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Abstract

In this work, we illustrate a novel functional data analysis approach for the forecast of oil production
rates in a mature single-phase reservoir. This model is based on the recently developed Physics-
based Residual Kriging predictor, which represents oil rates as functional data and decomposes
them as the sum of the predictions of a physical model and the geostatistical modelization of its
residuals. In this context, we use the recently introduced FlowNet model to build up the physical
term which, through a network-based representation of the reservoir, avoids the burden of three-
dimensional full-physics simulations. Furthermore, we propose an extension of the Physics-based
Residual Kriging predictor in presence of ensemble of physical models, i.e. when the uncertainty
in the model parameters is accounted for by simulating several models corresponding to different
parameters samples. The Physics-based Residual Kriging predictor is here applied to the oil rates
produced in a realistic reservoir. We analyze three different scenarios in terms of wells drilling
schedule, from a simple to a realistic scheme. In each scenario, we compare the predictions given
by Physics-based Residual Kriging to the ones obtained with FlowNet and a pure geostatistical
approach.

Introduction

Production forecast is a crucial tool for the managing and future development of hydrocarbon
reservoirs during all the phases of their life span, from exploration to maturity. Indeed, such a tool
is usually required in the decision-making process to optimize production and for the assessment
of investment scenarios, in order to maximize asset returns and mitigate the risk (Ahmed and
Meehan, 2012; Pathak, 2021). At the stage when some historical production data are already
available, the classical approach to production forecast in oil and gas industry is the development
of a three-dimensional full-physics reservoir model (Aziz and Settari, 1979; Dake, 1978; Peaceman,
1977), which is simulated to produce predictions of quantities of interest, such as oil production
rates at field or well levels. However, the construction of such a model may be very challenging,
due to the complexity of fluid flow dynamics and subsurface reservoir structure, implying long
development and tuning times and high computational cost. A key step in this process is the
history matching (Oliver et al., 2008; Gilman and Chet, 2013), where the model parameters, as
the reservoir petrophysical properties and fluids characteristics, are estimated to ensure the match
between model predictions and data measured in the reservoir. In this process, iterative ensemble
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smoothers can be used (Emerick and Reynolds, 2012, 2013) and, in real world applications, a lot of
effort is required to obtain a model which is consistent with the observed data (Alfonzo and Oliver,
2019; Oliver, 2020).

An alternative to three-dimensional full-physics reservoir simulations is represented by surro-
gate models, also called proxy models. These models are usually simpler, in terms of number of
parameters, and have faster simulation times. We distinguish two different approaches for the
construction and the use of surrogate models: (i) proxy models which, starting from a full-physics
reservoir model, allow one to produce the forecast more efficiently, and (ii) surrogate models which
produce predictions without the need of a high-fidelity model. The latter, once conditioned to the
past production data, could provide reasonable predictions of the future reservoir behavior.

A notable example of the first type is represented by models that entail the solution of the
reservoir governing equations through the use of reduced order models (Ghasemi et al., 2014;
Tang et al., 2021; Yoon et al., 2016), which are based on the formulation of the equations in
the linear space generated by a set of high-fidelity solutions. Besides their attractiveness, this
approach requires the implementation of the full-physics reservoir simulator to generate samples of
high-fidelity solutions. Furthermore, their applicability to highly non-linear equations, such as the
reservoir equations, is challenging and requires ad hoc formulations.

The second approach for surrogate models can be based on simplified formulations of the reser-
voir physics. A notable example is the Capacitance Resistance Model (CRM, Wanderley et al.
(2018)), that expresses a simplified version of the mass conservation equation, modelling the inter-
action between the wells. The Interwell Numerical SImulation Model (INSIM, Zhao et al. (2015))
is a more complex version, where the pressure equation is solved on the nodes, i.e. the wells, of a
network and the saturation equation on the connections, i.e. the streamtubes. The physics formu-
lation, in this case, neglects capillary and compressibility effects in the solution of the saturation
equation. Starting from the base formulation proposed in Zhao et al. (2015), the authors present
some extensions in Guo et al. (2017); Guo and Reynolds (2019), which generalize the method in
three dimensions and with a better numerical scheme for the equations solution. Within the same
line of research, the FlowNet model (Kiærr et al., 2020) has been recently proposed. In this frame-
work, the reservoir is represented in terms of a network, composed of one dimensional connections
between wells, and characterized by a set of parameters, such as permeability of the connections
and the coefficients of the relative permeability curves. It is based on the solution of the same
physics equations as a high-fidelity model, but discretized on the wells network, highly reducing
the number of parameters and the grid size. All these models do not need a detailed geological
model and a history matching phase is required to ensure the match with the historical data, in
particular production data.

In recent years, also pure data-driven surrogate models, in the framework of statistics and ma-
chine learning, have been developed for the prediction of production rates. Examples are illustrated
in Han and Kwon (2021); Jin et al. (2020), whereas Coutinho et al. (2021) illustrates an example
of integration of the physics in the formulation of this type of proxy models. Menafoglio et al.
(2016a) propose a data-driven predictor, based on Kriging, that models spatial dependence among
production rates in an unconventional reservoir.

