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Abstract

An effective methodology for dealing with data extracted from clinical
heart failure databases and the Public Health Database is proposed. A
model for recurrent events is used for modeling the occurrence of hospital
readmissions in time, thus deriving a suitable way to compute individual
cumulative hazard functions. Estimated cumulative hazard trajectories are
then treated as functional data, and their relation to clinical relevant re-
sponses is studied in the framework of generalized functional linear models.

1 Introduction

Heart failure is a degenerative disease known worldwide as one of the most
important causes of hospitalization among the eldest in the population. Since
the frequency of crises undergone by a given patient increases along time, a
growing employment of health care resources in terms of money, structures and
personnel is needed. The necessity of a cost-effective solution for the care of this
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and other chronic pathologies has led to the use of telemedicine as a possible
srategy (see Capomolla et al. (2004), Giordano et al. (2008) and Scalvini et al.
(2004)).

The basic idea of telemonitoring is to keep the patient at home and to in-
struct her/him about the use of monitoring instruments, which send registered
information (ECG, body weight, heart frequency, etc.) to the health institution
by a network connection. The physician in charge evaluates received data to
properly manage the home care program, for example by modifying drug doses
and by scheduling visits.

Telemonitoring databases contain information, like duration of the telemoni-
toring period, number of ECGs transmitted to the hospital, NYHA1 class of the
patient, clinical parameters at starting and ending times, etc., mostly regarding
the telemonitoring period itself. Telemonitoring outcome, i.e. the conclusion of
the planned period (usually 6 months) without interruption by adverse events,
should be related to the patients’ clinical history to get some insight into the
effectiveness and applicability of this strategy. For this reason, we consider
Hospital Dimission Forms (Schede di Dimissione Ospedaliera, briefly SDO) ex-
tracted from Public Health Databases, which gather detailed information about
hospitalization periods. The use of hospitalization information to study tele-
monitoring outcome is an innovative approach, since no standard methodology
exists to exploit this kind of data. Heart failure is a pathology that alternates
phases of stability to sudden worsenings of the patient’s condition; for this reason
it is not possible to assume a stationary pattern for these events. Dealing with
time dependent observations of localized events, a natural modeling approach,
yet new to the field of telemonitoring, is to consider each patient’s hospitaliza-
tions as points of a non stationary, doubly stochastic counting process. The
model we consider derives from the class of models introduced in Limnios and
Nikulin (2000), and applied in Peña et al. (2007) to the study of intervention
effects after cancer relapse. This class of models is very general, and allows us to
take into account many aspects that influence hospitalization risk. Moreover, it
enables us to compute the realized trajectories of the cumulative hazard process
underlying the hospitalizations counting process, constructing longitudinal data
that summarize complex characteristics of the patient’s clinical history. Cumu-
lative hazard processes are then studied in the light of functional data analysis
techniques (see Ramsay and Silverman (2005) for a general presentation of the
subject), and used to construct a generalized functional linear model.

The paper is structured as follows. Section 2 describes the theoretical and
methodological framework: the model for recurrent events is introduced; then
smoothing of cumulative hazard functions obtained by realized trajectories of the
recurrent event processes and dimensional reduction performed via functional
principal components are detailed; moreover, generalized functional linear mod-

1The New York Heart Association (NYHA) classification divides in four classes the extent
of heart failure: 1 is the less severe, 4 the most.
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els are presented. Section 3 presents the motivating application, practical issues
and results. Finally, Section 4 contains some concluding remarks and discussion
of future works.

2 Theoretical framework

2.1 Model for recurrent events

Let (Ft)t∈I be a filtration associated to the probability space (Ω,F ,P), with
I = [0, τ ]. We define the counting process (N(t))t∈I adapted to (Ft)t∈I as
follows:

N(t) =
∞∑
j=0

I{Sj ≤ t, Sj ≤ τ}, (1)

where Sj represents the calendar time of the j-th occurrence of the observed
event and τ represents a random censoring time for the process.

