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Abstract

We study the performance of adaptive Fourier-Galerkin methods in a periodic box in Rd

with dimension d ≥ 1. These methods offer unlimited approximation power only restricted
by solution and data regularity. They are of intrinsic interest but are also a first step towards
understanding adaptivity for the hp-FEM. We examine two nonlinear approximation classes,
one classical corresponding to algebraic decay of Fourier coefficients and another associated
with exponential decay. We study the sparsity classes of the residual and show that they
are the same as the solution for the algebraic class but not for the exponential one. This
possible sparsity degradation for the exponential class can be compensated with coarsening,
which we discuss in detail. We present several adaptive Fourier algorithms, and prove their
contraction and optimal cardinality properties.

1 Introduction

Adaptivity is now a fundamental tool in scientific and engineering computation. In contrast
to the practice, which goes back to the 70’s, the mathematical theory for multidimensional
problems is rather recent. It started in 1996 with the convergence results by Dörfler [13] and
Morin, Nochetto, and Siebert [18]. The first convergence rates were derived by Cohen, Dahmen,
and DeVore [7] for wavelets in any dimensions d, and for finite element methods (AFEM) by
Binev, Dahmen, and DeVore [2] for d = 2 and Stevenson [21] for any d. The most comprehensive
results for AFEM are those of Cascón, Kreuzer, Nochetto, and Siebert [6] for any d and L2 data,
and Cohen, DeVore, and Nochetto [8] for d = 2 and H−1 data; we refer to the survey [19]
by Nochetto, Siebert and Veeser. This theory is quite satisfactory in that it shows that AFEM
delivers a convergence rate compatible with that of the approximation classes where the solution
and data belong. The recent results in [8] reveal that it is the approximation class of the solution
that really matters. In all cases though the convergence rates are limited by the approximation
power of the method (both wavelets and FEM), which is finite and related to the polynomial
degree of the basis functions, and the regularity of the solution and data. The latter is always
measured in an algebraic approximation class.
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In contrast very little is known for methods with infinite approximation power, such as
those based on Fourier analysis. We mention here the results of DeVore and Temlyakov [12] for
trigonometric sums and those of Binev et al [1] for the reduced basis method. A close relative
to Fourier methods is the so-called p-version of the FEM (see e.g. [20] and [5]), which uses
Legendre polynomials instead of exponentials as basis functions. The purpose of this paper is
to present adaptive Fourier-Galerkin methods (ADFOUR), and discuss their convergence and
optimality properties. We do so in the context of both algebraic and exponential approxima-
tion classes, and take advantage of the orthogonality inherent to complex exponentials. We
believe that this approach can be extended to the p-FEM. We view this theory as a first step
towards understanding adaptivity for the hp-FEM, which combines mesh refinement (h-FEM)
with polynomial enrichment (p-FEM) and is much harder to analyze.

Our investigation reveals some striking differences between ADFOUR and AFEM and wavelet
methods. The basic assumption, underlying the success of adaptivity, is that the information
read in the residual is quasi-optimal for either mesh design or choosing wavelet coefficients for
the actual solution. This entails that the sparsity classes of the residual and the solution coin-
cide. We briefly illustrate below, and fully discuss later in Sect. 5, that this basic premise is
false for exponential classes even though it is true for algebraic classes. Confronted with this
unexpected fact, we have no alternative but to implement and study ADFOUR with coarsening
for the exponential case; see Sect. 6 and Sect. 8. This was the original idea of Cohen et al [7]
and Binev et al [2] for the algebraic case, but it was subsequently removed by Stevenson [21].

We give now a brief description of the essential issues we are confronted with in designing
and studying ADFOUR. To this end, we assume that we know the Fourier representation v =
{vk}k∈Z of a periodic function v, and its non-increasing rearrangement v∗ = {v∗n}∞n=1, namely,
|v∗n+1| ≤ |v∗n| for all n ≥ 1.

Dörfler marking and best N-term approximation. We recall the marking introduced by
Dörfler [13], which is the only one for which there exist provable convergence rates. Given a
parameter θ ∈ (0, 1), and a current set of Fourier frequencies or indices Λ, say the first N ones
according to the labeling of v, we choose the next set ∂Λ as the minimal set for which

∥P∂Λr∥ ≥ θ∥r∥, (1.1)

where r := v−PΛv is the residual and PΛ is the orthogonal projection in the ℓ2-norm ∥ · ∥ onto
Λ. Note that, if r∗ := r− P∂Λr and Λ∗ := Λ ∪ ∂Λ, then (1.1) can be equivalently written as

∥r∗∥ = ∥r− P∂Λr∥ ≤
√

1− θ2∥r∥, (1.2)

and that r = v|Λc where Λc := N\Λ is the complement of Λ and likewise for r∗. This is the
simplest possible scenario because the information built in r is exactly that of v. Moreover,
v − r = {v∗n}Nn=1 is the best N -term approximation of v in the ℓ2-norm and the corresponding
error EN (v) is given by

EN (v) =
( ∑

n>N

|v∗n|2
)− 1

2
= ∥r∥. (1.3)

Algebraic vs exponential decay. Suppose now that v has the precise algebraic decay1

|v∗n| ≃ n−
1
τ ∀n ≥ 1. (1.4)

1Throughout the paper, A <∼ B means A ≤ cB for some constant c > 0 independent of the relevant parame-

ters in the inequality; A ≃ B means B <∼ A <∼ B.
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with
1

τ
=
s

d
+

1

2
(1.5)

and s > 0. We denote by ∥v∥ℓsB the smallest constant in the upper bound in (1.4). We thus
have

EN (v)2 ≃ ∥v∥2ℓτw
∑
n>N

n−
2
τ = ∥v∥2ℓsB

∑
n>N

n−
2s
d
−1 ≃ ∥v∥2ℓsBN

− 2s
d .

This decay is related to certain Besov regularity of v [12]. Note that the effect of Dörfler marking
(1.2) is to reduce the residual from r to r∗ by a factor α =

√
1− θ2, or equivalently

EN∗(v) ≤ αEN (v),

with N∗ = |Λ∗|. Since the set Λ∗ is minimal, we deduce that EN∗−1(v) > αEN (v), whence

N∗
N
≃ α− d

s ⇒ N∗ −N ≃ α− d
sN (1.6)

for α small enough. This means that the number of degrees of freedom to be added is proportional
to the current number. This simplifies considerably the complexity analysis since every step adds
as many degrees of freedom as we have already accumulated.

The exponential case is quite different. Suppose that v has a genuinely exponential decay

|v∗n| ≃ e−ηn ∀n ≥ 1, (1.7)

corresponding to analytic functions [14], and let ∥v∥ℓηG be the smallest constant appearing in

the upper bound in (1.7). These definitions are slight simplifications of the actual ones in Sect.
4.3 but enough to give insight on the main issues at stake. We thus have

EN (v)2 ≃ ∥v∥2ℓηG
∑
n>N

e−2ηn ≃ ∥v∥2ℓηGe
−2ηN ;

this and similar decays are related to Gevrey classes of C∞ functions [14]. In contrast to (1.6),
Dörfler marking now yields2

N∗ −N ∼
1

η
log

1

α
. (1.8)

This shows that the number of additional degrees of freedom per step is fixed and independent
of N , which makes their counting as well as their implementation a very delicate operation.

Plateaux. We now consider a situation opposite to the ideal decay examined above. Suppose
that the first K > 1 Fourier coefficients of v are constant and either

|v∗n| = ∥v∥ℓsBn
− 1

τ or |v∗n| = ∥v∥ℓηGe
−ηn ∀n ≥ K, (1.9)

for each approximation class. A simple calculation reveals that either

∥v∥ ≃ ∥v∥ℓsBK
−s/d or ∥v∥ ≃ ∥v∥ℓηGe

−ηK . (1.10)

Repeating the argument leading to (1.6) and (1.8) with N = 1, we infer that either

N∗ ≃ Kα− d
s or N∗ ∼ K +

1

η
log

1

α
. (1.11)

2Throughout the paper, A ∼ B means A = B + c for some quantity c ≃ 1.
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For K ≫ 1 this is a much larger number than the optimal values (1.6) and (1.8), and illustrates
the fact that the Dörfler condition (1.1) adds many more frequencies in the presence of plateaux.
We note that K is a multiplicative constant in the left of (1.11) and additive in the right of
(1.11).

Sparsity of the residual. In practice we do not have access to the Fourier decomposition of v
but rather of the residual r(v) = f − Lv, where f is the forcing function and L the differential
operator. Only an operator L with constant coefficients leads to a spectral representation with
diagonal matrix A, in which case the components of the residual r = f − Av are directly
those of f and v. In general A decays away from the main diagonal with a law that depends
on the regularity of the coefficients of L; we will examine in Sect. 2.4 either algebraic or
exponential decay. In this much more intricate and interesting endeavor, studied in this paper,
the components of v interact with entries of A to give rise to r. The question whether Lv
belongs to the same approximation class of v thus becomes relevant because adaptivity decisions
are made with r(v), and thereby on the range of L rather than its domain.

We now provide insight on the key issues at stake via a couple of heuristic examples; we
discuss this fully in Sect. 5.1 and Sect. 5.2. We start with the exponential case: let v := {vk}k∈Z
be defined by

vk = e−ηn if k = 2p(n− 1), vk = 0 otherwise,

for p ≥ 2 a given integer and n ≥ 1. This sequence exhibits gaps of size 2p between consecutive
nonzero entries for k ≥ 0. Its non-decreasing rearrangement v∗ = {v∗n}∞n=1 is thus given by

v∗n = e−ηn n ≥ 1,

whence v ∈ ℓηG with ∥v∥ℓηG = 1. Let A := (aij)
∞
i,j=1 be the Toeplitz bi-infinite matrix given by

aij = 1 if |i− j| ≤ q, aij = 0 otherwise,

with 1 ≤ q < p. This matrix A has 2q + 1 main nontrivial diagonals and is both of exponential
and algebraic class according to the Definition 2.1 below. The product Av is much less sparse
than v but, because q < p, consecutive frequencies of v do not interact with each other: the
i-th component reads

(Av)i = e−ηn if
∣∣i− 2p(n− 1)

∣∣ ≤ q for some n ≥ 1,

or (Av)i = 0 otherwise. The non-decreasing rearrangement (Av)∗ of Av becomes

(Av)∗m = e−ηn if (2q + 1)(n− 1) + 1 ≤ m ≤ (2q + 1)n.

Consequently, writing (Av)∗m = e−η n
m
m and observing that

n

m
≥ n

(2q + 1)n
=

1

2q + 1

and the equality is attained for m = (2q + 1)n, we deduce

Av ∈ ℓη̄G with ∥Av∥ℓη̄G = 1 η̄ =
η

2q + 1
.

We thus conclude that the action ofAmay shift the exponential class, from the one characterized
by the parameter η for v to the one characterized by η̄ < η for Av. This uncovers the crucial
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feature that the image Av of v may be substantially less sparse than v itself. In Sect. 5.2 we
present a rigorous construction with aij decreasing exponentially from the main diagonal and
another, rather sophisticated, construction that illustrates the fact that the exponent τ = 1
in the bound |v∗n| <∼ e−ηn = e−ηnτ

for v may deteriorate to some τ̄ < 1 in the corresponding
bound for Av.

It is remarkable that a similar construction for the algebraic decay would not lead to a change
of algebraic class. In fact, let v = {vk}k∈Z be given by

vk =
1

n
if k = 2p(n− 1) for some n ≥ 1,

and vk = 0 otherwise. The non-decreasing rearrangement v∗ = {v∗n}∞n=1 of v satisfies v∗n = 1
n

whence

v ∈ ℓsB with s =
d

2
∥v∥ℓsB = 1.

On the other hand, the i-th component of Av reads

(Av)i =
1

n
if

∣∣i− 2p(n− 1)
∣∣ ≤ q for some n ≥ 1,

or (Av)i = 0 otherwise. The non-decreasing rearrangement of (Av)∗ in turn satisfies

(Av)∗m =
1

n
if (2q + 1)(n− 1) + 1 ≤ m ≤ (2q + 1)n,

whence writing (Av)∗m = m
n

1
m and arguing as before we infer that

Av ∈ ℓsB with ∥Av∥ℓsB = 2q + 1.

Since ∥Av∥ℓsB > ∥v∥ℓsB we realize thatAv is less sparse than v but, in contrast to the exponential
case, they belong to the same algebraic class ℓsB. Moreover, we will prove later in Sect. 5.1 that
A preserves the class ℓsB provided entries of A possess a suitable algebraic decay away from the
main diagonal.

Since Dörfler marking is applied to the residual r, it is its sparsity class that determines the
degrees of freedom |∂Λ| to be added. The same argument leading to either (1.6) or (1.8) gives

|∂Λ| ≤
(∥r∥ℓsB
α∥r∥

) d
s
+ 1 or |∂Λ| ≤ 1

η
log
∥r∥ℓηG
α∥r∥

+ 1,

for each class. We thus see that the ratios ∥r∥ℓsB/∥r∥ and ∥r∥ℓηG/∥r∥ control the behavior of the

adaptive procedure. This has already been observed and exploited by Cohen et al [7] in the
context of wavelet methods for the class ℓsB. Our estimates, discussed in Sect. 5, are valid for
both classes and use specific decay properties of the entries of A.

Coarsening. Ever since its inception by Cohen et al [7] and Binev et al [2], this has been
a controvertial issue for elliptic PDE. It was originally due to the lack of control on the ratio
∥r∥ℓsB/∥r∥ for large s [7]. It was removed by Stevenson et al [16, 21] for the algebraic class ℓsB
via a clever argument that exploits the minimality of Dörfler marking. This implicitly implies
that the approximation classes for both v and Lv coincide, which we prove explicitly in Sect.
5.1 for the algebraic case. This is not true though for the exponential case and is discussed in
Sect. 5.2. For the latter, we need to resort to coarsening to keep the cardinality of ADFOUR
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quasi-optimal. To this end, we construct an insightful example in Sect. 6 and prove a rather
simple but sharp coarsening estimate which improves upon [7].

Contraction constant. It is well known that the contraction constant ρ(θ) =
√

1− α∗
α∗ θ2

cannot be arbitrarily close to 1 for estimators whose upper and lower constants, α∗ ≥ α∗, do not
coincide. This is, however, at odds with the philosophy of spectral methods which are expected
to converge superlinearly (typically exponentially). Assuming that the decay properties of A
are known, we can enrich Dörfler marking in such a way that the contraction factor becomes

ρ̄(θ) =
(α∗

α∗

) 1
2
√

1− θ2.

This leads to ρ̄(θ) as close to 1 as desired and to aggressive versions of ADFOUR discussed in
Sect. 3.

This paper can be viewed as a first step towards understanding adaptivity for the hp-FEM.
However, the results we present are of intrinsic interest and of value for periodic problems with
high degree of regularity and rather complex structure. One such problem is turbulence in a
periodic box. Our techniques exploit periodicity and orthogonality of the complex exponentials,
but many of our assertions and conclusions extend to the non-periodic case for which the natural
basis functions are Legendre polynomials; this is the case of the p-FEM. In any event, the study
of adaptive Fourier-Galerkin methods seems to be a new paradigm in adaptivity, with many
intriguing questions and surprises, some discussed in this paper. In contrast to the h-FEM, they
exhibit unlimited approximation power which is only restricted by solution and data regularity.

