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This paper proposes an EM algorithm for semiparametric mixed-effects
models dealing with a multinomial response. In multinomial mixed-effects
models, in order to obtain the marginal distribution of the response, random
effects need to be integrated out. In a full parametric context, where random
effects follow a multivariate normal distribution, this is often computation-
ally infeasible. We propose an alternative novel semiparametric approach in
which random effects follow a multivariate discrete distribution with an a
priori unknown number of support points, that is allowed to differ across cat-
egories. The advantage of this modelling is twofold: the discrete distribution
on random effects allows, first, to express the marginal density as a weighted
sum, avoiding numerical problems typical of the integration and, second, to
identify a latent structure at the highest level of the hierarchy, where groups
are clustered into subpopulations. The paper shows a simulation study to eval-
uate the method’s performance and applies the proposed algorithm to a real
case study for predicting higher education student dropout, comparing the
results with the ones of a full parametric method.

1. Introduction. Many studies deal with hierarchical data, i.e. data containing observa-
tions naturally nested within groups. Examples of such data are longitudinal data, repeated
measurements for each subject in a study, or multilevel data (e.g., patients nested within hos-
pitals or students nested within schools). One of the most common approaches for modelling
them are mixed-effects models, that are regression or classification models that include in the
linear predictor both fixed effects associated to the entire population and random effects asso-
ciated to the groups, drawn at random from the population, in which observations are nested
(Goldstein, 2011). This mechanism allows to account for correlation structures among the
nested observations, which are not independent, modelling the within-group correlation.

Typically, mixed-effects linear models assume both the random effects and the errors to
follow a Gaussian distribution and these models are intended for grouped data in which the
response variable is continuous (Pinheiro and Bates, 2006). When the response has a differ-
ent distribution in the exponential family, generalized linear mixed-effects models (GLMMs)
extend generalized linear models to include random effects (Diggle et al., 2002; Agresti,
2018). In GLMMs, the response distribution is defined conditionally on the random effects,
that are usually assumed to be multivariate normal. Under this assumption, the marginal dis-
tribution of the response can be obtained by integrating out the random effects, but it does not
have closed form. In order to approximate the marginal density, various numerical methods
have been proposed in the literature: numerical integration using Gauss-Hermite quadrature
(e.g.Anderson and Aitkin (1985)), Monte Carlo techniques (e.g. McCulloch (1994, 1997);
Booth and Hobert (1999)) or approximation methods such us Laplace approximation and
Taylor series expansions (e.g. Breslow and Clayton (1993); Wolfinger and O’connell (1993)).

Although GLMMs have been developed for a consistent set of response distributions in
the exponential family (among the others, binomial, Poisson, Gamma, Inverse Gaussian),
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there has been less development for a multinomial response. In particular, the majority of
the research in this area focuses on ordinal models with logit and probit link functions for
cumulative probabilities (Anderson et al., 2013; Coull and Agresti, 2000; Dos Santos and
Berridge, 2000), while nominal responses have received less attention, probably due to the
higher level of complexity they require. Indeed, an appropriate link function for nominal re-
sponses is the baseline-category logit, where fixed and random coefficients vary according to
the response category. Considering a multinomial response assuming K different categories,
the baseline-category logit approach implies the presence of K − 1 vectors of fixed effects
coefficients and K − 1 random effects coefficients distributions. Mixed-effects linear mod-
els for a multinomial response are therefore often treated as multivariate models, where the
integration issues typical of GLMMs grow in complexity (De Leeuw et al., 2008). Various
approximations for evaluating the integral over the random effects distribution have been pro-
posed in the literature: the most frequently used methods are based on fist- or second-order
Taylor expansions (Goldstein and Rasbash, 1996), on a combination of a fully multivariate
Taylor expansion and a Laplace approximation (Raudenbush et al., 2000), or using Gauss-
Hermite quadrature (Stroud and Secrest, 1966). Regarding the random effects, they can be
estimated using empirical Bayes methods (Bock and Aitkin, 1981). Nonetheless, these cited
procedures are computationally very complex (McCulloch and Searle, 2001) and many au-
thors have reported biased estimates using them (Breslow and Lin, 1995; Raudenbush et al.,
2000; Rodríguez and Goldman, 1995). Moreover, specific softwares have been developed
to perform these kind of estimates - among the others, HLM (Raudenbush, 2004), MLwiN
(Steele et al., 2005), WinBugs (Spiegelhalter et al., 2003)) - but, they resulted to be not very
flexible and they often require a high level of expertise on behalf of the user. In one of the
most recent works (Hadfield et al., 2010), the authors develop a Markov Chain Monte Carlo
(MCMC) method for multi-response generalized linear mixed models, to provide a robust
strategy for marginalizing the random effects (Zhao et al., 2006). This model is developed
in a Bayesian context - where the distinction between fixed and random effects does not
technically exist - and the user should define the priors on the parameters. If the priors are
not defined (and therefore default priors are used) or are improperly defined, this can lead
to both inferential and numerical problems. The relative MCMCglmm R package (Hadfield
et al., 2010) is, to the best of our knowledge, the only R package (R Core Team, 2019) that
performs parametric mixed-effects multinomial regression.

In this paper, we propose a semiparametric mixed-effects linear model for a multinomial
response, that consists in a novel approach in which random effects coefficients, instead of
being multivariate normal, have a multivariate discrete distribution with an a priori unknown
number of support points. In particular, considering a multinomial response assuming K
different categories and the baseline-category logit approach, each one of the K − 1 logits
is identified by a specific random effects coefficients distribution, with an unknown finite
number of support points, that is allowed to differ across logits. This approach is inspired by
the work proposed in Masci et al. (2019), where the authors propose a semiparametric mixed-
effects model where random coefficients follow a discrete distribution, but for a continuous
response. This work has connections with the literature regarding growth mixture models
and latent class models (see McCulloch et al. (2002); Muthén (2004); Nagin (1999); Heinen
(1996) for discussion).

The advantage introduced by the proposed modelling is twofold: (i) the former is that, by
assuming a discrete distribution at the higher level of the hierarchy, we avoid the integration
issues relative to the continuous distribution; (ii) the latter is that this assumption allows
to identify a latent structure within the higher level of the hierarchy, i.e. the presence of
subpopulations among groups. Moreover, this modelling allows to investigate how the latent
structure at the higher level of the hierarchy does change across categories, with respect to
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the baseline. To estimate the semiparametric model parameters, we propose an Expectation-
Maximization (EM) algorithm that alternates the estimates of fixed effects and random effects
until the convergence is reached. A similar approach for a multinomial response has been
proposed by Hartzel et al. (2001), where the authors generalizes Aitkin (1999) for an ordinal
random effects model, treating the random effects in a non-parametric manner, assuming
them to follow a discrete distribution. Although there are many parallels with this work,
the authors in Hartzel et al. (2001) consider the only case of a random intercept (i.e. not
considering random effects covariates) and they need to specify a priori the number of support
points of the random effects distribution.

After presenting the semiparametric mixed-effects model for a multinomial response and
the EM algorithm - called MSPEM algorithm - to estimate its parameters, we show a simula-
tion study and, lastly, a case study in which we apply the algorithm to Politecnico di Milano
data for modelling university student dropout, comparing its results with the ones obtained
by applying the MCMCglmm algorithm. The paper is organised as follows: in Section 2 we
present the semiparametric mixed-effects model for a multinomial response and the MSPEM
algorithm; in Section 3 we present a simulation study testing the algorithm within differ-
ent settings; in Section 4 we show the case study and the comparison with the parametric
MCMCglmm algorithm; in Section 5 we draw our conclusions and discuss some future per-
spectives.