N is a submartingale such that, for every stopping time T , N(T ) is uniformly
integrable, then the Doob-Meyer decomposition theorem states that there exists
a unique predictable, non decreasing, cadlag and integrable compensator (or
cumulative hazard) process (Λ(t))t∈I such that

M = N − Λ (2)

is a zero-mean, uniformly integrable martingale (see, for example, Andersen et al.
(1993)). Hence the distribution of event times is completely characterized by the
knowledge of process Λ, on which modeling efforts should then be focused. We
assume that

Λ(t) =

∫ t

0
C(s)λ(s)ds, (3)

where C(s) = I{s ≤ τ} is the at-risk process, and (λ(s))s∈I is called hazard
function, or intensity process.

A wide variety of models for the intensity process can be found in literature,
ranging from Poisson processes to the Cox model (1972), additive models, frailty
and dynamic models (see for instance Aalen et al. (2006) and Andersen et al.
(1993) for presentation and discussion of various possibilities). Our choice for
the target problem is the following form of intensity: for i = 1, ..., n subjects
with covariate vector Xi(t) = (Xi1(t), ..., Xiq(t))

T (eventually time-dependent),
we have

λ(t|Xi) = λ0[Ei(t)]αNi(t
−)eβ

TXi(t), (4)

where λ0(·) is an unknown baseline hazard function, Ei is a time warping func-
tion, called effective age, α is a real parameter and β = (β1, ..., βq)

T a q-
dimensional vector of real coefficients.

The model assumed in equation (4) is a specification of the general class of
models proposed in Peña et al. (2007), which is very flexible, and thus capable
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of capturing many different possible behaviors of recurrent events processes.
With respect to the general model presented in Peña et al. (2007), we choose to
account for unobserved heterogeneity by using the dynamic component αNi(t

−)

instead of a frailty variable, i.e. a multiplicative random effect, which usually
masks the entity of population hazard when frail subjects get right censoring
for decease (see Aalen et al. (2006) for a discussion on frailty and dynamic
models). It is worth mentioning also that computations without random effects
are more stable and faster to carry out. A dependence of intensity from process
state of the form αNi(t

−) has been chosen because of its clear interpretation: in
fact, values of α higher than 1 indicate that a new event implies a worsening
of the patient’s condition, increasing future rehospitalization risk, viceversa for
α values lower than 1. Moreover, in absence of information about the shape
of Ei two natural choices can be made: perfect repair, which corresponds to
Ei(t) = t − tNi(t−), with tNi(t−) being the last process jump time before time
t, and minimal repair, which is the identity function. Since a perfect restoring
of health status after a hospitalization, modeled with perfect repair, seems too
optimistic, we use Ei(t) = t for each i = 1, ..., n.

Adding a censoring variable to account for different observation times, the
model for cumulative hazard can be written as follows, for patients i = 1, ..., n

Λi(t|Xi) =

∫ t

0
Ci(s)λ0(s)α

Ni(s
−) exp[βTXi(s)]ds, (5)

where Ci(s) = I{s ≤ τi} (i.e., subjects have different censoring times τi, assumed
to be mutually independent). Independent censorship as defined in Kalbfleisch
and Prentice (1980) can be reasonably assumed for the considered problem, as
we will deepen in the following.

2.2 Cumulative hazard smoothing and reconstruction

Semiparametric estimation of cumulative hazard, as proposed in Peña et al.
(2007), produces a step function estimate of baseline hazard Λ0(t), which has
the following expression: defining tj as the j-th observed jump time of the
aggregated process N•(t) =

∑n
i=1Ni(t) and τ = maxi=1,...,nτi

Λ̂0(t) =
∑
tj≤t

1∑n
i=1Ci(tj)α̂

Ni(t
−
j )eβ̂

T
Xi(tj)

, t ∈ (0, τ ],

where α̂ and β̂ are maximum likelihood estimates of α and β.
Assuming the real Λ0 function to be absolutely continuous, we deal with the

issue of smoothing its estimate Λ̂0, successively moving on to the reconstruction
of cumulative hazard process realizations for each patient.