We organize the paper as follows. In Sect. 2 we introduce the Fourier-Galerkin method,
present a posteriori error estimators, and discuss properties of the underlying matrix A for
both algebraic and exponential approximation classes. In Sect. 3 we deal with four algorithms,
two for each class, and prove their contraction properties. We devote Sect. 4 to nonlinear
approximation theory with an emphasis on the exponential class. In Sect. 5 we turn to the
study of the sparsity classes for the residual r along the lines outlined above. We examine the
role of coarsening and prove a sharp coarsening estimate in Sect. 6. We conclude with optimality
properties of ADFOUR for the algebraic class in Sect. 7 and for the exponential class in Sect.
8.

2 Fourier-Galerkin approximation

2.1 Fourier basis and norm representation

For d ≥ 1, we consider Ω = (0, 2π)d, and the trigonometric basis

ϕk(x) =
1

(2π)d/2
eik·x , k ∈ Zd , x ∈ Rd ,

which is orthonormal in L2(Ω); let

v =
∑
k

v̂kϕk , v̂k = (v, ϕk) , with ∥v∥2L2(Ω) =
∑
k

|v̂k|2 ,

be the expansion of any v ∈ L2(Ω) and the representation of its norm via the Parseval identity.
Let H1

p (Ω) = {v ∈ H1(Ω) : v(x + 2πej) = v(x) 1 ≤ j ≤ d}, and let H−1
p (Ω) be its dual. Since
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the trigonometric basis is orthogonal in H1
p (Ω) as well, one has for any v ∈ H1

p (Ω)

∥v∥2H1
p(Ω) =

∑
k

(1 + |k|2)|v̂k|2 =
∑
k

|V̂k|2 , (setting V̂k :=
√

(1 + |k|2)v̂k) ; (2.1)

here and in the sequel, |k| denotes the Euclidean norm of the multi-index k. On the other hand,
if f ∈ H−1

p (Ω), we set

f̂k = ⟨f, ϕk⟩ , so that ⟨f, v⟩ =
∑
k

f̂kv̂k ∀v ∈ H1
p (Ω) ;

the norm representation is

∥f∥2
H−1

p (Ω)
=
∑
k

1

(1 + |k|2)
|f̂k|2 =

∑
k

|F̂k|2 , (setting F̂k :=
1√

(1 + |k|2)
f̂k) . (2.2)

Throughout the paper, we will use the notation ∥ . ∥ to indicate both the H1
p (Ω)-norm of a

function v, or the H−1
p (Ω)-norm of a linear form f ; the specific meaning will be clear from the

context.
Given any finite index set Λ ⊂ Zd, we define the subspace of V := H1

p (Ω)

VΛ := span {ϕk | k ∈ Λ} ;

we set |Λ| = cardΛ, so that dimVΛ = |Λ|. If g admits an expansion g =
∑

k ĝkϕk (converging
in an appropriate norm), then we define its projection PΛg upon VΛ by setting

PΛg =
∑
k∈Λ

ĝkϕk .

2.2 Galerkin discretization and residual

We now consider the elliptic problem{
Lu = −∇ · (ν∇u) + σu = f in Ω ,

u 2π-periodic in each direction ,
(2.3)

where ν and σ are sufficiently smooth real coefficients satisfying 0 < ν∗ ≤ ν(x) ≤ ν∗ < ∞ and
0 < σ∗ ≤ σ(x) ≤ σ∗ <∞ in Ω; let us set

α∗ = min(ν∗, σ∗) and α∗ = max(ν∗, σ∗) .

We formulate this problem variationally as

u ∈ H1
p (Ω) : a(u, v) = ⟨f, v⟩ ∀v ∈ H1

p (Ω) , (2.4)

where a(u, v) =
∫
Ω ν∇u · ∇v̄ +

∫
Ω σuv̄ (bar indicating as usual complex conjugate). We denote

by |||v||| =
√
a(v, v) the energy norm of any v ∈ H1

p (Ω), which satisfies

√
α∗∥v∥ ≤ |||v||| ≤

√
α∗∥v∥ . (2.5)
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Given any finite set Λ ⊂ Zd, the Galerkin approximation is defined as

uΛ ∈ VΛ : a(uΛ, vΛ) = ⟨f, vΛ⟩ ∀vΛ ∈ VΛ . (2.6)

For any w ∈ VΛ, we define the residual

r(w) = f − Lw =
∑
k

r̂k(w)ϕk , where r̂k(w) = ⟨f − Lw, ϕk⟩ = ⟨f, ϕk⟩ − a(w, ϕk) .

Then, the previous definition of uΛ is equivalent to the condition

PΛr(uΛ) = 0 , i.e., r̂k(uΛ) = 0 ∀k ∈ Λ . (2.7)

On the other hand, by the continuity and coercivity of the bilinear form a, one has

1

α∗ ∥r(uΛ)∥ ≤ ∥u− uΛ∥ ≤
1

α∗
∥r(uΛ)∥ , (2.8)

or, equivalently,
1√
α∗
∥r(uΛ)∥ ≤ |||u− uΛ||| ≤

1
√
α∗
∥r(uΛ)∥ . (2.9)

2.3 Algebraic representations

Let us identify the solution u =
∑

k ûkϕk of Problem (2.4) with the vector u = (Ûk) = (ckûk) ∈
CZd

of its H1
p -normalized Fourier coefficients, where we set for convenience ck =

√
1 + |k|2.

Similarly, let us identify the right-hand side f with the vector f = (F̂ℓ) = (c−1
ℓ f̂ℓ) ∈ CZd

of
its H−1

p -normalized Fourier coefficients. Finally, let us introduce the bi-infinite, Hermitian and
positive-definite matrix

A = (aℓ,k) with aℓ,k =
1

cℓck
a(ϕk, ϕℓ) . (2.10)

Then, Problem (2.4) can be equivalently written as

Au = f . (2.11)

We observe that the orthogonality properties of the trigonometric basis implies that the matrix
A is diagonal if and only if the coefficients ν and σ are constant in Ω.

Next, consider the Galerkin problem (2.6) and let uΛ ∈ C|Λ| be the vector collecting the
coefficients of uΛ indexed in Λ; let fΛ ∈ C|Λ| be the analogous restriction for the vector of the
coefficients of f . Finally, denote by RΛ the matrix that restricts a bi-infinite vector to the
portion indexed in Λ, so that EΛ = RH

Λ is the corresponding extension matrix. Then, setting

AΛ = RΛARH
Λ , (2.12)

Problem (2.6) can be equivalently written as

AΛuΛ = fΛ . (2.13)
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2.4 Properties of the stiffness matrix

It is useful to express the elements of A in terms of the Fourier coefficients of the operator coef-
ficients ν and σ. Precisely, writing ν =

∑
k ν̂kϕk and σ =

∑
k σ̂kϕk and using the orthogonality

of the Fourier basis, one easily gets

aℓ,k =
1

(2π)d/2

(
ℓ · k
cℓck

ν̂ℓ−k +
1

cℓck
σ̂ℓ−k

)
. (2.14)

Note that the diagonal elements are uniformly bounded from below,

aℓ,ℓ ≥
1

(2π)d/2
min(ν̂0, σ̂0) > 0 , ℓ ∈ Zd , (2.15)

whereas all elements are bounded in modulus by the elements of a Toeplitz matrix,

|aℓ,k| ≤
1

(2π)d/2
(|ν̂ℓ−k|+ |σ̂ℓ−k|) , ℓ, k ∈ Zd , (2.16)

which decay as |ℓ − k| → ∞ at a rate dictated by the smoothness of the operator coefficients.
Indeed, if ν and σ are sufficiently smooth, their Fourier coefficients decay at a suitable rate and
this property is inherited by the off-diagonal elements of the matrix A, via (2.16). To be precise,
if the coefficients ν and σ have a finite order of regularity, then the rate of decay of their Fourier
coefficients is algebraic, i.e.

|ν̂k|, |σ̂k| . (1 + |k|)−η ∀k ∈ Zd , (2.17)

for some η > 0. On the other hand, if the operator coefficients are real analytic in a neighborhood
of Ω, then the rate of decay of their Fourier coefficients is exponential, i.e.

|ν̂k|, |σ̂k| . e−η|k| ∀k ∈ Zd . (2.18)

Correspondingly, the matrix A belongs to one of the following classes.

Definition 2.1 (regularity classes for A) A matrix A is said to belong to

• the algebraic class Da(ηL) if there exists a constant cL > 0 such that its elements satisfy

|aℓ,k| ≤ cL(1 + |ℓ− k|)−ηL ℓ, k ∈ Zd ; (2.19)

• the exponential class De(ηL) if there exists a constant cL > 0 such that its elements satisfy

|aℓ,k| ≤ cLe−ηL|ℓ−k| ℓ, k ∈ Zd . (2.20)

The following properties hold.

Property 2.1 (continuity of A) If either A ∈ Da(ηL), with ηL > d, or A ∈ De(ηL), then A
defines a bounded operator on ℓ2(Zd).

Proof. See e.g. [17, 9].
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Property 2.2 (inverse of A: algebraic case) If A ∈ Da(ηL), with ηL > d and A is invert-
ible in ℓ2(Zd), then A−1 ∈ Da(ηL).

Proof. See e.g. [17].

Property 2.3 (inverse of A: exponential case) If A ∈ De(ηL) and there exists a constant
cL satisfying (2.20) such that

cL <
1

2
(eηL − 1)min

ℓ
aℓ,ℓ , (2.21)

then A is invertible in ℓ2(Zd) and A−1 ∈ De(η̄L) where η̄L ∈ (0, ηL] is such that z̄ = e−η̄L is the
unique zero in the interval (0, 1) of the polynomial

z2 − e2ηL + 2cL + 1

eηL(cL + 1)
z + 1 .

Proof. We follow the suggestion by Bini [3], and thus exploit the one-to-one correspondence
between Toeplitz matrices and formal Laurent series (see e.g. [4]):

f(z) =

∞∑
k=−∞

akz
k ←→ Tf = (ti,j), ti,j = ai−j .

We refer to the function f(z) as to the symbol associated to the Toeplitz matrix Tf . We recall
now a few relations between f(z) and Tf . If f(z) is analytic on Aα = {z ∈ C : e−α < |z| < eα}
with α > 0, then there holds f(z) =

∑+∞
k=−∞ akz

k, where the coefficients ak have exponential
decay with rate e−α in the sense that for every 0 < ρ < e−α there exists a constant γ > 0 such
that |ak| ≤ γρ|k|. As a consequence, the symbol f(z) of the Toeplitz matrix Tf is analytic on Aα

for some α > 0 if and only if the elements of Tf decay exponentially with rate e−α. Moreover,
it is known that if f(z) is analytic on Aα and it is non-zero on Aβ ⊂ Aα, then the function
g(z) = 1/f(z) is well defined and analytic on Aβ, the matrix Tg is the inverse of Tf and the
elements of Tg decay exponentially with rate e−β.

We next introduce the analytic functions in Aα

h(z) =

∞∑
k=1

e−αk(zk + z−k) =
z

eα − z
+

z−1

eα − z−1
, fc(z) = 1− ch(z),

with c > 0. For |z| = 1 we deduce |h(z)| ≤ 2
∑∞

k=1 e
−αk = 2/(eα − 1), whence c|h(z)| <

1 provided that c < 1
2(e

α − 1); moreover ∥Th∥ ≤ ∥Th∥∞ = 2/(eα − 1), which is indeed a
particular instance of Schur Lemma for symmetric matrices. For this range of c’s, fc(z) ̸= 0 for
|z| = 1 and for continuity there exists Aβ ⊂ Aα on which fc(z) in non-zero. This implies that
gc(z) := 1/fc(z) is analytic on Aβ and the elements of the associated Toeplitz matrix Tgc decay
exponentially with rate e−β. The singularities of gc correspond to zeros of fc, which are in turn
the roots ζ1, ζ2 of the polynomial

z2 − e2α + 2c+ 1

eα(c+ 1)
z + 1.

These roots are real provided c < 1
2(e

α − 1), in which case e−β = ζ1 = ζ−1
2 < 1.
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Let A ∈ De(α), i.e. there exists a constant c such that |aℓ,k| ≤ ce−α|ℓ−k| for ℓ, k ∈ Zd.
By rescaling of the rows of A, it is not restrictive to assume that the diagonal elements A are
equal to 1. Then, it is possible to write A = I− S with |S| ≤ cTh, the inequality being meant
element by element, and ∥S∥ < 1. Since gc(z) = 1/(1 − ch(z)) =

∑∞
k=0 c

kh(z)k is well defined
and analytic on Aβ ⊂ Aα, it follows that∣∣∣∣∣

∞∑
k=0

Sk

∣∣∣∣∣ ≤
∞∑
k=0

|S|k ≤
∞∑
k=0

ckTk
h = Tgc .

Hence, the elements of the matrix Tgc decay exponentially with rate e−β. Property ∥S∥ < 1
yields A−1 = (I − S)−1 =

∑∞
k=0 S

k and |A−1| ≤ Tgc , whence the coefficients of A−1 being
bounded by those of Tgc decay exponentially with rate e−β, i.e. A−1 ∈ De(β) for some β < α.
This gives (2.21) once the row scaling of A is taken into account.

Example 2.1 (sharpness of (2.21)) The following example illustrates that (2.21) is sharp.
Let A be

aij = −2−1−|i−j| i ̸= j, aii = 1,

which is singular because the sum of the coefficients in every row vanishes. This A corresponds
to eηL = 2, cL = 1

2 and 1
2(e

ηL − 1) = 1
2 , which violates (2.21).

For any integer J ≥ 0, let AJ denote the following symmetric truncation of the matrix A

(AJ)ℓ,k =

{
aℓ,k if |ℓ− k| ≤ J ,
0 elsewhere.

(2.22)

Then, we have the following well-known results, whose proof is reported for completeness.

Property 2.4 (truncation) The truncated matrix AJ has a number of non-vanishing entries
bounded by ωdJ

d, where ωd is the measure of the Euclidean unit ball in Rd. Moreover, under the
assumption of Property 2.1, there exists a constant CA such that

∥A−AJ∥ ≤ ψA(J, η) := CA

{
(J + 1)−(ηL−d) if A ∈ Da(ηL) (algebraic case) ,

(J + 1)d−1e−ηLJ if A ∈ De(ηL) (exponential case) ,

for all J ≥ 0. Consequently, under the assumptions of Property 2.2 or 2.3, one has

∥A−1 − (A−1)J∥ ≤ ψA−1(J, η̄L) (2.23)

where we let η̄L = ηL in the algebraic case and η̄L be defined in Property 2.3 for the exponential
case.

Proof. We use the Schur Lemma for symmetric matrices, ∥B∥ ≤ ∥B∥∞ = supℓ
∑

k |bℓ,k| for
B = A−AJ . Thus, in the algebraic case

sup
ℓ

∑
k:|ℓ−k|>J

|aℓ,k| ≤ CL sup
ℓ

∑
k:|ℓ−k|>J

1

(1 + |ℓ− k|)ηL

<∼ sup
ℓ

∞∑
q=J+1

∑
k:|ℓ−k|=q

1

(1 + q)ηL
<∼ sup

ℓ

∞∑
q=J+1

qd−1

(1 + q)ηL
<∼ (J + 1)d−ηL .

A similar argument yields the result in the exponential case.
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2.5 An equivalent formulation of the Galerkin problem

For future reference, herafter we rewrite the Galerkin problem (2.13) in an equivalent (infinite-
dimensional) way. Let

PΛ : ℓ2(Zd)→ ℓ2(Zd)

be the projector operator defined as

(PΛv)λ =

{
vλ if λ ∈ Λ ,

0 if λ /∈ Λ .

