is typically encountered in the case of parameter dependent PDEs,
where each value of the input parameter vector µ ∈ Θ usually defines a different
PDE solution uµ. In this case, the approximation of the so-called parameter-to-
solution map µ → uµ is of remarkable importance, especially when it comes to
expensive many-query routines. For the interested reader, we refer to the general
literature on Reduced Order Modeling for PDEs Hesthaven, Rozza, and Stamm
(2016); Quarteroni, Manzoni, and Negri (2016) and to more recent contributions on
the use of DNNs for the nonintrusive construction of efficient reduced order mod-
els in this context Franco et al. (2021); Fresca et al. (2021); Lee and Carlberg (2020).

Here, we aim at characterizing the approximation of such an operator in terms of
convolutional neural networks. In particular, we seek for some DNN Φ : Rp → RNh

such that
Φi(µ) ≈ uµ(xi),

where the nodes {xi}Nh
i ⊂ Ω come from a given discretization of the domain. We

build Φ by considering an architecture that is made of two blocks, ϕ and Ψ. The
former consists of dense layers, and it has the purpose of pre-processing the input.
The latter is instead of convolutional type, and it is used to provide the desired
output. We design Ψ along the lines of Theorem 1, thanks to which we are able
to characterize the approximation error in terms of the network architecture as a
whole.

In particular, we show that: (i) the depth of the dense block depends on the
desired accuracy, while the number of convolutional layers only depends on the
chosen discretization, (ii) fewer channels in the convolutional layers are required to
approximate operators that have highly regular outputs, (iii) the width of the dense
layers depends on the smoothness of the operator. We formalize these statements
in the Theorem below.

Theorem 2 Let Ω := (0, 1) and let {xj}Nh
j=1 ⊂ Ω be a uniform grid with step size

h = 2−k. We are given a (nonlinear) operator Θ ⊂ Rp ∋ µ → uµ ∈ Hs(Ω), where
Θ is a compact domain and s ≥ 1. For some r ≥ 0, assume that the operator is r-
times Fréchet differentiable and that its r-derivative is Lipschitz continuous. Then,
for any 0 < ε < 1, there exists a Deep Neural Network Φ : Rp → RNh such that

|uµ(xj)− Φj(µ)| < ε

uniformly for all µ ∈ Θ and all j = 1, . . . , Nh. Additionally, Φ can be defined to
have at most

i) C log(1/ε) dense layers, with ReLU activation, and C log(1/h) convolutional
layers,

ii) Cε−2/(2s−1)
[
ε−p/(r+1) log(1/ε) + log(1/h)

]
active

weights,

iii) Cε−2/(2s−1) channels in input and output,

where C > 0 is some constant dependent on Θ and on the operator µ → uµ, thus
also on s, r, p.

Proof. Let ε > 0 and let c = c(s) > 0 be the constant in Theorem 1. We take
advantage of the compactness of Θ and the continuity of the operator to define

M := max
µ∈Θ

||uµ||Hs(Ω) < +∞.

12



Let now Ψ be the CNN in Theorem 1, where we fix m = ⌈(ε/2)−2/(2s−1)Mc⌉. Then,

|uµ(xj)−Ψj(Tuµ)| < ε/2 (*)

for all j = 1, . . . , Nh and µ ∈ Θ, where T : Hs(Ω) → C2m+1 ∼= R4m+2 is some
continuous linear operator. We now note that, by composition, the map

µ → Tuµ

is an element of the Sobolev space W r+1,∞(Θ;R4m+1).
In particular, by Theorem 1 in Yarotsky (2017), there exists a ReLU DNN

ϕ : Rp → R4m+2 with C log(1/ε) hidden layers and Cmε−p/(r+1) log(1/ε) active
weights, such that

sup
µ∈Θ

||Tuµ − ϕ(µ)||1 < ε/2,

where || · ||1 is the ℓ1 norm over R4m+2, while C > 0 is a constant that depends
on r, p,Θ, s and the operator µ → uµ. The dependence on s comes from the
Lipschitz constant of T , which may inflate the magnitude of the partial derivatives
of µ → Tuµ.