The function Λ0(t) has two a priori characteristics that we want to the
smoothing procedure to preserve: increasing monotonicity and Λ0(0) = 0. A
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fast and efficient way of smoothing functional data while enforcing desired con-
straints has been proposed in He and Ng (1999). The method consists in a
minimum absolute deviation estimate of coefficients for a B-spline basis: given
a set of observations {(xi, yi)}i=1,...,m from function y(x) to be smoothed, a
set of knots {u0 = 0, u1, ..., uk = τ} and a fixed polynomial degree d, find
a∗ = (a∗0, ..., a

∗
k+d−1)

T such that

a∗ = argmina∈Rk+d

m∑
i=0

|yi −
k+d−1∑
j=0

ajB
(d)
j (xi)|; (6)

B
(d)
0 (t), ..., B

(d)
k+d−1(t) is the B-spline basis of degree d on the chosen set of knots.

If basis functions of polynomial degree d = 1, 2 are used, then monotonicity, con-
vexity and pointwise constraints can be written as linear constraints, and since
the quantity to minimize can also be written as a linear objective function the
problem can be solved with linear programming techniques, whose efficiency and
reliability are ascertained. Using (0, Λ̂0(0)), (t1, Λ̂0(t1)), (t2, Λ̂0(t2)), ...) as obser-
vations, the application of this method provides the smooth desired estimate
Λ̃0.

We then need to reconstruct the realizations of processes Λi(t) for every
patient i = 1, ..., n under the chosen model, since in the following we will treat
cumulative hazard functions as functional data. Given the particular formulation
of our model for cumulative hazard, we can rewrite it in a form that allows to
use directly the smoothed estimate Λ̃0(t) instead of an estimate of λ0(t). For

i = 1, ..., n, we set 0 = t
(i)
0 and let (t

(i)
1 , ..., t

(i)
Ni(t)

) be the jump times for patient
i; then

Λi(t) =

∫ t

0
λ0(s)e

Ni(s
−) logα+βTXi(s)ds

=

Ni(t)∑
k=0

∫ t
(i)
k+1

t
(i)
k

λ0(s)e
k logα+βTXi(s)ds. (7)

Here we consider the case of a covariate vector XT
i (t) = (Xd

i
T
,Xc

i
T ), i =

1, ..., n, whereXd
i = (Xi1(t), ..., Xind(t))

T is a vector of derivable functions, while
Xc

i = (Xi(nd+1)(t), ..., Xi(nc+nd)(t))
T is a vector of stepwise constant functions

with discontinuities corresponding to jumps of Ni(t); hence we split also the
parameter vector β using βd = (β1, ..., βnd)

T and βc = (βnd+1, ..., βnd+nc)
T , so

that β = (βTd ,β
T
c )T . Defining PX(t) =

∫ t
0 λ0e

βd
TXd

i (s)ds and integrating by
parts we obtain

PX(t) = Λ0(t)e
βTdX

d
i (s) −

∫ t

0
Λ0(s)β

T
d [Xd

i (s)]
′eβ

T
dX

d
i (s)ds, (8)

where [Xd
i (s)]

′ =
(
dXi1(s)
ds , ...,

dXind (s)

ds

)T
.
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Plugging PX(t) into (7) leads to the expression

Λi(t) =

Ni(t)∑
k=0

ek logα+β
T
c X

c
i (t

(i)
k )
[
PX(t

(i)
k+1)− PX(t

(i)
k )
]
. (9)

This form allows us to perform only one integration to obtain (8), which is com-
puted substituting Λ0(t) with its smoothed estimate Λ̃0(t), and to reconstruct
the realizations Λ̃i(t) by adding process jumps information.

As a validation of the coherence of the employed model, it is possible to
perform a comparison of the average functions of counting and cumulative hazard
processes: taking conditional expectation in (2) we notice that E[Λi(t)|Xi(t)] =
E[Ni(t)|Xi(t)], for i = 1, ..., n. The comparison is not straightforward when
curves have different censoring times; in particular, if faster growing curves have
higher probability of earlier censoring (this is common for risk curves, as frailer
patients die earlier), the naive pointwise sample mean is not monotone and it
underestimates expected values for large times. Let (f(t))t∈I be a stochastic
process and let τ be a stopping time for this process; then if f = (f1, ..., fn)T is
a set of trajectories of the process f , and {τ1, ..., τn} a set of realizations of τ ,
we can define the pointwise sample mean function as