Note that PΛ can be represented as a diagonal bi-infinite matrix whose diagonal elements are
1 for indexes belonging to Λ, zero otherwise. Let us set QΛ = I − PΛ and we introduce the
bi-infinite matrix ÂΛ := PΛAPΛ+QΛ which is equal to AΛ for indexes in Λ and to the identity
matrix, otherwise. The definitions of the projectors PΛ and QΛ yield the following result.

Property 2.5 (invertibility of Â) If A is invertible with either A ∈ Da(ηL) or A ∈ De(ηL),
then the same holds for ÂΛ.

Now, let us consider the following extended Galerkin problem: find û ∈ ℓ2(Zd) such that

ÂΛû = PΛf . (2.24)

Let EΛ : C|Λ| → ℓ2(Zd) be the extension operator defined in Sect. 2.3 and let uΛ ∈ C|Λ| be the
Galerkin solution to (2.13); then, it is easy to check that û = EΛuΛ.

In the following, with an abuse of notation, the solution of (2.24) will be denoted by uΛ.
We will refer to it as to the (extended) Galerkin solution, meaning the infinite-dimensional
representant of the finite-dimensional Galerkin solution. In case of possible confusion, we will
make clear which version (infinite-dimensional or finite-dimensional) has to be considered.

3 Adaptive algorithms with contraction properties

Our first algorithm will be an ideal one; it will serve as a reference to illustrate in the simplest
situation the contraction property which guarantees the convergence of the algorithm, and it
will be subsequently modified to get more efficient versions. The ideal algorithm uses as error
estimator the ideal one, i.e., the norm of the residual in H−1

p (Ω); we thus set, for any v ∈ H1
p (Ω),

η2(v) = ∥r(v)∥2 =
∑
k∈Zd

|R̂k(v)|2 , (3.1)

so that (2.8) can be rephrased as

1

α∗ η(uΛ) ≤ ∥u− uΛ∥ ≤
1

α∗
η(uΛ) ; (3.2)

recall that R̂k(v) = (1 + |k|2)−1/2rk(v) according to (2.2). Obviously, this estimator is hardly
computable in practice; in Sect. 3.2 we will introduce a feasible version, but for the moment we
go through the ideal situation. Given any subset Λ ⊆ Zd, we also define the quantity

η2(v; Λ) = ∥PΛr(v)∥2 =
∑
k∈Λ
|R̂k(v)|2 ,

so that η(v) = η(v;Zd).
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3.1 ADFOUR: an ideal algorithm

We now introduce the following procedures, which will enter the definition of all our adaptive
algorithms.

• uΛ := GAL(Λ)
Given a finite subset Λ ⊂ Zd, the output uΛ ∈ VΛ is the solution of the Galerkin problem
(2.6) relative to Λ.

• r := RES(vΛ)
Given a function vΛ ∈ VΛ for some finite index set Λ, the output r is the residual r(vΛ) =
f − LvΛ.

• Λ∗ := DÖRFLER(r, θ)
Given θ ∈ (0, 1) and an element r ∈ H−1

p (Ω), the ouput Λ∗ ⊂ Zd is a finite set such that
the inequality

∥PΛ∗r∥ ≥ θ∥r∥ (3.3)

is satisfied.

Note that the latter inequality is equivalent to

∥r − PΛ∗r∥ ≤
√

1− θ2∥r∥ . (3.4)

If r = r(uΛ) is the residual of a Galerkin solution uΛ ∈ VΛ, then by (2.7) we can trivially assume
that Λ∗ is contained in Λc := Zd \Λ. For such a residual, inequality (3.3) can then be stated as

η(uΛ; Λ
∗) ≥ θη(uΛ) , (3.5)

a condition termed Dörfler marking in the finite element literature, or bulk chasing in the wavelet
literature. Writing R̂k = R̂k(uΛ), the condition (3.5) can be equivalently stated as∑

k∈Λ∗

|R̂k|2 ≥ θ2
∑
k ̸∈Λ
|R̂k|2 . (3.6)

Also note that a set Λ∗ of minimal cardinality can be immediately determined if the coefficients
R̂k are rearranged in non-increasing order of modulus; however, the subsequent convergence
result does not require the property of minimal cardinality for the sets of active coefficients.

In the sequel, we will invariably make the following assumption:

Assumption 3.1 (Dörfler marking) The procedure DÖRFLER selects an index set Λ∗ of
minimal cardinality among all those satisfying condition (3.3).

Given two parameters θ ∈ (0, 1) and tol ∈ [0, 1), we are ready to define our ideal adaptive
algorithm.

Algorithm ADFOUR(θ, tol)

Set r0 := f , Λ0 := ∅, n = −1

do

n← n+ 1

13



∂Λn := DÖRFLER(rn, θ)

Λn+1 := Λn ∪ ∂Λn

un+1 := GAL(Λn+1)

rn+1 := RES(un+1)

while ∥rn+1∥ > tol

The following result states the convergence of this algorithm, with a guaranteed error reduc-
tion rate.

Theorem 3.1 (convergence of ADFOUR) Let us set

ρ = ρ(θ) =

√
1− α∗

α∗ θ
2 ∈ (0, 1) . (3.7)

Let {Λn, un}n≥0 be the sequence generated by the adaptive algorithm ADFOUR. Then, the
following bound holds for any n:

|||u− un+1||| ≤ ρ|||u− un||| .

Thus, for any tol > 0 the algorithm terminates in a finite number of iterations, whereas for
tol = 0 the sequence un converges to u in H1

p (Ω) as n→∞.

Proof. For convenience, we use the notation en := |||u − un||| and dn := |||un+1 − un|||. As
VΛn ⊂ VΛn+1 , the following orthogonality property holds

e2n+1 = e2n − d2n. (3.8)

On the other hand, for any w ∈ H1
p (Ω), one has in light of (2.5)

∥Lw∥ = sup
v∈H1

p(Ω)

⟨Lw, v⟩
∥v∥

= sup
v∈H1

p(Ω)

a(w, v)

∥v∥
≤ |||w||| sup

v∈H1
p(Ω)

|||v|||
∥v∥
≤
√
α∗|||w||| .

Thus, using (3.3),

d2n ≥ 1

α∗ ∥L(un+1 − un)∥2 =
1

α∗ ∥rn+1 − rn∥2

≥ 1

α∗ ∥PΛn+1(rn+1 − rn)∥2 =
1

α∗ ∥PΛn+1rn∥2 ≥
θ2

α∗ ∥rn∥
2 .

On the other hand, the rightmost inequality in (2.9) states that ∥rn∥2 ≥ α∗e
2
n, whence the result.

3.2 F-ADFOUR: A feasible version of ADFOUR

The error estimator η(uΛ) based on (3.1) is not computable in practice, since the residual
r(uΛ) contains infinitely many coefficients. We thus introduce a new estimator, defined from an
approximation of such residual with finite Fourier expansion (i.e., a trigonometric polynomial).
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To this end, let ν̃, σ̃ and f̃ be suitable trigonometric polynomials, which approximate ν, σ and
f , respectively, to a given accuracy. Then, the quantity

r̃(uΛ) = f̃ − L̃uΛ = f̃ +∇ · (ν̃∇uΛ)− σ̃uΛ (3.9)

belongs to VΛ̃ for some finite subset Λ̃ ⊂ Zd, i.e., it has the finite (thus, computable) expansion

r̃(uΛ) =
∑
k∈Λ̃

ˆ̃rk(uΛ)ϕk .

The choice of the approximate coefficients has to be done in order to fulfil the following condition:
for a fixed parameter γ ∈ (0, θ), we require that

∥r(uΛ)− r̃(uΛ)∥ ≤ γ∥r̃(uΛ)∥ . (3.10)

Satisfying such a condition is possible, provided we have full access to the data. Indeed, on the
one hand, the left-hand side tends to 0 as the approximation of the coefficients gets better and
better, since (we keep here the full norm indication for a better clarity)

∥r(uΛ)− r̃(uΛ)∥H−1
p (Ω) ≤ ∥f − f̃∥H−1

p (Ω) + ∥ν − ν̃∥L∞(Ω)∥∇uΛ∥L2(Ω)d + ∥σ − σ̃∥L∞(Ω)∥uΛ∥L2(Ω)

≤ ∥f − f̃∥H−1
p (Ω) + (∥ν − ν̃∥L∞(Ω) + ∥σ − σ̃∥L∞(Ω))

1

α∗
∥f∥H−1

p (Ω) ,

where we have used the bound on the solution of the Galerkin problem (2.6) in terms of the
data. On the other hand, if uΛ ̸= u, then r(uΛ) ̸= 0, whence the right-hand side of (3.10)
converges to a non-zero value as Λ̃ increases.

With this remark in mind, we define a new error estimator by setting

η̃2(uΛ) = ∥r̃(uΛ)∥2 =
∑
k∈Λ̃

| ˆ̃Rk(uΛ)|2 , (3.11)

which, in view of (3.10), immediately yields

1− γ
α∗ η̃(uΛ) ≤ ∥u− uΛ∥ ≤

1 + γ

α∗
η̃(uΛ) . (3.12)

Lemma 3.1 (feasible Dörfler marking) Let Λ∗ be any finite index set such that

η̃(uΛ; Λ
∗) ≥ θη̃(uΛ) .

Then,

η(uΛ; Λ
∗) ≥ θ̃η(uΛ) , with θ̃ =

θ − γ
1 + γ

∈ (0, θ) . (3.13)

Proof. One has

∥PΛ∗r(uΛ)∥ ≥ ∥PΛ∗ r̃(uΛ)∥ − ∥PΛ∗ (r(uΛ)− r̃(uΛ)) ∥
≥ θ∥r̃(uΛ)∥ − ∥r(uΛ)− r̃(uΛ)∥

≥ (θ − γ)∥r̃(uΛ)∥ ≥
θ − γ
1 + γ

∥r(uΛ)∥ ,

which is the desired (3.13).

The previous result suggests introducing the following feasible variant of the procedure RES:
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• r := F-RES(vΛ, γ)
Given γ ∈ (0, θ) and a function vΛ ∈ VΛ for some finite index set Λ, the output r is an
approximate residual r̃(vΛ) = f̃+∇· (ν̃∇vΛ)− σ̃vΛ, defined on a finite set Λ̃ and satisfying

∥r(vΛ)− r̃(vΛ)∥ ≤ γ∥r̃(vΛ)∥ .

Theorem 3.2 (contraction property of F-AFOUR) Consider the feasible variant F-ADFOUR
of the adaptive algorithm ADFOUR, where the step rn+1 := RES(un+1) is replaced by the step
rn+1 := F-RES(un+1, γ) for some γ ∈ (0, θ). Then, the same conclusions of Theorem 3.1 hold
true for this variant, with the contraction factor ρ replaced by ρ = ρ(θ̃), where θ̃ is defined in
(3.13).

In the rest of the paper, we will develop our analysis considering Algorithm ADFOUR
rather than F-ADFOUR; this is just for the sake of simplicity, since all the conclusions extend
in a straightforward manner to the latter version as well.

3.3 A-ADFOUR: An aggressive version of ADFOUR

Theorem 3.1 indicates that even if one chooses θ very close to 1, the predicted error reduction
rate ρ = ρ(θ) is always bounded from below by the quantity

√
1− α∗

α∗ . Such a result looks
overly pessimistic, particularly in the case of smooth (analytic) solutions, since a Fourier method
allows for an exponential decay of the error as the number of (properly selected) active degrees
of freedom is increased. Fig 3.3 displays the influence of Dörfler parameter on the decay rate
and number of solves: choosing θ closer to 1 does not significantly affect the rate of decay of the
error versus the number of activated degrees of freedom, but it significantly reduces the number
of iterations. This in turn reduces the computational cost measured in terms of Galerkin solves.

Motivated by this observation, hereafter we consider a variant of Algorithm ADFOUR,
which – under the assumptions of Property 2.2 or 2.3 – guarantees an arbitrarily large error
reduction per iteration, provided the set of the new degrees of freedom detected by DÖRFLER
is suitably enriched.

At the n-th iteration, let us define the set Λn+1 := Λn ∪ ∂Λn by setting

∂̃Λn :=DÖRFLER(rn, θ)

∂Λn :=ENRICH(∂̃Λn, J) ,
(3.14)

where the latter procedure and the value of the integer J will be defined later on. We recall
that the set ∂̃Λn is such that gn = P

∂̃Λn
rn satisfies

∥rn − gn∥ ≤
√

1− θ2∥rn∥

(see (3.4)). Let wn ∈ V be the solution of Lwn = gn, which in general will have infinitely many
components, and let us split it as

wn = PΛn+1wn + PΛc
n+1

wn =: yn + zn ∈ VΛn+1 ⊕ VΛc
n+1

.
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Figure 1: Residual norm vs number of degrees of freedom activated by ADFOUR, for different
choices of Dörfler parameter θ; solid line: θ = 1− 10−1; dash-dotted line: θ = 1− 10−2; dashed
line: θ = 1 − 10−3. The symbols (circles, diamonds, stars) identify the various ADFOUR
iterations for the sample 1D problem (2.3) with analytic solution u(x) = exp(cos 2x+sinx) and
coefficients with ν = 1 + 1

2 sin 3x and σ = exp(2 cos 3x).

Then, by the minimality property of the Galerkin solution in the energy norm and by (2.5) and
(2.9), one has

|||u− un+1||| ≤ |||u− (un + yn)||| ≤ |||u− un − wn + zn|||

≤ 1
√
α∗
∥L(u− un − wn)∥+

√
α∗∥zn∥ =

1
√
α∗
∥rn − gn∥+

√
α∗∥zn∥ .

Thus,

|||u− un+1||| ≤
1
√
α∗

√
(1− θ2) ∥rn∥+

√
α∗∥zn∥ .

Now we can write zn =
(
PΛc

n+1
L−1P

∂̃Λn

)
rn; hence, if Λn+1 is defined in such a way that

k ∈ Λc
n+1 and ℓ ∈ ∂̃Λn ⇒ |k − ℓ| > J ,

then we have
∥PΛc

n+1
L−1P

∂̃Λn
∥ ≤ ∥A−1 − (A−1)J∥ ≤ ψA−1(J, η̄L) ,

where we have used (2.23). Now, J > 0 can be chosen to satisfy

ψA−1(J, η̄L) ≤

√
1− θ2
α∗α∗ , (3.15)

in such a way that

|||u− un+1||| ≤
1
√
α∗

√
1− θ2 ∥rn∥ ≤

(
α∗

α∗

)1/2√
1− θ2 |||u− un||| . (3.16)
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Note that, as desired, the new error reduction rate

ρ̄ =

(
α∗

α∗

)1/2√
1− θ2 (3.17)

can be made arbitrarily small by choosing θ arbitrarily close to 1. The procedure ENRICH is
thus defined as follows:

• Λ∗ := ENRICH(Λ, J)
Given an integer J ≥ 0 and a finite set Λ ⊂ Zd, the output is the set

Λ∗ := {k ∈ Zd : there exists ℓ ∈ Λ such that |k − ℓ| ≤ J} .

Note that since the procedure adds a d-dimensional ball of radius J around each point of Λ, the
cardinality of the new set Λ∗ can be estimated as

|Λ∗| ≤ |Bd(0, J) ∩ Zd| |Λ| ∼ ωdJ
d|Λ| , (3.18)

where ωd is the measure of the d-dimensional Euclidean unit ball Bd(0, 1) centered at the origin.
It is convenient for future reference to denote by ∂Λn := E-DÖRFLER(rn, θ, J) the proce-

dure described in (3.14). We summarize our results in the following theorem.