Let now consider the composition Φ := Ψ ◦ ϕ. It is easy to see that this DNN
architecture satisfies the requirements claimed in the Theorem as soon as we replace
the constant C with C̃ := Cc. Also, for any µ ∈ Θ and j = 1, . . . , Nh we have the
desired bound. In fact, by (*),

|uµ(xj)− Φj(µ)|
≤ |uµ(xj)−Ψj(Tuµ)|+ |Φj(µ)−Ψj(Tuµ)|

<
ε

2
+ |Ψj(ϕ(µ))−Ψj(Tuµ)|. (**)

Now, we note that |Ψj(a)−Ψj(b)| ≤ ||a−b||1. In fact, in Theorem 1, Ψ was defined
as E ◦ R ◦ Sm, where E and R were reshape layers, while Sm was as in Lemma 3.
In particular,

|Ψj(a)−Ψj(b)| ≤ sup
x∈[0,1]

∣∣∣∣∣
m∑

k=−m

ake
2πikx −

m∑
k=−m

bke
2πikx

∣∣∣∣∣
≤

m∑
k=−m

|ak − bk|.

Therefore, relationship (**) finally yields

|uµ(xj)− Φj(µ)| ≤ · · · < ε

2
+ ||ϕ(µ)− Tuµ||1 < ε.

□

5 Numerical validation

We finally present some numerical experiments that confirm the decay rates pre-
dicted in Theorem 2. We proceed as follows. Once introduced the operator to
be learned, we identify the smoothness indices s and r that appear in Theorem 2.
Then, we fix a guess architecture Φ(1) that serves as a starting point. Following the
ideas of Theorem 2, we prescribe Φ(1) as a DNN that is made by two blocks,

Φ(1) = Ψ(1) ◦ ϕ(1),

where ϕ(1) is dense, while Ψ(1) is of convolutional type. More precisely:
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• we fix Ψ(1) to be exactly the CNN in Theorem 1, where m = m1 ∈ N is some
initial guess for the dimensionality of the channels;

• we let ϕ(1) have L1 hidden layers of constant width w1. We employ the leaky-
ReLU activation at the hidden layers and no activation at the output. The
weights and biases of ϕ(1) are then initialized randomly accordingly to the
approach introduced by He et al. in He, Zhang, Ren, and Sun (2015).

We train Φ(1) over a training set {µi, uµi
}Ntrain
i=1 in such a way that the loss function

below is minimized

L(Φ(1)) :=
1

Ntrain

Ntrain∑
i=1

h

Nh∑
j=1

|uµi
(xj)− Φ

(1)
j (µi)|2

 , (2)

where x1, . . . , xNh
is some dyadic partition of (0, 1) associated to a given grid reso-

lution h = 2−k. Note that, during this step, only the weights and biases of the dense
block ϕ(1) are actually optimized, as we keep Ψ(1) frozen. Although suboptimal,
this will help us in removing possible drawbacks introduced by the difficulty of the
optimization itself. Finally, we evaluate Φ(1) over a test set of unseen instances
{µtest

i , uµtest
i

}Ntest
i=1 in order to compute the empirical error given by

E(Φ(1)) = max
i,j

|uµtest
i

(xj)− Φ
(1)
j (µtest

i )|. (3)

Then, we exploit Theorem 2 in an attempt to define a second architecture, Φ(2),
that can be twice as accurate by halving the error over the testing set, that is by
requiring that E(Φ(2)) ≈ E(Φ(1))/2. We do this as follows:

• we update the number of channels according to (iii) in Theorem 2. In partic-
ular, up to rounding operations, we let

m2 := 22/(2s−1)m1;

• we increase the number of weights per dense layer coherently with (ii) in
Theorem 2, that is

w2 := 2p/(r+1)+2/(2s−1)w1;

• as suggested by (i) in Theorem 2, we also increase the number of dense hidden
layers. In principle, the depth of the dense block should be increased by a
constant factor C log(2). In practice, we let

L2 = L1 + l,

where l is either 1 or 2. This is to ensure that the obtained architectures are
still feasible to train, as very deep models may become hard and expensive to
optimize.

We then train Φ(2) and iterate the above steps to generate Φ(3), so that

E(Φ(j)) ∝ 2−j .