µn[f ](t) =
1

n(t)

n∑
i=1

fi(t)Ci(t), ∀t ∈ [0, τ ], (10)

where n(t) =
∑n

i=1Ci(t), being Ci(t) = I(t ≤ τi) the censoring process for
subject i and τ = maxi=1,...,nτi. Instead of using this estimator, we will use the
following

µ̃n[f ](xk) =
k∑
j=1

n∑
i=1

Ci(xj)

n(xj)

[
fi(xj)− fi(xj−1)

]
, k = 1, ...,m, (11)

with xj ∈ {x0, ..., xm}, a given set of time points which include τ1, ..., τn, and
µ̃[f ]n(x0) =

∑n
i=1 fi(x0)Ci(x0) =

∑n
i=1 fi(x0), since we are considering only

right censored processes. This estimator, applied to {Λ̃i}i=1,...,n and {Ni}i=1,...,n

enforces monotonicity by definition if all sample curves are monotone; more-
over, as pointed out in Crowell (1992), this estimator is unbiased and consis-
tent, and in the case of highly positively correlated increments it is likely that
Var{µ̃n[f ](t)} < Var{µn[f ](t)}.

2.3 Functional principal component analysis

A common strategy to deal with complex or high-dimensional data is to perform
a dimensional reduction. In the case of functional data, this can be done by
representing data on a functional basis, and choosing only relevant components
of the expansion.
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Consider a functional ANOVA decomposition of data, as suggested in Müller
and Stadtmüller (2005)

Λ̃i(t) = µ(t) +Di(t) + εi(t), i = 1, ..., n (12)

where µ(t) = E[Λ̃(t)], Di(t) is a residual for subject i and εi(t) a noise term.
One of the possibilities for representing Λ̃i(t) is to use Karhunen-Loève decom-
position, which states that functional principal components of a set of functions
defined on domain T form a complete orthonormal basis of L2(T ) (see Ferraty
and Vieu (2006) for some theoretical results and Ramsay and Silverman (2005)
for details on the implementation of functional principal components analysis,
briefly FPCA). At this point we will assume that functional data are known on
a common support T , thus enabling us to estimate a common Karhunen-Loève
basis.

Given the covariance operator

G(t, s) = E

[{
Λ̃(t)− E

[
Λ̃(t)

]}{
Λ̃(s)− E

[
Λ̃(s)

]}]
for (t, s) ∈ I × I,

the eigenvalue problem to be solved in order to obtain principal components is
to find the couples {(ψk, νk)}i∈N such that∫

T
G(t, s)ψk(s)ds = νkψk(t). (13)

Once eigenfunctions {ψk}k∈N and eigenvalues {νk}k∈N have been found, we can
express the functional ANOVA decomposition (12) through the following repre-
sentation

Λ̃i(t) = µ(t) +
∞∑
k=1

ξikψk(t) + εi(t), i = 1, ..., n,

where ξik =
∫
T Di(s)ψk(s)ds is the k-th score for subject i.

Eigenfunction-eigenvalue couples {(ψk, νk)}k∈N completely explain modes of
variation in the data, in the sense that eigenfunctions represent orthonormal
directions of decreasing variability with respect to the explained variances ex-
pressed by corresponding eigenvalues. Thanks to the basis expansion given by
principal components, it is possible to represent data using just the first K el-
ements of {ψk}k∈N, the linear combination of which will naturally be a good
approximation for the original curves. The interpretation of eigenvalues as vari-
ances is useful also to determine a criterion of choice for most relevant modes.
Since

∑K
k=1 νi represents variance captured by the first K components, we can

choose K so that the proportion of variance described by these components is
higher than a threshold c, i.e. ∑K

k=1 νk∑m
k=1 νk

≥ c,
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where m is the number of abscissa values on which functional data are known,
which is an upper bound to the number of components that can be estimated.

We then use the following approximation

Λ̃Ki (t) = µ(t) +
K∑
k=1

ξikψk(t) + εi(t), i = 1, ..., n.

For the sake of notation simplicity, from now on we will write Λ̃i(t) even when
its truncated basis expansion Λ̃Ki (t) will be used.

2.4 Generalized functional linear models

Dimensional reduction allows to catch the characterizing features of functional
data and to describe them with few variables, i.e. the principal components
scores, which can be used as explanatory variables in subsequent model com-
ponents. The methodology described in the following consists in formulating a
generalized functional linear model that can be interpreted as a classical GLM
in which FPCA scores and other time independent variables are exploited as
covariates.

