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Abstract

We present a theoretical analysis of the CORSING (COmpRessed
SolvING) method for the numerical approximation of partial differential
equations based on compressed sensing. In particular, we show that the
best s-term approximation of the weak solution of a PDE with respect
to an orthonormal system of N trial functions, can be recovered via
a Petrov-Galerkin approach using m� N orthonormal test functions.
This recovery is guaranteed if the local a-coherence associated with the
bilinear form and the selected trial and test bases fulfills suitable decay
properties. The fundamental tool of this analysis is the restricted inf-
sup property, i.e., a combination of the classical inf-sup condition and
the well-known restricted isometry property of compressed sensing.
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1 Introduction

Compressed Sensing (CS) is an extremely powerful tool of signal processing
employed to recover a sparse signal using far fewer measurements than those
required by the Nyquist-Shannon sampling theorem. In particular, expand-
ing the signal with respect to a basis of N vectors, it is possible to recover
the best s-term approximation to the signal, with s � N , by means of m
random measurements, with s < m� N [16, 7, 18].

In [6], we introduced an application of CS to the numerical approxima-
tion of Partial Differential Equations (PDEs). For this purpose, we rely on
an analogy between the sampling process of a signal and the evaluation of the
bilinear form associated with a Petrov-Galerkin discretization ([4, 17, 26]) of
the PDE against randomly chosen test functions. We named the resulting
numerical method CORSING, acronym for COmpRessed SolvING. In partic-
ular, we showed through an extensive numerical assessment that CORSING
can successfully reduce the computational cost of a full Petrov-Galerkin dis-
cretization of an elliptic problem.

Comparison with other techniques. The CORSING method aims at
computing the best s-term approximation to the solution to a PDE. There-
fore, it can be classified among nonlinear approximation methods ([15, 30])
for PDEs. Although the framework for CORSING is very general and can
accommodate many different choices of trial and test spaces, when consider-
ing hierarchical piecewise polynomials over an initial coarse triangulation as
trial basis functions, a possible competitor approach is the Adaptive Finite
Element Method (AFEM) (see, e.g., [24] and the references therein). AFEM
and CORSING are, however, thoroughly different: in AFEM, the solution is
iteratively computed according to the loop

SOLVE → ESTIMATE → MARK → REFINE,

and exploiting suitable a posteriori error estimators. On the contrary, with
CORSING we employ a reduced Petrov-Galerkin discretization, using a fixed
trial space of dimension N (which corresponds ideally to a very fine uniform
refinement, expressed in a hierarchical basis) and performing a fixed number
of random measurements in the test space. In particular:

(1) the trial space is not iteratively enlarged, but fixed initially;

(2) the measurements in the test space are performed non-adaptively;

(3) no a posteriori error estimators/indicators are needed.

The CORSING procedure then recovers an s-sparse solution (with s � N),
which can be compared with the AFEM solution on the same grounds. We
consider (1) as a possible drawback of CORSING, whereas (2) and (3) are
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upsides. In principle (1) requires a higher computational cost in the recovery
phase, whereas (2) allows for full parallelization and (3) significantly reduces
the implementation complexity.

From a different perspective, CORSING can be considered as a variant
of the infinite-dimensional CS, where CS is applied to infinite-dimensional
Hilbert spaces [1, 2]. This is achieved by subsampling a given isometry of
the Hilbert space, usually associated with an inner product and a change of
basis (e.g., from a wavelet basis to the Fourier basis). The main idea behind
CORSING is different, since it deals with the bilinear form arising from the
weak formulation, that can be even nonsymmetric. Nevertheless, we think
that the theory developed in [1, 2] could play a significant role for a deeper
understanding of the CORSING technique and this will be a subject of future
investigation.

Main contributions of the paper. The goal of this paper is to set up
a theoretical analysis of CORSING, providing sufficient conditions for con-
vergence, and formalizing the empirical recipes given in [6]. With this aim,
we introduce a novel variant of the classical inf-sup condition [5], where the
infimum is considered among the sparse elements of the trial space and the
supremum over a small test space. We refer to this condition as Restricted
Inf-Sup Property (RISP), since it combines the inf-sup condition and the
Restricted Isometry Property (RIP), a well-known tool in the CS literature.
Another important tool of the analysis is the concept of local a-coherence,
a generalization of the local coherence to bilinear forms on Hilbert spaces.
In particular, we have been inspired by [19], where an optimal recovery re-
sult for compressed sensing, with non-uniform random subsampling based
on the local coherence, is proved for the Haar and Fourier discrete bases in
dimension one and two.

The main results of the paper can be thus summarized. First, we prove
sufficient conditions for the RISP, depending on suitable hypotheses on the
local a-coherence. Then, recovery error estimates for the CORSING algo-
rithm are provided. In particular, in Theorem 3.8 we show that a sufficient
condition for the RISP to hold with high probability in a given s-sparse set
is that m and s be linear dependent, up to logarithmic factors. On the
contrary, at the moment we are only able to prove (Theorem 3.9) a uniform
RISP (i.e., a RISP holding in all possible s-sparse sets) assuming a quadratic
dependence between m and s, although we conjecture that, as in CS, the
dependence on s should be linear. Exploiting these theorems, we prove a re-
covery result in expectation (Theorem 3.13) and one in probability (Theorem
3.14). In particular, we check the hypotheses on the local a-coherence in the
case of a one-dimensional advection-diffusion-reaction equation employing
the hierarchical multiscale basis in [33, 13] and the Fourier sine basis.
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Outline of the paper. In Section 2, we formally introduce the CORS-
ING, defining all the input/output variables involved in the algorithm. The
theoretical analysis based on the RISP is presented in Section 3, and an
application of the theory to a one-dimensional advection-diffusion-reaction
equation is discussed in Section 4. In Section 5, we provide some numerical
results, and we draw some conclusions in Section 6.

2 CORSING

In this section, after setting up the notation, we describe the COmpRessed
SolvING procedure, in short, CORSING, first introduced in [6].

2.1 Notation

Let N := {1, 2, 3, . . .} be the set of positive natural numbers and N0 :=
N ∪ {0}. Consider two separable Hilbert spaces, U = span{ψj}j∈N and
V = span{ϕq}q∈N, generated by the bases {ψj}j∈N and {ϕq}q∈N, respectively,
and equipped with the inner products (·, ·)U and (·, ·)V . Given two positive
integers N and M , we define the finite dimensional truncations of U and V ,
which represent the trial and test space, respectively, as

UN := span{ψj}j∈[N ] and VM := span{ϕq}q∈[M ],

where [k] := {1, . . . , k} for every k ∈ N. In particular, [∞] = N. We denote
the span of the basis functions relative to a given subset of indices S ⊆ [N ]
as

UNS := span{ψj}j∈S .

Given a positive integer s ≤ N , we also define the set UNs of s-sparse func-
tions of UN with respect to the basis {ψj}j∈[N ] as the set of all functions
that are linear combinations of at most s basis functions, namely

UNs :=
⋃

S⊆[N ]; |S|=s

UNS .

We stress that UNs is not a vector space. Indeed, the sum of two s-sparse ele-
ments is in general 2s-sparse. The sets VM

T and VM
m are defined analogously,

for every T ⊆ [M ] and m ≤M .
We denote by U∗ and V ∗ the dual spaces of U and V , respectively.
We also introduce the reconstruction and decomposition operators as-

sociated with a basis, that allow us to switch between functions and the
corresponding coefficients in the basis expansion.

Definition 2.1. The reconstruction operator Ψ : `2 → U related to the
basis {ψj}j∈N of U associates with a sequence u = (uj)j∈N ∈ `2 the linear
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combination

u = Ψu :=

∞∑
j=1

ujψj .

The decomposition operator Ψ∗ : U → `2 applied to a given function u ∈ U
is defined component-wise as

(Ψ∗u)k := (u, ψ∗k)U , ∀k ∈ N,

where {ψ∗k}k∈N is the basis biorthogonal to {ψj}j∈N, namely, (ψj , ψ
∗
k)U =

δj,k, ∀j, k ∈ N.

The reconstruction operator Φ and the decomposition operator Φ∗ asso-
ciated with the basis {ϕq}q∈N of V are defined analogously.

Remark 2.2. We observe that ΨΨ∗ = IdU and Ψ∗Ψ = Id`2 .

2.2 The general reference problem

Consider the following problem

find u ∈ U : a(u, v) = F(v), ∀v ∈ V, (1)

where a : U × V → R is a bilinear form and F ∈ V ∗. We assume a(·, ·) to
fulfill the following three conditions

∃α > 0 : inf
u∈U

sup
v∈V

a(u, v)

‖u‖U‖v‖V
≥ α, (2)

∃β > 0 : sup
u∈U

sup
v∈V

|a(u, v)|
‖u‖U‖v‖V

≤ β, (3)

sup
u∈U

a(u, v) > 0, ∀v ∈ V \ {0}.