We highlight that, according to Theorem 2, this procedure should be robust with
respect to the space discretization. In other words, we expect to obtain similar
results regardless of the number of grid points employed in the discretization. To
assess whether this behavior is actually observed in practice, we repeat our analysis
for different mesh step sizes h = 2−k.
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Figure 2: Benchmark example, Section 5.1. In blue, an instance uµ coming from
the test set, here for µ = [0.3462, 0.2935, 0.0818]. The red dashed lines report the
approximations proposed by the three DNNs, respectively Φ(1),Φ(2),Φ(3). Grid
resolution is h = 2−7.

5.1 Benchmark example

To start, we consider the approximation of an operator that is defined analytically.
More precisely, let Θ = [0, 1]× [0, 1]× [1, 2] ⊂ R3. For any fixed µ = (µ1, µ2, µ3) ∈ Θ
let

uµ(x) = µ3|x− µ1|3e−µ2x.

We are interested in learning the map µ → uµ. To this end, we note that {uµ}µ∈Θ ⊂
H3(Ω)\H4(Ω). Also, the operator is at most twice differentiable with respect to µ,
as its third derivative becomes discontinuous. According to the notation in Theorem
2, this results in s = 3 and r = 2.

For the space discretization, we consider three different mesh resolutions, h =
2−5, 2−6, 2−7, corresponding respectively to Nh = 33, 65, 129 grid points. We train
the networks by minimizing (2) via the so-called L-BFGS optimizer, where the
training set consists of 500 randomly sampled parameters instances. We do not
use batching strategies and we set the learning rate to its default value of 1. To
avoid possible biases introduced by the optimization, we initialize and train each
architecture multiple times (here, five), only to keep the best out of all the training
sessions. This is a common practice known as ensemble training. For our starting
architecture, Φ(1), we set

m1 = 5, w1 = 4, L1 = 3.

In this case, we have 22/(2s−1) ≈ 1.32 and 2p/(r+1)+2/(2s−1) ≈ 2.64, since p = 3.
In particular, our strategy for enriching the architectures can be stated as follows:
to obtain a model that is twice as accurate, we increase the number of channels
in the convolutional layers by nearly 30%, while we double (actually almost triple)
the number of neurons in the dense layers. The theory also suggests to increase the
depth of the dense block by some constant factor l. Here, we let l = 2.

Results are in Table 1, Figures 2 and 3. The first picture compares the output
of the three architectures with that of the operator, for an unseen value of the input
parameter µ. The quality of the approximation clearly increases as we consider
richer and richer models. We also note that the regions with lower regularity are
the most difficult to capture, coherently with what we expected. Figure 3, instead,
reports the errors E(Φ(j)) in comparison with the expected decay rate 2−j . We
see that the numerical results perfectly match the theory, regardless of the grid
resolution that is considered.

15



Figure 3: Numerical validation of Theorem 2 for the Benchmark example, Section
5.1. Axis are in loglog scale. The red line corresponds to the predicted decay rate,
2−j , while the markers refer to the DNN models. Different markers correspond
to different grid resolutions. The errors E(Φ(j)) obtained for the architectures
j = 1, 2, 3, are computed as in Equation (3).

Model mj wj Lj Active weights E(Φ(j))

Φ(1) 5 3 4 9’719 0.171

Φ(2) 6 5 10 12’147 0.081

Φ(3) 8 7 27 20’301 0.040

Table 1: Architectures and corresponding errors for the Benchmark example, Sec-
tion 5.1. Results are reported limitedly to the case of grid resolution h = 2−6. The
hyperparameters read as in Section 5, that is: mj = maximum number of convo-
lutional features in the CNN block, upto a multiplicative constant; wj = number
of neurons per dense layer; Lj = depth of the dense block. The errors E(Φ(j)) are
computed as in Equation (3).