Another approach is the Physics-based Residual Kriging, originally introduced in Peli et al.
(2022), that combines a simplified physical model with a statistical predictor for the forecast of oil
production rates in mature conventional reservoirs. In the Phy-RK framework, oil production rates
are represented as functional data, i.e. modelling their variation over continuum time according to
the theory of Functional Data Analysis (FDA, Ramsay (2005)), and they are decomposed as the
sum of a physical model prediction and its residuals. The first term is given by a suitable version of
the mass conservation equation for fluid flow in porous media and the second term is modelled in a
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geostatistical framework, exploiting its spatial dependence. In Peli et al. (2022), two applications
are presented where the physical model is given by the single-phase mass conservation equation,
neglecting fluid and rock compressibilities and fluid compressibility, respectively. In both the cases,
the equation is discretized on a fine bi-dimensional grid, prescribing the petrophysical parameters
in each cell. Furthermore, the Phy-RK predictor is designed to take into account the wells drilling
schedule, which implies a sequential opening of the wells in the reservoir.

We here present the application of the Phy-RK predictor to a realistic reservoir. Due to its three-
dimensional geometry and realistic petrophysical properties distribution, this reservoir represents
a challenging application of the proposed model, much more complex than the synthetic reservoirs
analyzed in Peli et al. (2022). Assuming that the past production rates of the operating wells have
been measured and that the drilling schedule of future wells is given, our goal is the prediction of
the future production rates of existing and newly drilled wells. The wells drilling schedule is divided
into activation intervals, identified by the drilling of a group of wells, and predictions are produced
one interval at a time, as soon as the observations in the previous interval becomes available.
In order to avoid the three-dimensional high fidelity reservoir modelization, we here opt to use
FlowNet as physical model. The limited number of petrophysical parameters and the solution of
the high-fidelity physics make FlowNet a powerful and flexible surrogate model and its integration
in the Phy-RK method allows one to obtain accurate predictions, without the need to develop a
three dimensional full-physics reservoir model.

Furthermore, we here extend Phy-RK to deal with ensemble of physical models. This situation
appears whenever an ensemble smoother is used in the history matching phase, as in the FlowNet
model, ending up with an ensemble of physical models, each corresponding to different realizations
of the model parameters. We propose two strategies: the first one, called Average Phy-RK, consists
in taking the average ensemble prediction as physical term, whereas the second one, called Multiple
Phy-RK, consists in applying Phy-RK to each physical model obtaining an ensemble of predictions,
which allows one to quantify the associated uncertainty.

We consider the application of Phy-RK to three different scenarios, concerning the same reser-
voir but obtained by varying the wells drilling schedule. In the reference case, we consider a regular
schedule, where wells are drilled at the starting points of eight time intervals of equal length, in
groups with the same number of wells. We then consider two additional cases: in the variable
number schedule, the wells are drilled in groups of different numbers, while in the realistic scenario
we further remove the constraint of equally long time intervals, mimicking a realistic perforation
campaign. In this last case, we propose an extension of Phy-RK to deal with time intervals of
different lengths.

The manuscript is organized as follows. In Section 1, we outline the problem and we describe
the reservoir. Section 2 recalls the mathematical formulation of the Phy-RK predictor and its
sequential formulation. In Section 3, we describe the FlowNet model and its integration in the
Phy-RK predictor. The analyses of the three scenarios are illustrated in Section 4 for the reference
case and in Section 5 for the variable number and realistic cases, respectively. Finally, Section 6
outlines conclusions and considerations for future development.

1 Problem description

In this work, our goal is to predict the oil production rates of a mature hydrocarbon reservoir.
We here describe the synthetic reservoir that generates the data analyzed in this paper. The
three-dimensional reservoir model is simulated using the open source software Open Porous Media
(OPM) (Flemisch et al., 2011) and is used only to generate realistic production data and not in the
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Phy-RK predictive model. Indeed, the Phy-RK approach has been designed to avoid the burden
of the developing of a 3D reservoir model, relying on surrogate physical models, as described in
Section 3.

The synthetic reservoir used in this study is a 3D model based on a chalk reservoir. Black-oil
modelization is employed and the reservoir is produced in primary depletion. Figure 1 depicts the
reservoir geometry and the wells locations. We here describe the wells schedule of the reference
case, that is analyzed in Subsection 4, whereas other schedules are considered in Section 5. In the
reference case, over a production schedule of 20 years, 137 oil producers are opened. The wells
are incrementally drilled in the reservoir during 8 intervals of equal length of 900 days and, at the
beginning of each interval, almost the same number of new wells is drilled. The oil production rates
and the wells schedule are shown in Figure 2.

In this framework, our goal is the prediction of the oil production rates of the wells operating
in a specified interval, given the observations of the production data in the previous intervals. This
analysis is carried out in all the intervals and different approaches are compared: a pure data-driven
approach, without modelling the wells interaction and the reservoir perturbation caused by newly
drilled wells, a pure physical surrogate model approach, FlowNet, and the Phy-RK predictor, that
effectively combines the other two.

