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Abstract

Predicting the electrical behavior of the heart, from the cellular scale to the tissue
level, relies on the formulation and numerical approximation of coupled nonlinear
dynamical systems. These systems describe the cardiac action potential, that is the
polarization/depolarization cycle occurring at every heart beat that models the time
evolution of the electrical potential across the cell membrane, as well as a set of ionic
variables. Multiple solutions of these systems, corresponding to different model inputs,
are required to evaluate outputs of clinical interest, such as activation maps and action
potential duration. More importantly, these models feature coherent structures that
propagate over time, such as wavefronts. These systems can hardly be reduced to
lower dimensional problems by conventional reduced order models (ROMs) such as,
e.g., the reduced basis (RB) method. This is primarily due to the low regularity
of the solution manifold (with respect to the problem parameters) as well as to the
nonlinear nature of the input-output maps that we intend to reconstruct numerically.
To overcome this difficulty, in this paper we propose a new, nonlinear approach which
exploits deep learning (DL) algorithms to obtain accurate and efficient ROMs, whose
dimensionality matches the number of system parameters. Our DL approach combines
deep feedforward neural networks (NNs) and convolutional autoencoders (AEs). We show
that the proposed DL-ROM framework can efficiently provide solutions to parametrized
electrophysiology problems, thus enabling multi-scenario analysis in pathological cases.
We investigate three challenging test cases in cardiac electrophysiology and prove that
DL-ROM outperforms classical projection-based ROMs.

Introduction

The electrical activation of the heart is the main responsible of its contraction, is the
result of two processes: at the microscopic scale, the generation of ionic currents through
the cellular membrane producing a local action potential; and at the macroscopic scale,
the propagation of the action potential from cell to cell in the form of a transmembrane
potential [1–3]. This latter process can be described by means of partial differential
equations (PDEs), suitably coupled with systems of ordinary differential equations
(ODEs) modeling the ionic currents in the cells.

Solving this system using a high-fidelity, full order model (FOM) such as, e.g., the
finite element (FE) method, is computationally demanding. Indeed, the propagation
of the electrical signal is characterized by the fast dynamics of very steep fronts, thus
requiring very fine space and time discretizations. [3–5]. Using a FOM may quickly
become unaffordable if such a coupled system must be solved for several values of

June 5, 2020 1/28



parameters representing either functional or geometric data such as, e.g., material
properties, initial and boundary conditions, or the shape of the domain. Multi-query
analysis is relevant in a variety of situations: when analysing multiple scenarios, when
dealing with sensitivity analysis and uncertainty quantification (UQ) problems in order to
account for inter-subject variability [6–8], for parameter estimation or data assimilation,
in which some unknown (or unaccessible) quantities characterizing the mathematical
model must be inferred from a set of measurements [9–13].

Conventional projection-based reduced order models (ROMs) built, e.g., through the
reduced basis (RB) method [14], yields inefficient ROMs when dealing with nonlinear
time-dependent parametrized PDE-ODE system as the one arising from cardiac electro-
physiology. The three major computational bottlenecks shown by such kind of ROMs
for cardiac electrophysiology are due the fact that:

- the linear superimposition of modes, on which they are based, would cause the
dimension of the ROM to be excessively large to guarantee an acceptable accuracy;

- evaluating the ROM requires the solution of a dynamical system, which might be
unstable unless the size of time step ∆t is very small;

- the ROM must also account for the dynamics of the gating variables, even when
aiming at computing just the electrical potential. This fact entails an extremely
intrusive and costly hyper-reduction stage to reduce the solution of the ODE
system to a few, selected mesh nodes [15].

To overcome the limitations of projection-based ROMs, we propose a new, non-
intrusive ROM technique based on deep learning (DL) algorithms, which we refer to as
DL-ROM. Combining in a suitable way a convolutional autoencoder (AE) and a deep
feedforward neural network (DFNN), the DL-ROM technique enables the construction
of an efficient ROM, whose dimension is as close as possible to the number of parameters
upon which the solution of the differential problem depends. A preliminary numerical
assessment of our DL-ROM technique has already been presented in [16], albeit on
simpler – yet challenging – test cases.