2. Methodology. Let consider a multinomial logistic regression model for nested data
with a two-level hierarchy (Agresti, 2018; De Leeuw et al., 2008), where each observation
j, for j = 1, . . . , ni, is nested within a group i, for i = 1, . . . , I . Let Yi = (Yi1, . . . , Yini) be
the ni-dimensional response vector for observations within the i−th group. The multinomial
distribution with K categories relative to Yij is the following:

(1) Yij =


1 πij1

2 πij2

. . .

K πijK

,

where k = 1, . . . ,K are the support points of the discrete distribution of Yij and πijk is the
probability that observation j within group i assumes value k. Mixed-effects multinomial
models assume that the probability that Yij = k, i.e. πijk, is given by

πijk = P (Yij = k) =
exp(ηijk)

1 +
∑K

k=2 exp(ηijk)
for k = 2, . . . ,K,

πij1 = P (Yij = 1) =
1

1 +
∑K

k=2 exp(ηijk)
,(2)

where the linear predictor ηijk = x′ijαk + z′ijδik is the linear predictor. xij is the p × 1
covariates vector (includes a 1 for the intercept) of the fixed effects, αk is the p× 1 vector
of regression parameters of the fixed effects, zij is the q× 1 covariates vector of the random
effects (includes a 1 for the intercept) and δik is the q× 1 vector of regression parameters of
the random effects. In this formulation, we model K − 1 contrasts, between each category
k, for k = 2, . . . ,K , and the reference category1, that is k = 1. Consequently, each category

1We consider ‘1’ as the reference category but this choice is arbitrary and it does not affect the model formu-
lation.
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is assumed to be related to a latent “response tendency” for that category with respect to the
reference one and we estimate the parameters (for both fixed and random effects) relative
to the (K − 1) contrasts. Let us observe that, starting from Eq. (2), the log-odds of each
response with respect to the reference category are:

log

(
πijk
πij1

)
= ηijk k = 2, . . . ,K.(3)

Logit models for nominal response basically pair each category with a baseline category. We
therefore observe K−1 contrasts, where each contrast k′, k′ = 1, . . . ,K−1, is characterized
by the set of contrast-specific parameters (αk′ ;δik′ , for i = 1, . . . , I), that models the prob-
ability of Yij being equal to k ≡ k′ + 1 with respect to the probability of Yij being equal to
1 (the reference category)2. For each contrast, the contrast-specific parameters describe the
latent structure at the higher level of the hierarchy.

In order to set the parameters estimation procedure, we need to model the probability of Yij
conditional on the random effects distribution. In particular, considering A = (α2, . . . ,αK)
and ∆i = (δi2, . . . ,δiK), the conditional distribution of Yij takes the following form:

p(Yij |A,∆i) =π
1{Yij=1}

ij1 × π1{Yij=2}

ij2 × . . .× π1{Yij=K}

ijK =

=

K∏
k=1

π
1{Yij=k}

ijk =

=

K∏
k=1

(
exp(ηijk)

1 +
∑K

l=2 exp(ηijl)

)1{Yij=k}

.(4)

Assuming that Yi and Y′i are independent for i 6= i′, the conditional distribution of Yi is:

p(Yi|A,∆i) =

ni∏
j=1

p(Yij |A,∆i) =

ni∏
j=1

K∏
k=1

π
1{Yij=k}

ijk =

=

ni∏
j=1

K∏
k=1

(
exp(ηijk)

1 +
∑K

l=2 exp(ηijl)

)1{Yij=k}

.(5)

In a parametric framework, δik are usually assumed to follow a multivariate normal distri-
bution N (0,Ωk) (De Leeuw et al., 2008). To standardize the multiple random effects, we
can decompose δik as δik = Tkθi, where TkT ′k is the Cholesky decomposition of Ωk and
θi ∼N (0, I) (De Leeuw et al., 2008). Tk is the random effects variance term. Given this for-
mulation, the marginal density of Yi, h(Yi), is expressed as the integral of the conditional
likelihood, p(Yi|θ), weighted by the prior density g(θ):

(6) h(Yi) =

∫
θ
p(Yi|θ)g(θ)dθ,

where g(θ) is the multivariate standard normal density. To obtain the maximum likeli-
hood estimates of the parameters, the marginal log-likelihood from the I level-2 units,

2Note that k′ ≡ k−1 for k = 2, . . . ,K and, therefore the sequence of parameters (αk′ ;δik′ , for i= 1, . . . , I),
for k′ = 1, . . . ,K − 1 is equal to the sequence (αk;δik , for i= 1, . . . , I) for k = 2, . . . ,K .
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logL=
∑I

i=1 logh(Yi), can be maximized, but it implies many computational issues (Skro-
ndal and Rabe-Hesketh, 2004). Indeed, integration over the random effects distribution must
be performed and this is often intractable.

Following the approach presented in Masci et al. (2019), we move to a semiparametric
framework assuming the coefficients of the random effects to follow a discrete distribution
with an a priori unknown number of support points.

2.1. EM algorithm for semiparametric mixed-effects model for a multinomial response.
Considering a semiparametric framework in which the random effects coefficients follow a
discrete distribution with an a priori unknown number of support points, the multinomial
logit takes the form:

ηijk = x′ijαk + z′ijbmkk mk = 1, . . . ,Mk, k = 2, . . . ,K,(7)

where Mk is the total number of support points of the discrete distribution of b relative
to the k−th category, for k = 2, . . . ,K . The random effects distribution relative to each
category k, for k = 2, . . . ,K , can be expressed as a set of points (b1k, . . . ,bMkk), where
Mk ≤ I and bmkk ∈ Rq for mk = 1, . . . ,Mk, and a set of weights (w1k, . . . ,wMkk), where∑Mk

mk=1wmkk = 1 and wmk
≥ 0:

B =



{
b12, b22, . . . , bM22

(w12), (w22), . . . , (wM22)

. . .

. . .{
b1K , b2K , . . . , . . . , bMKK

(w1K), (w2K), . . . , . . . , (wMKK)

.

The discrete distribution Pk, for k = 2, . . . ,K , belongs to the class of all probability mea-
sures on Rq . P ∗k is a discrete measure with Mk support points that can then be interpreted as
the mixing distribution that generates the density of the stochastic model (7). In particular,
wmkk = P (δik = bmkk), for i= 1, . . . , I . The maximum likelihood estimator P̂ ∗k of P ∗k can
be obtained following the theory of mixture likelihoods in Lindsay (1983); Lindsay et al.
(1983),who proved the existence, discreteness and uniqueness of the semiparametric maxi-
mum likelihood estimator of a mixing distribution, in the case of exponential family densities.
In particular, Lindsay (1983); Lindsay et al. (1983) faced statistical problems (existence, dis-
creteness, support size characterization and uniqueness), transforming them in geometrical
problems, concerning support hyperplanes of the convex hull of the likelihood curve.

Given this formulation, we propose an Expectation-Maximization algorithm for the joint
estimations of αk, (b1k, . . . ,bMkk) and (w1k, . . . ,wMkk), for k = 2, . . . ,K , which is per-
formed through the maximization of the likelihood, mixture by the discrete distribution of
the random effects. Under these assumptions, the marginal likelihood can be obtained as a
weighted sum of all the conditional probabilities. In the extreme case of K = 2, i.e. a classi-
cal logistic regression, we would have a unique distribution of b, that is (b1, . . . ,bM ) with
weights (w1,. . . ,wM ) and the marginal likelihood of Y would take the form:

(8) h(Y|α) =

M∑
m=1

wmp(Y|α,bm).
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In the case of a generic K > 2, assuming the K − 1 discrete distributions of random effects
to be independent, the likelihood in Eq. (8) generalizes to the weighted sum of the likelihood
of Y conditioned to all the possible combinations, that are Mtot =

∏K
k=2Mk, of the values

of the (K − 1) discrete distributions of random effects. We can write this likelihood as:

h(Y|A) =

Mtot∑
m=1

wmp(Y|A,Bm),(9)

where wm is the weight relative to the m−th combination of the (K − 1) weights relative to
the (K − 1) contrasts and, analogously, Bm is the m−th combination of the random effects
coefficients relative to the (K − 1) contrasts. Assuming the independence of the random
effects distributions across the (K − 1) contrasts, we can marginalize the weights and write
the likelihood as follows:

h(Y|A) =

=w12 ×w13 × . . .×w1K × p(Y|A,b12,b13, . . . ,b1K)+

=w22 ×w13 × . . .×w1K × p(Y|A,b22,b13, . . . ,b1K)+

= . . .