Theorem 3.3 (contraction property of A-ADFOUR) Consider the aggressive variant A-
ADFOUR of the adaptive algorithm ADFOUR, in which the step ∂Λn := DÖRFLER(rn, θ)
is replaced by

∂Λn := E-DÖRFLER(rn, θ, J) ,

where θ is such that ρ̄ defined in (3.17) is smaller than 1, and J is the smallest integer for
which (3.15) is fulfilled. Let the assumptions of Property 2.2 or 2.3 be satisfied. Then, the same
conclusions of Theorem 3.1 hold true for this variant, with the contraction factor ρ replaced by
ρ̄.

3.4 C-ADFOUR and PC-ADFOUR: ADFOUR with coarsening

The adaptive algorithm ADFOUR and its variants introduced above are not guaranteed to
be optimal in terms of complexity. Indeed, the discussion in the forthcoming Sect. 5 for the
exponential case will indicate that the residual r(uΛ) may be significantly less sparse than the
corresponding Galerkin solution uΛ; in particular, we will see that many indices in Λ, activated
in an early stage of the adaptive process, could be lately discarded since the corresponding
components of uΛ are zero. For these reasons, we propose here a new variant of algorithm
ADFOUR, which incorporates a recursive coarsening step.

The algorithm is constructed through the procedures GAL, RES, DÖRFLER already
introduced in Sect. 3.1, together with the new procedure COARSE defined as follows:

• Λ := COARSE(w, ϵ)
Given a function w ∈ VΛ∗ for some finite index set Λ∗, and an accuracy ϵ which is known
to satisfy ∥u− w∥ ≤ ϵ, the output Λ ⊆ Λ∗ is a set of minimal cardinality such that

∥w − PΛw∥ ≤ 2ϵ . (3.19)
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We will subsequently show (see Theorem 6.1) that the cardinality |Λ| is optimally related to
the sparsity class of u. The following result will be used several times in the paper.

Property 3.1 (coarsening) The procedure COARSE guarantees the bounds

∥u− PΛw∥ ≤ 3ϵ (3.20)

and, for the Galerkin solution uΛ ∈ VΛ,

|||u− uΛ||| ≤ 3
√
α∗ϵ . (3.21)

Proof. The first bound is trivial, the second one follows from the minimality property of the
Galerkin solution in the energy norm and from (2.5):

|||u− uΛ||| ≤ |||u− PΛw||| ≤
√
α∗∥u− PΛw∥ ≤ 3

√
α∗ϵ .

Given two parameters θ ∈ (0, 1) and tol ∈ [0, 1), we define the following adaptive algorithm
with coarsening.

Algorithm C-ADFOUR(θ, tol)

Set r0 := f , Λ0 := ∅, n = −1

do

n← n+ 1

set Λn,0 = Λn, rn,0 = rn

k = −1
do

k ← k + 1

∂Λn,k := DÖRFLER(rn,k, θ)

Λn,k+1 := Λn,k ∪ ∂Λn,k

un,k+1 := GAL(Λn,k+1)

rn,k+1 := RES(un,k+1)

while ∥rn,k+1∥ >
√
1− θ2∥rn∥

Λn+1 := COARSE
(
un,k+1,

1√
α∗
∥rn,k+1∥

)
un+1 := GAL(Λn+1)

rn+1 := RES(un+1)

while ∥rn+1∥ > tol

We observe that the specific choice of accuracy ϵ = ϵn=
1√
α∗
∥rn,k+1∥ in each call ofCOARSE

in the algorithm above is motivated by the wish of guaranteeing a fixed reduction of the residual
and error at each outer iteration. This is made precise in the following theorem.

Theorem 3.4 (contraction property of C-ADFOUR) The algorithm C-ADFOUR sat-
isfies
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(i) The number of iterations of each inner loop is finite and bounded independently of n;

(ii) The sequence of residuals rn and errors u−un generated for n ≥ 0 by the algorithm satisfies
the inequalities

∥rn+1∥ ≤ ρ∥rn∥ (3.22)

and
|||u− un+1||| ≤ ρ|||u− un||| (3.23)

for

ρ = 3
α∗

α∗

√
1− θ2 . (3.24)

In particular, if θ is chosen in such a way that ρ < 1, for any tol > 0 the algorithm
terminates in a finite number of iterations, whereas for tol = 0 the sequence un converges
to u in H1

p (Ω) as n→∞.

Proof. (i) For any fixed n, each inner iteration behaves as the algorithm ADFOUR considered
in Sect. 3.1. Hence, setting again ρ =

√
1− α∗

α∗ θ2, we have as in Theorem 3.1

|||u− un,k+1||| ≤ ρk+1|||u− un||| ,

which implies, by (2.9),

∥rn,k+1∥ ≤
√
α∗|||u− un,k+1||| ≤

√
α∗ρk+1|||u− un||| ≤

√
α∗

α∗
ρk+1∥rn∥ .

This shows that the termination criterion

∥rn,k+1∥ ≤
√
1− θ2 ∥rn∥ (3.25)

is certainly satisfied if √
α∗

α∗
ρk+1 ≤

√
1− θ2 ,

i.e., as soon as

k + 1 ≥
log
(
α∗
α∗ (1− θ2)

)
2 log ρ

> k .

We conclude that the number Kn= k + 1 of inner iterations is bounded by 1 +
log(α∗

α∗ (1−θ2))
2 log ρ ,

which is independent of n.
(ii) By (2.8), we have

∥u− un,k+1∥ ≤
1

α∗
∥rn,k+1∥ .

At the exit of the inner loop, the quantity on the right-hand side is precisely the parameter ϵn
fed to the procedure COARSE; then, Property 3.1 yields

|||u− un+1||| ≤ 3
√
α∗ϵn .

On the other hand, the termination criterion (3.25) yields

ϵn ≤
1

α∗

√
1− θ2∥rn∥ ,
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so that

|||u− un+1||| ≤ 3

√
α∗

α∗

√
1− θ2∥rn∥ .

This bound together with the left-hand inequality in (2.9) applied to rn+1 yields (3.22), whereas
the same inequality applied to rn yields (3.23).

A coarsening step can also be inserted in the aggressive algorithm A-ADFOUR considered
in Sect. 3.3; indeed, the enrichment step ENRICH could activate a larger number of degrees
of freedom than really needed, endangering optimality. The algorithm we now propose can be
viewed as a variant of C-ADFOUR, in which the use of E-DÖRFLER instead of DÖRFLER
allows one to take a single inner iteration; in this respect, one can consider the enrichment step
as a “prediction”, and the coarsening step as a “correction”, of the new set of active degrees of
freedom. For this reason, we call this variant the Predictor/Corrector-ADFOUR, or simply
PC-ADFOUR.

Given two parameters θ ∈ (0, 1) and tol ∈ [0, 1), we choose J ≥ 1 as the smallest integer for
which (3.15) is fulfilled, and we define the following adaptive algorithm.

Algorithm PC-ADFOUR(θ, tol, J)

Set r0 := f , Λ0 := ∅, n = −1

do

n← n+ 1

∂̂Λn := E-DÖRFLER(rn, θ, J)

Λ̂n+1 := Λn ∪ ∂̂Λn

ûn+1 := GAL(Λ̂n)

Λn+1 := COARSE
(
ûn+1,

1
α∗

√
1− θ2∥rn∥

)
un+1 := GAL(Λn+1)

rn+1 := RES(un+1)

while ∥rn+1∥ > tol

Theorem 3.5 (contraction property of PC-ADFOUR) If the assumptions of Property 2.2
or Property 2.3 be satisfied, then the statement (ii) of Theorem 3.4 applies to Algorithm PC-
ADFOUR as well.

Proof. The first inequalities in both (3.16) and (2.5) yield

∥u− ûn+1∥ ≤
1

α∗

√
1− θ2 ∥rn∥ .

Since the right-hand side is precisely the parameter ϵn fed to the procedure COARSE, one
proceeds as in the proof of Theorem 3.4.
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4 Nonlinear approximation in Fourier spaces

4.1 Best N-term approximation and rearrangement

Given any nonempty finite index set Λ ⊂ Zd and the corresponding subspace VΛ ⊂ V = H1
p (Ω)

of dimension |Λ| = cardΛ, the best approximation of v in VΛ is the orthogonal projection of v
upon VΛ, i.e. the function PΛv =

∑
k∈Λ v̂kϕk, which satisfies

∥v − PΛv∥ =

∑
k ̸∈Λ
|V̂k|2

1/2

(we set PΛv = 0 if Λ = ∅). For any integer N ≥ 1, we minimize this error over all possible
choices of Λ with cardinality N , thereby leading to the best N -term approximation error

EN (v) = inf
Λ⊂Zd, |Λ|=N

∥v − PΛv∥ .

A way to construct a best N -term approximation vN of v consists of rearranging the coefficients
of v in decreasing order of modulus

|V̂k1 | ≥ . . . ≥ |V̂kn | ≥ |V̂kn+1 | ≥ . . .

and setting vN = PΛN
v with ΛN = {kn : 1 ≤ n ≤ N}. As already mentioned in the

Introduction, let us denote from now on v∗n = V̂kn the rearranged and rescaled Fourier coefficients
of v. Then,

EN (v) =

(∑
n>N

|v∗n|2
)1/2

.

Next, given a strictly decreasing function ϕ : N → R+ such that ϕ(0) = ϕ0 for some ϕ0 > 0
and ϕ(N)→ 0 when N →∞, we introduce the corresponding sparsity class Aϕ by setting

Aϕ =
{
v ∈ V : ∥v∥Aϕ

:= sup
N≥0

EN (v)

ϕ(N)
< +∞

}
. (4.1)

We point out that in applications ∥v∥Aϕ
need not be a (quasi-)norm since Aϕ need not be a linear

space. Note however that ∥v∥Aϕ
always controls the V -norm of v, since ∥v∥ = E0(v) ≤ ϕ0∥v∥Aϕ

.
Observe that v ∈ Aϕ iff there exists a constant c > 0 such that

EN (v) ≤ cϕ(N) , ∀N ≥ 0 . (4.2)

The quantity ∥v∥Aϕ
dictates the minimal number Nε of basis functions needed to approximate

v with accuracy ε. In fact, from the relations

ENε(v) ≤ ε < ENε−1(v) ≤ ϕ(Nε − 1)∥v∥Aϕ
,

and the monotonicity of ϕ, we obtain

Nε ≤ ϕ−1

(
ε

∥v∥Aϕ

)
+ 1 . (4.3)
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The second addend on the right-hand side can be absorbed by a multiple of the first one, provided
ε is sufficiently small; in other words, it is not restrictive to assume that there exists a constant
κ slightly larger than 1 such that

Nε ≤ κϕ−1

(
ε

∥v∥Aϕ

)
. (4.4)

Remark 4.1 (sparsity class for V ′) Replacing V by V ′ in (4.1) leads to the definition of a
sparsity class, still denoted by Aϕ, in the space of linear continuous forms f on H1

p (Ω). This

observation applies to the subsequent definitions as well (e.g., for the class Aη,t
G ). In essence, we

will treat in a unified way the nonlinear approximation of a function v ∈ H1
p (Ω) and of a form

f ∈ H−1
p (Ω).

Throughout the paper, we shall consider two main families of sparsity classes, identified by
specific choices of the function ϕ depending upon one or more parameters. The first family
is related to the best approximation in Besov spaces of periodic functions, thus accounting
for a finite-order regularity in Ω; the corresponding functions ϕ exhibit an algebraic decay as
N → ∞, which motivates our terminology of algebraic classes. The second family is related to
the best approximation in Gevrey spaces of periodic functions, which are formed by infinitely-
differentiable functions in Ω; the associated ϕ’s exhibit an exponential decay, and for this reason
such classes will be referred to as exponential classes. Properties of both families are collected
hereafter.

4.2 Algebraic classes

The following is the counterpart for Fourier approximations of by now well-known nonlinear
approximation settings [11], e.g. for wavelets or nested finite elements. For this reason, we just
state definitions and properties without proofs.

For s > 0, let us introduce the function

ϕ(N) = N−s/d for N ≥ 1 , (4.5)

and ϕ(0) = ϕ0 > 1 arbitrary, with inverse

ϕ−1(λ) = λ−d/s for λ ≤ 1 , (4.6)

and let us consider the corresponding class Aϕ defined in (4.1).

Definition 4.1 (algebraic class of functions) We denote by As
B the subset of V defined as

As
B:=

{
v ∈ V : ∥v∥As

B
:= ∥v∥+ sup

N≥1
EN (v)N s/d < +∞

}
.

It is immediately seen that As
B contains the Sobolev space of periodic functions Hs+1

p (Ω). On
the other hand, it is proven in [12], as a part of a more general result, that for 0 < σ, τ ≤ ∞, the
Besov space Bs+1

τ,σ (Ω) = Bs+1
σ (Lτ (Ω)) is contained in As∗

B provided s∗ := s− d(1/τ − 1/2)+ > 0.
Let us associate the quantity τ > 0 to the parameter s, via the relation

1

τ
=
s

d
+

1

2
.
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The condition for a function v to belong to some class As
B can be equivalently stated as a

condition on the vector v = (V̂k)k∈Zd of its Fourier coefficients, precisely, on the rate of decay
of the non-increasing rearrangement v∗ = (v∗n)n≥1 of v.

Definition 4.2 (algebraic class of sequences) Let ℓsB(Zd) be the subset of sequences v ∈
ℓ2(Zd) so that

∥v∥ℓsB(Zd) := sup
n≥1

n1/τ |v∗n| < +∞ .

Note that this space is often denoted by ℓτw(Zd) in the literature, being an example of Lorentz
space.

The relationship between As
B and ℓsB(Zd) is stated in the following Proposition.

Proposition 4.1 (equivalence of algebraic classes) Given a function v ∈ V and the se-
quence v of its Fourier coefficients, one has v ∈ As

B if and only if v ∈ ℓsB(Zd), with

∥v∥As
B
<∼ ∥v∥ℓsB(Zd)

<∼ ∥v∥As
B
.

At last, we note that the quasi-Minkowski inequality

∥u+ v∥ℓsB(Zd) ≤ Cs

(
∥u∥ℓsB(Zd) + ∥v∥ℓsB(Zd)

)
holds in ℓsB(Zd), yet the constant Cs blows up exponentially as s→∞.

4.3 Exponential classes

We first recall the definition of Gevrey spaces of periodic functions in Ω = (0, 2π)d (see [14]).
Given reals η > 0, 0 < t ≤ d and s ≥ 0, we set

Gη,t,s
p (Ω) :=

{
v ∈ L2(Ω) : ∥v∥2G,η,t,s =

∑
k∈Z

e2η|k|
t
(1 + |k|2s)|v̂k|2 < +∞

}
.

Note that Gη,t,s
p (Ω) is contained in all Sobolev spaces of periodic functions Hr

p(Ω), r ≥ 0.

Furthermore, if t ≥ 1, Gη,t,s
p (Ω) is made of analytic functions.

Gevrey spaces have been introduced to study the C∞ and analytical regularity of the solu-
tions of partial differential equations. For our elliptic problem (2.3), the following statement is
an example of shift theorem in Gevrey spaces.

Theorem 4.1 (shift theorem) If the assumptions of Property 2.3 are satisfied, then for any
η < η̄L, 0 < t ≤ 1 and s ≥ −1, L is an isomorphism between Gη,t,s+2

p (Ω) and Gη,t,s
p (Ω).