These assumptions imply the existence and uniqueness of the solution to (1),
thanks to a generalization of the Lax-Milgram lemma due to Nečas [23], [26,
Theorem 5.1.2].

To simplify the notation, when an infimum or a supremum of a fraction
f(x)/g(x) over a given set X is considered, the zeros of g(x) are understood
to be removed from X.

Our goal is to approximate the solution to (1), by merging the classical
Petrov-Galerkin formulation (sometimes also called non-standard Galerkin
method) [4, 26, 17] with Compressed Sensing techniques [16, 7]. The adopted
procedure corresponds to the R-CORSING method, recently introduced in [6],
simply denoted by CORSING in the following developments.
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2.3 Main hypotheses

We will use three assumptions throughout the article.

Hypothesis 1 (Orthonormal tests). The test basis {ϕq}q∈N is an orthonor-
mal system of V .

We generalize the notion of local coherence (see, e.g., [19]) to bilinear
forms defined over Hilbert spaces.

Definition 2.3 (Local a-coherence µN ). GivenN ∈ N∪{∞}, the real-valued
sequence µN defined as

µNq := sup
j∈[N ]

|a(ψj , ϕq)|2, ∀q ∈ N,

is called local a-coherence of {ψj}j∈[N ] with respect to {ϕq}q∈N.

The second hypothesis concerns the local a-coherence.

Hypothesis 2 (Summability of µN ). The local a-coherence of {ψj}j∈[N ]

with respect to {ϕq}q∈N fulfills the summability condition

‖µN‖1 < +∞,

or, equivalently, µN ∈ `1.

Notice that Hypothesis 2 does not hinge on the ordering considered for
the elements of the truncated trial basis {ψj}j∈[N ].

The last hypothesis concerns an explicit upper bound to the local a-
coherence.

Hypothesis 3 (Upper bound νN ). For every N ∈ N, we assume to have
a computable componentwise upper bound νN to the local a-coherence µN ,
i.e., a real-valued sequence such that

µNq ≤ νNq , ∀q ∈ N.

For every M ∈ N, we define the vector νN,M ∈ RM as the restriction of νN

to the first M components. Moreover, we require that

• the vector νN,M/‖νN,M‖1 is efficiently computable for every N,M ∈ N;

• there exists a real bivariate polynomial P such that

‖νN,M‖1 . P (logN, logM).

The upper bound νN need not be sharp.
As usual, with notation x ∼ y, x . y or x & y, it is understood that

there exists a constant C > 0 not depending on x and y, such that x = Cy,
x ≤ Cy or x ≥ Cy, respectively.
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Algorithm 2.1
PROCEDURE û = CORSING (N , s, νN , γM , CM , γm, Cm)

1. Definition of M and m

> M ← CMs
γMN ;

> m← Cms
γm‖νN,M‖1 log(N/s);

2. Test selection

> p← νN,M/‖νN,M‖1;

> Draw τ1, . . . , τm independently at random from [M ] according to the
probability p;

3. Assembly

> Build A, f and D, defined in (5) and (6), respectively;

4. Recovery

> Find a solution û to minu∈RN ‖D(Au− f)‖22, s.t. ‖u‖0 ≤ s;

> û← Ψû.

2.4 The CORSING procedure

The CORSING procedure is summarized in Algorithm 2.1. Let us now de-
scribe in more detail the input/output variables and the main steps of the
method.

INPUT

• N : dimension of the trial space;

• s� N : number of trial coefficients to recover;

• upper bound νN in Hypothesis 3 and four positive constants γM , CM ,
γm, and Cm used to select the dimension M of the test space and the
m tests to perform.

OUTPUT

• û ∈ UNs : approximate s-sparse solution to (1).

7



1. Definition of M and m. The test space dimensionM and the number
m of tests to perform are chosen as functions of N and s as

M = CMs
γMN, m = Cms

γm‖νN,M‖1 log(N/s).

In Section 3, we prove the existence of suitable values for the constants
γM , CM , γm that ensure the CORSING algorithm to recover the best s-
term approximation to u in expectation and in probability. In Section 4, we
perform a sensitivity analysis on the constants CM and Cm for some specific
differential problems and with γm = 1, 2. Numerical evidence shows that
γm = 1 is a valid choice, but proving this from a theoretical viewpoint still
remains an open problem. On the contrary, the value of γM seems to depend
on the trial and test bases considered (see Section 4).

2. Test selection. In order to formalize the test selection procedure,
we introduce a probability space (Ω, E ,P) and consider τ1, . . . , τm as i.i.d.
discrete random variables taking values in [M ], namely

τi : Ω→ [M ], ∀i ∈ [m].

Moreover, given a vector p = (pq)q∈[M ] ∈ [0, 1]M such that ‖p‖1 = 1, the
probability law is defined as

P{τi = q} = pq, ∀q ∈ [M ].

Throughout the paper, the vector p will be assumed to be of the form

p :=
νN,M

‖νN,M‖1
, (4)

where the values for νN,M are known from Hypothesis 3.

3. Assembly. In this phase, we build the stiffness matrix A ∈ Rm×N and
the load vector f ∈ Rm associated with the Petrov-Galerkin discretization of
(1), defined as

Aij := a(ψj , ϕτi), fi := F(ϕτi), ∀j ∈ [N ], ∀i ∈ [m]. (5)

Moreover, the matrix D ∈ Rm×m is a diagonal preconditioner, depending on
the vector p as

Dik :=
δik√
mpτi

, ∀i ∈ [m]. (6)
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4. Recovery. The vector of trial coefficients û of the approximate solution
is recovered as

û := arg min
v∈RN

‖D(Av − f)‖22, s.t. ‖v‖0 ≤ s, (7)

where ‖u‖0 = |{j : uj 6= 0}| is the so called `0-norm. Consequently, the
approximate solution is defined as û := Ψû. An equivalent functional for-
mulation of (7) is

û ≡ arg min
v∈UNs

m∑
i=1

1

mpτi
(a(v, ϕτi)−F(ϕτi))

2. (8)

In practice, problem (7) is approximately solved through the greedy algo-
rithm Orthogonal Matching Pursuit (OMP), [20, 25].

The procedure defined by (7) (or, equivalently, (8)) has been proved
to be generally NP-hard, [21], but fortunately, there are several ways to
efficiently and accurately approximate its solutions under particular circum-
stances, e.g., when the RIP holds. These strategies can be divided in two
main families: convex relaxation techniques, such as the well known `1-
minimization, also known as Basis Pursuit (BP) [8], and greedy algorithms
[31, 22]. In this paper, we focus on greedy techniques and, in particular, we
employ the OMP algorithm. For recent results concerning its accuracy, we
refer to [34, 11].

The reason for this choice is twofold. First, using OMP we can easily
control the parameter s, i.e., the sparsity of the compressed solution û. Sec-
ond, the time complexity of the OMP algorithm is easily estimated, namely
O(smN) for basic implementations, while the complexity of BP depends on
the particular algorithm used to solve the corresponding Linear Program-
ming and it is not easily quantifiable. All the numerical experiments made
in this work are performed using the omp-box MatlabR© package, version
10 - see [29, 28].1

3 Theoretical analysis

3.1 Preliminary results

The main statistical tools employed in this paper are Chernoff’s bounds for
matrices. They were introduced by H. Chernoff during the early 50’s in the
scalar form [9], and generalized to the matrix setting by R. Ahlswede and
A. Winter in 2003 [3]. These bounds have been recently refined in 2012 by
J. Tropp in [32].

First, we present the main result employed in our analysis. The proof of
the following theorem can be found in [32, Corollary 5.2].

1The reader interested in the algorithmic issues can find many comparisons between
the OMP and BP approaches in [6, Section 5].
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Theorem 3.1 (Matrix Chernoff’s bounds). Consider a finite sequence of
i.i.d. random, symmetric s× s real matrices X1, . . . ,Xm such that

0 ≤ λmin(Xi) and λmax(Xi) ≤ R almost surely, ∀i ∈ [m].

Define X := 1
m

m∑
i=1

Xi, Emin := λmin(E[Xi]) and Emax := λmax(E[Xi]).