= . . .

=wM22 ×wM33 × . . .×wMKK × p(Y|A,bM22,bM33, . . . ,bMKK).(10)

The EM algorithm proposed is an iterative algorithm that alternates two steps: the expecta-
tion step in which we compute the conditional expectation of the likelihood function with
respect to the random effects, given the observations and the parameters that are computed in
the previous iteration, and the maximization step in which we maximize the conditional ex-
pectation of the likelihood function. The observations are the values of the response variable
yij and of the covariates xij and zij , for j = 1, . . . , ni and i= 1, . . . , I . The algorithm allows
the number ni, for i= 1, . . . , I , of observations to be different across groups, but, within each
group missing data are not handled. At each iteration, the EM algorithm updates the param-
eters to increase the likelihood in Eq. (10) and it continues until convergence or until a fixed
number of iterations is reached. In particular, the update, for the parameters relative to each
response category k, for k = 2, . . . ,K , is given by:

(11) w
(up)
mkk

=
1

I

I∑
i=1

Wimkk mk = 1, . . . ,Mk,

where

(12) Wimkk =
wmkkp(yi|A,bmkk, b̄l 6=k)∑Mk

γ=1wγkp(yi|A,bγk, b̄l 6=k)
mk = 1, . . . ,Mk,

and

(α
(up)
k ,b

(up)
1k , . . . ,b

(up)
Mkk

) = arg max
αk,bmkk

Mk∑
mk=1

I∑
i=1

Wimkk×

× lnp(yi|αk,α
(old)
l 6=k ,bmkk, b̄

(old)
l 6=k ).(13)
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In Eq. (13), the random effects coefficients b̄
(old)
l , for l 6= k, are the mean of the discrete dis-

tribution relative to the l−th category, b̄
(old)
l =

∑Ml

ml=1w
(old)
mll

b
(old)
mll

, computed in the previous
iteration. In particular:

(14) p(yi|αk,α
(old)
l 6=k ,bmkk, b̄

(old)
l 6=k ) =

ni∏
j=1

K∏
γ=2

(
exp(ηijγ)

1 +
∑K

ν=2 exp(ηijν)

){1yij=γ}
,

where

(15) ηijγ =

{
x′ijαk + z′ijbmk

if γ = k

x′ijα
(old)
γ + z′ij

∑Mγ

mγ=1w
(old)
mγγb

(old)
mγγ if γ 6= k

.

The weight w(up)
mkk

is the mean over the I groups of their weights relative to the mk-th sub-
population, relative to category k. Coefficient Wimkk represents the probability that group
i belongs to subpopulation mk conditionally on observations yi and given the fixed coeffi-
cients A, with respect to category k. The maximization step in Eq. (13) involves two steps
and it is done iteratively. In the first step, for each category k, for k = 2, . . . ,K , we compute
arg max with respect to the support points bmkk, for mk = 1, . . . ,Mk, keepingA and b̄l, for
l 6= k, fixed to the values computed in the previous iteration. In this way, we can maximize
the expected log-likelihood (computed in the expectation step) with respect to all support
points bmkk separately, i.e.

b
(up)
mkk

= arg max
bk

I∑
i=1

Wimkk lnp(yi|A,bk, b̄l 6=k)

mk = 1, . . . ,Mk, k = 2, . . . ,K.(16)

In the second step, we fix the support points of the random effects distributions computed in
the previous step and we compute the arg max in Eq. (13) with respect to αk.

Since wmkk = P (δik = bmkk), then

Wimkk =
wmkkp(yi|A,bmkk, b̄l 6=k)∑Mk

γ=1wγkp(yi|A,bγk, b̄l 6=k)
=

=
p(δik = bmkk)p(yi|A,bmkk, b̄l 6=k)

p(yi|A)
=

=
p(yi,δik = bmkk|A, b̄l 6=k)

p(yi|A, b̄l 6=k)
=

=p(δik = bmkk|yi,A, b̄l 6=k).(17)

Therefore, to compute the point bmkk for each group i, for i = 1, . . . , I , we maximize the
conditional probability of δik given the observations yi, the coefficient A and the random
effects relative to the other categories l, l 6= k. The estimates of the coefficients δik of the
random effects for each group and each category is obtained by maximizing Wimkk over mk,
i.e.
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δ̂ik =bm̃kk where m̃k = arg max
mk

Wimkk

i= 1, . . . ,N, k = 2, . . . ,K.(18)

Appendix A reports the increasing likelihood property proof of this parameters update pro-
cedure.

During the iterations of the EM algorithm, the reduction of the support points of the ran-
dom effects discrete distributions is performed. Appendix B reports some insights about the
discrete distribution support points initialization, the support points collapse criteria and the
convergence criteria.

Some final issues that deserve attention regard inference and stability of the parameter es-
timates and model identifiability. Theoretically, the asymptotic inferential theory for the fixed
effects estimation would parallel the standard Maximum Likelihood theory, but this theory
is partly lacking because of the unknown mixture support size. Despite this, Hartzel (2000)
examined the Wald and likelihood-ratio tests for mixed-effects models for a multinomial re-
sponse concluding that they provide appropriate inference for the semiparametric Maximum
Likelihood approach. Moreover, regarding the stability of fixed effects parameters, studies
on the comparison between parametric and nonparametric approach confirm that for a semi-
parametric approach, the estimated bias for A is similar to the parametric approach one.
In particular, they suggest that parametric and semiparaemtric approach produce essentially
unbiased estimates of A, with similar behaviour under various random effects distributions
and subpopulations sizes (Hartzel et al., 2001). Regarding identifiability issues, a mixture
is identifiable if it is uniquely characterized , i.e. if two distinct sets of parameters defining
the mixture can not yield to the same distribution. Again, Hartzel (2000) provided sufficient
conditions for the identifiability of overdispersed multinomial regression models but we are
aware that further studies are needed for the more general case considered here.

3. Simulation study. In this section, we propose a simulation study to test the MSPEM
algorithm performance under different settings. Let consider a categorical response variable
that assumes 3 possible values in K = {1,2,3}, where k = 1 is the reference category. We
simulate three different settings: (i) one considering only a random intercept; (ii) one con-
sidering only a random slope; (iii) and one considering both random intercept and random
slope. We consider I = 100 groups of data, where each group contains 200 observations3 and
we induce the presence of three subpopulations regarding category k = 2, i.e. M2 = 3, and
two subpopulations regarding category k = 3, i.e. M3 = 2. In particular, for j = 1, . . . ,200
and i= 1, . . . ,100, we consider the model

πijk = P (Yij = k) =
exp(ηijk)

1 +
∑3

l=2 exp(ηijl)
for k = 2,3;

πij1 = P (Yij = 1) =
1

1 +
∑3

l=2 exp(ηijl)
,(19)

where the linear predictor ηik = (ηi1k, . . . , ηi200k) is generated in the following ways4:

3The number of observations is allowed to be different across groups. Here, to facilitate the reader and without
loss of generality, we consider it unvaried across groups.