Proof. Proceeding as in Sect. 2.3, it is immediate to see that the problem Lu = f can be
equivalently formulated as Au = f , where the vectors f and u contain the Fourier coefficients
of functions f and u normalized in Hs

p(Ω) and Hs+2
p (Ω), respectively. If W = diag(eη|k|

t
) is a

bi-infinite diagonal exponential matrix, then we can write Wu = WA−1f = (WA−1W−1)Wf .
We observe that property ∥Wu∥ℓ2 . ∥Wf∥ℓ2 , which implies the thesis, is a consequence of
∥WA−1W−1∥ℓ2 . 1.

To show the latter inequality, we let x,y ∈ ℓ2(Zd) and notice that

|yTWA−1W−1x| ≤ cL
∑
m∈Zd

e−η̄L|m|
∑
k∈Zd

|ym+k|eη|m+k|te−η|k|t |xk|.

24



Since 0 < t ≤ 1, we deduce |m+ k|t ≤ |m|t + |k|t and eη(|m+k|t−|k|t) ≤ eη|m|t , whence

∥WA−1W−1x∥ = sup
y∈Zd

|yTWA−1W−1x|
∥y∥

≤ cL
∑
m∈Zd

e(−η̄L+η)|m|t∥x∥ <∼ ∥x∥

because η̄L > η and the series converges. This implies the desired estimate.

From now on, we fix s = 1 and we normalize again the Fourier coefficients of a function v
with respect to the H1

p (Ω)-norm. Thus, we set

Gη,t
p (Ω) = Gη,t,1

p (Ω) = {v ∈ V : ∥v∥2G,η,t =
∑
k

e2η|k|
t |V̂k|2 < +∞} . (4.7)

Functions in Gη,t
p (Ω) can be approximated by the linear orthogonal projection

PMv =
∑

|k|≤M

V̂kϕk ,

for which we have

∥v − PMv∥2 =
∑

|k|>M

|V̂k|2 =
∑

|k|>M

e−2η|k|te2η|k|
t |V̂k|2

≤ e−2ηM t
∑

|k|>M

e2η|k|
t |V̂k|2 ≤ e−2ηMt∥v∥2G,η,t .

As already observed in Property 2.4, setting N = card{k : |k| ≤ M}, one has N ∼ ωdM
d, so

that
EN (v) ≤ ∥v − PMv∥ <∼ exp

(
−ηω−t/d

d N t/d
)
∥v∥G,η,t . (4.8)

Hence, we are led to introduce the function

ϕ(N) = exp
(
−ηω−t/d

d N t/d
)

(N ≥ 0) , (4.9)

whose inverse is given by

ϕ−1(λ) =
ωd

ηd/t

(
log

1

λ

)d/t

(λ ≤ 1) , (4.10)

and to consider the corresponding class Aϕ defined in (4.1), which therefore contains Gη,t
p (Ω).

Definition 4.3 (exponential class of functions) We denote by Aη,t
G the subset of Gη,t

p (Ω)
defined as

Aη,t
G :=

{
v ∈ V : ∥v∥Aη,t

G
:= sup

N≥0
EN (v) exp

(
ηω

−t/d
d N t/d

)
< +∞

}
.

At this point, we make the subsequent notation easier by introducing the t-dependent func-
tion

τ =
t

d
≤ 1 .

As in the algebraic case, the class Aη,t
G can be equivalently characterized in terms of behavior of

rearranged sequences of Fourier coefficients.
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Definition 4.4 (exponential class of sequences) Let ℓη,tG (Zd) be the subset of sequences v ∈
ℓ2(Zd) so that

∥v∥ℓη,tG (Zd) := sup
n≥1

n(1−τ)/2exp
(
ηω−τ

d nτ
)
|v∗n| < +∞ ,

where v∗ = (v∗n)
∞
n=1 is the non-increasing rearrangement of v.

The relationship between Aη,t
G and ℓη,tG (Zd) is stated in the following Proposition.

Proposition 4.2 (equivalence of exponential classes) Given a function v ∈ V and the se-
quence v = (V̂k)k∈Zd of its Fourier coefficients, one has v ∈ Aη,t

G if and only if v ∈ ℓη,tG (Zd),
with

∥v∥Aη,t
G

<∼ ∥v∥ℓη,tG (Zd)
<∼ ∥v∥Aη,t

G
.

Proof. Assume first that v ∈ ℓη,tG (Zd). Then,

EN (v)2 = ∥v − PN (v)∥2 =
∑
n>N

|v∗n|2 <∼
∑
n>N

nτ−1exp
(
−2ηω−τ

d nτ
)
∥v∥2

ℓη,tG (Zd)
.

Now, setting for simplicity α = 2ηω−τ
d , one has

S :=
∑
n>N

nτ−1e−αnτ ∼
∫ ∞

N
xτ−1e−αxτ

dx .

The substitution z = xτ yields

S ∼ d

t

∫ ∞

Nτ

e−αzdz =
d

αt
e−αNτ

whence ∥v∥Aη,t
G

<∼ ∥v∥ℓη,tG (Zd). Conversely, let v ∈ Aη,t
G . We have to prove that for any n ≥ 1,

one has
n1−τ |v∗n|2 <∼ e−αnτ ∥v∥Aη,t

G
.

Let m < n be the largest integer such that n − m ≥ n1−τ (note that 0 ≤ 1 − τ < 1), i.e.,
m ∼ n(1− n−τ ). Then,

n1−τ |v∗n|2 ≤ (n−m)|v∗n|2 ≤
n∑

j=m+1

|v∗j |2 ≤ ∥v − Pm(v)∥2 ≤ e−αmτ ∥v∥2Aη,t
G

.

Now, by Taylor expansion,

mτ ∼ nτ (1− n−τ )τ = nτ
(
1− τn−τ + o(n−τ )

)
= nτ − τ + o(1) ,

so that e−αmτ <∼ e−αnτ
, and ∥v∥ℓη,tG (Zd)

<∼ ∥v∥Aη,t
G

is proven.

Next, we briefly comment on the structure of the set ℓη,tG (Zd). This is not a vector space,
since it may happen that u, v belong to this set, whereas u+v does not. Assume for simplicity
that τ = 1 and consider for instance the sequences in ℓη,tG (Zd)

u =
(
e−η, 0, e−2η, 0, e−3η, 0, e−4η, 0, . . .

)
,

v =
(
0, e−η, 0, e−2η, 0, e−3η, 0, e−4η, . . .

)
,
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Then,
u+ v = (u+ v)∗ =

(
e−η, e−η, e−2η, e−2η, e−3η, e−3η, e−4η, e−4η, . . .

)
;

thus, (u + v)∗2j = e−ηj , so that eη2j(u + v)∗2j → ∞ as j → +∞, i.e., u + v /∈ ℓη,tG (Zd). On the
other hand, we have the following property.

Lemma 4.1 (quasi-triangle inequality) If ui ∈ ℓηi,tG (Zd) for i = 1, 2, then u1+u2 ∈ ℓη,tG (Zd)
with

∥u1 + u2∥ℓη,tG
≤ ∥u1∥ℓη1,tG

+ ∥u2∥ℓη2,tG
, η−

1
τ = η

− 1
τ

1 + η
− 1

τ
2 .

Proof. We use the characterization given by Proposition 4.2, so that

∥ui − PNi(ui)∥ ≤ ∥ui∥Aη,t
G
exp

(
−ηω−τ

d N τ
i

)
i = 1, 2 .

Given N ≥ 1, we seek N1, N2 so that

N = N1 +N2, η1N
τ
1 = η2N

τ
2 .

This implies

N = N1η
1
τ
1

(
η
− 1

τ
1 + η

− 1
τ

2

)
= N1η

1
τ
1 η

− 1
τ ,

and

∥(u1 + u2)− PN (u1 + u2)∥ ≤ ∥u1 − PN1(u1)∥+ ∥u2 − PN2(u2)∥
≤ ∥u1∥Aη1,t

G
exp(−η1ω−τ

d N τ
1 ) + |u2|Aη2,t

G
exp(−η2ω−τ

d N τ
2 )
)

≤
(
∥u1∥Aη1,t

G
+ ∥u2∥Aη2,t

G

)
exp(−ηω−τ

d N τ ).

whence the assertion.

Note that when η1 = η2 we obtain η = 2−τη1 ≤ 2−1η1 thereby extending the previous
counterexample.

5 Sparsity classes of the residual

For any finite index set Λ, let r = r(uΛ) be the residual produced by the Galerkin solution uΛ.
Under Assumption 3.1, the step

∂Λ := DÖRFLER(r, θ)

selects a set ∂Λ of minimal cardinality in Λc for which ∥r − P∂Λr∥ ≤
√
1− θ2∥r∥. Thus, if r

belongs to a certain sparsity class Aϕ̄, identified by a function ϕ̄, then (4.3) yields

|∂Λ| ≤ ϕ̄−1

(√
1− θ2 ∥r∥

∥r∥Aϕ̄

)
+ 1 . (5.1)

Explicitly, if r ∈ As̄
B for some s̄ > 0, we have by (4.6)

|∂Λ| ≤ (1− θ2)−d/2s̄

(
∥r∥As̄

B

∥r∥

)d/s̄

+ 1 ,
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whereas if r ∈ Aη̄,t̄
G for some η̄ > 0 and t̄ > 0, we have by (4.10)

|∂Λ| ≤ ωd

ηd/t̄

(
log
∥r∥Aη̄,t̄

G

∥r∥
+ | log

√
1− θ2|

)d/t̄

+ 1 .

We stress the fact that the cardinality of ∂Λ is related to the sparsity class of the residual.
We will see in the rest of this section that such a class does coincide with the sparsity class
of the solution in the algebraic case, whereas it is different (indeed, worse) in the exponential
case. This is a crucial point to be kept in mind in the forthcoming optimality analysis of our
algorithms.

The cardinality of ∂Λ depends indeed on how much the sparsity measure ∥r∥Aϕ̄
deviates

from the Hilbert norm ∥r∥. So, before embarking ourselves on the study of the relationship
between the sparsity classes of the residual and of the solution, we make some brief comments
on the ratio between these two quantities. For shortness, we only consider the exponential case,
although similar considerations apply to the algebraic case as well. The size of the ratio

Q :=
∥r∥Aη̄,t̄

G

∥r∥

depends on the relative behavior of the rearranged coefficients r∗n of r, which by Definition 4.4
and Proposition 4.2 satisfy

|r∗n| ≤ λ∗n(τ̄−1)/2e−η̄ω−τ̄
d nτ̄ ∥r∥Aη̄,t̄

G

(5.2)

for some constant λ∗ > 0, with τ̄ = t̄/d. Let us consider two representative situations.

Example 5.1 (genuinely decaying functions) The most “favorable” situation is the one in
which the sequence of rearranged coefficients decays precisely at the rate given by the right-hand
side of (5.2); in other words, suppose that there exists a constant λ∗ > 0 such that for all n ≥ 1

λ∗n
(τ̄−1)/2e−η̄ω−τ̄

d nτ̄ ∥r∥Aη̄,t̄
G

≤ |r∗n| ≤ λ∗n(τ̄−1)/2e−η̄ω−τ̄
d nτ̄ ∥r∥Aη̄,t̄

G

. (5.3)

Then,

(λ∗)
2
∑
n≥1

n(τ̄−1)e−2η̄ω−τ̄
d nτ̄ ∥r∥2

Aη̄,t̄
G

≤ ∥r∥2 ≤ (λ∗)2
∑
n≥1

n(τ̄−1)e−2η̄ω−τ̄
d nτ̄ ∥r∥2

Aη̄,t̄
G

,

and since ∑
n≥1

n(τ̄−1)e−2η̄ω−τ̄
d nτ̄ ∼

∫ +∞

1
xτ̄−1e−2η̄ω−τ̄

d xτ̄
dx =

∫ +∞

1
e−2η̄ω−τ̄

d y dy = C ,

we obtain
1

Cλ∗
≤ Q ≤ 1

Cλ∗
.

Thus, if (5.3) is a “tight” bound, the ratio Q is “small”, and the procedureDÖRFLER activates
a moderate number of degrees of freedom at the current iteration.
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Example 5.2 (plateaux) The opposite situation, i.e., the worst scenario, occurs when the
sequence of rearranged coefficients of r exhibits large “plateaux” consisting of equal (or nearly
equal) elements in modulus. Fix an integer K arbitrarily large, and suppose that the K largest
coefficients of r satisfy

|r∗1| = |r∗2| = · · · = |r∗K−1| = |r∗K | = λ∗K(τ̄−1)/2e−η̄ω−τ̄
d K τ̄ ∥r∥Aη̄,t̄

G

.

Since ∑
n>K

n(τ̄−1)e−2η̄ω−τ̄
d nτ̄ ∼

∫ +∞

(K+1)τ̄
e−2η̄ω−τ̄

d y dy = e−2η̄ω−τ̄
d (K+1)τ̄ < e−2η̄ω−τ̄

d K τ̄
,

there exists δ ∈ (0, 1) such that

∥r∥2 = (λ∗)2(K + δ)τ̄e−2η̄ω−τ̄
d K τ̄ ∥r∥2

Aη̄,t̄
G

.

We conclude that the ratio

Q =
eη̄ω

−τ̄
d K τ̄

λ∗(K + δ)τ̄ /2

turns out to be arbitrarily large, and indeed for such a residual it is easily seen that Dörfler’s
condition ∥P∂Λr∥ ≥ θ∥r∥ requires |∂Λ| to be of the order of θK.

Let us now investigate the sparsity classes of the residual, treating the algebraic and expo-
nential cases separately. Note that, in view of Propositions 4.1 or 4.2, for studying the sparsity
classes of certain functions v and Lv we are entitled to study, equivalently, the sparsity classes
of the related vectors v and Av, where A is the stiffness matrix (2.10).

5.1 Algebraic case

We first recall the notion of matrix compressibility (see [7] where the concept has been used in
the wavelet context).

Definition 5.1 (matrix compressibility) For s∗ > 0, a bounded matrix A : ℓ2(Zd)→ ℓ2(Zd)
is called s∗-compressible if for any j ∈ N there exist constants αj and Cj and a matrix Aj having
at most αj2

j non-zero entries per column, such that

∥A−Aj∥ ≤ Cj

where {αj}j∈N is summable, and for any s < s∗, {Cj2
sj/d} is summable.

Concerning the compressibility of the matrices belonging to the class Da(ηL) of Definition 2.1,
the following result can be found in [9, Lemma 3.6]. We report here the proof for completeness.

Lemma 5.1 (compressibility) If s∗ := ηL − d > 0, then any matrix A ∈ Da(ηL) is s∗-
compressible.

Proof. Let us take Nj = ⌈ 2j/d

(j+1)2
⌉, where ⌈·⌉ denotes the integer part plus 1. Then by Property

2.4 (algebraic case) there holds ∥A − ANj∥ . 2−j(ηL−d)/d (j + 1)2(ηL−d) =: Cj and ANj has

αj2
j non-vanishing entries per column with αj ≈ 2d(j + 1)−2d. It is immediate to verify that
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∑
j αj < ∞. Moreover, for s < s∗ and setting δ = s∗ − s, we clearly have

∑
j Cj2

js/d =∑
j 2

−jδ/d(j + 1)2s
∗
<∞.

We now consider the continuity properties of the operator L between sparsity spaces. The
following result is well known (see e.g. [10]) and its proof is here reported for completeness.

Proposition 5.1 (continuity of L in As
B) Let A ∈ Da(ηL), ηL > d and s∗ = ηL − d. For

any s < s∗, if v ∈ As
B then Lv ∈ As

B, with

∥Lv∥As
B
<∼ ∥v∥As

B
.