Then,

P{λmin(X) ≤ (1− δ)Emin} ≤ s exp

(
−mρδEmin

R

)
, ∀δ ∈ [0, 1], (9)

P{λmax(X) ≥ (1 + δ)Emax} ≤ s exp

(
−mρ̃δEmax

R

)
, ∀δ ≥ 0,

with
ρδ := (1− δ) log(1− δ) + δ, ρ̃δ := (1 + δ) log(1 + δ)− δ. (10)

�

Notice that both constants ρδ, ρ̃δ ∼ δ2 when δ → 0.
We conclude this section by recalling few results that will be repeatedly

used in the next proofs.

Lemma 3.2. If A,B ∈ Rd×d are symmetric and B is also positive definite,
it holds

λmin(B−
1
2AB−

1
2 ) = inf

u∈Rd
uᵀAu

uᵀBu
, (11)

λmax(B−
1
2AB−

1
2 ) = sup

u∈Rd

uᵀAu

uᵀBu
. (12)

Lemma 3.3. Consider a generic set X. The infimum and the supremum
on X fulfill the following properties

sup
x∈X

1/f(x) = 1/ inf
x∈X

f(x), ∀f : X → (0,+∞), (13)

sup
x∈X

f(x)g(x) ≤ sup
x∈X

f(x) sup
x∈X

g(x), ∀f, g : X → [0,+∞), (14)

inf
x∈X

(f(x)− g(x)) ≥ inf
x∈X

f(x)− sup
x∈X

g(x), ∀f, g : X → R. (15)

3.2 Non-uniform restricted inf-sup property

In this section, we deal with the core of our paper, namely an analysis of the
CORSING algorithm.
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We denote the space of vectors of RN supported in S ⊆ [N ] as RNS ,
namely

RNS := {u ∈ RN : uj = 0, ∀j /∈ S}.

Moreover, we introduce some further notation.

Definition 3.4 (MatricesK, KS andAS). We define the matrixK ∈ RN×N
as

Kjk := (ψj , ψk)U .

and its restriction KS ∈ Rs×s to S := {σ1, . . . , σs} ⊆ [N ] as

(KS)jk := (ψσj , ψσk)U .

Moreover, we denote by AS ∈ Rm×s the submatrix of A consisting only of
the columns with indices in S.

We observe that K is symmetric and positive definite (s.p.d.) and fulfills

uᵀKu = ‖Ψu‖2U , ∀u ∈ RN , (16)

where the reconstruction operator in (16) is implicitly restricted from `2 to
RN (equivalently, the vector u is extended to `2 by adding zeros for j > N).
The matrix KS is also s.p.d. and it satisfies the relation

uᵀSKSuS = uᵀKu, ∀u ∈ RNS ,

where uS ∈ Rs is the restriction of u to S, namely (uS)j = uσj , for every
j ∈ [s]. In this section, we fix a subset S := {σ1, . . . , σs} ⊆ [N ] of cardinality
s.

We introduce the Gram matrix G∞ relative to the restriction of a(·, ·) to
UNS × V∞.

Definition 3.5 (Matrix G∞). Define the matrix G∞ ∈ Rs×s such that

G∞jk :=

∞∑
q=1

a(ψσj , ϕq)a(ψσk , ϕq), ∀j, k ∈ [s],

where the series are well defined thanks to Hypothesis 2 and G∞jk ≤ ‖µN‖1,
for every j, k ∈ [s].

The first lemma provides a relation between the inf-sup constant α asso-
ciated with the bilinear form a(·, ·) and the Gram matrix G∞.

Lemma 3.6. Suppose that the bilinear form a(·, ·) fulfills the inf-sup property
(2). Then, it holds

λmin(K
− 1

2
S G∞K

− 1
2
S ) ≥ α2.
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Proof. The following chain of inequalities holds

α ≤ inf
u∈U

sup
v∈V

a(u, v)

‖u‖U‖v‖V
≤ inf

u∈UNS
sup
v∈V

a(u, v)

‖u‖U‖v‖V

= inf
u∈RNS

sup
v∈`2

1

‖K
1
2u‖2‖v‖2

∞∑
q=1

a(Ψu, ϕq)vq = inf
u∈RNS

1

‖K
1
2u‖2

 ∞∑
q=1

a(Ψu, ϕq)
2

 1
2

.

The first inequality is property (2), while the second inequality follows from
taking the infimum over a subset of U . The first equality is obtained by ex-
panding u and v with respect to the bases {ψj}j∈S and {ϕq}q∈N, respectively;
moreover, we use relations (16) and ‖v‖2 = ‖v‖V implied by Hypothesis 1.
The last equality can be deduced by applying the definition of operator norm

sup
v∈`2

1

‖v‖2

∞∑
q=1

a(Ψu, ϕq)vq = ‖(a(Ψu, ϕq))q∈N‖(`2)∗

and by identifying (`2)∗ with `2. Now, since all the quantities involved in
the chain of inequalities are positive, we can square the terms

α2 ≤ inf
u∈RNS

1

uᵀKu

∞∑
q=1

a(Ψu, ϕq)
2 = inf

u∈Rs
1

uᵀKSu

∞∑
q=1

 s∑
j=1

uja(ψσj , ϕq)

2

= inf
u∈Rs

1

uᵀKSu

∞∑
q=1

s∑
j=1

s∑
k=1

ujuka(ψσj , ϕq)a(ψσk , ϕq)

= inf
u∈Rs

1

uᵀKSu

s∑
j=1

s∑
k=1

ujuk

∞∑
q=1

a(ψσj , ϕq)a(ψσk , ϕq)

= inf
u∈Rs

uᵀG∞u

uᵀKSu
= λmin(K

− 1
2
S G∞K

− 1
2
S ).

We have expanded Ψu and identified u with its restriction to S. Then, we
have exchanged the summations thanks to Hypothesis 2 and Fubini-Tonelli’s
theorem. Successively, we have used the definition of G∞ together with
relation (11).

The second lemma provides a recipe on how to choose the truncation
level M on the tests, after selecting N and s.

Lemma 3.7. Under the same hypotheses as in Lemma 3.6, we fix a real
number δM ∈ [0, 1). Then, if M ∈ N satisfies the truncation condition

s
∑
q>M

µNq ≤ α2λmin(KS)δM , (17)
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the following inequality holds

λmin(K
− 1

2
S GMK

− 1
2
S ) ≥ (1− δM )α2,

where GM ∈ Rs×s is the truncated version of G∞, namely

GMjk :=

M∑
q=1

a(ψσj , ϕq)a(ψσk , ϕq).

Proof. First, consider the splitting G∞ = GM +TM , where TM corresponds
to the tail of the series identifying G∞,

TMjk =
∑
q>M

a(ψσj , ϕq)a(ψσk , ϕq).

Now, notice that

λmin(K
− 1

2
S GMK

− 1
2
S ) = λmin(K

− 1
2
S (G∞ −TM )K

− 1
2
S )

≥ λmin(K
− 1

2
S G∞K

− 1
2
S )− λmax(K

− 1
2
S TMK

− 1
2
S )

The inequality can be proved using Lemma 3.2 and exploiting property (15).
Applying Lemma 3.6, we obtain

λmin(K
− 1

2
S GMK

− 1
2
S ) ≥ α2(1− λmax(K

− 1
2
S TMK

− 1
2
S )/α2).

Thus, the thesis is proved if we bound the maximum eigenvalue of the tail
as follows

λmax(K
− 1

2
S TMK

− 1
2
S ) ≤ δMα2.

For this purpose, we compute

λmax(K
− 1

2
S TMK

− 1
2
S ) = sup

u∈Rs

uᵀTMu

uᵀKSu

= sup
u∈Rs

1

uᵀKSu

s∑
j=1

s∑
k=1

ujuk
∑
q>M

a(ψσj , ϕq)a(ψσk , ϕq)

= sup
u∈Rs

1

uᵀKSu

∑
q>M

 s∑
j=1

uja(ψσj , ϕq)

2

≤ sup
u∈Rs

uᵀu

uᵀKSu
s
∑
q>M

µNq =
1

λmin(KS)
s
∑
q>M

µNq .

We start from definition (12). Then, by exploiting Hypothesis 2 and Fubini-
Tonelli’s theorem, combined with Cauchy-Schwarz inequality, the definition
of µN , of (11) and of (13), we obtain the desired result under hypothesis
(17).
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This lemma provides a sufficient condition on the truncation parameter
M that ensures an arbitrarily small decrease of the inf-sup constant α by
a factor (1 − δM )

1
2 . Moreover, a value M that fulfills (17) always exists

thanks to Hypothesis 2. Relation (17) can be also interpreted as a sufficient
condition for the space VM to be δ-proximal for UNS , with constant δ =

√
δM

(see [14]).
Now, we prove the main result of this section.