4Without loss of generality, we consider two covariates, simulating the case in which they are both fixed or
one random and one fixed. The choice of coefficients values is arbitrary: in this case, they are chosen in order to
simulate different situations in which we obtain both balanced and unbalanced categories.
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(i) Random intercept case (ηik = α1kx1i + α2kx2i + δik)

ηi2 =


+4x1i − 3x2i − 7 i= 1, . . . ,30

+4x1i − 3x2i − 4 i= 31, . . . ,60

+4x1i − 3x2i − 2 i= 61, . . . ,100

ηi3 =

{
−2x1i + 2x2i − 5 i= 1, . . . ,60

−2x1i + 2x2i − 2 i= 61, . . . ,100
(20)

(ii) Random slope case (ηik = α1k + α2kx1i + δikz1i)

ηi2 =


−1− 3x1i + 5z1i i= 1, . . . ,30

−1− 3x1i + 2z1i i= 31, . . . ,60

−1− 3x1i − 1z1i i= 61, . . . ,100

ηi3 =

{
−2 + 2x1i − 2z1i i= 1, . . . ,60

−2 + 2x1i − 6z1i i= 61, . . . ,100
(21)

(iii) Random intercept and slope case (ηik = αkx1i + δ1ik + δ2ikz1i)

ηi2 =


−5x1i − 6 + 5z1i i= 1, . . . ,30

−5x1i − 4 + 2z1i i= 31, . . . ,60

−5x1i − 8− 1z1i i= 61, . . . ,100

ηi3 =

{
+2x1i + 1− 4z1i i= 1, . . . ,60

+2x1i − 1 + 2z1i i= 61, . . . ,100
(22)

Variables x1, x2 and z1 are normally distributed with mean equal to 0 and standard deviation
equal to 1.

We perform 100 runs of the MSPEM algorithm for each of the three settings shown in (20),
(21) and (22). We fix Dk = 1 as threshold value for the support points collapse criterium ,
for k = {2,3}, tollR = tollF = 0.01, itmax = 50 and it1 = 30 (see Appendix B). In
all the runs, the algorithm converges in a number of iterations that ranges between 5 and 10.
Table 1 reports the number of runs out of 100 in which the algorithm identifies the simulated
number of subpopulations (i.e. M2 = 3 and M3 = 2) and correctly assigns groups to the
identified subpopulations, for all the three settings.

TABLE 1
MSPEM algorithm performance across the 100 runs for each of the three cases. First column reports the number

of runs out of 100 in which the algorithm identifies the correct number of subpopulations that are simulated in
the data generating process (DGP) in Eq.s (20), (21) and (22); Second column reports the number of runs out of
the number of runs in which the algorithm identifies M2 = 3 and M3 = 2 (reported in the first column) in which

the algorithm correctly assigns each group to the correspondent subopulation.

# runs in which MSPEM # runs in which MSPEM correctly
identifies M2 = 3 and M3 = 2 classifies all groups into subpopulations

(i)Random intercept
94 out of 100 91 out of 94

case
(ii) Random slope

91 out of 100 85 out of 91
case

(iii) Random intercept
84 out of 100 60 out of 84

and slope case
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The algorithm correctly identifies the simulated number of subpopulations and classifies
groups into these subpopulations in more than 85% of the runs, for all the three cases. In
the remaining runs, the algorithm usually identifies a higher number of subpopulations (i.e.
M2 equal to 4 instead of 3 and M3 equal to 3 instead of 2), being it more sensitive to the vari-
ability among the data or misclassifies a very small percentage of groups into the identified
subpopulations (usually no more than 3 groups out of 100).

Table 2 reports the results of the estimated coefficients in the three different settings. De-
scriptive statistics about estimated fixed effects coefficients are computed on the total number
of runs, while random effects ones are computed only on the runs where the estimated number
of subpopulations corresponds to the simulated one (that is the majority of the cases). Indeed,
when the algorithm identifies a higher number of subpopulations with respect to the simu-
lated ones, it simply splits a subpopulation into two or more subpopulations, but the fixed
effects coefficients estimates do not result to be affected by the number of subpopulations
identified in the data. The estimated coefficients are very close to the original ones and their
variability is low. The identification of supopulations and their relative numerosity depends
on the tuning parameter Dk, that, given the order of magnitude of the simulated coefficients,
we fix equal to the unit (Dk = 1, for k = {2,3}). Increasing the value of Dk, the mass points
of the random effects coefficients distribution that have higher distances will collapse to a
unique point and the MSPEM algorithm will be less sensitive to the variability among the
I groups, identifying a smaller number of subpopulations. On the opposite, decreasing the
value of Dk, mass points that have smaller distances (not smaller than Dk) will not collaspe
to a unique point and the algorithm will identify a higher number of subpopulations. More
details about the impact of the choice of Dk and some insights about how to identify its best
choice can be found in Masci et al. (2019).
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TABLE 2
Fixed and random effects coefficients estimated by MSPEM algorithm in the three different settings. Estimates

are reported in terms of mean ± sd, computed on the 100 runs of the simulation study for the fixed effects
coefficients and on the runs in which the algorithm identifies M2 = 3 and M3 = 2 (reported in Table 1) for the

random effects ones.

α̂1k α̂2k b̂mkk ŵmkk

k=2 α̂12 = 4.066± 0.080 α̂22 =−3.061± 0.060
b̂12 =−7.119± 0.152 ŵ12 = 0.300

b̂22 =−4.096± 0.091 ŵ22 = 0.300

b̂32 =−2.079± 0.068 ŵ32 = 0.400

k=3
α̂13 =−2.073± 0.041 α̂23 = 2.062± 0.044

b̂13 =−5.123± 0.094 ŵ13 = 0.599

b̂23 =−2.092± 0.038 ŵ23 = 0.401

Fixed- and random effects coefficients estimated by MSPEM algorithm for the DGP in Eq. (20).

α̂1k α̂2k b̂mkk ŵmkk

k=2 α̂12 =−1.196± 0.036 α̂22 =−2.775± 0.085
b̂12 = 4.793± 0.141 ŵ12 = 0.300

b̂22 = 1.802± 0.069 ŵ22 = 0.301

b̂32 =−0.103± 0.134 ŵ32 = 0.399

k=3
α̂13 =−1.673± 0.039 α̂23 = 1.659± 0.049

b̂13 =−1.599± 0.056 ŵ13 = 0.600

b̂23 =−4.788± 0.209 ŵ23 = 0.400

Fixed- and random effects coefficients estimated by MSPEM algorithm for the DGP in Eq. (21).

α̂k b̂1mkk b̂2mkk ŵmkk

k=2 α̂2 =−5.008± 0.175
b̂112 =−5.962± 0.235 b̂212 = 5.078± 0.209 ŵ12 = 0.300

b̂122 =−4.729± 0.128 b̂222 = 2.727± 0.121 ŵ22 = 0.300

b̂132 =−8.023± 0.237 b̂232 − 1.183 =±0.087 ŵ32 = 0.400

k=3
α̂3 = 1.996± 0.039

b̂113 = 0.736± 0.058 b̂213 =−3.642± 0.092 ŵ13 = 0.600

b̂123 =−0.887± 0.054 b̂223 = 2.439± 0.165 ŵ23 = 0.400

Fixed- and random effects coefficients estimated by MSPEM algorithm for the DGP in Eq. (22).