The proposed DL-ROM technique is a combination of a data-driven with a physics
based model approach. Indeed, it exploits snapshots taken from a set of FOM solutions
(for selected parameter values and time instances) and deep neural network architectures
to learn, in a non-intrusive way, both (i) the nonlinear trial manifold where the ROM
solution is sought, and (ii) the nonlinear reduced dynamics. In a linear ROM built, e.g.,
thorugh proper orthogonal decomposition (POD), the former quantity is nothing but a
set of basis functions, while the latter task corresponds to the projection stage in the
subspace spanned by these basis functions. Here, our goal is to show that DL-ROM
can be effectively used to handle parametrized problems in cardiac electrophysiology,
accounting for both physiological and pathological conditions, in order to provide fast
and accurate solutions. The proposed DL-ROM is computationally efficient during the
testing stage, that is for any new scenario unseen during the training stage. This is
particularly useful in view of the evaluation of patient-specific features to enable the
integration of computational methods in current clinical platforms.

DL techniques for parametrized PDEs have previously been proposed in other contexts.
In [17–20] feedforward neural networks have been employed to model the reduced
dynamics in a less intrusive way, that is, avoiding the costs entailed by projection-based
ROMs, but still relying on a linear trial manifold built, e.g., through POD. In [21–23]
the construction of ROMs for nonlinear, time-dependent problems has been replaced by
the evaluation of ANN-based regression models. In [24,25] the reduced trial manifold
where the approximation is sought has been modeled through ANNs thus avoiding the
linear superimposition of POD modes, on a minimum residual formulation to derive the
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ROM [25], or without considering an explicit parameter dependence in the differential
problem that is considered [24]. In all these works, coupled problems have never been
considered. Moreover, very often DL techniques have been exploited to address problems
which require only a moderate dimension of projection-based ROMs. We demonstrate
that our DL-ROM provides accurate results by constructing ROMs with extremely
low-dimension in prototypical test cases. These tests exhibit all the relevant physical
features which make the numerical approximation of parametrized problems in cardiac
electrophysiology a challenging task.

Materials and methods

Cardiac electrophysiology

Muscle contraction and relaxation drive the pump function of the heart. In particular,
tissue contraction is triggered by electrical signals self-generated in the heart and
propagated through the myocardium thanks to the excitability of the cardiac cells, the
cardiomyocites [3, 26]. When suitably stimulated, cardiomyocites produce a variation
of the potential across the cellular membrane, called transmembrane potential. Its
evolution in time is usually referred to as action potential, involving a polarization
and a depolarization in the early stage of every heart beat. The action potential is
generated by several ion channels (e.g., calcium, sodium, potassium) that open and
close, and by the resulting ionic currents crossing the membrane. For instance, coupling
the so-called monodomain model for the transmembrane potential u = u(x, t) with
a phenomenological model for the ionic currents – involving a single gating variable
w = w(x, t) – in a domain Ω representing, e.g., a portion of the myocardium, results in
the following nonlinear time-dependent system

∂u

∂t
− div(D∇u) + Iion(u,w) = Iapp(x, t) (x, t) ∈ Ω× (0, T ),

∂w

∂t
+ g(u,w) = 0 (x, t) ∈ Ω× (0, T ),

∇u · n = 0 (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = 0, w(x, 0) = 0 x ∈ Ω.

(1)

Here t denotes a rescaled time1, n denotes the outward directed unit vector normal to
the boundary ∂Ω of Ω, whereas Iapp is an applied current representing, e.g., the initial
activation of the tissue. The nonlinear diffusion-reaction equation for u is two-ways
coupled with the ODE system, which must be in principle solved at any point x ∈ Ω;
indeed, the reaction term Iion and the function g depend on both u and w. The most
common choices for the two functions Iion and g in order to efficiently reproduce the
action-potential are, e.g., the FitzHugh-Nagumo [28,29], the Aliev-Panfilov [27,30] or
the Mitchell and Schaeffer models [31]. The diffusivity tensor D usually depends on
the fibers-sheet structure of the tissue, affecting directional conduction velocities and
directions. In particular, by assuming an axisymmetric distribution of the fibers, the
conductivity tensor takes the form

D(x) = σtI + (σl − σt)f0 ⊗ f0, (2)

where σl and σt are the conductivities in the fibers and the transversal directions.
When a simple phenomenological ionic model is considered, such as the FitzHugh-

Nagumo or the Aliev-Panfilov (A-P) model, the ionic current takes the form of a cubic

1Dimensional times and potential [27] are given by t̃[ms] = 12.9t and ũ[mV ] = 100u − 80. The
transmembrane potential ranges from the resting state of −80 mV to the excited state of +20 mV.

June 5, 2020 3/28



nonlinear function of u and a single (dimensionless) gating variable plays the role of a
recovery function, allowing to model refractariness of cells. In this paper, we focus on
the Aliev-Panfilov model, which consists in taking

Iion(u,w) = Ku(u− a)(u− 1) + uw,

g(u,w) =
(
ε0 +

c1w

c2 + u

)
(−w −Ku(u− b− 1)).