Figure 1: Map view from top of the depth surface of the reservoir model. Colors represent depth,
from purple (high) to red (low) and circles represent wells locations. The arrow points a well that
is the object of the analysis in Subsection 4.2

2 Physics-based Residual Kriging formulation

In this section we introduce the mathematical formulation of Phy-RK for functional data, referring
to Peli et al. (2022) for further details. Consider the functional random variable Ys, which represents
the oil production rate of the well drilled at location s, which belongs to the reservoir domain D,
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Figure 2: Production rates and schedule for the reference case described in Subsection 1. Left panel:
blue lines represent the production rates corresponding to newly drilled wells in each interval, gray
lines correspond to wells already operating. In the first interval, blue and gray lines coincide, as
they correspond to the initial set of drilled wells. Right panel: blue circles represent the newly
drilled producers and gray circles the already operating wells

over the continuum time t. We assume that the functional random variable takes values in a generic
Hilbert space H. The Phy-RK predictor aims to predict the oil production rate Ys0 at target site
s0, having observed the production rates of the active wells located at {s1, . . . , sn}. The Phy-
RK approach relies on the decomposition of the (random) production curves into the contribution
Fs(θ), which is the prediction of a deterministic (surrogate) model with parameters θ ∈ Θ ⊂ Rm,
and a stochastic residual Xs, as

Ys = Fs(θ) + Xs.

Thus, it combines a deterministic model, which, in our applications, represents the reservoir physics,
with a geostatistical model for the residual random variable. The Phy-RK prediction for the
production curve Ys0 , omitting from now on the dependence on θ, is then given by

Ŷs0 = Fs0 + X̂s0 , (1)

where the residual prediction X̂s0 is obtained through Universal Kriging (UK) predictor for func-
tional data (Caballero et al., 2013; Menafoglio et al., 2013, 2016b), as the optimal linear combination
of the observed residuals at locations {s1, . . . , sn}. Here, optimal refers to the fact the UK is the
best linear unbiased predictor in the mean square sense. In this framework, the mean of the residual
field (a.k.a. drift) is expressed in terms of a linear model

ms =
L∑
i=0

βlfl(s), (2)

where f0 is the intercept (i.e, f0(s) = 1 for all s ∈ D), f1(s), . . . , fL(s) ∈ R are known spatially
dependent covariates, such as the petrophysical properties, the spatial coordinates or, as in our
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applications, the pressure at the well location computed by the surrogate physical model. The
terms β0(·), . . . , βL(·) ∈ H are functional parameters, which do not depend on the spatial location.
Whenever only the intercept f0 is employed, the Universal Kriging predictor coincides with the
Ordinary Kriging (OK) predictor.

Phy-RK can also be used for sequential problems, such as the prediction of oil production rates.
Indeed, as depicted in Figure 2, production rates observations become available along consecutive
time intervals, in a context where the physical and stochastic processes generating them evolve as
time intervals succeed one another. The perturbation is due to the different wells configurations
among different time intervals. Indeed, we assume that the wells are opened or closed in Na time
instants, (t0, . . . , tNa−1), and, within any time interval ai = [ti−1, ti), for i = 1, . . . , Na, the wells
configuration does not change. Hence, the whole time domain is subdivided into Na time intervals
(in Figure 2, Na = 8). We assume that, in each interval ai, the production rates of the active wells

has been sampled at a set of locations Wi =
{
sij

}ni

j=1
, which is the set of active wells in interval ai.

In this section, we assume that all the intervals have equal length, but we will relax this hypothesis
in Subsection 5.2. There, the predictor is extended to deal with intervals of irregular length.

The general Phy-RK predictor (1) is thus sequentially reformulated to account for the time
interval ai, as

Ŷs0,ai = Fs0,ai + X̂s0,ai , (3)

i.e. the sum of the physics-based prediction Fs0,ai in the interval ai, and the predicted residual,
which is obtained with functional UK, having observed the residuals in the interval ai−1 at locations
Wi−1. In this setting, if residual fields among consecutive intervals exhibit a strong variation,
Peli et al. (2022) propose to include higher orders residuals terms, updated in each interval, to
further correct the predictive model based on the misfit between observations and predictions in
the previous intervals. As depicted in Figure 3, at the third interval one has already observed in the
second interval the first-order residuals, i.e. the difference between observations and physical model

predictions X (1)
sj ,a2 = Ysj ,a2 − Fsj ,a2 , and the second-order residuals, i.e. the difference between

observations and the first-order predictions computed in that interval X (2)
sj ,a2 = Ysj ,a2 − (Fsj ,a2 +

X̂ (1)
sj ,a2). Hence, in the third interval one can build the predictor

Ŷs0,a3 = Fs0,a3 + X̂ (1)
s0,a3 + X̂ (2)

s0,a3 ,

where the two predicted residuals X̂ (1)
s0,a3 and X̂ (2)

s0,a3 are respectively obtained through functional UK
of the observed first-order and second-order residuals in the interval a2. In practice, one can decide
how many residuals to include: (i) no residuals (Phy-RK-0), i.e. the prediction is determined by the
physical model only (the only possible predictive model at step a1), (ii) one residual (Phy-RK-1),
correcting the prediction of the physical model with first-order residuals (the complete predictive
model at step a2) or (iii) two residuals (Phy-RK-2), further correcting the predictive model in a2
with second-order residuals.

As we move towards following intervals, higher-order residual terms become available and the
predictor at the i-th step can be defined as

Ŷs0,ai(t) = Fs0,ai(t) +

Ki∑
k=1

X̂ (k)
s0,ai(t) t ∈ ai, (4)

where Ki ≤ i − 1 is the number of residual terms employed in the i-th interval. Note that, if no
residual terms (hereafter denoted by Ki = 0) are taken into account, the prediction coincides with
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the one generated by the sole physical model. Each residual is predicted by means of functional
UK from the observed residuals of the same order in the previous interval

X̂ (k)
s0,ai =

∑
sj∈Wi−1

λ̂jX (k)
sj ,ai−1 ,

where the optimal weights λ̂j are found by UK, being the residuals defined as

X (k)
sj ,ai−1(t) = Ysj ,ai−1(t)−Fsj ,ai−1(t)−

k−1∑
l=1

X̂ (l)
sj ,ai−1(t) t ∈ ai−1.