In order to visualize the results, Figure 1 reports the baseline-category logits, computed
for each combination of subpopulations across the categories, for the three simulated cases,
extracted from one of the 100 runs (randomly chosen). Given the data generating process in
Eq. (20), (21) and (22), the joint distribution of the two random effects coefficients distribu-
tions has, in all the three settings, three non-zero weight support points, that we express as
[b̂m22; b̂m33]. In particular, these three support points with their relative weights are [b̂12; b̂13]

with weight 0.3, [b̂22; b̂13] with weight 0.3 and [b̂32; b̂23] with weight 0.4. Indeed, there are
no groups that, for example, belong to subpopulation 1 regarding k = 2 and subpopulation
2 regarding k = 3. We report the 2−D visualization of the logits, in which on the abscissa
we report the covariate x1 for the random intercept case and z1 for random slope and ran-
dom intercept and slope cases, respectively; we then adjust the baseline-category logits for
the average effect of the second covariate5. We observe that, while from panel (a) to panel
(h) of Figure 1 all categories have positive probabilities across all subpopulations, panel (i)
represents a case in which the probability that an observation yij of a group belonging to

5This choice is due to the fact that we are interested in visualizing the trends of the logits for the different
values of the random effects coefficients, i.e. the intercept and the slope relative to z1.
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this subpopulation is equal to k = 2, i.e. πij2, is constantly almost null, for any value of the
covariates.
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Fig 1: Baseline-category logits estimated by MSPEM algorithm for the three DGPs in Eq.
(20), (21) and (22), first, second and third row respectively. Each row reports the three com-
binations with non-zero weight of the two random effects distributions, i.e. the one relative
to category k=2 and the one relative to category k=3. For the three cases respectively, pan-
els (a),(d) and (g) report the logits estimated for subpopulation 1 relative to category k = 2
and subpopulation 1 relative to category k = 3; panels (b), (e) and (h) report the logits for
subpopulation 2 relative to category k = 2 and subpopulation 1 relative to category k = 3 ;
and panel (c), (f) and (i) report the logits for subpopulation 3 relative to category k = 2 and
subpopulation 2 relative to category k = 3 .

(a) Subpop. [b12; b13] of DGP in (20). (b) Subpop. [b22; b13] of DGP in (20). (c) Subpop. [b32; b23] of DGP in (20).

(d) Subpop. [b12; b13] of DGP in (21). (e) Subpop. [b22; b13] of DGP in (21). (f) Subpop. [b32; b23] of DGP in (21).

(g) Subpop. [b12;b13] of DGP in (22). (h) Subpop. [b22;b13] of DGP in (22). (i) Subpop. [b32;b23] of DGP in (22).
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Lastly, we can evaluate the uncertainty of classification (with which the algorithm clas-
sifies groups into subpopulations) by measuring the entropy of the rows of the matrices
Wk, for k = {2,3}. In the best case, i.e. when the algorithm assigns each group i to a
subpopulation mk, relative to category k, with probability 1, each row of the matrix Wk

would be composed of Mk − 1 values equal to 0 and a value equal to 1. In this scenario,
the entropy Ei = −

∑Mk

mk=1Wimkk ln(Wimkk) of each row i of the matrix Wk would be
equal to 0. The more the distribution of the weights is uniform on the Mk mass points,
the higher is the entropy and, therefore, the higher is the uncertainty of classification. The
worst case happens when the distribution of the weights of a group i is uniform on the
Mk subpopulations (Wimk

= 1/Mk for mk = 1, . . . ,Mk), which corresponds to an entropy
Ei = −

∑Mk

mk=1 1/Mk ln(1/Mk) = − ln(1/Mk). Furthermore, the entropy of the matrices
Wk constitutes also a driver for the choice of the tuning parameter Dk, suggesting a lower
bound for Dk that minimizes the entropy6. Figure 2 reports the distribution of the entropy of
Wi2 and Wi3, for i= 1, . . . , I , for the three simulated cases, mediated on the runs in which
the algorithm identifies M2 = 3 and M3 = 2.

Fig 2: Boxplots of the entropy of Wk, for k = {2,3}, measured for each group, obtained by
mediating the entropy in the runs in which the algorithm identifies M2 = 3 and M3 = 2, for
the random intercept case (a), random slope case (b) and random intercept and slope case (c).

(a) Entropy of matrix W for the random
intercept case

(b) Entropy of matrix W for the random
slope case

(c) Entropy of matrix W for the random
intercept and slope case

We observe that the entropy level is always very low (considering that maximum uncertainty
corresponds to the maximum entropy of − ln(1/3) = 1.098 for k = 2 and − ln(1/2) = 0.693
for k = 3.), suggesting that, for the simulated data, the MSPEM algorithm classifies groups
into subpopulations with a low level of uncertainty (i.e. it clearly distinguishes the presence
of patterns within the data). In particular, by comparing the three panels of Figure 2, we note
that when the complexity of the random component increases (and this happens accordingly
to the order (a) - only random intercept, (b) - only random slope, and (c) - random intercept

6Note that this entropy-based method only drives the choice of the minimum value ofDk , but not the maximum
one. Indeed, by increasing Dk , the mass points of random effects will easily collapse to a low number of final
mass points and the algorithm will assign each group to a subpopulation with a very low level on uncertainty
(having it no choice), but this is clearly not an indicator of goodness of the model. On the opposite, if for smaller
values of Dk the algorithm is still able to assign groups to the subpopulations with a low level of uncertainty, this
means that the groups are well distinguished even at this deepness.
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and slope), the entropy also increases. Further analysis show that the entropy computed on
the runs in which the algorithm identifies more than M2 = 3 and M3 = 2 subpopulations, as
well as the entropy obtained with smaller tuning paramaters Dk, for k = {2,3}, are higher,
suggesting that the algorithm does not clearly distinguish the belonging of groups to the
subpopulations, which result to be too close with respect to the variability within the data. In
this sense, the entropy of W provides a good indicator both for the choice of the algorithm
parameters and for the evaluation of the final model.

4. Case study: University student dropout across engineering degree programmes.
In the last decades, the analysis of university students dropout is receiving particular atten-
tion in the educational context (Aina, 2013; Aljohani, 2016; Belloc et al., 2011). The dropout
phenomenon regards those students who conclude their university career without obtaining
the degree. Universities are interested in identifying students at risk of dropout, and the deter-
minants of their dropout, in the perspective of understanding the phenomenon and defining
new tutoring activities to help them (Aljohani, 2016). Within this context, we present a case
study in which we apply the MSPEM algorithm to data about Politecnico di Milano (PoliMi)
students, in order to model different categories of students and to identify similar subpopu-
lations of degree courses. This work is within the Student Profile for Enhancing Engineering
Tutoring (SPEET) ERASMUS+ project that aims to determine and categorize the different
profiles for engineering students across Europe, in order to improve tutoring actions so that
they help students to achieve better results and to complete the degree successfully (Barbu
et al., 2019). Politecnico di Milano is the largest technical university in Italy and it offers
higher education courses in engineering, architecture and design. In our case study, we fo-
cus on all concluded careers of students enrolled in an engineering program of PoliMi in the
academic year between 2010/2011 and 2015/2016. PoliMi offers 23 different engineering
programmes and students are structurally nested within those programmes. The aim of this
study is to apply the MSPEM algorithm to these data in order to model the dropout proba-
bility of students by means of student characteristics and considering their nested structure
within degree programmes. In particular, we are interested in analysing whether there are
degree programmes in which students are more/less likely to dropout, after adjusting for
student characteristics. The MSPEM algorithm permits to identify subpopulations of degree
programmes, depending on their effect on students dropout probability.

We exclude form the study four degree programmes having few students enrolled - less
than 200. The dataset considers 18,604 concluded careers of students nested within 19 engi-
neering degree programmes (the smallest and the largest degree programmes contain 341 and
1,246 students, respectively). 32.7% of these careers is concluded with a dropout, while the
remaining 67.3% regards graduated students. We distinguish among two types of dropout:

• early dropout - occurs when the student drops within the 3rd semester after enrolment;
• late dropout - occurs when the student drops after the 3rd semester after enrolment.