Theorem 3.8 (Non-uniform RISP). Let the truncation condition in Lemma
3.7 hold. Then, for every 0 < ε < 1 and δm ∈ [0, 1), provided that

m ≥ C̃S s‖νN,M‖1 log(s/ε),

where C̃S := [ρδm(1 − δM )α2λmin(KS)]−1 and ρδm is defined according to
(10), the following non-uniform RISP holds with probability greater than or
equal to 1− ε

inf
u∈Rs

sup
v∈Rm

vᵀDASu

‖K
1
2
Su‖2‖v‖2

> α̃ > 0, (18)

where α̃ := (1− δM )
1
2 (1− δm)

1
2α and D is defined in (6).

Proof. The proof is organized as follows. First, we show that the inf-sup in
(18) can be interpreted as the square root of the minimum eigenvalue of the
sample mean of a sequence of certain i.i.d. random matrices Xτ1 , . . . ,Xτm .
Then, we compute the expectation ofXτi and show that the maximum eigen-
value of Xτi is uniformly bounded. Finally, we apply the matrix Chernoff
bound (9).

Let us discuss each step of the proof in detail. First, we compute

inf
u∈Rs

sup
v∈Rm

vᵀDASu

‖K
1
2
Su‖2‖v‖2

= inf
u∈Rs

1

‖K
1
2
Su‖2

sup
v∈Rm

vᵀDASu

‖v‖2

= inf
u∈Rs

‖DASu‖2
‖K

1
2
Su‖2

= [λmin(K
− 1

2
S AᵀSD

2ASK
− 1

2
S )]

1
2 .

The second equality hinges on the definition of operator norm combined with
the identification of (Rm)∗ with Rm while the third one exploits (11).

Relying on the following relation,

(AᵀSD
2AS)jk =

1

m

m∑
i=1

1

pτi
a(ψσj , ϕτi)a(ψσk , ϕτi)

we define the matrices Hτi ∈ Rs×s with Hτi
jk := 1

pτi
a(ψσj , ϕτi)a(ψσk , ϕτi) and

Xτi := K
− 1

2
S HτiK

− 1
2
S ,

14



so that

X :=
1

m

m∑
i=1

Xτi = K
− 1

2
S AᵀSD

2ASK
− 1

2
S .

Thus, it holds

inf
u∈Rs

sup
v∈Rm

vᵀDASu

‖K
1
2
Su‖2‖v‖2

= [λmin(X)]
1
2 . (19)

With a view to the Chernoff bounds, we estimate E[Xτi ] and the corre-
sponding minimum eigenvalue. A direct computation yields

E[Hτi
jk] =

M∑
q=1

P{τi = q}Hq
jk =

M∑
q=1

pq
1

pq
a(ψσj , ϕq)a(ψσk , ϕq) = GMjk .

As a consequence, we have

E[Xτi ] = E[K
− 1

2
S HτiK

− 1
2
S ] = K

− 1
2
S E[Hτi ]K

− 1
2
S = K

− 1
2
S GMK

− 1
2
S ,

i.e., from Lemma 3.7

λmin(E[Xτi ]) ≥ (1− δM )α2. (20)

Our aim is now to bound λmax(Xτi) from above. We have

λmax(Xτi) = sup
u∈Rs

uᵀHτiu

uᵀKSu
≤ sup

u∈Rs

uᵀu

uᵀKSu
sup
u∈Rs

uᵀHτiu

uᵀu

= [λmin(KS)]−1 sup
u∈Rs

1

uᵀu

s∑
j=1

s∑
k=1

ujuk
1

pτi
a(ψσj , ϕτi)a(ψσk , ϕτi)

= [λmin(KS)]−1 1

pτi
sup
u∈Rs

1

uᵀu

 s∑
j=1

uja(ψσj , ϕτi)

2

≤ [λmin(KS)]−1 ‖νN,M‖1
νNτi

s∑
j=1

a(ψσj , ϕτi)
2 ≤ [λmin(KS)]−1 s ‖νN,M‖1.

(21)

The first line follows from (12) and property (14). The last line exploits
Cauchy-Schwarz inequality combined with definition (4) of p, and Hypoth-
esis 3.
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Now, we compute the probability of failure of satisfying (18), i.e.,

P

 inf
u∈Rs

sup
v∈Rm

vᵀDASu

‖K
1
2
Su‖2‖v‖2

≤ α̃

 = P
{
λmin(X) ≤ (1− δm)(1− δM )α2

}
≤ P{λmin(X) ≤ (1− δm)λmin(E[Xτi ])} ≤ s exp

(
− mρδmλmin(E[Xτi ])

s‖νN,M‖1[λmin(KS)]−1

)

≤ s exp

(
− mρδm(1− δM )α2

s‖νN,M‖1[λmin(KS)]−1

)
. (22)

The first equality relies on (19) and on the definition of α̃. The first in-
equality in the second line hinges on (20), while the second inequality is the
first matrix Chernoff bound (9), where the uniform estimate (21) has been
employed. The final inequality follows from (20).

The thesis is finally proved on estimating that

s exp

(
− mρδm(1− δM )α2

s‖νN,M‖1[λmin(KS)]−1

)
≤ ε⇐⇒ m ≥ C̃S s‖νN,M‖1 log(s/ε),

with C̃S := [ρδm(1− δM )α2λmin(KS)]−1.

3.3 Uniform restricted inf-sup property

We extend the results in the previous Section to the uniform case, i.e., we
aim at proving the RISP over UNs , instead of UNS , for a fixed subset S ⊆ [N ]
with |S| = s. For this purpose, we use the non-uniform Theorem 3.8 and a
union bound.

First, we introduce the set ΣN
s of s-sparse vectors of RN , namely

ΣN
s := {x ∈ RN : ‖x‖0 ≤ s} ≡

⋃
S⊆[N ]; |S|=s

RNS .

The following theorem provides a sufficient condition for the uniform
RISP to hold.

Theorem 3.9 (Uniform RISP). Given δM ∈ [0, 1), choose M ∈ N such that
the following truncation condition is fulfilled

s
∑
q>M

µNq ≤ α2κsδM , (23)

where
κs := min

S⊆[N ]; |S|=s
λmin(KS). (24)
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Then, for every 0 < ε < 1 and δm ∈ [0, 1), provided

m ≥ C̃s s‖νN,M‖1[s log(eN/s) + log(s/ε)], (25)

with
C̃s := [ρδm(1− δM )α2κs]

−1 (26)

and ρδm as in (10), the following uniform s-sparse RISP holds with probability
greater than or equal to 1− ε

inf
u∈ΣNs

sup
v∈Rm

vᵀDAu

‖K
1
2u‖2‖v‖2

> α̃ > 0,

where α̃ := (1− δM )
1
2 (1− δm)

1
2α.

Proof. First, we define the event where the RISP holds non-uniformly over
a single subset S ⊆ [N ] with |S| = s:

ΩS :=

ω ∈ Ω : inf
u∈Rs

sup
v∈Rm

vᵀD(ω)AS(ω)u

‖K
1
2
Su‖2‖v‖2

> α̃

 ,

where the dependence of AS and D on ω has been highlighted. Analogously,
we define the event where the RISP holds uniformly

Ωs :=

{
ω ∈ Ω : inf

u∈ΣNs

sup
v∈Rm

vᵀD(ω)A(ω)u

‖K
1
2u‖2‖v‖2

> α̃

}
. (27)

In particular, the following relation holds

Ωs =
⋂

S⊆[N ]; |S|=s

ΩS ,

and, thanks to the subadditivity of P and De Morgan’s laws, we have

P(Ωc
s) = P

((⋂
ΩS

)c)
= P

(⋃
Ωc
S

)
≤

∑
S⊆[N ]; |S|=s

P(Ωc
S), (28)

where the superindex c denotes the complement of a set. Now, the non-
uniform inequality (22) and the definition (24) of κs, yield the following
uniform upper bound

P(Ωc
S) ≤ s exp

(
− mρδm(1− δM )α2

s‖νN,M‖1[λmin(KS)]−1

)
≤ s exp

(
−mρδm(1− δM )α2

s‖νN,M‖1κ−1
s

)
.

(29)
Moreover, Stirling’s formula furnishes the following upper bound

|{S ⊆ [N ] : |S| = s}| =
(
N

s

)
=

N !

s!(N − s)!
≤ N s

s!
≤
(
eN

s

)s
. (30)
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Combining (28), (29) and (30), we finally obtain the uniform estimate

P(Ωc
s) ≤

(
eN

s

)s
s exp

(
−mρδm(1− δM )α2

s‖νN,M‖1κ−1
s

)
. (31)

Simple algebraic manipulations show that the right hand-side of (31) is less
than or equal to ε if and only if relation (25) holds.