The parameter Ki is chosen in each interval by selecting the number of residuals which produces
the lowest median error in the previous interval. This procedure allows us to avoid overfitting, as,
in this sequential framework, the choice of Ki for ai is based on the available observations (i.e.,
the observations in the interval ai−1), but the predictor is then employed for the test set, i.e. the
production rates in the following interval ai.

Observation Physics prediction One residual prediction Two residuals prediction

First interval Second interval Third interval

Production rate

    Time

Figure 3: Sequential residuals modelization up to the third interval

3 Surrogate physical model

In the Phy-RK framework considered in this work, we consider as physical model the recently
developed FlowNet, proposed by Kiærr et al. (2020). Thus, the term Fs0,ai in (4) is given by the
FlowNet model predictions. Instead of a full-physics 3D reservoir simulations (Aziz and Settari,
1979), FlowNet relies on a simplified reservoir modelization in terms of a flow network model, where
nodes, i.e. wells, are linked by one dimensional connections. Contrary to other network models, such
as the Capacitance Resistance Model (CRM, Wanderley et al. (2018)) and the Interwell Numerical
SImulation Model (INSIM, Zhao et al. (2015)), in the FlowNet model the connections are discretized
in cells and OPM (Flemisch et al., 2011) is used to solve the reservoir governing equation on the
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network. This endows FlowNet with the capabilities of an industry-standard reservoir simulator,
but with a reduced computational cost compared to high-fidelity 3D simulations.

Starting from the wells locations, FlowNet firstly builds the network, possibly adding additional
nodes for refinement and to create more flow paths in the model. Given a prescribed number of
additional nodes, their position is determined by a best candidate algorithm, as described in Kiærr
et al. (2020). The FlowNet network used in our application is represented in Figure 4. The model
is then characterized by connection parameters, such as the permeability, the porosity and the
bulk-volume multiplier shared by all its cells, and some global or region-specific parameters, as oil-
water contact depth, initial pressure and Corey-type relative permeability curve coefficients. The
Ensemble Smoother with Multiple Data Assimilation (ES-MDA), originally introduced in Emerick
and Reynolds (2013), is used to estimate these parameters in the history matching step. Thus,
an ensemble of Ne FlowNet models is generated, independently sampling the parameters from
given prior distributions. Then, according to an ES-MDA algorithm, the ensemble parameters are
updated, in order to ensure that the ensemble predictions for certain quantities, for instance wells
production rates or wells bottom hole pressure, match the observations in the history matching
time interval. We refer to Kiærr et al. (2020) for a detailed description of the FlowNet model.

In our case, in the history matching period which corresponds to interval a1, the bottom hole
pressures of the wells active in a1 are matched, imposing their total reservoir volume production.
Therefore, as the reservoir volume rate is imposed for each well and water production is negligible,
this results in a perfect match between observed oil rates and FlowNet predictions in a1. As
a consequence, the observed residuals are null in a1 and cannot be predicted in a2 (a spatial
interpolation would just result in a null prediction over the entire domain). This implies that the
interval a3 is the first one where the Phy-RK predictions are produced with at least first order
residuals.

The history matching procedure is performed once, considering only the wells operating in a1,
and thus the FlowNet model is not updated in the following intervals. This choice is due to two
reasons: firstly, this avoids the burden of the history matching process in each interval and, secondly,
it allows us to exploit the residuals with respect to the FlowNet model in the Phy-RK method,
which would be null if the history matching were repeated in each interval. After the history
matching, each member of the ensemble is characterized by a different set of updated parameters
and is simulated to produce predictions according to the given schedule, starting from interval a2.
Note that FlowNet allows to predict production rates only at the locations of the nodes of the
network. Indeed, Kiærr et al. (2020) proposed FlowNet to predict production rates at existing
wells, without considering the case of infilling wells. Hence, using FlowNet as surrogate model in
our framework requires that all the wells of the schedule, along all the time intervals (i.e., all the
wells W = W1∪W2∪...∪WNa), are included in the network at the initial model calibration. Adding
at later stages one or more infilling wells which were not included in the set W would require re-
calibration of the model, and repetition of the history matching. The FlowNet implementation is
publicly available at (Equinor, 2021).

3.1 Physics-based Residual Kriging for physical models ensembles

In Peli et al. (2022), the Phy-RK predictor is formulated for single physics-based predictions, and,
therefore, we here propose an extension to the case of an ensemble of physical model predictions

{F (m)
s0,ai}

Ne
m=1, as for the FlowNet model. We here propose two approaches termed Average Phy-RK

and Multiple Phy-RK. The Average Phy-RK consists in using as physical term in (4) the average

ensemble prediction, i.e. Fs0,ai =
1
Ne

∑Ne
m=1F

(m)
s0,ai . This leads to a unique Phy-RK predictor given
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Figure 4: FlowNet network. Dark blue points represent the wells and light blue connections
represent the streamtubes

by

Ŷs0,ai =
1

Ne

Ne∑
m=1

F (m)
s0,ai +

Ki∑
k=1

X̂ (k)
s0,ai , (5)

where the residuals are computed with respect to the FlowNet ensemble average. Thus, for each
well at each time interval, Average Phy-RK returns a unique prediction given by (5).