We make this distinction because we believe the determinants that drive these two types of
dropout might be structurally different. The sample contains 16.2% of early dropout students,
16.5% of late dropout students and 67.3% of graduated ones. Regarding student characteris-
tics, besides the type of concluded career and the degree program the student is enrolled in,
we consider the number of European Credit Transfer System credits (ECTS), i.e. the credits
he/she obtained at the first semester of the first year of career (the variable has been standard-
ized in order to have 0 mean and 1 sd) and his/her gender (sample contains 22.3% females
and 77.7% males). We consider the information at the first semester of career because it is
observable for all students (either dropout or graduated) and guided by the aim of predicting
student dropout as soon as possible, i.e. at the beginning of the student career. Previous stud-
ies on these data reveal that the number of credits obtained at the first semester of career is
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the most significant covariate for predicting student dropout (Cannistrà et al., 2020; Pellagatti
et al., 2020; Fontana et al., 2018). Table 3 reports the variables considered in the analysis with
their explanation.

TABLE 3
List and explanation of variables at student level included in the MSPEM model

Variable Description Type of variable

Status Type of concluded career 3-levels factor (G = graduated; D1 =
early dropout; D2 = late dropout)

Gender gender of the student binary (Male=0, Female=1)

TotalCredits1.1 number of ECTS obtained by the student
during the first semester of the first year

continuous

DegProg Degree program the student is enrolled
in

19-levels factor

For each student j, for j = 1, . . . , ni, nested within degree program i, for i= 1, . . . , I (with
I = 19), the mixed-effects multinomial logit model takes the following form:

(23) Yij =


Graduated πij1

Early dropout πij2

Late dropout πij3

,

where

(24) πijk = P (Yij = k) =
exp(ηijk)

1 +
∑3

k=2 exp(ηijk)
for k = 1, . . . ,3

and

(25) ηijk =

{
x′ijαk + δik k = 2,3

0 k = 1
.

Yij corresponds to the student Status (Graduate is the reference category); xij is the
2−dimensional vector of fixed effects covariates, that contains student Gender and
TotalCredits1.1; αk is the 2-dimensional vector of fixed effects coefficients relative
to the k−th category; and δik is the random intercept relative to the i−th degree program
(DegProg) and to the k−th category.

We run the MSPEM algorithm with tollR=tollF=10−2, itmax=60, it1=20, w̃ = 0
(because we do not want to fix a minimum number of degree programmes within each sub-
population) and Dk = 0.3, for k = 2,3. The algorithm converges in 7 iterations and identifies
4 supopulations for both categories k = 2 (early dropout) and k = 3 (late dropout). Table 4
reports the estimated model parameters.
By looking at Table 4, we see that females have, on average, lower probability of both early
and, especially, late dropout than males (−0.153 and −0.685, respectively). The number
of credits obtained at the first semester is inversely proportional to the probability of both
early and late dropout: the higher is the value of TotalCredits1.1, the lower is the
estimated probability of late and especially early dropout (−1.899 and−2.704, respectively).
Regarding the random intercepts, Table 4 reports the random intercepts associated to the four
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TABLE 4
Fixed and random effects coefficients estimated by MSPEM algorithm for student dropout prediction.

α̂1k α̂2k b̂mkk ŵmkk

(Gender) (TotalCredits1.1) (random intercept DegProg) (weight)

k=2 α̂12 =−0.153 α̂22 =−2.704

b̂12 =−2.841 ŵ12 = 0.482

b̂22 =−2.423 ŵ22 = 0.272

b̂32 =−2.096 ŵ32 = 0.193

b̂42 =−1.586 ŵ42 = 0.053

k=3 α̂13 =−0.685 α̂23 =−1.899

b̂13 =−2.152 ŵ13 = 0.210

b̂23 =−1.733 ŵ23 = 0.421

b̂33 =−1.219 ŵ33 = 0.262

b̂43 =−0.880 ŵ43 = 0.107

subpopulations, for each k, with their weights, ordered increasingly. The distributions of the
19 degree programmes across the identified subpopulations relative to k = 2,3 are reported in
Table 5. For each k, subpopulation 1 contains the degree programmes associated to the lowest
random intercept, i.e. degree programmes in which students are less likely to dropout, with
respect to the average. On the opposite, subpopulation 4 contains the degree programmes
associated to the highest random intercept, i.e. degree programmes in which students are
more likely to dropout, with respect to the average.

TABLE 5
Distribution of the 19 degree programmes across the 4 identified subpopultions relative to k = 2,3. For each k,

the order of the 4 subpopulations is coherent to the one of the estimated random intercepts in Table 4.

Early dropout (k=2)

Subpopulation 1 Subpopulation 2 Subpopulation 3 Subpopulation 4

Aerospace Eng Civil Eng Chemical Eng Biomedical Eng
Civil and Environmental Eng Building Eng Materials and Nanot. Eng

Automation Eng Telecom. Eng Physics Eng
Industrial Production Eng Energy Eng Mathematical Eng

Electrical Eng Management Eng
Electronic Eng Eng of Computing Systems

Mechanical Eng
Environ. and Land Planning Eng

Late dropout (k=3)

Subpopulation 1 Subpopulation 2 Subpopulation 3 Subpopulation 4

Biomedical Eng Aerospace Eng Civil Eng Electronic Eng
Management Eng Chemical Eng Building Eng Eng of Computing Systems
Mathematical Eng Civil and Environmental Eng Automation Eng

Environ. and Land Planning Eng Materials and Nanot. Eng Telecom. Eng
Industrial Production Eng Electrical Eng

Energy Eng
Physics Eng

Mechanical Eng

Regarding early dropout (i.e. k = 2), from Table 5 we see that the most numerous subpop-
ulation (subpopulation 1, containing 8 degree programmes out of 19 - ŵ12 = 0.482) is the
one associated to the lowest early dropout probability, while the other three subpopulations
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contain degree programmes in which students are more likely to dropout, net to their personal
characteristics. In particular, biomedical engineering is identified as an outlier, associated to
the highest early dropout probability7. For late dropout (i.e. k = 3), the most numerous sub-
population is subpopulation 2 (containing 8 degree programmes out of 19 - ŵ23 = 0.421)
and, with respect to it, there is a subpopulation of degree programmes associated to a lower
late dropout probability and two subpopulations associated to higher late dropout probability.
In particular electronic engineering anf engineering of computing system (subpopulation 4)
are the ones in which students are more likely to late dropout.

In order to evaluate the uncertainty of classification of the MSPEM algorithm in this case
study, panel (a) in Figure 3 reports the entropy distribution of the weight matrices Wk, for
k = 2,3. With respect to the maximum entropy of 1.38 relative to the presence of 4 subpop-
ulations, the entropies of W1 and, especially, W2 are low (in particular, entropy median and
mean are 0.043 and 0.151 for k = 2 and 0.021 and 0.048 for k = 3, respectively), suggesting
that most of degree programmes are associated to a subpopulation with a very low level of
uncertainty. This result also drove our choice of D = 0.3, since it is a threshold that allows
to distinguish the highest number of subpopulations with a low level of uncertainty8. Lastly,
panel (b) in Figure 3 gives us a graphical representation of the correlation among the sub-
populations distributions relative to k = 2,3. For each couple of mass points (mφ1,mψ2), for
φ,ψ = 1, . . . ,4, bubble size is proportional to the number of degree programmes that belong
to this couple. It does not emerge a clear correlation between the two distributions (consid-
ering that most of the observations are in the first two subpopulations for both k = 2,3), but
we notice that there are no degree programmes associated to both high early and late dropout
probability (i.e. there are no subpopulations belonging to couples (m32,m33), (m42,m33),
(m32,m43) and (m42,m43)), suggesting that degree programmes in which students are more
likely to early dropout are also less likely to late dropout and vice-versa.

7This result in very reasonable since in Italy many students who can not access the medicine faculty, given
to the selective entrance exam, attend different faculties, e.g. biomedical engineering, waiting to be admitted to
medicine.

8Note that for small variations of D around 0.3, e.g. ±0.05, results do not change.