Let us consider a response variable Y such that Yi ∼ EF (θi, η), i.e. Yi for
i ∈ 1, ..., n belongs to the exponential family

fYi(y|θi, η) = exp

(
yθi − b(θi)

η
+ c(y, η)

)
E[Yi] = b′(θi)

Var[Yi] = ηb′′(θi)

with b and c given functions; the link function g is s.t. E[Yi] = g−1(θi) (i.e.
g−1 = b′). The dependence on observable functions and variables is assumed to
be linear and is given by

θi =

∫
T
Di(t)δ(t)dt+ zTi γ

≈
∫
T
δ(t)

K∑
k=1

ζikψk(t)dt+ zTi γ.

where δ : T 7→ R is a functional parameter, γ a vector of time-independent
parameters to be estimated and z is a vector of time-independent covariates.
Notice that we used the K most relevant principal components to represent
Di(t). If δ(·) is also represented with respect to the principal components basis,
i.e. δ(t) =

∑K
j=1 δjψj(t), for the orthonormality of {ψk}k∈N we obtain

θi =

K∑
k=1

ζikδk + zTi γ.
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We notice that in this formulation the first K FPCA scores can be used to
summarize the features of hazard functions with a finite dimensional vector,
thus providing a powerful methodology to use functional data in many different
classical models for multivariate data. Thanks to this formulation, we reduce
the functional estimation problem to the multivariate estimation of parameter
vectors γ and δ = (δ1, ..., δK)T .

3 Application in telemonitoring data analysis and re-
sults

In Lombardia region an experimentation of heart failure telemonitoring was
started in 2003, involving 34 health care institutions (see Nuove Reti Sanitarie,
http://ftp.cefriel.it/nrs/ for an overview of program and protocols). Four
studies (Criteria, Piano Urbano, Nuove Reti Sanitarie and Telemaco) were de-
voted to collect, under prior informed consent, information about telemonitor-
ing periods, then gathered in a comprehensive database. Each record of this
database refers to a telemonitoring period, and contains anagraphic data of the
involved patient, number of transmitted electrocardiograms, NYHA class (de-
scribing the extent of heart disease), number of occurred hospitalizations and
other relevant clinical quantities.

The enrollment protocol adopted during the period 2004–2008 includes adult
citizens of Lombardia with a NYHA class of III or IV who have experienced
at least one hospitalization for heart failure during the 6 months preceding the
beginning of telemonitoring. The telemonitoring period is planned for a 180 days
duration, with possible re-enrollment under particular conditions. It period may
be interrupted, by protocol, if a hospitalization lasting more than 8 days occurs,
or because of the need of an intervention; however, other ”external” events may
force interruption, such as a change of residence, or the decision by the patient
herself/himself to stop the therapy (drop-out), or decease.

Since data regarding telemonitoring periods are not sufficient to operate an
observational study about effectiveness of this care strategy, we requested an
interrogation of regional administrative databases, to obtain hospital discharge
data (SDOs) stored during the five years of interest. Each one of these records
contains extensive information about a single hospitalization, such as date, du-
ration, DRG2, drugs received and other data of clinical and economic interest.
Each subject contained in the telemonitoring database has been identified by a
code, derived from an anonymizing procedure applied to his/her identity num-
ber, and used to retrieve from the SDO database the hospitalization histories of
these patients in period 2004–2008. The crossing and matching of information
between this two databases resulted in the constitution of an initial sample of
1081 patients.

2Diagnosis Related Group is a system for the classification of patients discharged from
hospital, based on the type of resources used during the stay.
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Since we decided to use the period before telemonitoring to predict telemon-
itoring outcome, a new dataset was built including hospitalizations happened
between 1st January 2004 and the start date of the telemonitoring period. More-
over, a further selection of 747 patients is considered in the second part of the
analysis, to include only subjects whose telemonitoring period started at least
in 2006; in this way, a 2 years time window before telemonitoring is available for
all of them for predictive tasks.