In Multiple Phy-RK, a Phy-RK predictor is built for each ensemble member, leading to Ne

predictions, i.e.

Ŷ(m)
s0,ai = F (m)

s0,ai +

Ki∑
k=1

X̂ (m,k)
s0,ai , m = 1, · · · , Ne, (6)

where the residuals X (m,k) are defined with respect to the m-th FlowNet prediction. Therefore, for
each well, a set of Ne predictions is computed and one can then compute statistics to characterize
the prediction, as their average and quantiles, in order to quantify the uncertainty due to the
different ensemble models.

4 Analysis of the reference case

Both the approaches described in Subsection 3.1 are here applied to the reference case, in order
to predict the oil production rates described in Section 1. They are evaluated in terms of relative
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error E between the observed data Ys0,ai and the predictions Ŷs0,ai in each interval ai, as

Ei =

∫
ai
|Ys0,ai(t)− Ŷs0,ai(t)| dt∫

ai
|Ys0,ai(t)| dt

.

The relative error Ei is dimensionless and expresses the cumulative absolute difference between the
observed and the predicted rates, divided by the total cumulative observed production.

In order to ensure the positivity of the predictions, in the following we always model the loga-
rithm of the oil rates, the prediction for the oil rates being given by

Ŷs0,ai = Fs0,ai · exp

(
Ki∑
k=1

X̂ (k)
s0,ai

)
. (7)

In the analysis, we report the errors computed on the original oil rates, except where explicitly
mentioned. We evaluate the prediction of Phy-RK with four competitors, which share with Phy-
RK a relative simplicity w.r.t. a full-physics model. The first one is the pure Ordinary Kriging
(OK) predictor; here, the physical model predictions in (1) are set to zero, and the model for
the stochastic component Xs is formulated by including only the intercept in the drift (2) (i.e.,
L = 0). This model is representative of a purely data-driven prediction, without considering the
physics-based knowledge. The second one is the pure physical model (Phy), where the residuals
are set to zero and the predictions are exclusively given by FlowNet. This approach is thus the
solely surrogate physical model. Additionally, we test two versions of the Physics-based Residual
Kriging, that differ only for the linear model of the drift. The Physics-based Residual Ordinary
Kriging (Phy-ROK), where only the intercept is included in the drift model, and the Physics-based
Residual Universal Kriging (Phy-RUK), where the linear model for the drift includes both the
intercept and the pressure, computed by the FlowNet model and averaged over the time interval.
Indeed, reservoir pressure at the well site is related to the produced oil rate, as expressed by the well
model (Peaceman, 1977). Although already modelled in the FlowNet predictions, we here allow the
residuals to depend also on the pressure, as it could be not completely exploited by the surrogate
model prediction. On the other hand, if the pressure were not relevant for residuals predictions,
because already completely captured by the physics, the estimate of the corresponding coefficient
in the linear model for the drift would be close to zero, removing the dependence of the residual
prediction on the pressure.

For the FlowNet model, the ensemble size Ne is set to 100, the number of additional nodes
besides the wells in W is set to 50, the number of ES-MDA iterations is 6 with corresponding
unnormalized weights {4, 2, 1, 1, 1, 1}, the porosity parameter is fixed to 0.3, the oil-water contact
depth is set to 10500 feet, the initial pressure is set to 7103 psia at 10100 feet, whereas the other
parameters are sampled according to distributions reported in Table 1. With this configuration, the
history matching process takes approximately 4 hours on a laptop equipped with an AMD Ryzen
5 2500U processor, 4 cores at 2 GHz and 8Gb of RAM.

As production rates are observed along the time intervals, we could use Phy-ROK and Phy-
RUK with an increasing number of residual terms. The selection of the number Ki of residuals
employed in each interval is done by picking the best predictor for the previous interval, in terms of
median relative prediction error. Thus, we compare the four approaches, given the selected number
of residuals for Phy-ROK and Phy-RUK.

Firstly, in Figure 5, we show, from a qualitative point of view, the predictions for the two
approaches Average and Multiple. In each interval, the optimal number of residuals and the optimal
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Parameter Distribution Min Max

Permeability Log-uniform 0.001 30
Bulk volume multiplier Uniform 0.171 0.271
Relative permeability

Sw,irr/Sw,l Uniform 0.01 0.2
Sw,cr/So,cr Uniform 0.01 0.3
krw,end Uniform 0.5 0.7
kro,end Uniform 0.6 0.9
nw Uniform 1.5 4.5
no Uniform 2.5 4.5

Table 1: Prior distributions of the FlowNet parameters

drift model are used, as we will describe in Subsections 4.1 and 4.2. For the Multiple approach,
we report the average predictions, as for each well Ne predictions are obtained. We note a general
good agreement between the predictions and the observations, with similar results between the two
approaches. In the next subsections, we quantify the prediction errors, quantitatively comparing
the two approaches.
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(a) Average Phy-RK
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(b) Multiple Phy-RK

Figure 5: Predictions of the Average Phy-RK (left) and Multiple Phy-RK (right) and the observed
oil production rates for the reference case. For the Multiple approach, the average prediction is
displayed