We note that the sufficient condition (25) is, in general, too pessimistic.
Indeed, in the classical literature on compressed sensing, e.g., [16, 7], the
optimal asymptotically dependence of m on s is linear. Likely, this lack of
optimality is due to the union bound, that is a very rough estimate. We
expect that it is possible to achieve the optimal behavior by using more
advanced techniques, such as those described in [18, Chapter 12] and [27] in
the case of Bounded Orthonormal Systems. This will be investigated in the
future.

3.4 Recovery error analysis

In this section, we deal with the analysis of the recovery error associated with
the CORSING procedure, computed with respect to the trial norm ‖ ·‖U , i.e.,
the quantity ‖û−u‖U . Notice that this error is a random variable, depending
on the extracted indices τ1, . . . , τm. Our aim is to compare the recovery error
with the best s-term approximation error of the exact solution u in UN , i.e.,
the quantity ‖us − u‖U , where

us := arg min
w∈UNs

‖w − u‖U . (32)

Due to the s-sparsity constraint in the recovery procedure (7), us is the best
result that CORSING can ideally provide.2

For this purpose, we show that the uniform 2s-sparse RISP implies a
recovery result, depending on a random preconditioned residual (Lemma
3.10), whose second moment is controlled by the square of the best s-term
approximation error (Lemma 3.11). Afterwards, in Theorem 3.13, we prove
that the best s-term approximation error dominates the first moment of
the error associated with a truncated version of the CORSING solution and,
finally, we provide a recovery error estimate that holds with high probability
in Theorem 3.14.

In the following, a key quantity is the preconditioned random residual

R(v) :=

[
1

m

m∑
i=1

1

pτi
[a(v, ϕτi)−F(ϕτi)]

2

] 1
2

, ∀v ∈ U. (33)

Now, we prove the two lemmas.
2The quantity in (32) is actually a minimum and not an infimum, since the function

w 7→ ‖w − u‖U is convex and UNs is a finite union of linear subspaces.
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Lemma 3.10. If the uniform 2s-sparse RISP

inf
u∈ΣN2s

sup
v∈Rm

vᵀDAu

‖K
1
2u‖2‖v‖2

> α̃ > 0, (34)

holds, then the CORSING procedure computes a solution û such that

‖û− us‖U <
2

α̃
R(us).

Proof. Define û := Ψ∗û and us := Ψ∗us. Then, casting (27) in Ω2s, since
û− us is at most 2s-sparse and thanks to the RISP property (34), and the
definition of operator norm, we have

‖û− us‖U = ‖K
1
2 (û− us)‖2 <

1

α̃
sup
v∈Rm

vᵀDA(û− us)

‖v‖2
=

1

α̃
‖DA(û− us)‖2.

Moreover, the last norm can be bounded as

‖DA(û− us)‖22 =
1

m

m∑
i=1

1

pτi
a(û− us, ϕτi)2

=
1

m

m∑
i=1

1

pτi
[a(û, ϕτi)−F(ϕτi)− a(us, ϕτi) + F(ϕτi)]

2

≤ 2

m

m∑
i=1

1

pτi
{[a(û, ϕτi)−F(ϕτi)]

2 + [a(us, ϕτi)−F(ϕτi)]
2}

≤ 4

m

m∑
i=1

1

pτi
[a(us, ϕτi)−F(ϕτi)]

2= 4R(us)2,

where the last inequality exploits the optimality of û.

Lemma 3.11. The following upper bound holds

E[R(us)2] ≤ β2‖us − u‖2U , (35)

where β is the continuity constant of a(·, ·) defined in (3).

Proof. Thanks to (1), the residual (33) becomes

R(us)2 =
1

m

m∑
i=1

p−1
τi a(us − u, ϕτi)2,

Thus, in expectation, we obtain

E[R(us)2] =
1

m

m∑
i=1

E[p−1
τi a(us − u, ϕτi)2]. (36)
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Each term in the last summation can be bounded as

E[p−1
τi a(us − u, ϕτi)2] =

M∑
q=1

p−1
q a(us − u, ϕq)2pq ≤

∞∑
q=1

a(us − u, ϕq)2. (37)

Now, exploiting Hypothesis 1, we have

‖a(us − u, ·)‖V ∗ = sup
v∈V

|a(us − u, v)|
‖v‖V

= sup
v∈`2

|
∑∞

q=1 vqa(us − u, ϕq)|
‖v‖2

=

 ∞∑
q=1

a(us − u, ϕq)2

 1
2

.

Plugging this equality and (37) in (36), and thanks to (3), we have

E[R(us)2] ≤ ‖a(us − u, ·)‖2V ∗ ≤ β2‖us − u‖2U .

If an upper bound of the form ‖u‖U ≤ K is known, a near-optimal re-
covery result holds in expectation for a truncation of the CORSING solution.
This truncation is obtained through the operator TK : U → U defined as

TKw :=

{
w if ‖w‖U ≤ K,
Kw/‖w‖U if ‖w‖U > K,

∀w ∈ U. (38)

Using (1) and (2), a possible choice of K is ‖F‖V ∗/α.
Then, we have the following lemma whose proof is straightforward.

Lemma 3.12. TK is 1-Lipschitz, with respect to ‖ · ‖U , for every K > 0.

Employing an argument similar to that used in [12, 10], we show an upper
bound to the error associated with the truncated CORSING solution.

Theorem 3.13 (Error estimate in expectation). Let K > 0 be such that
‖u‖U ≤ K. Given δM ∈ [0, 1), choose M ∈ N such that the truncation
condition (23) is fulfilled and fix δm ∈ [0, 1).

Then, for every 0 < ε < 1, provided

m ≥ 2 C̃2s s‖νN,M‖1[2s log(eN/(2s)) + log(2s/ε)], (39)

with C̃2s defined analogously to (26) and α̃ = (1 − δM )
1
2 (1 − δm)

1
2α, the

truncated CORSING solution TKû fulfills

E[‖TKû− u‖U ] <

(
1 +

2β

α̃

)
‖us − u‖U + 2Kε,

where β is the continuity constant of a(·, ·) defined in (3).
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Proof. First, recalling the definition (27) of the event Ωs, and considering
the partitioning Ω = Ω2s ∪ Ωc

2s, we have the splitting

E[‖TKû− u‖U ] =

∫
Ω2s

‖TK(û− u)‖U dP +

∫
Ωc2s

‖TKû− u‖U dP.

Then, the second term is easily bounded as∫
Ωc2s

‖TKû− u‖U dP ≤ 2Kε.

Indeed, thanks to the adopted choice ofm, Theorem 3.9 guarantees P(Ωc
2s) ≤

ε. Moreover, ‖TKû− u‖U ≤ 2K, since both ‖TKû‖U and ‖u‖U are less than
or equal to K.

Now, employing Lemma 3.12 and the triangle inequality, we have∫
Ω2s

‖TK(û−u)‖U dP ≤
∫

Ω2s

‖û−u‖U dP ≤
∫

Ω2s

‖û−us‖U dP+

∫
Ω2s

‖us−u‖U dP.

The second integral on the right hand side is less than or equal to the best
s-term approximation error ‖us − u‖U . In order to bound the first integral,
we apply Lemmas 3.10 and 3.11, obtaining∫

Ω2s

‖û− us‖U dP <
2

α̃

∫
Ω2s

R(us) dP ≤ 2

α̃
E[R(us)] ≤ 2β

α̃
‖us − u‖U ,

where the last relation follows on applying Jensen’s inequality to (35). Notice
that Lemma 3.10 can be employed since the 2s-sparse RISP holds on the
restricted domain Ω2s. Combining all the inequalities yields the thesis.

Finally, we provide a recovery estimate in probability. This is asymptot-
ically optimal, but the constant grows like the inverse of the square root of
the probability of failure.

Theorem 3.14 (Error estimate in probability). Given δM ∈ [0, 1), choose
M ∈ N such that the truncation condition (23) is fulfilled. Then, for every
0 < ε < 1 and δm ∈ [0, 1), provided

m ≥ 2C̃2s s‖νN,M‖1[2s log(eN/(2s)) + log(2s/ε)],

with C̃2s defined analogously to (26), with probability greater than or equal to
1− 2ε, the CORSING procedure computes a solution û such that

‖û− u‖U <
(

1 +
2β

α̃
√
ε

)
‖us − u‖U

where α̃ := (1 − δM )
1
2 (1 − δm)

1
2α and β is the continuity constant of a(·, ·)

defined in (3).
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Proof. Define es := ‖us− u‖U and the random variables Z := ‖û− u‖U and
Zs := ‖û− us‖U . Moreover, consider the quantity

bs :=

(
1 +

2β

α̃
√
ε

)
es. (40)

The goal is to show that P{Z ≥ bs} ≤ 2ε. The triangle inequality implies
Z ≤ Zs + es. Thus,

P{Z ≥ bs} ≤ P{Zs ≥ bs − es}.