The risk of hospital readmission is obviously null during each hospital stay,
which typically lasts some days (mean hospitalization length = 17.18 ± 28.03).
We deal with this issue by removing the hospital stay period from the process
time count, and merging consecutive hospitalization periods, which have to be
considered as a single one. The time variable is expressed in days passed from
1st January 2004.

The following analyses have been carried out using the statistical software
R (R Development Core Team (2009)). For hazard estimation package gcmrec

(González et al. (2009)) has been used, while package cobs (Ng and Maechler
(2009)) has been used for constrained smoothing.

3.1 Hazard estimation

The first step of the analysis is the estimation of model (5) for cumulative hazard
functions, using the procedure explained in section 2.2.

The beginning of telemonitoring is introduced as a censoring time τi, i =
1, ..., n, for the hospitalization counting processes, assuming that this event does
not influence preceding hospitalizations; this assumption seems reasonable, on
the basis of the enrollment protocol for telemonitoring.

Since cumulative hazard processes are intended to provide a synthesis of time
dependent variables, subject age is included as covariate Xi(s) in (5), providing
the following model for patients i = 1, ..., n

Λi(t|Xi) =

∫ t

0
Ci(s)λ0(s)α

Ni(s
−) exp[βXage

i (s)]ds,

with Ci(s) = I{s ≤ τi}.
Estimated baseline cumulative hazard Λ̂0(t) is represented in Figure 1 (dashed

line), while parameter estimates are shown in Table 1. We notice that parameter
α, describing the effect of a new event on the risk of future rehospitalizations,
is significantly higher than 1, according to a one-sided hypothesis test with null
hypothesis α ≤ 1; this means that a new event represents an increase of re-
hospitalization risk. Parameter β, related to the age covariate, is surprisingly
negative, meaning that the risk of rehospitalization is slightly lower for older pa-
tients; this could be explained by the fact that in the old population considered
(the subjects’ mean age is 67.82 ± 11.19) subjects survived up to a higher age
are the less frail ones. In Figure 1 we can also note that the cumulative baseline
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hazard function Λ̂0(t) has a convex behavior, describing a gradual increase of
instantaneous risk due to the disease, and common to the whole population.

estimate std. dev. p-value

α 1.21 0.00887 < 2 · 10−16∗
β -0.00336 0.00172 0.051

Table 1: Results of hazard parameters estimation. p-value ∗ refers to a test with
null hypothesis α ≤ 1. Both tests are carried out with a normal approximation
for maximum likelihood estimators.

Since the nonparametric estimator used for Λ0(t) produces a step function,
we perform a smoothing of this estimate with the method exposed in section
2.2; for the B-Spline basis, we choose order 2 and 20 equally spaced knots.
A comparison between the nonparametric estimate and the B-spline smoothed
estimate is shown in Figure 1.

Figure 1: Results of baseline cumulative hazard function estimation: Λ̂0 (dashed
line) and its smoothed version Λ̃0 (solid line).
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Once Λ̃0 has been computed, we can reconstruct individual cumulative haz-
ard processes, letting Xi(t) = Xd

i (t) = Xage
i (t), which represents the age of

patient i. We can express age as a variable explicitly dependent on time (in
days) writing Xi(t) = ai + t/365, where ai represents the age of patient i at the
beginning of the observation period. It is then possible to rewrite (9) as

Λ̃i(t) =

Ni(t)∑
k=0

ek logα+βai
[
PX(t

(i)
k+1)− PX(t

(i)
k )
]
,

with PX(t) =
∫ t
0 λ0(s)e

β
365

sds.
The result of reconstruction of cumulative hazard processes for all the consid-

ered patients is shown in Figure 2(a). To verify that condition E[Λi(t)|Xi(t)] =
E[Ni(t)|Xi(t)] holds, it is possible to visualize average functions of point pro-
cesses and cumulative hazard processes, using estimators (11). To address the
problem of computing this conditional expectation, we can split the sample in
classes of similar initial age Ac1 , Ac2 , ..., and assume that averaging on subjects
from the same class produces a good approximation both to E[Λi(t)|Xi(t)] and
to E[Ni(t)|Xi(t)]. For example, the martingale residuals trajectories and their
average for subjects belonging to the age class A60 = {i : ai ∈ (55, 65]} are

shown in Figure 2(b); we can see that residuals M̂i(t) = Ni(t)− Λ̃i(t), i ∈ A60,
seem to have the expected behavior.