4.1 Average Phy-RK predictions

The Average Phy-RK predictor requires to run the FlowNet models ensemble according to the
drilling schedule, taking its average prediction, and then modeling its residuals as explained in
Section 2. For the Phy-RUK predictor, the pressure, computed by the FlowNet simulations and
averaged over the ensemble members, is employed in the linear model for the drift. The selected
numbers of residuals Ki in each interval for the Phy-ROK and Phy-RUK predictors, are reported in
Figure 6. For both of them, the numbers of selected residuals is coherent, with two residuals in the
last two intervals and one in the others (in the second one, we assume to use the Phy-RK predictor
as soon as it becomes available). In Figure 7a, we show the relative errors of prediction along each
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time interval for OK, Phy, Phy-ROK and Phy-RUK, with the selected numbers of residuals. In
these boxplots, each sample unit is a different well operating in the corresponding interval. Among
the four different predictors, one has to decide in advance which of them has to be employed in
each interval. Recall that this is done by looking at the method that best performed in the previous
interval, in terms of median relative error. The choice for each interval, except the interval a2 where
the aforementioned criterion is not applicable, is shown in Figure 7a, pointed by the selected model
arrow. We note that the best predictors are the Phy-ROK and Phy-RUK, with no major difference
between them. These predictors outperform both the OK and Phy predictors, indicating that Phy-
RK successfully combines them. In particular, we note that the pure FlowNet approach results
in the worst predictions. Furthermore, we note that, on the contrary of Phy and OK, Phy-ROK
and Phy-RUK exhibit a decreasing median predictive error as we move towards final intervals, that
is as more data become available. Concerning the computational times, the main burden of the
Phy-RK approach is due to the prediction of the FlowNet ensemble, which takes approximately 30
minutes, whereas the prediction of the residuals requires roughly 1 second. Computational times
are reported in Table 2.

4.2 Multiple Phy-RK predictions

Using the Multiple Phy-RK approach, the Phy-RK predictor is applied to each FlowNet model
in the ensemble, ending up with Ne predictions for each well. Thus, in order to compare the
results with the Average Phy-RK, we show the errors obtained taking their average, whereas their
variability is exploited for uncertainty quantification. In this case, for the Phy-RUK predictor, the
pressure, averaged over time, computed by each FlowNet model is employed as regressor in the
linear model for the drift of the corresponding ensemble member. The selected number of residuals
Ki in each interval for the Phy-ROK and Phy-RUK predictors, is reported in Figure 8. In this
case, the number of selected residuals coincides for Phy-ROK and Phy-RUK, except for the last
interval, where two residual terms are chosen for Phy-ROK and one residual term for Phy-RUK.
In Figure 7b, we show the relative errors produced by the Multiple Phy-RK, taking its average
prediction, along each time interval, comparing OK, Phy, Phy-ROK and Phy-RUK, with selected
numbers of residuals. Also in this case, Phy-Rk results to be the best predictor in all the intervals.
Furthermore, we note that the Average Phy-RK predictor and the average of Multiple Phy-RK
predictions lead to similar relative errors. However, Multiple Phy-RK has an higher computational
cost, as residuals are predictedNe times, whereas for Average Phy-RK only one residual is predicted.
Its cost is comparable to Average Phy-RK, as the main burden comes from the run of the ensemble
of physical models. On the other hand, Multiple Phy-RK allows one to quantify the uncertainty
associated to the prediction. Computational times are reported in Table 2. The Phy computational
cost comes from the run of the whole ensemble. For the Multiple Phy-RK approach, the residual
prediction is repeated Ne times, implying a higher computational time.

FlowNet Prediction
history matching OK Phy Average Phy-RK Multiple Phy-RK

4 hours 1 second 30 minutes 30 minutes + 1 second 30 minutes + 100 seconds

Table 2: Computational times of the FlowNet history matching and the prediction steps. Times
are obtained on a laptop equipped with an AMD Ryzen 5 2500U processor, 4 cores at 2 GHz and
8Gb of RAM.
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Figure 6: Relative prediction error boxplots for the reference case produced by Phy-ROK (left
panel) and Phy-RUK (right panel) with different numbers of residual terms for the Average Phy-
RK approach. The boxplots with red outlines are the ones corresponding to the selected residuals
number

4.3 Uncertainty quantification

The uncertainty associated with the prediction of the Multiple Phy-RK approach is due to two
components: the variability of the FlowNet ensemble and the variance associated with the kriging
prediction of the residuals. Throughout this analysis, we investigate both the variances in order to
evaluate the contribute of the different sources of uncertainty.