5.2 Application to a parametrized time-dependent nonlinear
PDE

We now consider a benchmark consisting of a one-dimensional coupled PDE-ODE
nonlinear system

µ
∂uµ

∂t
− µ2 ∂

2uµ

∂x2
+R(uµ) + wµ = 0, (x, t) ∈ Ω× (0, T )

dwµ

dt
+ (2wµ − 0.5uµ) = 0, (x, t) ∈ Ω× (0, T )

∂uµ

∂x
(0, t) = 50000t3e−15t, t ∈ (0, T )

∂uµ

∂x
(1, t) = 0, t ∈ (0, T )

uµ(x, 0) = 0, wµ(x, 0) = 0, x ∈ Ω,

(4)

where R(uµ) := uµ(uµ − 0.1)(uµ − 1), while Ω = (0, 1) and T = 2. The above
consists in a parametrized version of the monodomain equation coupled with the
FitzHugh-Nagumo cellular model, describing the excitation-relaxation of the cell
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membrane in the cardiac tissue FitzHugh (1961); Nagumo, Arimoto, and Yoshizawa
(1962). System (4) has been discretized in space through linear finite elements, by
considering Nh = 2k, with k ∈ N, grid points, and using a one-step, semi-implicit,
first order scheme for time discretization with time-step ∆t = 5 × 10−3; see, e.g.,
Pagani, Manzoni, and Quarteroni (2018) for further details. The solution of the
former problem consists in a parameter-dependent traveling wave, which exhibits
sharper and sharper fronts as the parameter µ gets smaller. The numerical trans-
membrane potential solution uµ represent the ground truth data in the experiments
reported in the following.

Here, we consider the map (µ, t) → uµ(·, t) as our operator of interest. In particular,
the two dimensional vector parameter µ := (µ, t) consists of the scalar parameter
µ and the time variable t. We let µ vary in the (time-extended) parameter space
Θ := Θ0 × [0, T ], where Θ0 := 5 · [10−3, 10−2].

In this case, it is not straightforward to identify the smoothness indices s and
r. The numerical simulations show that the solutions uµ to (4) tend to have sharp
gradients for certain values of the scalar parameter µ. In light of this, we let s = 1;
if the solutions are actually smoother, then we expect the errors to decay faster
than the predicted rate. Conversely, we make the assumption that r = +∞, i.e.
that the parameter-to-solution map is infinitely differentiable. We remark that the
constant C appearing in Theorem 2 actually depends on r. To this end, we make
the further assumption that C = C(r) is bounded with respect to r.

As a starting point, we consider the following structural hyperparameters

m1 = 1, w1 = 3, L1 = 3,

to build our reference architecture Φ(1). In this case, we have 2p/(r+1)+2/(2s−1) =
22/(2s−1) = 4. In particular, Theorem 2 suggests to quadruplicate the number chan-
nels and neurons per dense layer in order to half the test error. We also increase
the depth of the dense block by a constant factor of l = 1 when moving from an
architecture to a more complex one. In this case, we do not assess the model per-
formance for varying resolution levels as we stick to the same grid employed by the
Finite Element solver. Instead, in order to collect more data, we repeat the same
analysis for a different guess architecture, namely

m1 = 1, w1 = 2, L1 = 4.

To collect the training and test sets, we proceed as follows. We sample Ntrain =
20 equally spaced values for the scalar parameter µ ∈ Θ0, and we consider their
midpoints to obtain Ntest = 19 test instances. For each µ ∈ Θ0 fixed, we then ex-
tract uniformly Nt = 25 time snapshots from the global trajectory defined over the
interval [0, T ]. Once again, we train the DNN models using the L-BFGS optimizer
(no batching, learning rate = 1).

Results are reported in Figures 4 and 5. As for the benchmark example, we see
that the DNN models become more and more expressive as we move from Φ(1) to
Φ(3). The architectures mostly struggle in capturing flat regions, which is under-
standable as these entail discontinuities in the higher-derivatives (cf. Figure 5).
Finally, the error trend, reported in Figure 4, is in agreement with the estimates
presented in Theorem 2 regardless of the initial guess for the architecture. Note,
once again, that here we only consider one resolution level, as we employ the same
step size h adopted by the Finite Element solver.

Since we included time as an additional parameter, the plots in Figure 5 fix both
the scalar parameter µ and the time instant t. However, we recall that according to
Equation (3) the model was evaluated in terms of worst-case errors. In particular,
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Figure 4: Numerical validation of Theorem 2 for the coupled FitzHugh-Nagumo
problem, Section 5.2. Axis read in loglog scale. The red line corresponds to the
predicted decay rate, 2−J , while the blue markers report the errors E(Φ(j)) obtained
for the architectures j = 1, 2, 3. Different markers correspond to different choices of
the initial guess architecture Φ(1), respectively. Errors are computed accordingly to
Equation 3.