The constants appearing in the bounds go to infinity as s approaches s∗.

Proof. Let us choose Nj = ⌈ 2j/d

(j+1)2
⌉ as in the proof of Lemma 5.1. If we set Aj := ANj , then by

Property 2.4 (algebraic case) we have

∥A−Aj∥ . 2−j(ηL−d)/d (j + 1)2(ηL−d) = 2−js∗/d (j + 1)2s
∗
.

On the other hand, for any j ≥ 0, let vj = Pj(v) be a best 2j-term approximation of v ∈ ℓsB,
which therefore satisfies ∥v− vj∥ ≤ 2−js/d∥v∥ℓsB . Note that the difference vj − vj−1 satisfies as
well

∥vj − vj−1∥ <∼ 2−js/d∥v∥ℓsB .

Let

wJ =
J∑

j=0

AJ−j(vj − vj−1) ,

where we set v−1 = 0. Writing v = v − vJ +
∑J

j=0(vj − vj−1), we obtain

Av −wJ = A(v − vJ) +
J∑

j=0

(A−AJ−j)(vj − vj−1) .

The last equation yields

∥Av −wJ∥ ≤ ∥A∥∥v − vJ∥+
J∑

j=0

∥A−AJ−j∥∥vj − vj−1∥

.

2−Js/d +
J∑

j=0

2−(J−j)s∗/d (J − j + 1)2s
∗
2−js/d

 ∥v∥ℓsB
. 2−Js/d

1 +
J∑

j=0

2−(J−j)(s∗−s)/d (J − j + 1)2s
∗

 ∥v∥ℓsB
. 2−Js/d∥v∥ℓsB ,

where the series
∑

k 2
−k(s∗−s)/d (k + 1)2s

∗
is convergent but degenerates as s approaches s∗.

Finally, by construction wJ belongs to a finite dimensional space VΛJ
, where

|ΛJ | <∼ ωd

J∑
j=0

Nd
J−j . 2J

J∑
j=0

(J − j + 1)−2d . 2J .
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This implies ∥Av∥ℓsB . ∥v∥ℓsB for any s < s∗.

At last, we discuss the sparsity class of the residual r = r(uΛ) for some Galerkin solution uΛ.

Proposition 5.2 (sparsity class of the residual) Let the assumptions of Property 2.2 be
satisfied, and set s∗ = ηL − d. For any s < s∗, if u ∈ As

B then r(uΛ) ∈ As
B for any index

set Λ, with
∥r(uΛ)∥As

B
<∼ ∥u∥As

B
.

Proof. Denoting by rΛ the vector representing r(uΛ) and using Proposition 5.1, we get

∥rΛ∥ℓsB = ∥A(u− uΛ)∥ℓsB . ∥u− uΛ∥ℓsB . ∥u∥ℓsB + ∥uΛ∥ℓsB . (5.4)

At this point, we invoke the equivalent formulation of the Galerkin problem given by (2.24),
which yields û = (ÂΛ)

−1(PΛf). Using A ∈ Da(ηL) and combining Property 2.5 together with
Property 2.2, we obtain (ÂΛ)

−1 ∈ Da(ηL). Hence, applying Proposition 5.1 to (ÂΛ)
−1 we get

∥uΛ∥ℓsB = ∥û∥ℓsB = ∥(ÂΛ)
−1(PΛf)∥ℓsB . ∥PΛf∥ℓsB ≤ ∥f∥ℓsB ,

where the last step is an easy consequence of the definition of the projector PΛ. By substituting
the above inequality into (5.4), we finally obtain

∥rΛ∥ℓsB . ∥u∥ℓsB + ∥f∥ℓsB = ∥u∥ℓsB + ∥Au∥ℓsB . ∥u∥ℓsB , (5.5)

where in the last inequality we used again Proposition 5.1.

We observe that the previous bound is tailored to the “worst-scenario”: one expects indeed
that for Λ large enough the residual becomes progressively smaller than the solution.

5.2 Exponential case

As already alluded to in the Introduction, and in striking contrast to the previous algebraic case,
the implication v ∈ Aη,t

G ⇒ Lv ∈ Aη,t
G is false. The following counter-examples prove this fact,

and shed light on which could be the correct implication.

Example 5.3 (Banded matrices) Fix d = 1 and t = 1 (hence, τ= t
d = 1). Recalling the

expression (2.14) for the entries of A, let us choose ν̂0 = σ̂0 =
√
2π, which gives

aℓ,ℓ = 1 ∀ ℓ ∈ Z.

Next, let us choose σ̂h = 0 for all h ̸= 0, which implies (because d = 1)

|aℓ,k| =
1√
2π

|ℓ| |k|
cℓ ck

|ν̂ℓ−k| , ℓ ̸= k ,

i.e.,
1

2
√
2π
|ν̂ℓ−k| ≤ |aℓ,k| ≤

1√
2π
|ν̂ℓ−k| , ℓ ̸= k , |ℓ|, |k| ≥ 1 .

At this point, let us fix a real ηL > 0 and an integer p ≥ 0, and let us choose the coefficients ν̂h
for h ̸= 0 to satisfy

|ν̂h| =

{√
2πe−ηL|h| if 0 < |h| ≤ p ,

0 if |h| > p .
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In summary, the coefficient ν of the elliptic operator L is a trigonometric polynomial of degree
p, whereas the coefficient σ is a constant. The corresponding stiffness matrix A is banded with
2p+ 1 non-zero diagonals, and satisfies

1
2e

−ηL|ℓ−k| ≤ |aℓ,k| ≤ e−ηL|ℓ−k| , 0 ≤ |ℓ− k| ≤ p , |ℓ|, |k| ≥ 1 . (5.6)

In order to define the vector v, let us introduce the function ι : N∗ → N∗, ι(n) = 2(p+ 1)n.
Let us fix a real η > 0 and let us define the components (v)k = v̂k of the vector in such a way
that

|(v)k| =

{
e−

η
2
n if k = ι(n) for some n ≥ 1 ,

0 otherwise .

Thus, the rearranged components (v)∗n satisfy |(v)∗n| = e−
η
2
n, n ≥ 1, whence v ∈ ℓη,1G (Z) (or,

equivalently, v ∈ Aη,1
G ), with ∥v∥

ℓη,1G (Z) = 1, according to Definition 4.4.

The definition of the mapping ι and the banded structure of A imply that the only non-zero
components of Av are those of indices ι(n) + q for some n ≥ 1 and q ∈ [−p, p]. For these
components one has

(Av)ι(n)+q = aι(n)+q,ι(n)(v)ι(n) ,

thus, recalling (5.6), we easily obtain

1
2e

−ηLpe−
η
2
n ≤ |(Av)ι(n)+q| ≤ e−

η
2
n , q ∈ [−p, p] . (5.7)

This shows that, for any integer N ≥ 1,

#{ℓ : |(Av)ℓ| ≥ 1
2e

−ηLpe−
η
2
N } ≥ (2p+ 1)N ,

hence
|(Av)∗(2p+1)N | e

η
2
(2p+1)N ≥ 1

2e
−ηLpeηpN → +∞ as N → +∞ ,

i.e., Av ̸∈ ℓη,1G (Z) (or, equivalently, Lv ̸∈ Aη,1
G ) regardless of the relative values of ηL and η.

On the other hand, let mp be the smallest integer such that 1
2e

−ηLp > e−
η
2
mp . Given any

m ≥ 1, let N ≥ 1 and Q ∈ [−p, p] be such that (Av)∗m = (Av)ι(N)+Q, which combined with
(5.7) yields

e−
η
2
(N+mp) < |(Av)∗m| ≤ e−

η
2
N .

The rightmost inequality in (5.7), namely |(Av)ι(N+mp)+q| ≤ e−
η
2
(N+mp), shows that there are

at most (2p+ 1)(N +mp) components of Av that are larger than e−
η
2
(N+mp) in modulus. This

implies m ≤ (2p+ 1)(N +mp), whence

e−
η
2
N ≤ e

η
2
mpe

− η
2(2p+1)

m
.

Setting η̄ = η
2p+1 , we conclude that Av ∈ ℓη̄,1G (Z) (or, equivalently, Lv ∈ Aη̄,1

G ), with

∥Av∥
ℓη̄,1G (Z) ≤ e

η
2
mp∥v∥

ℓη,1G (Z) .

Therefore, the sparsity class of Av deteriorates from ℓη,1G (Z) for v to ℓη̄,1G (Z) with η̄ = η
2p+1 .
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Next counter-example shows that, when the stiffness matrix A is not banded, in order to
have Av ∈ ℓη̄,t̄G (Z) it is not enough to choose some η̄ < η as above, but a choice of t̄ < t is
mandatory.

Example 5.4 (Dense matrices) Let us take again d = t = 1 and modify the setting of the
previous example, by assuming now that the coefficients ν̂h satisfy

|ν̂h| =
√
2πe−ηL|h| for all |h| > 0 ,

so that A is no longer banded, and its elements satisfy

1
2e

−ηL|ℓ−k| ≤ |aℓ,k| ≤ e−ηL|ℓ−k| for all |ℓ|, |k| ≥ 1 . (5.8)

If M > 0 is an arbitrary integer, we now construct a vector vM =
∑

n≥1 v
M,n with gaps

of size λ(M) ≥ M between consecutive non-vanishing entries. To this end, we introduce the
function ιM : N∗ → N∗ defined as ιM (n) := λ(M)n and the vectors vM,n with components

|(vM,n)k| = e−
η
2
nδk,ιM (n) , k ∈ Z .

From (5.8) and the fact that only the ιM (n)-th entry of vM,n does not vanish, we obtain

1
2e

−ηL|ℓ−ιM (n)|e−
η
2
n ≤ |(AvM,n)ℓ| ≤ e−ηL|ℓ−ιM (n)|e−

η
2
n . (5.9)

As in Example 5.3, it is obvious that vM ∈ ℓη,1G (Z) with ∥vM∥
ℓη,1G (Z) = 1. However, we will prove

below that ∥AvM∥
ℓη̄,t̄G

<∼ ∥v
M∥

ℓη,1G
cannot hold uniformly in M for any η̄ > 0 and t̄ > 1/2.

We start by examining the cardinality #Fn of the set

Fn := {ℓ ∈ Z : |(AvM,n)ℓ| > e−
η
2
M }

In view of (5.9), the condition |(AvM,n)ℓ| > e−
η
2
M is satisfied by those ℓ = ιM (n)+m such that

0 ≤ |m| ≤ η

2ηL
(M − n) ,

whence n ≤M and #Fn ≥ η
ηL

(M − n) + 1. We now claim that

CM := #{ℓ : |(AvM )ℓ| ≥ e−
η
2
M } ≥

M∑
n=1

#Fn , (5.10)

whose proof we postpone. Assuming (5.10) we see that

CM ≥
M∑
n=1

(
η

ηL
(M − n) + 1

)
∼ η

2ηL
M2 ,

or equivalently there are about NM =
⌈

η
2ηL

M2
⌉
coefficients of vM with values at least e−

η
2
M .

This implies that the NM -th rearranged coefficient of AvM satisfies

|(AvM )∗NM
| ≥ e−

η
2
M ≥ e−

1
2
(2ηLη)

1/2N
1/2
M for all M ≥ 1 .
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This proves that for any η̄ > 0 and t̄ > 1
2 , one has

∥AvM∥
ℓη̄,t̄G (Z) ≥ |(AvM )∗NM

| e
η̄
2
N t̄

M ≥ e
η̄
2
N t̄

M− 1
2
(2ηLη)

1/2N
1/2
M → +∞ as M →∞ ,

whence the following bound cannot be valid

∥Av∥ℓη̄,tG (Z) <∼ ∥v∥ℓη,1G (Z) , for all v ∈ ℓη,1G (Z) .

It remains to prove (5.10). We first note that the sets Fn are disjoint provided ιM (n+ 1)−
ιM (n) = λ(M) ≥ η

ηL
M . We next set

εM := min
1≤n≤M

min
ℓ∈Fn

|(AvM,n)ℓ| − e−
η
2
M > 0

which is a constant only dependent on M . We observe that for every ℓ ∈ Fn, there holds

|(AvM )ℓ| ≥ |(AvM,n)ℓ| − |
∑
p̸=n

(AvM,p)ℓ| ≥ e−
η
2
M + εM −

∑
p̸=n

|(AvM,p)ℓ|. (5.11)

We write ℓ ∈ Fn as ℓ = ιM (n) +m, make use of (5.9) and the definition of ιM (n) = λ(M)n to
deduce∑

p̸=n

|(AvM,p)ℓ| ≤
∑
p̸=n

e−ηL|ℓ−ιM (p)|e−
η
2
p ≤

∑
p ̸=n

e−ηL|m+λ(M)(n−p)| ≤
∑
p̸=n

e−ηL(λ(M)|n−p|−|m|).

Since |m| ≤ η
2ηL

M , the above inequality gives∑
p̸=n

|(AvM,p)ℓ| ≤ 2eηL|m|
∑
q≥1

e−ηLλ(M)q ≤ 2e
η
2
M
∑
q≥1

e−ηLλ(M)q . (5.12)

Combining (5.11) and (5.12) yields

|(AvM )ℓ| ≥ e−
η
2
M + εM − 2e

η
2
M
∑
q≥1

e−ηLλ(M)q .

By choosing λ(M) sufficiently large, the last term on the right-hand side of the above inequality
can be made arbitrarily small, in particular ≤ εM . We thus get |(AvM )ℓ| ≥ e−

η
2
M and prove

(5.10).

Guided by Examples 5.3 and 5.4, we are ready to state the main result of this section. We
define

ζ(t) :=
(1 + t

ω1+t
d

) t
d(1+t) ∀ 0 < t ≤ d. (5.13)

Proposition 5.3 (continuity of L in Aη,t
G ) Let the differential operator L be such that the

corresponding stiffness matrix satisfies A ∈ De(ηL) for some constant ηL > 0. Assume that
v ∈ Aη,t

G for some η > 0 and t ∈ (0, d]. Let one of the two following set of conditions be satisfied.
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(a) If the matrix A is banded with 2p+ 1 non-zero diagonals, let us set

η̄ =
η

(2p+ 1)τ
, t̄ = t .

(b) If the matrix A is dense, but the coefficients ηL and η satisfy the inequality η < ηLω
τ
d , let

us set

η̄ = ζ(t)η , t̄ =
t

1 + t
.

Then, one has Lv ∈ Aη̄,t̄
G , with

∥Lv∥Aη̄,t̄
G

<∼ ∥v∥Aη,t
G
. (5.14)

Proof. We adapt to our situation the technique introduced in [7]. Let LJ (J ≥ 0) be the
differential operator obtained by truncating the Fourier expansion of the coefficients of L to the
modes k satisfying |k| ≤ J . Equivalently, LJ is the operator whose stiffness matrix AJ is defined
in (2.22); thus, by Property 2.4 (exponential case) we have

∥L− LJ∥ = ∥A−AJ∥ ≤ CA(J + 1)d−1e−ηLJ .

On the other hand, for any j ≥ 1, let vj = Pj(v) be a best j-term approximation of v (with

v0 = 0), which therefore satisfies ∥v − vj∥ ≤ e−ηω−τ
d jτ ∥v∥Aη,t

G
, with τ = t/d. Note that the

difference vj − vj−1 consists of a single Fourier mode and satisfies as well

∥vj − vj−1∥ <∼ e−ηω−τ
d jτ ∥v∥Aη,t

G
.

Finally, let us introduce the function χ : N → N defined as χ(j) = ⌈jτ⌉, the smallest integer
larger than or equal to jτ .