On one hand, one can evaluate the distribution obtained using kriged residuals, where for each
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Figure 7: Relative errors boxplots in the reference case for Average Phy-RK (left) and Multiple
Phy-RK (right) produced by OK, Phy, Phy-ROK and Phy-RUK. The selected model arrow points
to the model that results to be the one with lowest relative error in the previous interval. Note
that the y-axis is represented on a log scale

member of the FlowNet ensemble, the prediction is given by equation (6), for a total of Ne predic-
tions. In this way, the uncertainty associated to residuals prediction is not considered. On the other
hand, in order to quantify the total prediction variance, we perform multiple stochastic simulation
of the residuals, from their approximate distribution conditioned to the observations, as illustrated
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Figure 8: Relative prediction error boxplots for the reference case produced by Phy-ROK (left
panel) and Phy-RUK (right panel) with different numbers of residual terms for the Multiple Phy-
RK approach. The boxplots with red outlines are the ones corresponding to the selected residuals
number

in Menafoglio et al. (2016c). Hence, for each FlowNet ensemble model, Nr = 100 Montecarlo
samples of the residual functional field are simulated, conditional to the residuals observed at the
operating wells in the previous interval. In this way, Ne × Nr simulations are produced for each
well, allowing to characterize their distribution, and thus the total prediction variance. In order to
limit the complexity of the analysis, we carry out the uncertainty quantification on the logarithm of
oil production rates predicted with Phy-ROK with one residual, that, as illustrated in Subsection
4.2, is often the best predictor.
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We start presenting the results on a single well, the one pointed by the arrow in Figure 1 and
drilled at the third interval. In Figure 9, we display the point-wise median and 5% and 95% per-
centiles of the predictions obtained with kriged (left) and conditionally simulated (right) residuals.
Therefore, on the left, only the ensemble variance is displayed, whereas on the right also the kriging
variance is considered. We note that there is a difference between the two distributions only in the
first interval after well drilling, with a higher variance associated with simulated residuals. This is
due to the fact that, after that interval, the residual has been observed (because the well has been
opened), and thus its simulations and kriged prediction both coincide with the observed one.

We now iterate the same argument for all the wells. For the sake of visualization, we take
the time-average predictions over each interval, and we then compute their (scalar) quantiles.
In Figure 10, we show the median prediction (Fig. 10a) and the Inter Quartiles Range (IQR),
i.e. the difference between the 75th and the 25th percentiles, starting from interval a3, of the
FlowNet ensemble (Fig. 10b), and of the Multiple Phy-ROK predictions with kriged (Fig. 10c)
and conditionally simulated (Fig. 10d) residuals. We note a decrease in the median prediction as
we move forward in time, coherently with the observed rates in Figure 2. Concerning the variance,
the IQRs are similar between the FlowNet ensemble and the predictions with kriged residuals,
with roughly a doubling with conditionally simulated residuals. We point out that, when residuals
are conditionally simulated, the variance is higher for the newly drilled wells than for the ones
already operating, because, in this case, the predicted residual coincides with the observed one
in the previous interval, due to the interpolation property of the kriging predictor. Furthermore,
we observe that the overall IQR tends to reduce towards last intervals, where the number of
observations is higher.
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Figure 9: Point-wise median, 5% and 95% quantiles of the ensemble predictions of Multiple Phy-RK
with kriged (left) and conditionally simulated (right) residuals, for well PRED64

5 Additional analyses

We here present further analyses to illustrate the application of Phy-RK in situations where the
wells schedule is more complex than the one of the reference case, illustrated in Subsection 1. We
thus introduce two problems, where the reservoir properties are the same of the reference case, with
the only change in the wells schedule. The first example, in Subsection 5.1, deals with a variable
number of wells drilled in each interval with same time interval length, whereas the second one, in
Subsection 5.2, presents a realistic schedule with irregular time intervals in the drilling schedule.
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(a) Median Phy-ROK prediction
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(b) IQR FlowNet predictions
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(c) IQR Phy-ROK / kriged residuals
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(d) IQR Phy-ROK / simulated residuals

Figure 10: Median and IQR of the time-averaged Multiple Phy-ROK predictions with one residual.
We indicate with crosses the wells that are open in the corresponding interval and with circles wells
already operating

5.1 Variable number of wells drilled in each interval

Hereafter, we analyze a case where the wells are drilled in 8 intervals, for a total period of 20 years,
but their number differs among the intervals. In particular, the number of wells being drilled in
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each interval is respectively 74, 14, 10, 3, 19, 4, 6 and 6. This choice, compared to the reference
case, alters both the observed rates, shown in Figure 11 and obtained with a new OPM simulation
with the updated schedule, and the FlowNet physical model. Here, the same prior distributions
of the parameters are kept, but the history matching is repeated because the oil rates in the first
interval simulated with variable number schedule differ from the reference case. Phy-RK is then
applied to obtain the predictions in each interval, without any modification to the approach, except
for the different schedule.

We present only the results obtained with the Average Phy-RK, as the Multiple Phy-RK pro-
duces similar results, when selecting the number of residuals as in the Average case. We then
report the relative prediction errors of the four different methods (OK, Phy, Phy-ROK, Phy-RUK)
in Figure 12, whereas the number of residual terms for Phy-ROK and Phy-RUK has been selected
according to Figure 13. As in the reference case, Phy-ROK and Phy-RUK result to be the best
predictors, showing lower errors than in the reference case, probably due to the higher number
of observations available from the beginning in interval a1, which is beneficial for both FlowNet
history matching and Phy-RK.
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Figure 11: Production rates and schedule for the variable number scenario described in Subsection
5.1. Left panel: blue lines represent the production rates corresponding to newly drilled wells in
each interval, gray lines correspond to wells already operating. Right panel: blue circles represent
the newly drilled producers and gray circles the already operating wells

5.2 Realistic schedule

We now show how the Phy-RK predictor can be applied in presence of a realistic schedule, where
time intervals have different lengths and an arbitrary number of wells is drilled at their starting
points. In the realistic schedule, after an initial ramp up of two years that results in the opening
of about 50% of the wells, a period of 10 years without new wells follows and, after that, infilling
wells are put into production. In this phase, three groups of wells are drilled every two months,
followed by a period of eight months without new wells. This pattern is repeated six times, with a
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Figure 12: Relative errors boxplots of variable scenario for Average Phy-RK produced by OK, Phy,
Phy-ROK and Phy-RUK, with selected number of residuals. Note that the y-axis is represented on
a log scale

final longer time window of roughly three years. The schedule is depicted in Figure 14 for clarity.
The history matching period of the FlowNet model spans up to the beginning of the infilling phase.