EM ALGORITHM FOR SEMIPARAMETRIC MULTINOMIAL MIXED-EFFECTS MODELS 19

Fig 3: Panel (a) reports the boxplots of the entropy of Wk, for k = {2,3}, measured for each
degree course. Panel (b) reports the distribution of degree programmes across the subpopula-
tions relative to k = {2,3} (each degree course belongs to a subpopulation relative to k = 2
and to an other one relative to k = 3). Bubble size is proportionla to the number of degree
programmes belonging to the couple (mφ1,mψ2), for φ,ψ = 1, . . . ,4.

(a) Entropy of the matrices Wk , for k = {2,3}. (b) Degree programmes distribution across subpopula-
tions.

4.1. Comparison with MCMCglmm method. As we said in the Introduction, Hadfield
et al. (2010) propose an MCMC method for multi-response generalized linear mixed-models,
that provides a robust strategy for marginalizing the random effects. Here, we apply the rel-
ative MCMCglmm R function to the PoliMi case study, in order to compare the results with
the ones obtained with the MSPEM algorithm. We run the MCMCglmm function with the
same set of variables and assumptions selected for the MSPEM algorithm, without specify-
ing any prior, with 30,000 MCMC iterations and a burnin of 2,000. Fixed effects estimates
are reported in Table 6, while random intercepts with their confidence intervals are shown in
Figure 4. Obviously, since the two methods assume the random effects coefficients to follow
different distributions, they lead to different types of results: the MSPEM algorithm iden-
tifies a latent structure at the degree programmes level, grouping degree programmes into
subpopulations; the MCMCglmm method estimates a single intercept for each degree pro-
gram, obtaining a ranking of degree courses. Therefore, we are interested in seeing whether
the subpopulations identified by the MSPEM algorithm are coherent with the ranking of the
MCMCglmm intercepts. By looking at Table 6, we observe that the estimated coefficients
relative to Gender and TotalCredits1.1, for both k = 2,3, are coherent with the ones
obtained by the MSPEM algorithm, shown in Table 4. This result is in line with the stabil-
ity theory about fixed effects coefficients, that result not to be affected by random effects
distributions. Regarding the estimated random intercepts, results are satisfyingly consistent.
For early dropout, Biomedical Engineering, that composes the “outlier” Subpopulation 4, is
also the first in the intercepts ranking in panel (a) of Figure 4, resulting to be the degree
course associated to the highest early dropout probability by both the methods. Equivalently,
Subpopulation 1, associated to the lowest early dropout probability, contains degree courses
that are at the bottom of the ranking in panel (a) of Figure 4, except for Electronic and Elec-
trical Engineering. For late dropout, the consistency of results between the two methods is
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even sharper: the 4 subpopulations identified by the MSPEM algorithm groups the 19 de-
gree courses according to the ranking shown in panel (b) of Figure 4, identifying the first
two degree courses, i.e. Engineering of Computing Systems and Electronic Engineering, as
components of the subpopulation associated to the highest late dropout probability.

As a final consideration, the identification of subpopulations might be interpreted as a ro-
bustness check tool for the groups ranking that we obtain when assuming normal distributed
random effects: in the full parametric context, we have no evidence to document differences
and, consequently, to create a statistically significant ranking, between groups whose asso-
ciated confidence intervals are overlapped. Equivalently, we have no evidence to identify
significant differences between those groups whose confidence intervals contain zero and
the average. To this perspective, groups that have confidence intervals clearly far from zero
or from the ones of other groups are expected to belong to “outlier” subpopulations, while
groups that have confidence intervals overlapped to many other ones are expected to be mis-
classified within subpopulations.

TABLE 6
Fixed effects estimates of the MCMCglmm method.

Variable name post.mean l− 95% CI u− 95% CI pMCMC

k=2
Intercept −2.552 −2.854 −2.269 < 0.001 ∗ ∗
Gender −0.027 −0.106 0.153 0.769
TotalCredits1.1 −2.797 −2.884 −2.702 < 0.001 ∗ ∗

k=3
Intercept −2.354 −2.672 −2.049 < 0.001 ∗ ∗
Gender −0.634 −0.464 −0.802 < 0.001 ∗ ∗
TotalCredits1.1 −2.135 −2.198 −2.067 < 0.001 ∗ ∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Fig 4: Panels (a) and (b) report the MCMCglmm estimated intercepts with their confidence in-
tervals relative to the 19 degree programmes for k=2 (Early dropout) and k=3 (Late dropout),
respectively.

(a) Degree programmes intercepts for Early Dropout (b) Degree programmes intercepts for Late Dropout

5. Concluding remarks and future perspectives. This paper proposes a semiparamet-
ric multinomial mixed-effects linear model, together with an Expectation-Maximization al-
gorithm to estimate its parameters. We assume the random effects of the mixed-effects model
to follow a discrete distribution with an unknown number of support points. Considering
a multinomial response variable assuming K categories, the model is identified by K − 1
p−dimensional vectors of fixed effects coefficients (where p is the number of fixed effects
covariates) and K − 1 q−variate random effects distributions (where q is the number of
random effects covariates) with Mk′ support points, for k′ = 1, . . . ,K − 1. This modelling
allows the identification of a latent structure at the higher level of the hierarchy in which
groups collapse into a finite and a priori unknown number of subpopulations. In particular,
we identify a subpopulations distribution related to each of the K − 1 baseline-category log-
its. Moreover, in a multinomial response context in which classical gaussian random effects
are analytically and numerically difficult to be integrated out, our proposed discrete random
effects allow to express the marginal distribution of the response as a weighted sum, avoiding
difficult integration problems.

We show a simulation study in which we test the algorithm for different random effects
configurations, proposing a way to evaluate the method performance.

Lastly, we apply the proposed algorithm to a real case study in which we model different
profiles of engineering university students, considering their nested structure within degree
programmes. The algorithm identifies subpopulations of degree programmes in which stu-
dents are more/less likely to early or late drop their studies. We then compare our results with
the ones obtained by applying a full parametric method, the MCMCglmm, to the same case
study, underlining similarities and differences and exploiting the different types of results
provided by parametric and semiparametric methods.
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This work enters in the literature about mixed-effects models with discrete random ef-
fects (Aitkin, 1999; Hartzel, 2000; Masci et al., 2019), proposing a novel method that deals
with multinomial responses. Several issues are still unresolved and further developments are
needed regarding the random effects structure assumptions. At the current state of the art,
random effects are assumed to be independent across categories k, for k = 2, . . . ,K . Since
the random effects from different logits arise from the same subjects, this assumption may
be unrealistic. Our first future perspective is therefore to extend the proposed method to deal
with more complex dependence structures of the random effects across categories.

APPENDIX A: PROOF OF THE INCREASING LIKELIHOOD PROPERTY OF THE
MSPEM ALGORITHM

In appendix A of Azzimonti et al. (2013), the authors prove the increasing likelihood prop-
erty of the EM algorithm which we are inspired by. In their paper, they propose a nonparamet-
ric mixed-effects model for unsupervised classification for a continuous response that might
be non-linear, but with density function in the exponential family. Their response variable,
considering our notation, is modelled as:

yi = f(α,δi) + εi i= 1, . . . , I

εi ∼N (0, σ21n) i.i.d.

and they also assume that the random effects coefficients follow a discrete distribution with
M mass points (b1, . . . ,bM ) with associated weights (w1, . . . ,wM ). They prove that the pa-
rameters estimates obtained by maximizing their likelihood, thanks to its convexity property,
can be computed in two separate steps: one for computing the weights of the discrete dis-
tribution of the random effects and one for computing fixed effects coefficients and random
effects support points iteratively. In particular, they prove that the updated parameters are
obtained such that:

L(α(up), σ2(up)|y)≥ L(α, σ2|y),

where α(up) and σ2(up) are the updated fixed effects coefficients and error variance and the
likelihood L(α(up), σ

(up)
2 |y) is computed summing up the random effects with respect to the

updated discrete distribution (b
(up)
m ,w

(up)
m ) for m= 1, . . . ,M . Following the steps presented

in appendix A of Azzimonti et al. (2013), we observe that, thanks to the definition of the
likelihood function in Eq. (9), we have that:

log

(
L(A(up)|y)

L(A|y)

)
=

I∑
i=1

log

(
p(yi|A(up))

p(yi|A)

)
.