Moreover, defining the event Ω2s according to (27) and denoting by IA the
indicator function of a generic set A, we have

P{Zs ≥ bs − es} = E[I{Zs≥bs−es}] =

∫
Ω2s

I{Zs≥bs−es} dP +

∫
Ωc2s

I{Zs≥bs−es} dP

≤
∫

Ω2s

I{Zs≥bs−es} dP + P{Ωc
2s}.

Theorem 3.9 implies P{Ωc
2s} ≤ ε. Moreover, employing Lemmas 3.10 and

3.11, we can bound the first integral as∫
Ω2s

I{Zs≥bs−es} dP ≤
∫

Ω2s

I{(2/α̃)R(us)>bs−es} dP

< E
[

4R(us)2

α̃2(bs − es)2

]
≤ 4β2e2

s

α̃2(bs − es)2
= ε,

where the last equality follows from (40).

We conclude this section with a useful corollary dealing with a particular
truncation condition. In practice, this corollary provides sufficient conditions
for Theorem 3.13 to hold. We will apply this result to some examples in
Section 4.

Corollary 3.15. Suppose that there exist two positive constants Cµ and γM
such that ∑

q>M

µNq ≤ Cµ

(
N

M

)1/γM

, ∀M ∈ N. (41)

Then, for every ε ∈ (0, 2−1/3] and for s ≤ 2N/e there exist two positive
constants CM and Cm such that, for

M ≥ CMsγMN and m ≥ Cms‖νN,M‖1[s log(N/s) + log(s/ε)], (42)
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the CORSING solution û fulfills

E[‖TKû− u‖U ] <

(
1 +

4β

α

)
‖us − u‖U + 2Kε,

for every K > 0 such that ‖u‖U ≤ K, with TK defined as in (38) and where
α and β are defined by (2) and (3), respectively. In particular, two possible
upper bounds for the constants CM and Cm are

CM ≤
(

2Cµ

κsα2

)γM
and Cm ≤

105

α2
,

respectively, with κs defined in (24).

Proof. The idea is to choose δm = δM = 1/2 and, as anticipated, to apply
Theorem 3.13. First, notice that assumption (41) is consistent with Hypoth-
esis 2, on passing to the limit for M → +∞. In view of Theorem 3.13, we
show that the second inequality in (42) implies (39) with a suitable choice of
Cm. Moreover, the truncation condition (23), on which Theorem 3.13 relies
on, is implied by

sCµ

(
N

M

)1/γM

≤ α2κs
2

,

that, in turn, is equivalent to

M ≥
(

2Cµ

κsα2

)γM
sγMN.

Moreover, thanks to the assumptions on ε and s, we have

ε ≤ 2−1/3 =⇒ log(2s/ε) ≤ 4 log(s/ε),

s ≤ 2N/e =⇒ log(eN/(2s)) ≤ 2 log(N/s).

Thus, recalling the right-hand side of (39), we have

2 C̃2s s‖νN,M‖1[2s log(eN/(2s))+ log(2s/ε)]

≤ 8 C̃2s s‖νN,M‖1[s log(N/s) + log(s/ε)],

where C̃2s is defined analogously to (26). In particular, if Cm in (42) is
chosen such that

Cm ≤ 8 C̃2s =
32

(1− log 2)α2
≤ 105

α2
,

then (39) holds. Moreover, relation α̃ = (1−δM )
1
2 (1−δm)

1
2α yields α̃ = 1

2α,
so that the quantity 2β/α̃ in Theorem 3.13 can be replaced by 4β/α.
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Remark 3.16. The assumptions ε ≤ 2−1/3 ≈ 0.79 and s ≤ 2N/e ≈ 0.74N
made in Corollary 3.15 are quite weak and they are chosen in such a way
that the upper bounds to CM and Cm are easy to derive. Of course, more
restrictive hypotheses on ε and s would give sharper upper bounds for the
asymptotic constants. Moreover, the parameters δM and δm could be chosen
differently from δm = δM = 1/2 and this would lead to different values for
the constant in the recovery error estimate.

Remark 3.17. If ε ≥ ss+1/N s, then s log(N/s) + log(s/ε) ≤ 2s log(N/s)
and the term log(s/ε) disappears from the inequality on m by doubling the
constant Cm, giving the trend

m ≥ Cm‖νN,M‖1s2 log(N/s),

claimed in Algorithm 2.1. This assumption on ε is not restrictive, since
s� N guarantees ss+1/N s � 1.

Remark 3.18. A result analogous to Corollary 3.15 holds in probability by
resorting to Theorem 3.14 instead of Theorem 3.13 in the proof.

4 Application to a 1D advection-diffusion-reaction
equation

In this section, we apply the general theory presented in Section 3 to elliptic
one-dimensional problems, such as the Poisson equation and an advection-
diffusion-reaction (ADR) equation.

We adopt Corollary 3.15 as the main tool. In particular, we provide
estimates for α, β, κs, Cµ, γM , νN and ‖νN,M‖1, and then deduce suitable
hypotheses on m and M such that the CORSING method recovers the best
s-term approximation us to u. All the recovery results of the section are
given in expectation, but they can be easily converted in probability (see
Remark 3.18).

Let us first fix the notation. Consider Ω = (0, 1), U = V = H1
0 (Ω) and

(u, v)U = (u, v)V =

∫
Ω
u′(x)v′(x) dx,

resulting in ‖ · ‖U = ‖ · ‖V = | · |H1(Ω), the H1(Ω)-seminorm. Moreover,
we introduce two Hilbert bases of H1

0 (Ω). The first one is the hierarchical
multiscale basis [33, 13], defined as

H`,k(x) := 2−
`
2H(2`x− k), ∀x ∈ [0, 1],

for every ` ∈ N0, k = 0, . . . , 2`− 1 and with H(x) := max(0, 1
2 − |x−

1
2 |), for

any x ∈ [0, 1], ordered according to the lexicographic mapping

j 7→ (`(j), k(j)) := (blog2(j)c, j − 2blog2(j)c).
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The second one is the rescaled sine function basis

Sr(x) :=

√
2

rπ
sin(rπx), ∀x ∈ [0, 1], ∀r ∈ N.

For further details concerning these bases, see [6, Section 5]. It is easy to
check that both bases are orthonormal with respect to (·, ·)U .

With reference to [6], when the following combination of trial and test
functions is employed

ψj = H`(j),k(j), ϕq = Sq,

we denote the approach by CORSING HS. On the contrary, when the roles
of the trial and test functions are switched, we denote it by CORSING SH.
In both cases, HS and SH, we observe that Hypothesis 1 is fulfilled and that
K = I. Thus, in particular, from (24), κs = 1.

As the reference problem, we consider the one-dimensional ADR equation
over Ω, with Dirichlet boundary conditions{

−u′′ + bu′ + ηu = f in Ω

u(0) = u(1) = 0,
(43)

with b, η ∈ R and f : (0, 1)→ R, corresponding to the weak problem

find u ∈ H1
0 (Ω) : (u′, v′) + b(u′, v) + η(u, v) = (f, v), ∀v ∈ H1

0 (Ω), (44)

where (·, ·) denotes the standard inner product in L2(Ω).

4.1 The Poisson equation (HS).

First, we deal with the Poisson equation, corresponding to (43) with b = η =
0, whose weak formulation is

find u ∈ H1
0 (Ω) : a∆(u, v) = (f, v), ∀v ∈ H1

0 (Ω). (45)

where a∆(u, v) := (u′, v′). In such a case, we denote the local a-coherence
by µN∆ . The inf-sup and continuity constants of a∆(·, ·) are α = β = 1.

We can prove the following result for the CORSINGHS procedure applied
to (45).

Proposition 4.1. Fix a maximum hierarchical level L ∈ N, corresponding
to N = 2L+1−1. Then, for every ε ∈ (0, 2−1/3] and s ≤ 2N/e, provided that

M ≥ CMsN, m ≥ Cms logM [s log(N/s) + log(s/ε)],

for suitable constants Cm and CM , and chosen the upper bound νN as

νNq :=
8

πq
, ∀q ∈ N,
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Figure 1: Sharpness of the upper bound (47) with N = 127 and M = 2047.

the CORSING HS solution to (45) fulfills

E[|TKû− u|H1(Ω)] < 5|us − u|H1(Ω) + 2Kε,

for every K > 0 such that |u|H1(Ω) ≤ K, with TK defined as in (38). In
particular, two possible upper bounds for CM and Cm are

CM ≤
80

3π2
≈ 2.70 and Cm ≤

840

π

(
1 +

1

log 3

)
≈ 511.