(a) Reconstructed realizations of cumulative
hazard processes

(b) Trajectories of residuals M̂i(t) = Ni(t) −
Λ̃i(t), i ∈ A60, and their average (thick line).

Figure 2: Estimated trajectories and martingale residuals.

Figure 3 shows a comparison between average curves computed using point-
wise estimator (10) and estimator (11) respectively; in the left panel we notice
that the curves estimated with (10) are non monotone and heavily biased due to
right censoring, while average curves estimated with (11), depicted in the right
panel, suffer from censoring only at the right end of the domain, since available
data become fewer with the progression of time.
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(a) Curves obtained with the pointwise esti-
mator (10).

(b) Curves obtained with estimator (11).

Figure 3: Average curves of counting process data (dashed lines) and of recon-
structed cumulative hazard functions (solid lines) for age class A60.

3.2 Generalized functional linear model estimation

Exploiting the methodology described in sections 2.3 and 2.4, estimated cumu-
lative hazard functions are used to predict telemonitoring outcome, defined as
a binary variable with value 1 if telemonitoring has regular conclusion and 0 if
the period is terminated by an adverse event, i.e. hospitalization or surgical in-
tervention. A dimensional reduction of functional data is operated via principal
component analysis, then FPCA scores and other variables of clinical interest
are used as covariates in a logistic regression model.

To avoid the problem of censoring, as previously mentioned, we choose pa-
tients for which at least 2 years of clinical history before telemonitoring are
available in our records. Moreover, we restrict the time window for our analyses
to exactly the 2 years preceding telemonitoring. Doing so, we obtain a dataset
of n=747 curves, evaluated on a grid of length m=730 (hazard functions were
computed on a vector for abscissa characterized by daily spacing).

Before proceeding to principal component analysis, curves are centered by
subtracting their mean function µ̃n(t) (which coincides with estimator µn(t) for
the operated subselection of data); moreover, the noise term εi(t) is discarded,
since curves have already been estimated with smoothness.

We shall now select the components to consider in the subsequent analysis.
A simple and effective criterion consists in choosing the first K components,
such that their associated eigenvalues explain a proportion of variance c > 95%.
This criterion leads to the choice of the first K = 2 components, as detailed in
Table 2.

Figure 4 shows in the top panels the 2 relevant functional principal compo-
nents, and in the bottom panels µ̃n(t)±νkφk(t), k = 1, 2. The first component is
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ν1 ν2
value 777.04 45.64
% variance 94.08 5.53
cum. % variance 94.08 99.60

Table 2: First K = 2 eigenvalues obtained with FPCA.

monotone increasing, and is highly dominant in the description of data curves,
while the second one is decreasing, characterizing curves that do not grow very
fast also on a long time period.

Figure 4: In the upper panels, first K = 2 eigenfunctions obtained with FPCA;
in the lower panels, representation of µn(t) (solid line) and µn(t)± νkφk(t) (’+’
or ’−’ respectively), k = 1, 2.

The scores of principal components 1 and 2 are then considered as vari-
ables that sum up the characteristics of data functions. They are used, to-
gether with the categorical variables sex, diagnosis and etiology, to predict
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telemonitoring outcome; in particular, variables diagnosis and etiology refer to
the last hospitalization before telemonitoring. The former has 3 levels (con-
gestive, left or unspecified heart failure), while the latter 5 levels (hyperten-
sive, hyschaemic, primary, valve, other). We decided to fit a logistic regression
model, which can be set in the framework exposed in section 2.4 with link func-
tion g(pi) = logit(pi) = log

( pi
1−pi

)
, being pi the probability of normal outcome.

Hence, model takes the following form

pi =

exp

(∑2
k=1 ζikδk + zTi γ

)

1 + exp

(∑2
k=1 ζikδk + zTi γ

) , for i = 1, ..., n,

where pi = E(Yi|zi, ζi1, ζi2) and matrix Z = [1, z1, ..., zn]T is composed by vari-
ables sex, diagnosis and etiology.