For any J ≥ 1, let wJ be the approximation of Lv defined as

wJ =
J∑

j=1

Lχ(J−j)(vj − vj−1) .

Writing v = v − vJ +
∑J

j=1(vj − vj−1), we obtain

Lv − wJ = L(v − vJ) +
J∑

j=1

(L− Lχ(J−j))(vj − vj−1) .

We now assume to be in Case (b). Since L : ℓ2(Zd) → ℓ2(Zd) is continuous, the last equation
yields

∥Lv − wJ∥ <∼

e−ηω−τ
d Jτ

+
J∑

j=1

(
⌈(J − j)τ⌉+ 1

)d−1
e−(ηL⌈(J−j)τ ⌉+ηω−τ

d jτ )

 ∥v∥Aη,t
G
. (5.15)

The exponents of the addends can be bounded from below as follows because τ ≤ 1

ηL⌈(J − j)τ⌉+ ηω−τ
d jτ = ηL⌈(J − j)τ⌉ − ηω−τ

d (J − j)τ + ηω−τ
d ((J − j)τ + jτ )

≥ ηL(J − j)τ − ηω−τ
d (J − j)τ + ηω−τ

d ((J − j) + j)τ

= β(J − j)τ + ηω−τ
d Jτ ,
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with β = ηL − ηω−τ
d > 0 by assumption. Then, (5.15) yields

∥Lv − wJ∥ <∼

1 +
J−1∑
j=0

(
⌈jτ⌉+ 1

)d−1
e−βjτ

 e−ηω−τ
d Jτ ∥v∥Aη,t

G

<∼ e−ηω−τ
d Jτ ∥v∥Aη,t

G
. (5.16)

On the other hand, by construction wJ belongs to a finite dimensional space VΛJ
, where

|ΛJ | ≤ ωd

J∑
j=1

χ(J − j)d = ωd

J−1∑
j=0

⌈jτ⌉d ∼ ωd

1 + t
J1+t as J →∞ . (5.17)

This implies

∥Lv − wJ∥ <∼ e−η̄ω−τ̄
d |ΛJ |τ̄ ∥v∥Aη,t

G
,

with τ̄ = τ
1+dτ = t

d(1+t) and η̄ =

(
1+dτ
ω1+dτ
d

)τ̄

η = ζ(t)η as asserted.

We last consider Case (a). One has Lχ(J−j) = L if χ(J− j) ≥ p, whence if j ≤ J−p1/τ , then
the summation in (5.15) can be limited to those j satisfying jp ≤ j ≤ J , where jp = ⌈J − p1/τ⌉.
Therefore

∥Lv − wJ∥ <∼

e−ηω−τ
d Jτ

+ max
jp≤j≤J

⌈(J − j)τ⌉d−1
J∑

j=jp

e−ηω−τ
d jτ

 ∥v∥Aη,t
G
.

Now, J − j ≤ p1/τ if jp ≤ j ≤ J and jτ ≥ jτp ≥ (J − p1/τ )τ ≥ Jτ − p, whence

∥Lv − wJ∥ <∼
(
1 + pd−1+1/τeηω

−τ
d p
)
e−ηω−τ

d Jτ ∥v∥Aη,t
G
.

We conclude by observing that |ΛJ | ≤ (2p + 1)J , since any matrix AJ has at most 2p + 1
diagonals.

Finally, we discuss the sparsity class of the residual r = r(uΛ) for any Galerkin solution uΛ.

Proposition 5.4 (sparsity class of the residual) Let A ∈ De(ηL) and A−1 ∈ De(η̄L), for
constants ηL > 0 and η̄L ∈ (0, ηL] according to Property 2.3, and let 1 ≤ d ≤ 10. If u ∈ Aη,t

G for

some η > 0 and t ∈ (0, d], such that η < ω
t/d(1+2t)
d η̄L, then there exist suitable positive constants

η̄ ≤ η and t̄ ≤ t such that r(uΛ) ∈ Aη̄,t̄
G for any index set Λ, with

∥r(uΛ)∥Aη̄,t̄
G

<∼ ∥u∥Aη,t
G
.

Proof. We first remark that the hypothesis 1 ≤ d ≤ 10 guarantees ωd ≥ 2 (see e.g. [15, Corollary
2.55]); this implies r < ωr

d for any r > 0, whence the function ζ introduced in (5.13) satisfies
ζ(t) < 1 for any t > 0. Assume for the moment we are given η̄ and t̄. By using Proposition 5.3
and Lemma 4.1, we get

∥rΛ∥ℓη̄,t̄G

= ∥A(u− uΛ)∥ℓη̄,t̄G

. ∥u− uΛ∥ℓη1,t1G
. ∥u∥

ℓ
2τ1η1,t1
G

+ ∥uΛ∥
ℓ
2τ1η1,t1
G

, (5.18)
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where, τ̄ = t̄/d, τ1 = t1/d and the following relations hold

η̄ = ζ(t1)η1, t̄ =
t1

1 + t1
< t1 .

From (2.24) we have uΛ = (ÂΛ)
−1(PΛf). Using Property 2.5 and applying Proposition 5.3 to

(ÂΛ)
−1 we get

∥uΛ∥
ℓ
2τ1η1,t1
G

= ∥(ÂΛ)
−1(PΛf)∥

ℓ
2τ1η1,t1
G

. ∥PΛf∥ℓη2,t2G
≤ ∥f∥

ℓ
η2,t2
G

,

with

2τ1η1 = ζ(t2)η2 < η2 , t1 =
t2

1 + t2
< t2 .

By substituting the above inequality into (5.18) and using again Proposition 5.3 we get

∥rΛ∥ℓη̄,t̄G

. ∥u∥
ℓ
2τ1η1,t1
G

+ ∥f∥
ℓ
η2,t2
G

= ∥u∥
ℓ
2τ1η1,t1
G

+ ∥Au∥
ℓ
η2,t2
G

. ∥u∥ℓη,tG
(5.19)

where

η2 = ζ(t)η < η , t2 =
t

1 + t
< t .

This shows that the thesis holds true for the choice

η̄ =
(1
2

) t
d(1+2t)

ζ
( t

1 + 2t

)
ζ
( t

1 + t

)
ζ(t)η, t̄ =

t

1 + 3t
.

It remains to verify the assumptions of Proposition 5.3 when A is dense. Since ωd ≥ 2 and

t1 =
t

1 + 2t
< t2 =

t

1 + t
< t,

we have ωτ1
d < ωτ2

d < ωτ
d . Moreover, using η1 < 2τ1η1 < η2 < η and ηL ≥ η̄L > ω−τ1

d η yields

η < ωτ
dηL, η1 < ωτ1

d ηL, η2 < ωτ2
d η̄L,

which are the required conditions to apply Proposition 5.3 when A is dense. This concludes the
proof.

Remark 5.1 (definition of ωd) The limitation 1 ≤ d ≤ 10 stems from the fact that the
measure of the unit Euclidean ball ωd in Rd monotonically decreases to 0 as d → ∞. To avoid
such a restriction, one could modify the definition of the Gevrey classes Gη,t

p (Ω) given in (4.7),
by replacing the Euclidean norm |k| = ∥k∥2 appearing in the exponential by the maximum norm
∥k∥∞. Consequently, throughout the rest of the paper ωd would be replaced by the quantity 2d,
strictly larger than 1 for any d.

6 Coarsening

We start by considering an example that sheds light on the role of coarsening for the exponential
case. We then state and prove a seemingly new coarsening result, which is valid for both classes.
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6.1 Example of coarsening

Let a,b ∈ Rp for p ≥ 1 be the vectors

a := (1, 0, · · · , 0), b :=
1

p
(1, 1, · · · , 1).

Let v, z be the sequences defined by

v :=
(
e−ηka

)∞
k=0

, z :=
(
e−ηkb

)∞
k=0

.

We first observe that

∥v∥2 = p∥z∥2 = 1

1− e2η
, ∥v∥

ℓ2η,1G (Z) = p∥z∥
ℓ
2η/p,1
G (Z) = 1

(recall that ωd = 2 for d = 1). Given a parameter ε < 1, we now construct a perturbation w of
v which is much less sparse than v by simply scaling z and adding it to v (see Fig. 2 (a)):

w := v + εz =
(
e−ηk(a+ εb)

)∞
k=1

.

(a) (b)

Figure 2: Pictorial representation of (a) the components of the vector w = v + εz and (b) its
rearrangement w∗. It turns out that w∗ exhibits the decay rate e−kη of v up to a level of

accuracy ∥w − v∥ in ℓ2(Z) but a worse decay rate e
−k η

p of z for smaller tolerances. Therefore,
truncating w∗ with a threshold δ ≥ ∥w − v∥ captures the behavior of v.

The first task is to compute the norms of w. We obviously have ∥w∥ ≃ ∥v∥. To determine
the weak quasi-norm of w we need to find the rearrangement w∗ (see Fig. 2 (b)). Let n1 be the
smallest integer such that(

1 +
ε

p

)
e−ηn1 ≥ ε

p
e−η >

(
1 +

ε

p

)
e−η(n1+1) ,

namely the index corresponding to the first crossing of the exponential curve e−ηn dictating the
behavior of the first portion of the rearranged sequence w∗ (which coincides with the behavior
of v∗), and the first plateaux of z. This implies

1

η
log
(
1 +

p

ε

)
< n1 ≤ 1 +

1

η
log
(
1 +

p

ε

)
.
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Next, let n2 be the smallest integer such that(
1 +

ε

p

)
e−ηn2 ≥ ε

p
e−2η >

(
1 +

ε

p

)
e−η(n2+1) ,

which corresponds to the beginning of a number of decreasing exponentials preceeding the second
plateaux of w∗. This implies

1 +
1

η
log
(
1 +

p

ε

)
< n2 ≤ 2 +

1

η
log
(
1 +

p

ε

)
and shows that n2 − n1 = 1, and that there is exactly one exponential between the first and
second plateaux. Iterating this argument, we see that the difference between two consecutive
nj ’s is just 1, and that there is exactly one exponential between two consecutive plateaux (see
Fig 2 (b)).

We are now ready to compute the weak quasi-norm ofw. Let νk denote the index correspond-
ing to the end of the k-th plateaux of w, which in turn corresponds to the value w∗

νk
= e−ηk.

Then

νk = pk + n1 ∼ pk +
1

η
log
(
1 +

p

ε

)
.

To determine the class of w, we seek λ so that w ∈ ℓλ,1G (Z), namely

sup
k≥0

(
eλνk/2e−ηk

)
<∞ ⇔ 1

2
λpk − ηk ≤ 0 ⇔ λ ≤ 2η

p
.

We thus realize that w ∈ ℓ2η/p,1G (Z) belongs to a sparsity class much worse than that of v, that
deteriorates as the size p of the plateaux tends to ∞. On the other hand, we note that the
restrictions w∗

|[1,n1]
= v∗

|[1,n1]
coincide, thereby showing that the decay rate of the first part of

w∗ is the same as that of v∗ (see Fig 2(b)). This example explains the need to coarsen the
vector w starting at latest at n1, to eliminate the tail of w∗ which decays with rate 2η/p instead
of the optimal rate 2η of v.

In addition, we observe that the best n1-term approximation of w satisfies

∥w −wn1∥2 =
∞∑
k=0

p
ε2

p2
e−2kη =

ε2

p

1

1− e−2η
= ∥v −w∥2 = ε2∥z∥2 ,

which is precisely the size of the perturbation error of v. Given an error tolerance δ ≥ ε∥z∥, the
best N -term approximation wN of w satisfying ∥w −wN∥ ≤ δ would require

N ∼ 1

η
log

1

δ
=

2

2η
log
∥v∥

ℓ2η,1G (Z)

δ
.

6.2 New coarsening Result

We extract the following lesson from the example of Sect. 6.1: for as long as we deal with the
first part of w∗, which has a decay rate e−kη dictated by that of v∗, we could coarsen w and
obtain an approximation of both w and v with the decay rate e−kη of v. This requires limiting
the accuracy to size ∥v −w∥ since a smaller accuracy utilizes the tail of w which has a slower

decay e
−k η

p .
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We express this heuristics in the following theorem, which goes back to Cohen, Dahmen,
and DeVore [7]. However, our proof is much more elementary and the statement much more
precise. Although the result holds for the general setting of Sect. 4.1, we just present it for the
exponential case, since it will be used only in this situation.

Theorem 6.1 (coarsening) Let ε > 0 and let v ∈ Aη,t
G and w ∈ V be so that

∥v − w∥ ≤ ε.

Let N = N(ε) be the smallest integer such that the best N -term approximation wN of w satisfies

∥w − wN∥ ≤ 2ε.

Then, ∥v − wN∥ ≤ 3ε and

N ≤ ωd

ηd/t

(
log
∥v∥Aη,t

G

ε

)d/t

+ 1 .

Proof. Let Λε be the set of indices corresponding to the best approximation of v with accuracy
ε. So Λε is a minimal set with properties

∥v − PΛεv∥ ≤ ε, |Λε| ≤
ωd

ηd/t

(
log
∥v∥Aη,t

G

ε

)d/t

+ 1 .

If z = w − v, then

∥w − PΛεw∥ ≤ ∥(v + z)− PΛε(v + z)∥ = ∥(v − PΛεv) + (z − PΛεz)∥
≤ ∥v − PΛεv∥+ ∥z − PΛεz∥ ≤ ε+ ∥z∥ ≤ 2ε ,

because I − PΛε is the projector onto VZd\Λε
. Since N is the cardinality of the smallest set

satisfying the above relation, we deduce that N ≤ |Λε|. This concludes the proof.

7 Optimality properties of adaptive algorithms: algebraic case

The rest of the paper will be devoted to investigating complexity issues for the sequence of
approximations un = uΛn generated by any of the adaptive algorithms presented in Sect. 3.
In particular, we wish to estimate the cardinality of each Λn and check whether its growth is
“optimal” with respect to the sparsity class Aϕ of the exact solution, in the sense that |Λn| is
comparable to the cardinality of the index set of the best approximation of u yielding the same
error ∥u− un∥.

The algebraic case will be dealt with in the present section, whereas the exponential case will
be analyzed in the next one. The two cases differ in that no coarsening is needed for optimality
in the former case, whereas we will prove optimality in the latter case only for the algorithms
that incorporate a coarsening step. The reason of such a difference can be attributed, on the
one hand, to the slower growth of the activated degrees of freedom in the exponential case as
opposed to the algebraic case and, on the other hand, to the discrepancy in the sparsity classes
of the residuals and the solution in the exponential case, discussed in Sect. 5.2.
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7.1 ADFOUR with moderate Dörfler marking

The approach followed in the sequel, which has been proposed in [16] in the wavelet framework
and adopted in [21, 6] in the finite-element framework, allows us to prove the optimality of the
algorithm in the algebraic case, provided Dörfler marking is not too aggressive.

The two following lemmas will be useful in the subsequent analysis.

Lemma 7.1 (localized a posteriori upper bound) Let Λ ⊂ Λ∗ ⊂ Zd be nonempty subsets
of indices. Let uΛ ∈ VΛ and uΛ∗ ∈ VΛ∗ be the Galerkin approximations of Problem (2.4). Then

|||uΛ∗ − uΛ|||2 ≤
1

α∗

∑
k∈Λ∗\Λ

|R̂k(uΛ)|2 =
1

α∗
η2(uΛ,Λ∗) .