Proof. An explicit computation yields the exact stiffness matrix entries (the
dependence of ` and k on j is omitted)

a∆(H`,k,Sq) =
4
√

2

π

2
`
2

q
sin

(
πq

2`

(
k +

1

2

))
sin2

(π
4

q

2`

)
. (46)

Using Definition 2.3, employing the inequalities sin2(x) ≤ 1 on the first sine
and sin4(x) ≤ min{1, |x|} on the second sine, for every x ∈ R, we have

|a∆(H`,k,Sq)|2 ≤
32

π2

2`

q2
sin4

(π
4

q

2`

)
≤ min

{
32

π2

2`

q2
,

8

πq

}
,

and, thus, we obtain the upper bound

µN∆,q ≤ min

{
32

π2

2L

q2
,

8

πq

}
. (47)

Figure 1 shows that this bound is sharp. Considering the first argument of
the minimum in (47), on noticing that 2L = (N + 1)/2, we obtain∑

q>M

µN∆,q ≤
32

π2

N + 1

2

∑
q>M

1

q2
≤ 16

π2
(N + 1)

[
1

(M + 1)2
+

∫ ∞
M+1

1

q2
dq
]

=
16

π2

N + 1

M + 1

[
1

M + 1
+ 1

]
≤ 20

π2

N + 1

M + 1
≤ 80

3π2

N

M
.
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The fourth and fifth relations hinges on the assumption L ≥ 1, that implies
N ≥ 3. Consequently, assuming M ≥ N we have also M ≥ 3. This implies
1/(M + 1) ≤ 1/4 (fourth relation) and (N + 1)/(M + 1) ≤ 4N/(3M) (fifth
relation). Thus, in view of Corollary 3.15, we can pick

Cµ =
80

3π2
and γM = 1.

Now, to bound ‖νN,M‖1, which is required by Corollary 3.15, we deal with
the second argument of the minimum in (47) and set

νNq :=
8

πq
.

This choice leads to the estimate

‖νN,M‖1 =
8

π

M∑
q=1

1

q
≤ 8

π

[
1 +

∫ M

1

1

q
dq
]

=
8

π
(1+logM) ≤ 8

π

(
1 +

1

log 3

)
logM,

(48)
since M ≥ 3. Thus, combining the lower bound for m and M in Corollary
3.15 with (48), we conclude the proof.

Remark 4.2. The upper bound sin4(x) ≤ min{1, |x|} can be improved as
sin4(x) ≤ min{1, 0.68 |x|}. This change leads to rescale the value of Cm by
a factor 0.68, i.e., Cm ≈ 347.

Remark 4.3. The choice νNq = 8/(πq) is suboptimal. If we choose the sharper
upper bound

νNq = min

{
32

π2

2L

q2
,

8

πq

}
,

the term logM in the lower bound to m can be replaced by logN . Indeed,
in this case

‖νN,M‖1 .
N∑
q=1

1

q
+N

M∑
q=N+1

1

q2
. logN+N

(
1

N
− 1

M

)
. logN+1−1

s
. logN.

4.2 ADR equation (HS)

We consider problem (43) and state the following result.

Proposition 4.4. Fix a maximum hierarchical level L ∈ N, corresponding
to N = 2L+1−1. Then, for every ε ∈ (0, 2−1/3] and s ≤ 2N/e, provided that

M & sN,
|b|
M
. 1,

|η|
M2
. 1,

m & s(logM + |b|2 + |η|2)[s log(N/s) + log(s/ε)],
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and chosen the upper bound νN such that

νNq ∼
1

q
+
|b|2

q3
+
|η|2

q5
, ∀q ∈ N,

the CORSING HS solution to (44), with η > −2, fulfills

E[|TKû− u|H1(Ω)] <

(
1 +

4 + 2
√

2|b|+ 2|η|
1 + min(0, η/2)

)
|us − u|H1(Ω) + 2Kε,

for every K > 0 such that |u|H1(Ω) ≤ K, with TK defined as in (38).

Proof. The argument is the same as in Proposition 4.1, thus we will just
highlight the different parts. The precise values of the asymptotic constants
will not be tracked during the proof.

First, a straightforward computation gives

a(H`,k,Sq) =
4
√

2

π

2
`
2

q
sin2

(π
4

q

2`

)[(
1 +

η

(πq)2

)
sin
(πq

2`
(k + 1

2)
)

− b

πq
cos
(πq

2`
(k + 1

2)
)]
.

Hence, using the same upper bounds as in Proposistion 4.1, we obtain

|a(H`,k,Sq)|2 . min

{
2`

q2
,
1

q

}(
1 +
|b|2

q2
+
|η|2

q4

)
,

and, consequently,

µNq . min

{
N

q2
,
1

q

}(
1 +
|b|2

q2
+
|η|2

q4

)
. (49)

Considering the first argument of the minimum in (49), yields∑
q>M

µNq . N

[ ∑
q>M

1

q2
+ |b|2

∑
q>M

1

q4
+ |η|2

∑
q>M

1

q6

]

. N

[
1

M
+
|b|2

M3
+
|η|2

M5

]
.
N

M
.

The second inequality hinges on estimates of the sums by suitable integrals,
whereas the third one is implied by the hypotheses |b|/M . 1 and |η|/M2 .
1.

Now, considering the second argument of the minimum in (49), we have
the upper bound

νNq ∼
1

q
+
|b|2

q3
+
|η|2

q5
, ∀q ∈ N,
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and, consequently, the `1-norm of its truncation fulfills

‖νN,M‖1 ∼
M∑
q=1

1

q
+

M∑
q=1

|b|2

q3
+

M∑
q=1

|η|2

q5
. logM + |b|2 + |η|2.

Finally, we notice that (2) and (3) hold with

α = 1 + min
(

0,
η

2

)
, β = 1 +

|b|√
2

+
|η|
2
,

thanks to the Poincaré inequality
√

2‖v‖L2(Ω) ≤ |v|H1(Ω), ∀v ∈ H1
0 (Ω).

The thesis is now a direct consequence of Corollary 3.15.

4.3 The Poisson equation (SH)

We prove a recovery result for the CORSING SH method applied to the
Poisson problem (45).

Proposition 4.5. For every ε ∈ (0, 2−1/3] and s ≤ 2N/e, there exist two
positive constants Cm and CM such that, provided

M ≥ CM
√
sN, m ≥ Cms log(M)[s log(N/s) + log(s/ε)],

with M of the form M = 2L+1 − 1 for some L ∈ N, and chosen the upper
bound νN as

νNq =
1

2`(q)−1
, ∀q ∈ N,

the CORSING SH solution to (45) fulfills

E[|TKû− u|H1(Ω)] ≤ 5|us − u|H1(Ω) + 2Kε,

for every K > 0 such that |u|H1(Ω) ≤ K, with TK defined as in (38) and where
α and β are defined by (2) and (3), respectively. In particular, two possible
upper bounds for CM and Cm are

CM ≤
π√
3
≈ 1.81 and Cm ≤

210 log2(e) log(4)

log(3)
≈ 382.

Proof. The proof is analogous to that of Proposition 4.1. We highlight only
the main differences. First, notice that

a∆(Sj ,H`(q),k(q)) = a∆(H`(q),k(q),Sj).

Moving from (46) and employing the inequality sin4(x) ≤ min{|x|4, |x|2},
for every x ∈ R, we obtain

µN∆,q ≤ min

{
π2

8

N2

23`(q)
,

1

2`(q)−1

}
. (50)
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Figure 2: Sharpness of the upper bound (50) with N = 127 and M = 2047.

Figure 2 shows the sharpness of this bound.
Considering the first argument of the minimum in (50), and since M =

2L+1 − 1, we have that

∑
q>M

µN∆,q ≤
π2

8
N2
∑
`>L

2`−1∑
k=0

1

23`
=
π2

8
N2
∑
`>L

1

22`
=
π2

8

N2

22(L+1)

∑
`≥0

1

22`
≤ π2

6

(
N

M

)2

where the change of variable q 7→ (`, k) has been used. Thus, if follows that

Cµ =
π2

6
and γM =

1

2
.

Now, by considering the second argument of the minimum in (50), we select

νNq :=
1

2`−1

and conclude the proof by computing

‖νN,M‖1 =
L∑
`=0

2`−1∑
k=0

1

2`−1
= 2(L+ 1) = 2 log2(e) log(M + 1)

≤ 2 log2(e)
log(M + 1)

log(M)
log(M) ≤ 2 log2(e) log(4)

log(3)
log(M),

since M ≥ 3, thanks to L ≥ 1.