The model output of logistic regression is reported in Table 3. Scores 1 and 2
are both significant, and their signs are coherent with a possible interpretation:
principal component 1 is an increasing function, so a larger score, which repre-
sents a steeper cumulative hazard process, implies a lower probability of regular
conclusion; component 2, instead, is decreasing, and its estimated coefficient has
opposite sign, indicating that patients who have lower cumulative hazard for
longer times have higher probability of normal conclusion of the telemonitor-
ing period. Also, we can notice a slight dependence on etiology; in particular,
valvular etiology seems to increase the probability of early conclusion of telemon-
itoring caused by an adverse event. Instead, there is no significant difference in
the probability of adverse events neither among men and women, nor among
subjects with different types of diagnoses.

As a measure of goodness of fit we computed the Brier score, which is equal
to 0.1614, and the AIC, which is equal to 688.6547.

4 Concluding remarks

In this work a novel approach to the analysis of telemonitoring data has been
proposed, aimed at getting the precise insight of information on the patient’s
health status and clinical history from clinical and Public Health Databases.
Database integration, counting process modeling of hospitalizations and gener-
alized functional mixed models are methodologies that can be applied to the
study of many different pathologies, thanks to their flexibility and capability of
dealing with complex data.

The counting process model is a natural way of representing the occurrence
of hospitalizations in time, and enables us to include in the proposed model
a large piece of information contained in Public Health Databases to describe
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Parameter Estimate Std. Error p-value

γ0 (Intercept) 14.8108 437.0832 0.9730
γ1 (Sex) 0.1557 0.2167 0.4726
γ2 (Etiology - Hypertensive) 0.0669 0.4469 0.8810
γ3 (Etiology - Hyschaemic) -0.0187 0.2506 0.9405
γ4 (Etiology - Primary) -0.0819 0.3199 0.7981
γ5 (Etiology - Valve) -0.8867 0.4673 0.0790
γ6 (Etiology - Other) -0.6599 0.3593 0.1248
γ7 (Diagnosis - Congestive) -13.8204 437.0832 0.9748
γ8 (Diagnosis - Left) -13.1587 437.0832 0.9760
γ9 (Diagnosis - Unspecified) -13.6343 437.0833 0.9751
δ1 (FPCA score 1) -0.0144 0.0039 0.0003
δ2 (FPCA score 2) 0.0567 0.020490 0.0056

Table 3: Estimates, standard errors and p-values for parameters of logistic re-
gression.

the clinical history of a patient. The model used is very general and allows to
describe complex dynamics in an easily interpretable form.

Although it can seem contradictory to define functional data as ”synthetic”,
it is clear that complex, heterogeneous data are easier to study if their effect is
resumed with a process that represents their combined effect on instantaneous
risk. The obtained trajectories are thus studied in the framework of generalized
functional linear models, which offer a powerful tool to analyze dependencies and
to perform classification and prediction in a wide range of applications, also in
such complex practical contexts as the one considered. The use of FPCA offers
the possibility to perform dimensional reduction of functional data, allowing to
use well estabilished methods for GLM estimation and inference in a multivariate
setting, and borrowing strength from both techniques.

Future improvements include the selection and use of various different time
dependent and independent variables to study telemonitoring effectiveness, mod-
ifications in quality of life and mortality.

The application of the proposed methodology is a novelty in the study of
home telemonitoring, representing the first example of use of information from
Public Health Databases to reconstruct the patients’ clinical histories in a syn-
thetic way. This methodology has led to interesting results that could have an
impact on the planning of this care strategy. Further development of this frame-
work in cooperation with medical staff could lead to the definition of a useful
tool for telemonitoring outcome prediction, which could be used to support long
term decisions and to perform health care assessment.
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González, J. R., E. H. Slate, and E. A. Peña (2009). gcmrec: General class of
models for recurrent event data. R package version 1.0-3.

He, X. and P. Ng (1999). Cobs: Qualitatively constrained smoothing via linear
programming. Computational Statistics 14, 315–337.

Kalbfleisch, J. D. and R. L. Prentice (1980). The Statistical Analysis of Failure
Data. John Wiley & Sons, New York.

17



Limnios, N. and M. Nikulin (Eds.) (2000). Recent Advances in Reliability Theory:
Methodology, Practice and Inference. Birkhäuser Verlag AG.
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