Model mj wj Lj Active weights E(Φ(j))

Φ(1) 1 2 4 3’131 0.859

Φ(2) 4 3 16 10’305 0.435

Φ(3) 16 4 64 54’553 0.241

Table 2: Architectures and corresponding errors for the coupled FitzHugh-Nagumo
problem, Section 5.2. Results are reported limitedly to one of the initial guess archi-
tectures. Hyperparameters read as in Section 5 and Table 1. Errors are computed
as in Equation (3).

Figure 5: Learning the parameter-to-solution operator of a parametrized time-
dependent nonlinear PDE, Section 5.2. In blue, a snapshot uµ(·, t) coming from
the test set, here for µ = 0.0488 and t = 1.905. The red dashed lines correspond to
the approximations proposed by the three DNN models, respectively Φ(1),Φ(2),Φ(3).
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Figure 6: Learning the parameter-to-solution operator of a parametrized time-
dependent nonlinear PDE, Section 5.2. Comparison between Finite Element so-
lutions and DNN approximations for different µ. The first and the third plot report
the spacetime surface [0, T ] × Ω → R representing the Finite Element simulation,
thus (t, x) → uµ(x, t). Conversely, the second and the fourth picture show the corre-
sponding DNN approximation over the same spatial grid, (t, xj) → Φj(t, µ). Here,
Φ is constructed considering the third architecture generated during the iterative
augmentation process in Section 5, starting from the second guess architecture in
Section 5.2.

the quality of the approximation is guaranteed over the whole time interval [0, T ] and
for any choice of the scalar parameter µ ∈ Θ0. Figure 6, shows the overall dynamics
of the solution for two different choices of µ, with a comparison between Finite
Element solutions and DNN approximations. Despite containing a few numerical
artifacts, we see that the DNN model fully captures the general behavior of the
solutions, both in the hyperbolic and diffusive case (µ = 1.33 · 10−2 and µ = 4.64 ·
10−2 respectively). Of note, the spurious oscillations in the DNN approximation are
in perfect agreement with the errors reported in Table 2. Accordingly to Theorem
2, these can be removed by considering larger architectures and, possibly, more
training data.

6 Conclusions

In this paper, we have established and verified theoretical error bounds for the ap-
proximation of nonlinear operators by means of CNNs. Our results shed a light on
the role played by convolutional layers and their hyperparameters, such as input-
output channels, depth and others. In particular, they show how operator learning
problems can be decoupled in two parts: on the one hand, the difficulty in charac-
terizing the dependence with respect to the input parameters; on the other hand,
the issue in having to reconstruct complex space-dependent outputs. The presented
research is original and timely. Indeed, at the best of our knowledge, all the avail-
able results on DNNs and operator learning do not address the peculiar properties
of CNNs, instead they consider classic fully connected architectures. Conversely,
those works that focus on CNN models are typically not framed in the context of
operator learning.

Our analysis is limited to the 1-dimensional case, d = 1, that is when the
output of the operator are functions defined over an interval. However, we note
that the main ideas underlying our proofs can be extended to higher dimensions
with little effort. The critical points are Lemmas 1, 3 and Theorem 1. For the
first two results, one needs to define suitable convolutional layers that are able to
advance along different dimensions separately, which can be carried out via 2D and
3D convolutions whenever d = 2, 3. Conversely, Theorem 1 has to be adapted in
a proper way, since it becomes trickier to turn generic maps f : [0, 1]d → R onto
periodic functions. Furthermore, as the spatial dimension d plays an important role
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in Sobolev inequalities, it may be convenient to replace the original output space
Hs(Ω) with other functional spaces, such as W s,∞(Ω) or Cs(Ω), when addressing
the case d > 1.

Nevertheless, we believe that our results motivate the recent success of CNNs,
especially in areas such as Reduced Order Modeling of PDEs. This is because, as
shown in Theorem 2, smooth outputs are those that are better approximated by
CNNs. Solutions to partial differential equations often enjoy regularity properties
that make them an appealing area of application for the proposed analysis. This
further promotes the practical use of CNNs as well as their theoretical study from
a purely mathematical point of view.
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Appendix

We report, in mathematical terms, the formal definition of convolutional layers and
CNNs. These correspond to the ones adopted in the literature and reported within
the Pytorch documentation. For tensor objects we use the following notation.