All these terms can be bounded above by the quantity:

(26) log

(
p(yi|A(up))

p(yi|A)

)
≥Qi(θ(up), θ)−Qi(θ, θ),

where

Qi(θ
(up), θ) =

M∑
m=1

(
wmp(yi|A,Bm)

p(yi|A)

)
log(w(up)

m p(yi|A,Bm).
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Qi(θ, θ) is analogously defined and θ = (A,B1, . . . ,BM ,w1, . . . ,wM ). This bound can be
found thanks to the convexity of the logarithm (proof in Azzimonti et al. (2013)). Defining

Q(θ(up), θ) =

I∑
i=1

Qi(θ
(up), θ) and Q(θ, θ) =

I∑
i=1

Qi(θ, θ),

we obtain, thanks to Eq. (26), an upper bound for the quantity of interest

log

(
L(A(up)|y)

L(A|y)

)
≥Q(θ(up), θ)−Q(θ, θ).

In order to show now that ∀θ,Q(θ(up), θ) ≥ Q(θ, θ), we can show that, ∀θ fixed, θ(up) is
defined as the arg maxθ̃Q(θ̃, θ).
DefiningWim as the probability that the i−th group belongs to them−th combination among
the Mtot possible combinations, conditionally on the observations yi and given the fixed
effects parameters A, we obtain

Q(θ̃, θ) =

I∑
i=1

M∑
m=1

(
wmp(yi|A,Bm)

p(yi|A)

)
log(w̃mp(yi|Ã, B̃m)) =

=

I∑
i=1

M∑
m=1

Wim log(w̃mp(yi|Ã, B̃m)) =

=

I∑
i=1

M∑
m=1

Wim log(w̃m) +

I∑
i=1

M∑
m=1

Wim log(p(yi|Ã, B̃m)) =

=J1(w̃1, . . . , w̃Mtot
) + J2(Ã, B̃1, . . . , B̃M ).(27)

The functionals J1 and J2 can be maximized separately. In particular, by maximizing the
functional J1 we obtain the updates in (11) for the weights of the random effects distribu-
tion and, by maximizing the functional J2 in an iterative way, we obtain the estimates of A
and Bm, for m = 1, . . . ,Mtot, in (13). In particular, assuming that the random effects dis-
tributions relative to each category k, for k = 2, . . . ,K , are independent, the maximization
of the functionals J1 and J2 can be done separately for each category k. Indeed, under the
independence assumption:

w̃m =

K∏
k=2

w̃mk m= 1, . . . ,Mtot,

where w̃mk is the k−relative weight that contributes to form the m−th combination. Finding
the maximum of w̃m is equivalent to find the maximum of the (K − 1) components whose
product compose it. Equivalently, thanks to the convexity of the logarithm, the maximization
of J2 can be done separately for each category k.

APPENDIX B: TECHNICAL DETAILS ABOUT THE MSPEM ALGORITHM

In this section, we give some insights about the discrete distribution support points initial-
ization, the support points collapse criteria and the convergence criteria.
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The EM algorithm starts considering an equal number of mass points9 relative to each cat-
egory,M∗k =M∗ = I , for k = 2, . . .K . Given this number of support points, the initialization
of the support points is done in the following way:

a) Random effects: the starting I support points are obtained by fitting a simple multino-
mial logistic regression within each group, i.e. without considering the nested structure but
considering I distinct models, and estimating the parameters - relative to the covariates
that will be considered part of the random effects in the mixed-effects model - for each
of the I groups, relative to each category k, for k = 2, . . . ,K . The weights are uniformly
distributed on these I support points.

b) Fixed effects: the starting values of A are computed as the mean of the coefficients -
relative to the covariates that will be considered part of the fixed effects in the mixed-effects
model - obtained by the I multinomial logistic models. In particular, for each category k,
for k = 2, . . . ,K , we obtain αk = 1/I

∑I
i=1αik.

Nonetheless, if the number of groups I is extremely large, the elevated number of support
points makes the algorithm relatively slow and this is not strictly necessary. In this case,
following the method proposed in Masci et al. (2019), we rescale the initialization of the
support points of the (K − 1) random effect distributions in the following way:

• we choose a reasonable number M∗k =M∗ < I ;
• we extract M∗ points, for each category k, k = 2, . . . ,K , from a uniform distribution

with support on the entire range of possible values, i.e. the range of the distribution of
coefficients obtained by fitting I distinct multinomial logistic regressions;

• we uniformly distribute the weights on these M∗ support points, for each k = 2, . . . ,K .

During the iterations, the EM algorithm performs the reduction of the support points of the
random effects discrete distributions, in order to identify, for k = 2, . . . ,K , Mk∗ < I sub-
populations that describe the latent structure relative to each contrast k′ = k − 1. To this
end, we fix a threshold distance Dk, for k = 2, . . . ,K , and when two mass points, rel-
ative to category k, bmkk and bmlk are closer than Dk, they collapse to a unique point
bmk,lk = (bmkk + bmlk)/2 with associated weight wml,kk = wmlk + wmkk. The threshold
Dk is allowed to differ across the categories, i.e. we may choose (K-1) different values, one
for each of the (K − 1) random effects distributions, depending on the problem. For each
category k, k = 2, . . . ,K , the first two masses that collapse to a unique point are the two
masses with the minimum Euclidean distance, among the couples of masses with Euclidean
distance less than Dk, and so on.

An other criterion for the support reduction regards the minimum number of groups within
each subpopulation. Starting from a given iteration up to the end, we fix a threshold w̃k,
for k = 2, . . . ,K and we remove mass points with weight wmkk < w̃k. This criterion goes
in the direction of the outlier detection, since the groups that will not be associated to any
subpopulation with a minimum weight w̃k, for k = 2, . . . ,K , will result as anomalous groups.
Dk and w̃k are two tuning parameters that tune the estimates of the subpopulations. The

choice of Dk depends on how much we want to be sensitive to the differences between
subpopulations: the higher is Dk, the lower is the number of subpopulations and the less ho-
mogeneous are the groups within subpopulations.Dk depends also on the order of magnitude
of the data and its choice is driven by the range of the distribution of coefficients obtained by
fitting I distinct multinomial logistic regressions (described in the initialization of the support
points). The choice of w̃k depends on the minimum number of groups that we allow within

9Alternatively, it is possible to choose different starting numbers of mass points for each category k, for k =
2, . . .K . This choice is arbitrary.
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each subpopulation. When one or more mass points are deleted, the remaining weights are
reparameterized in such a way that they sum up to 1.

At each iteration of the EM algorithm, given the estimated number of mass points, we
estimate all the parameters in Eq. (7) in an iterative way, updating the coefficients of both
fixed and random effects of each contrast, until convergence or until we reach the maximum
number of subiterations fixed a priori for this stage, itmax. At the beginning of the iterative
process, the algorithm performs the dimensional reduction of the mass points on the basis
of only the distance between the mass points. When the estimates are stable, meaning that
all the differences between the estimates of the parameters at two consecutive iterations are
smaller than fixed tolerance values, or after a given number of iterations, it1, the algorithm
continues performing the dimensional reduction of the support points on the basis of also the
criterion of the minimum weight w̃k. Convergence is finally reached when all the differences
between the estimates of the parameters in two consecutive iterations are smaller than fixed
tolerance values. In particular, we fix the tolerance values for the estimates of both the pa-
rameters of fixed and random effects to tollF and tollR respectively, which depend on
the scale of the parameters10.

10More details about the choice of the tolerance values and the tuning parameters can be found in Masci et al.
(2019).
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