(3)

The parameters K, a, b, ε0, c1, c2 are related to the cell. Here a represents an oscillation
threshold, whereas the weighting factor ε0 + c1w

c2+u was introduced in [27] to tune the
restitution curve to experimental observations by adjusting the parameters c1 and c2;
see, e.g., [1–3,32] for a detailed review. In the remaining part of the paper, we denote
by µ ∈ P ⊂ Rnµ a parameter vector listing all the nµ input parameters characterizing
physical (and, possibly, geometrical) properties we might be interested to vary; P is a
subset of Rnµ , denoting the parameter space. Relevant physical situations are those
in which input parameters affect the diffusivity matrix D (through the conduction
velocities) and the applied current Iapp; previous analyses focused instead on the gating
variable dynamics (through g) and the ionic current Iion, see [15].

Projection-based ROMs

From an algebraic standpoint, the spatial discretization of system (1) through the
Galerkin-finite element (FE) approximation [33] yields the following nonlinear dynamical
system for u = u(t;µ), w = w(t;µ), representing our full order model (FOM):

M(µ)
∂u

∂t
= A(µ)u + Iion(t,u,w;µ) + Iapp(t;µ), t ∈ (0, T ),

∂w

∂t
(t;µ) = g(t,u,w;µ), t ∈ (0, T ),

u(0) = u0, w(0) = w0.

(4)

Here A(µ) ∈ RN×N is a matrix arising from the diffusion operator (thus including
the conductivity tensor D(µ) = D(x;µ), which can vary within the myocardium due
to fiber orientation and conditions, such as the possible presence of ischemic regions);
M(µ) ∈ RN×N is the mass matrix; Iion,g ∈ RN are vectors arising from the nonlinear
terms; Iapp ∈ RN is a vector collecting the applied currents; finally, u0,w0 ∈ RN are the
initial data, possibly depending on µ. The dimension N is related to the dimension of
the FE space and, ultimately, depends on the size h > 0 of the computational mesh used
to discretize the domain Ω. Note that the system of ODEs arises from the collocation of
the ODE (1)2 at the nodes used for the numerical integration.

The intrinsic dimension of the solution manifold

S = {u(t;µ) | t ∈ [0, T ) and µ ∈ P ⊂ Rnµ} ⊂ RN , (5)

obtained by solving (4) when (t;µ) varies in [0, T )× P, is usually much smaller than
N and, under suitable conditions, is at most nµ + 1 � N , where nµ is the number
of parameters – in this respect, the time independent variable plays the role of a
parameter. For this reason, ROMs attempt at approximating S by introducing a suitable
trial manifold of lower dimension. The most popular approach is proper orthogonal
decomposition (POD), which exploits a linear trial manifold built through the singular
value decomposition of a matrix S ∈ RN×Ns collecting a set of FOM snapshots

S =
[
u(t1;µ1) | . . . | u(tNt ;µ1) | . . . | u(t1;µNtrain) | . . . | u(tNt ;µNtrain)

]
;
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this is a set of solutions obtained for Ntrain selected input parameters at (a subset,
possibly, of) the time instants {tk}Ntk=1 in which (0, T ) is partitioned for the sake of time
discretization. The most common choice is to set tk = k∆t where ∆t = T/(Nt − 1).

When using a projection-based ROM, the approximation of u(t;µ) is sought as a
linear superimposition of modes, under the form

u(t;µ) ≈ Vun(t;µ), (6)

thus yielding a linear ROM, in which the columns of the matrix V = [ζ1, . . . , ζn] ∈ RN×n
form an orthonormal basis of a space Vn, an n-dimensional subspace of RN . In the case
of POD, Vn provides the best n-rank approximation of S in the Frobenius norm, that
is, ζ1, . . . , ζn are the first n (left) singular vectors of S corresponding to the n largest
singular values σ1, . . . , σn of S, such that the projection error is smaller than a desired
tolerance εPOD. To meet this requirement, it is sufficient to choose n as the smallest
integer such that ∑N

i=1 σ
2
i∑Ns

i=1 σ
2
i

> 1− ε2
POD,

i.e., the energy retained by the last Ns − n POD modes is equal or smaller than ε2
POD.

The approximation of w is given instead by its restriction

w(t;µ) ≈ Pwm(t;µ),

to a (possibly, small) subset of m degrees of freedom, where m � n, at which the
nonlinear term Iion is interpolated exploiting a problem-dependent basis, spanned by the
columns of a matrix Φ ∈ RN×m, which is built according to a suitable hyper-reduction
strategy; see, e.g., [15] for further details. Here P = [e1, . . . , em] ∈ RN×m denotes a
matrix formed by the columns of the N ×N identity matrix corresponding to the m
selected degrees of freedom.