Given A ∈ Rn1×···×nd , we write Ai1,...,ip for the subtensor in Rnp+1×···×nd ob-
tained by fixing the first p dimensions along the specified axis, where 1 ≤ ij ≤ nj .
We also adopt the usual abuse of notation for which scalar-valued activation func-
tions operate componentwise on vectors, that is

ρ([x1, . . . , xl]) := [ρ(x1), . . . , ρ(xl)]

whenever ρ : R → R.

Definition 1 Let m,m′s, t, d be positive integers and let g be a common divisor of
m and m′. A 1D Convolutional layer with m input channels, m′ output channels,
grouping number g, kernel size s, stride t, dilation factor d and activation function
ρ : R → R, is a map of the form

Φ : Rm×n → Rm′×⌊n−d(s−1)−1
t +1⌋

whose action on a given input X ∈ Rm×n is defined as

Φ(X)k′ = ρ

(∑
k

Wk′,k ⊗t,d Xk +Bk′

)
,

where 1 ≤ k′ ≤ m′, while the sum index k runs as below,

k = ⌊g(k′ − 1)/m⌋m/g + 1, . . . , (⌊g(k′ − 1)/m⌋+ 1)m/g.

Here,

• W ∈ Rm′×(m/g)×s is the weight tensor

• ⊗t,d is the cross-correlation operator with stride t and dilation d. That is, for
any w ∈ Rs and x ∈ Rn one has

w ⊗t,d x ∈ R⌊
n−d(s−1)−1

t +1⌋,

where

(w ⊗t,d x)j :=

s∑
i=1

wix(j−1)t+(i−1)d+1.

• B ∈ Rm′×⌊n−d(s−1)−1
t +1⌋ is the bias term.
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The default values for stride and dilation are t = 1, d = 1. For this reason, with
little abuse of notation, one says that Φ has no stride and no dilation to intend that
t = 1, d = 1. Similarly, we assume g = 1 whenever the grouping number is not
declared explicitly.

Definition 2 Let m,m′s, t, d be positive integers and let g be a common divisor of
m and m′. A 1D Transposed Convolutional layer with m input channels, m′ output
channels, grouping number g, kernel size s, stride t, dilation factor d and activation
function ρ : R → R, is a map of the form

Φ : Rm×n → Rm′×(n−1)t+d(s−1)+1

whose action on a given input X ∈ Rm×n is defined as

Φ(X)k′ = ρ

(∑
k

Wk,k′ ⊗⊤
t,d Xk +Bk′

)
,

where 1 ≤ k′ ≤ m′, while the sum index k runs as below,

k = ⌊g(k′ − 1)/m⌋m/g + 1, . . . , (⌊g(k′ − 1)/m⌋+ 1)m/g.

Here,

• W ∈ R(m/g)×m′×s is the weight tensor

• ⊗⊤
t,d is the transposed cross-correlation operator with stride t and dilation d.

That is, for any w ∈ Rs and x ∈ Rn one has

w ⊗⊤
t,d x ∈ R(n−1)t−d(s−1)+1,

where (
w ⊗⊤

t,d x
)
j
:=
∑
i

w⌊ (i−1)t+1−j
d ⌋+1

xi,

the sum index i running as below,

i =

⌊
j − 1

t
+ 1

⌋
, . . . ,

⌊
(s− 1)d+ j − 1

t
+ 1

⌋
.

• B ∈ Rm′×(n−1)t−d(s−1)+1 is the bias term.

Definition 3 Let ρ : R → R. A dense layer with activation function ρ is a map
Φ : Rn → Rn′

of the form
Φ(x) = ρ (Wx+ b)

where W ∈ Rn′×n and b ∈ Rn′
are respectively the weight matrix and the bias

vector.

Definition 4 A Convolutional Neural Network (CNN) is any map that, up to re-
shaping operations, can be written as the composition of (transposed) convolutional
layers. Conversely, a Deep Neural Network (DNN) is any map that, up to reshaping
operations, can be written as the composition of dense layers.

Since (transposed) convolutional layers can be seen as a particular class of dense
layers, every CNN is a DNN. Similarly, CNNs and DNNs can be easily composed
to build more complex DNN models.
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