Remark 4.6. The choice of p prompted by Proposition 4.5 (i.e., pq ∼ 2−`(q))
coincides with that in [6], in the R-CORSING SH case, for the corresponding
parameter w, tuned via a trial-and-error procedure.
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4.4 ADR equation (SH)

Considerations analogous to those made in the HS case hold in the advec-
tive/reactive case. It suffices to notice that

(u′, v′) + b(u′, v) + η(u, v) = (v′, u′)− b(v′, u) + η(v, u), ∀u, v ∈ H1
0 (Ω).

Remark 4.7 (Application to more general cases). The main difficulty of the
analysis of CORSING is the derivation of the upper bound νN to the local
a-coherence. For instance, in dealing with the ADR equation with non-
constant coefficients, a highly oscillatory diffusion coefficient can consider-
ably deteriorate νN . One possibility to tackle this issue is to expand the
non-constant coefficient with respect to a suitable basis and then to exploit
Propositions 4.1 and 4.5.

Considering the extension to higher-dimensional problems, first results
are provided in [6, Section 6] where CORSING is applied to the ADR equation
with constant coefficients, with hierarchical pyramids and tensor product of
sine functions. Nevertheless, since the hierarchical pyramids are not or-
thonormal, they can only be used as trial functions in view of the theoretical
setting of this work (Hypothesis 1 does not hold). In such a case, κ−1

s grows
at most logarithmically with respect to N [33]. A less trivial task is to pro-
vide a sharp upper bound νN due to the involved expression of the stiffness
matrix entries.

5 Numerical experiments

We validate the above theoretical results by both a qualitative and a quanti-
tative analysis. For a more complete numerical assessment of CORSING, we
refer to [6].

All the computations have been performed using MatlabR© R2013a 64-
bit (version 8.1.0.604) on a MacBook Pro equipped with a 3GHz Intel Core
i7 processor and 8GB of RAM.

5.1 Sensitivity analysis of the RISP constant

We investigate the sensitivity of α̃ to the constant Cm on the Poisson prob-
lem (45), in the setting HS. We fix the hierarchical level to L = 14, corre-
sponding to N = 32767. We consider the values s = 1, 2, 3, 4, 5 and choose
M = sN , while selecting m according to one of the following rules

Rule 1: m = dCms2 logM log(N/s)e,
Rule 2: m = dCms logM log(N/s)e, (51)
Rule 3: m = dCms log(N/s)e.
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Rule 1 is the one derived in this paper, corresponding to γm = 2. Rule 2
is associated with γm = 1, and Rule 3 is the asymptotically optimal lower
bound that a general sparse recovery procedure requires to be stable (see
[18, Proposition 10.7]). For each choice ofM and m, we repeat the following
experiment 50 times: first, extract τ1, . . . , τm ∈ [M ] i.i.d. with probability
pq ∼ 1/q and build the corresponding matrices D and A; then, generate
1000 random subsets S1, . . . ,S1000 ⊆ [N ] of cardinality s and compute the
non-uniform RISP constant α̃Sk for every k ∈ [1000], corresponding to the
minimum singular value ofDA, using the svd command; finally, approximate
the uniform RISP constant as

α̃ ≈ min
k∈[1000]

α̃Sk .

We consider the three trends in (51) and Cm = 2 or 5. The corresponding
six boxplots relative to the 50 different values of α̃, computed for each s, are
shown in Figure 3, where the crosses represent the outliers.

For Rule 1 and 2, α̃ shows a similar behavior since both trends are ap-
proaching the value of the inf-sup constant, α = 1, when s grows. We notice
that the values computed for Rule 1 are more concentrated around the mean,
implying that γm = 2 is a too conservative choice. For Rule 3, α̃ exhibits
the lowest values, though the corresponding boxplots are quite aligned and
have similar size, especially for Cm = 5, where α̃ seems to stabilize around
the value α/2. For Cm = 2, α̃ approaches the value α/4, even though the
presence of too many outliers suggests that the RISP is not being satisfied
for a reasonable value of ε. However, since Rule 3 is quite satisfactory, espe-
cially for Cm = 5, the quantity logM does not seem to be really necessary
in Rule 2. Moreover, Rule 1 is penalized by both the logM term and the
extra s factor.

5.2 CORSING validation

We test CORSING HS on the one-dimensional Poisson equation (45), choos-
ing the forcing term so that the exact solution be

u(x) := ũ0.2,0.7,1000(x) + 0.3 · ũ0.4,0.4005,2000(x), ∀x ∈ [0, 1] (52)

with

ũx1,x2,t(x) := ux1,x2,t(x)− ex1,x2,t(x),

ex1,x2,t(x) := xux1,x2,t(1) + (1− x)ux1,x2,t(0),

ux1,x2,t(x) := arctan(t(x− x1))− arctan(t(x− x2)),

for every x ∈ [0, 1], 0 ≤ x1 < x2 ≤ 1 and t ∈ R. This particular solution
is designed so as to exhibit two boundary layers at x = 0.2 and x = 0.7,
and a small spike-shaped detail at x = 0.4 (see Figure 4). The hierarchical
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Figure 3: Sensitivity analysis of the RISP constant, with M = sN and m
defined according to (51).

multiscale basis is particularly suited to capture these sharp features. We
fix L = 12, corresponding to N = 8191, s = 50, M = sN and m = 1200.

In Figure 4, we compare u (dashed line) and û (solid line). The exact
solution is well recovered. Both boundary layers are correctly captured and
also the spike-shaped feature is successfully detected. More quantitatively,
the best 50-term relative error is |u − u50|H1/|u|H1 ≈ 0.092 and the rela-
tive error of the CORSING solution is |u − û|H1/|u|H1 ≈ 0.111. Thus, via
CORSING, we loose only the 21% of the best possible accuracy.

Figures 5 and 6, highlight that CORSING is able to find the most impor-
tant coefficients of u. In particular, in Figure 5, the coefficients of u and û
are plotted according to the lexicographic ordering, whereas in Figure 6 they
are shown in two dimensions: level ` is the vertical axis, and each level is
divided horizontally into 2` parts, corresponding to k = 0, . . . , 2`−1, (left to
right). The color plots refer to |u`,k| (left) and |û`,k| (right), in logarithmic
scale. It is remarkable the capability of CORSING in detecting the localized
features of the solution (see the isolated vertical line in Figure 6 (right)).

5.3 Convergence analysis

We now perform a convergence analysis of CORSING HS applied to (45),
showing that the mean error shares the same trend as the best s-term ap-
proximation error, as predicted by the theoretical results. In particular, the
forcing term f is chosen such that the exact solution be

u(x) := Cu(1− x)(exp(100x)− 1),
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Figure 7: Convergence analysis: mean error ± standard deviation and best
s-term approximation error. Case γm = 2 (right) and γm = 1 (left).

where Cu is chosen such that |u|H1 = 1. We take L = 11, correspond-
ing to N = 4095. For s = 4, 8, 16, 32, we define M = sN and m =
dCmsγm logM log(N/s)e for γm = 1, 2, and for different values of Cm. For
every combination of γm and Cm, we run 100 CORSING experiments and
show the mean error obtained ± the standard deviation, computed using
the unbiased estimator. In the case γm = 1, we select Cm = 0.25, 0.5, 0.75,
whereas for γm = 2, we consider Cm = 0.01, 0.03, 0.05. The values of Cm are
smaller for γm = 2, in order to ensure that m < N for every s.

The results are shown in Figure 7. The mean error reaches the best
s-term approximation rate, that is proportional to 1/s.

6 Conclusions

We presented a rigorous formalization and provided a theoretical analysis of
the CORSING (COmpRessed SolvING) method [6]. Our analysis essentially
relies on the concepts of local a-coherence and restricted inf-sup property
(RISP). In particular, we showed how suitable hypotheses on the local a-
coherence are sufficient to guarantee the RISP. As a consequence, we pro-
vided estimates of the CORSING solution with respect to the best s-term
approximation error in expectation (Theorem 3.13) and in probability (The-
orem 3.14). This general theory has been applied to the case of the one-
dimensional ADR equation with constant coefficients, and numerical exper-
iments confirm the theoretical results.

Important issues are still open. For instance, the application of our theo-
retical results to more general cases, such as one-dimensional ADR equation
with non-constant coefficients and the two- or three-dimensional case, is not
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a trivial extension of the results presented here (see Remark 4.7). Also the
case of non-orthonormal test functions is an interesting open problem and
the arguments employed here probably need to be substantially modified.

However, this first theoretical analysis of the method highlights the im-
portance of the local a-coherence and the RISP as powerful picklocks, capable
to cast the compressed sensing philosophy into the PDEs setting.
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