Whenever the prediction intervals have different lengths, Phy-RK, as described in Section 2,
cannot be directly applied, as it requires a common domain length for observed and predicted
oil rates. Therefore, we here propose an extension of Phy-RK to overcome this limitation. We
distinguish two cases: (i) if the prediction interval ai is shorter than the observed one ai−1 and (ii)
if the prediction interval ai is longer than ai−1. In the former case, Phy-RK can be directly applied,
by truncating the prediction to fit the domain. In the latter case, one needs a way to extend the
prediction, that is naturally produced by Phy-RK only in the initial part of interval ai whose length
corresponds to the one of ai−1. We propose to subdivide the interval ai into subintervals {bij}Jj=1,
where J is the upper part of the ratio between the length of ai and ai−1, i.e. J = ⌈|ai|/|ai−1|⌉,
whose length is equal to ai−1, except for the last than could be shorter. Limiting the analysis to
first order residuals, in each subinterval the Phy-RK prediction is given by

Ŷs0,bij
= Fs0,bij

+ X̂ (1)

s0,bij
, (8)

where X̂ (1)

s0,bij
is given by functional Universal Kriging applied on the residuals observed in ai−1.

Thus, the prediction in each subinterval is given by the sum of the physical model prediction in
that subinterval and of the predicted residual, which is not updated among the subintervals. The
predictions are possibly truncated in the last subinterval biJ , as this can be shorter than ai−1.
Whenever subintervals are introduced, the resulting Phy-RK prediction in ai are discontinuous,
exhibiting jumps at the interfaces between subintervals. Therefore, residuals of order greater than
one would propagate these discontinuities, implying highly irregular predictions. Hence, the case
including higher order residuals is not studied further here.

We now apply this approach to the aforedescribed realistic schedule. We introduce an approx-
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Figure 13: Relative prediction error boxplots for variable scenario produced by Average Phy-ROK
(left panel) and Average Phy-RUK (right panel) with different numbers of residual terms for the
Average Phy-RK approach. The boxplots with red outlines are the ones corresponding to the
selected residuals number

imation to avoid too much discontinuity in the predictions, pretending that groups of wells drilled
at distance of two months are actually drilled at the same moment. This approximation is used
only in the prediction step, where production rates of each triplet of wells groups (dashed blue lines
in Figure 14) are aligned to the corresponding starting point of the interval (previous solid blue
line). Thanks to the alignment, Phy-RK is applied in each of the six intervals, which result to be
equally longer, except for the last one, where the prediction is extended following the aforedescribed
procedure.
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Once the predictions are computed, predicted oil rates are aligned back to the original schedule.
We depict the predictions in Figure 15a and the corresponding prediction errors in Figure 15b.
In this case, Phy-RK exhibits prediction errors similar to OK, with both methods that are much
better than FlowNet predictions.
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Figure 14: Oil production rates for the realistic scenario described in Subsection 5.2. Vertical lines
represent the well schedule: green dashed line delimits the end of the initial ramp up, orange line
delimits the history matching period, and blue lines the infilling phase
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Figure 15: (a) Average Phy-RK predictions and observed oil production rates in the realistic case.
Zoom over the last six intervals. (b) Relative errors boxplots for Average Phy-RK produced by
OK, Phy, Phy-ROK and Phy-RUK, with selected number of residuals in the realistic case.
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6 Conclusions and future perspective

In this work, we present a novel surrogate model to forecast oil production rates in a mature single-
phase hydrocarbon reservoir. Our approach allows one to take advantage from past production data
to build a data-driven predictor, which exploits also a physical modelization of the reservoir. In
particular, the recently developed Physics-based Residual Kriging predictor is considered, including
a physical term model through FlowNet, the latter representing a very cutting edge network-based
reservoir model. Thanks to the integration of these two components, an accurate yet computation-
ally efficient predictor is derived, as it does not require a 3D full-physics reservoir modelization.
Furthermore, we here describe how ensembles of surrogate predictors can be obtained and exploited,
even quantifying the uncertainty associated with the predictions.

We apply the derived surrogate model to a chalk reservoir, analyzing three different scenarios
in terms of the drilling schedule of the wells. Furthermore, we propose an extension of the Phy-RK
predictor that allows one to apply it in presence of arbitrary wells schedule. In all the cases, Phy-
RK outperforms the pure geostatistical and pure physical model counterparts in terms of prediction
error, and it proves to be a promising predictor for oil rates in mature reservoirs.

As future research, the presented approach could be extended to two-phase problems, where
oil and water production rates have to be jointly predicted. In this context, the Phy-RK predictor
can still exploit the FlowNet physical model, as it implements all the functionalities of multi-phase
reservoir simulators. Being the underlying physics more complex, the FlowNet calibration in the
history matching phase would require particular attention to ensure accurate predictions.
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