Proof. One has

|||uΛ∗−uΛ|||2 = a(uΛ∗−uΛ, uΛ∗−uΛ) = (f, uΛ∗−uΛ)−a(uΛ, uΛ∗−uΛ) =
∑
k∈Λ∗

r̂k(uΛ)(ûΛ∗ − ûΛ)k

because Λ∗ is the support of uΛ∗ − uΛ. The asserted result follows immediately by the Cauchy-
Schwarz inequality, upon recalling that r̂k(uΛ) = 0 for all k ∈ Λ.

Lemma 7.2 (Dörfler property) Let Λ ⊂ Λ∗ ⊂ Zd be nonempty subsets of indices. Let uΛ ∈
VΛ and uΛ∗ ∈ VΛ∗ be the Galerkin approximations of Problem (2.4). Let the marking parameter
θ satisfies θ ∈ (0, θ∗), where θ∗ =

√
α∗
α∗ , and set µθ = 1− α∗

α∗
θ2 > 0. If

|||u− uΛ∗ |||2 ≤ µ|||u− uΛ|||2 ,

for some µ ∈ (0, µθ], then Λ∗ fulfils Dörfer’s condition, i.e.,

η(uΛ,Λ
∗) ≥ θη(uΛ) .

Proof. Since u − uΛ∗ ⊥ uΛ − uΛ∗ in the energy norm because of Pythagoras, the assumption
yields

|||u− uΛ|||2 = |||u− uΛ∗ |||2 + |||uΛ∗ − uΛ|||2 ≤ µ|||u− uΛ|||2 + |||uΛ∗ − uΛ|||2 .

Invoking the lower bound in (3.2) gives

|||uΛ∗ − uΛ|||2 ≥ (1− µ)|||u− uΛ|||2 ≥ (1− µ) 1

α∗ η
2(uΛ) ,

whence applying Lemma 7.1 implies

η2(uΛ,Λ∗) ≥ (1− µ)α∗
α∗ η

2(uΛ) ≥ (1− µθ)
α∗
α∗ η

2(uΛ) = θ2η2(uΛ).

This concludes the proof.

We are ready to estimate the growth of degrees of freedom generated by the algorithm
ADFOUR of Sect. 3.1. For the moment, we place ourselves in the abstract framework of Sect.
4.1, only the final result being specifically for the algebraic case.
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Proposition 7.1 (cardinality of ∂Λn) Let θ satisfy the condition stated in Lemma 7.2, and
let µ ∈ (0, µθ] be fixed. Let {Λn, un}n≥0 be the sequence generated by the adaptive algorithm
ADFOUR, and set ε2n = µ|||u− un|||2. If the solution u belongs to the sparsity class Aϕ, then

|∂Λn| = |Λn+1| − |Λn| ≤ κϕ−1

(
εn
∥u∥Aϕ

)
, ∀ n ≥ 0 , (7.1)

where κ > 1 is the constant in (4.4).

Proof. Let ε = εn and make use of (4.4) for u ∈ Aϕ: there exists Λε and wε ∈ VΛε such that

|||u− wε|||2 ≤ ε2 and |Λε| ≤ κϕ−1

(
ε

∥u∥Aϕ

)
.

Let Λ∗ = Λn ∪ Λϵ be the overlay of the two index sets, and let u∗ ∈ VΛ∗ be the Galerkin
approximation of Problem (2.4). Then, since VΛϵ ⊆ VΛ∗ , we have

|||u− u∗|||2 ≤ |||u− wε|||2 ≤ µ|||u− un|||2 .

Thus, we are entitled to apply Lemma 7.2 to Λn and Λ∗, yielding

η(un,Λ
∗) ≥ θη(un) .

By the minimality property of the cardinality of Λn+1 among all sets satisfying Dörfler property
for un (Assumption 3.1), we deduce that |Λn+1| ≤ |Λ∗| ≤ |Λn|+ |Λϵ|, i.e.,

|Λn+1| − |Λn| ≤ |Λϵ| , (7.2)

whence the result.

Corollary 7.1 (cardinality of Λn: general case) Let the assumptions of Proposition 7.1 be
valid and ρ =

√
1− α∗

α∗ θ2 be given by (3.7). Then

|Λn| ≤ κ
n−1∑
k=0

ϕ−1

(
ρk−n εn

∥u∥Aϕ

)
, ∀ n ≥ 0 . (7.3)

Proof. Recalling that |Λ0| = 0, the previous proposition yields

|Λn| =
n−1∑
k=0

|∂Λk| ≤ κ
n−1∑
k=0

ϕ−1

(
εk
∥u∥Aϕ

)
.

On the other hand, by Theorem 3.1 one has

εn =
√
µ|||u− un||| ≤

√
µρn−k|||u− uk||| = ρn−kεk ∀ 0 ≤ k ≤ n− 1 , (7.4)

and we conclude recalling the monotonicity of ϕ.

At this point, we assume to be in the algebraic case, i.e. u ∈ As
B for some s > 0. Then, (7.3)

reads

|Λn| ≤ κµ−d/2s|||u− un|||−d/s∥u∥d/sAs
B

n−1∑
k=0

(
ρd/s

)n−k
, ∀ n ≥ 0 .

Summing-up the geometric series and using (2.5), we arrive at the following result.
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Theorem 7.1 (cardinality of Λn: algebraic case) Under the assumptions of Proposition 7.1,
the growth of the active degrees of freedom produced by ADFOUR in the algebraic case is esti-
mated as follows:

|Λn| ≤ C∗ ∥u− un∥−d/s∥u∥d/sAs
B
, ∀ n ≥ 0 ,

where the constant C∗ depends only on α∗, µ and ρ.

This result is “optimal” in that the number of active degrees of freedom is governed, up
to a multiplicative constant, by the same law (4.4)-(4.5) as for the best approximation of u.
The optimality of this result is related to the “sufficiently fast” growth of the active degrees of
freedom: the increment of degrees of freedom at each interation may be comparable to the total
number of previously activated degrees of freedom (geometric growth).

7.2 A-ADFOUR: Aggressive ADFOUR

We now examine Algorithm A-ADFOUR, defined in Sect. 3.3, which allows the choice of the
parameter θ as close to 1 as desired. Such a feature is in the spirit of high regularity, or equiv-
alently a large value of s for u ∈ As

B. This is a novel approach which combines the contraction
property in Theorem 3.3 and the key property of uniform boundedness of the residuals stated
in Proposition 5.2.

Theorem 7.2 (cardinality of Λn for A-ADFOUR) Let the assumptions of Property 2.2 and
Theorem 3.3 be fulfilled, and let u ∈ As

B for some s > 0. Then, the growth of the active degrees
of freedom produced by A-ADFOUR is estimated as follows:

|Λn| ≤ C∗ J
d ∥u− un∥−d/s∥u∥d/sAs

B
, ∀ n ≥ 0 .

Here, J is the (θ-dependent) input parameter of ENRICH, whereas the constant C∗ is inde-
pendent of θ.

Proof. At each iteration n, the set ∂̃Λn selected by DÖRFLER is minimal, hence by (3.4),
(4.3) and (4.6), one has

|∂̃Λn| ≤
(√

1− θ2 ∥rn∥
)−d/s

∥rn∥d/sAs
B

+ 1 .

Using (2.9) and Proposition 5.2, this bound becomes

|∂̃Λn| <∼
(√

1− θ2 |||u− un|||
)−d/s

∥u∥d/sAs
B
.

On the other hand, estimate (3.18) for the procedure ENRICH yields

|∂Λn| <∼ Jd
(√

1− θ2 |||u− un|||
)−d/s

∥u∥d/sAs
B
.

Now, as in the proof of Corollary 7.1,

|Λn| <∼ Jd (1− θ2)−d/s

(
n−1∑
k=0

|||u− uk|||−d/s

)
∥u∥d/sAs

B
. (7.5)
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The contraction property of Theorem 3.3 yields for 0 ≤ k ≤ n− 1

|||u− un||| ≤ ρ̄n−k|||u− uk||| ,

with ρ̄ = C0

√
1− θ2 < 1 (see 3.17); thus,

n−1∑
k=0

|||u− uk|||−d/s ≤ |||u− un|||−d/s
n−1∑
k=0

ρ̄
d
s
(n−k) <∼ ρ̄

d
s |||u− un|||−d/s <∼ (1− θ2)d/s∥u− un∥−d/s .

Substituting into (7.5), the powers of 1− θ2 cancel out, and the asserted estimate follows.

8 Optimality properties of adaptive algorithms: exponential
case

From now on, let us assume that u ∈ Aη,t
G for some η > 0 and t ∈ (0, d]. Let us first observe

that none of the arguments that led to the complexity estimates of the previous section can be
extended to the present situation.

For ADFOUR with moderate Dörfler marking, Corollary 7.1 in which ϕ−1 is replaced by its
logarithmic expression yields a bound for |Λn| which is at least n times larger than the optimal
bound

|Λbest
n | ≤ κ ωd

ηd/t

(
log
∥u∥Aη,t

G

εn

)d/t

for the given accuracy εn (see the proof of Proposition 8.1 for more details, in a similar situation).
Manifestedly, the first cause of non-optimality is the crude bound (7.2), which in this case is no
longer absorbed by the summation of a geometric series as in the algebraic case.

On the other hand, for A-ADFOUR a sharp estimate of the increment |∂̃Λn| is indeed used
in the proof of Theorem 7.2, but this involves the sparsity class of the residual, which in the
exponential case may be different from that of the solution, as discussed in Sect. 5.2.

Incorporating a coarsening step in the algorithms allows us to avoid, at least in part, these
drawbacks. For these reasons, herafter we investigate the optimality properties of the two
algorithms with coarsening presented in Sect. 3

8.1 C-ADFOUR: ADFOUR with coarsening

Let us now discuss the complexity of Algorithm C-ADFOUR, defined in Sect. 3.4. The
following optimal result holds.

Theorem 8.1 (cardinality of Λn for C-ADFOUR) Assume that the solution u belongs to
Aη,t

G , for some η > 0 and t ∈ (0, d]. Then, there exists a constant C > 1 such that the cardinality
of the set Λn of the active degrees of freedom produced by C-ADFOUR satisfies the bound

|Λn| ≤ κ
ωd

ηd/t

(
log
∥u∥Aη,t

G

∥u− un∥
+ logC

)d/t

, ∀ n ≥ 0. (8.1)
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Proof. Since each Galerkin approximation un+1 comes just after a call Λn+1 := COARSE(un,k+1, εn)

with threshold εn = α
−1/2
∗ ∥rn,k+1∥ ≥ ∥u− un,k+1∥, Theorem 6.1 yields

|Λn+1| ≤
ωd

ηd/t

(
log
∥u∥Aη,t

G

εn

)d/t

+ 1 .

On the other hand, (2.5) and Property 3.1 yield

∥u− un+1∥ ≤ α−1/2
∗ |||u− un+1||| ≤ 3(α∗/α∗)

1/2εn. (8.2)

Since n ≥ −1, this gives the result, up to a shift in the index.

Next, we investigate the optimality of each inner loop. We already know from Theorem 3.4
that the number Kn of inner iterations is bounded independently of n. So, we just estimate
the growth of degrees of freedom when going from k to k + 1. We only consider the case of a
moderate Dörfler marking, i.e., we subject θ to the condition stated in Lemma 7.2 (since the
case of θ close to 1 will be covered in the next subsection). The following result holds.

Proposition 8.1 (cardinality of Λn,k for C-ADFOUR) Assume that u ∈ Aη,t
G for some

η > 0 and t ∈ (0, d], and that the marking parameter satisfies θ ∈ (0, θ∗), where θ∗ =
√

α∗
α∗ .

Then, there exist constants C > 1 and η̄ ∈ (0, η] such that, for all n ≥ 0 and all k = 1, . . . ,Kn,
one has

|Λn,k| ≤ κ
ωd

η̄d/t

(
log

∥u∥Aη,t
G

∥u− un+1∥
+ logC

)d/t

.

Proof. Each inner loop of C-ADFOUR can be viewed as a truncated version of ADFOUR;
hence, the analysis of this algorithm given in Sect. 7.1 can be adapted to the exponential case.
In particular, for each increment ∂Λn,j of degrees of freedom, Proposition 7.1 gives

|∂Λn,j | ≤
ωd

ηd/t

(
log
∥u∥Aη,t

G

εn,j

)d/t

+ 1 , ∀ 0 ≤ j ≤ Kn.

Since, εn,Kn ≤ ρKn−jεn,j by (7.4), it follows that

|∂Λn,j | ≤
ωd

ηd/t

(
log
∥u∥Aη,t

G

εn,Kn

+ (Kn − j)| log ρ|

)d/t

+ 1 .

Thus, recalling that t ≤ d by assumption, we have

|Λn,k|t/d ≤ |Λn|t/d +
k−1∑
j=0

|∂Λn,j |t/d

≤ |Λn|t/d + κ
ω
t/d
d

η

(
k log

∥u∥Aη,t
G

εn,Kn

+O(K2
n)| log ρ|

)
.

Combining (3.23), (8.1), and (8.2) with k ≤ Kn <∼ 1, we conclude the assertion with η̄ ≤
η/(1 +Kn).

We remark that the previous result provides a complexity bound, relative to the sparsity
class Aη,t

G of the solution, which is optimal with respect to the index t, but suboptimal with
respect to the index η̄ < η.
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8.2 PC-ADFOUR: Predictor/Corrector ADFOUR

At last, we discuss the optimality of Algorithm PC-ADFOUR, presented in the second part
of Sect. 3.4.

Theorem 8.2 (cardinality of PC-ADFOUR) Suppose that u ∈ Aη,t
G , for some η > 0 and

t ∈ (0, d]. Then, there exists a constant C > 1 such that the cardinality of the set Λn of the
active degrees of freedom produced by PC-ADFOUR satisfies the bound

|Λn| ≤ κ
ωd

ηd/t

(
log
∥u∥Aη,t

G

∥u− un∥
+ logC

)d/t

, ∀ n ≥ 0.

If, in addition, the assumptions of Proposition 5.4 are satisfied, then the cardinality of the
intermediate sets Λ̂n+1 activated in the predictor step can be estimated as

|Λ̂n+1| ≤ |Λn|+ κJd ω
2
d

η̄d/t̄

(
log
∥u∥Aη,t

G

∥u− un∥
+
∣∣ log√1− θ2

∣∣+ logC

)d/t̄

, ∀ n ≥ 0 ,

where J is the input parameter of ENRICH, and η̄ ≤ η, t̄ ≤ t are the parameters which occur
in the thesis of Proposition 5.4.

Proof. The proof of the first bound is the same as that of Theorem 8.1. Concerning the
second bound, we invoke Proposition 5.4 to write rn ∈ Aη̄,t̄

G and recall that ∥rn − P∂̃Λn
rn∥ ≤

(1− θ2)1/2∥rn∥ for each iteration n. This, combined with the minimality of the set ∂̃Λn selected
by DÖRFLER, yields

|∂̃Λn| ≤
ωd

η̄d/t̄

(
log

∥rn∥Aη̄,t̄
G√

1− θ2∥rn∥

)d/t̄

+ 1 .

Estimate (3.18) for ENRICH yields

|∂Λn| ≤ κJd ω2
d

η̄d/t̄

(
log

∥rn∥Aη̄,t̄
G√

1− θ2∥rn∥

)d/t̄

.

Using (2.8) and Proposition 5.4, this time to replace rn by u and u− un, we obtain the desired
result.

We observe that in the case η̄ < η and t̄ < t, the cardinalities |Λ̂n+1| and |Λn| are not
bounded by comparable quantities. This looks like a non-optimal result, yet it appears to be
intimately related to the fact that in general the residuals belongs to a worse sparsity class than
the solution.
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