A Galerkin-POD ROM for system (1) is then obtained by (i) first, substituting
equation (6) into equation 4 and projecting it onto Vn; then, (ii) solving the system of
ODEs at m selected degrees of freedom, thus yielding the following nonlinear dynamical
system for un = un(t;µ) and the selected components PTw = PTw(t;µ) of w:

VTM(µ)V
∂un
∂t

+ VTA(µ)VTun

+VTΦ(PTΦ)
−1

Iion(t,PTVun,P
Tw;µ)−VT Iapp(t;µ) = 0, t ∈ (0, T ),

PT ∂w

∂t
+ g(t,PTVun,P

Tw;µ) = 0, t ∈ (0, T ),

un(0) = VTu0, PTw(0) = PTw0.

(7)

This strategy is the essence of the reduced basis (RB) method for nonlinear time-
dependent parametrized PDEs. However, using (7) as an approximation to (4) is
known to suffer from several problems. First of all, an extensive hyper-reduction stage
(exploiting, e.g., the discrete empirical interpolation method (DEIM)) must be performed
in order to be able to evaluate any µ- or u-dependent quantities appearing in (7), that
is, without relying on N -dimensional arrays. Moreover, whenever the solution of the
differential problem features coherent structures that propagate over time, such as steep
wavefronts, the dimension n of the projection-based ROM (7) might easily become very
large, due to the basic linearity assumption, by which the solution is given by a linear
superimposition of POD modes, thus severely degrading the computational efficiency
of the ROM. A possible way to overcome this bottleneck is to rely on local reduced
bases, built through POD after the set of snapshots has been split into Nc > 1 clusters,
according to suitable clustering (or unsupervised learning) algorithms [15].

June 5, 2020 5/28



Deep learning-based reduced order modeling (DL-ROM)

To overcome the limitations of linear ROMs, we consider a new, nonlinear ROM technique
based on deep learning models. First introduced in [16] and assessed on one-dimensional
benchmark problems, the DL-ROM technique aims at learning both the nonlinear trial
manifold (corresponding to the matrix V in the case of a linear ROM) in which we
seek the solution to the parametrized system (1) and the nonlinear reduced dynamics
(corresponding to the projection stage in a linear ROM). This method is not intrusive;
it relies on DL algorithms trained on a set of FOM solutions obtained for different
parameter values.

We denote by Ntrain and Ntest the number of training and testing parameter instances,
respectively; the ROM dimension is again denoted by n� N . In order to describe the
system dynamics on a suitable reduced nonlinear trial manifold (a task which we refer
to as reduced dynamics learning), the intrinsic coordinates of the ROM approximation
are defined as

un(t;µ,θDF ) = φDFn (t;µ,θDF ), (8)

where φDFn (·; ·,θDF ) : R(nµ+1) → Rn is a deep feedforward neural network (DFNN),
consisting in the subsequent composition of a nonlinear activation function, applied to a
linear transformation of the input, multiple times [34]. Here θDF denotes the vector of
parameters of the DFNN, collecting all the corresponding weights and biases of each
layer of the DFNN.

Regarding instead the description of the reduced nonlinear trial manifold, approx-
imating the solution one, S̃ ≈ S (a task which we refer to as reduced trial manifold
learning) we employ the decoder function of a convolutional autoencoder2 (AE) [35,36].
More precisely, S̃ takes the form

S̃ = {fD(un(t;µ,θDF );θD) | un(t;µ,θDF ) ∈ Rn, t ∈ [0, T ) and µ ∈ P ⊂ Rnµ} (10)

where fD(·;θD) : Rn → RN consists in the decoder function of a convolutional AE. This
latter results from the composition of several layers (some of which are convolutional),
depending upon a vector θD collecting all the corresponding weights and biases.

As a matter of fact, the approximation ũ(t;µ) ≈ u(t;µ) provided by the DL-ROM
technique is defined as

ũ(t;µ, θDF , θD) = fD(φDFn (t;µ,θDF );θD). (11)

The encoder function of the convolutional AE can then be exploited to map the FOM
solution associated to (t,µ) onto a low-dimensional representation

ũn(t;µ,θE) = fEn (u(t;µ);θE); (12)

fEn (·;θE) : RN → Rn denotes the encoder function, depending upon a vector θE of
parameters.

Computing the DL-ROM approximation of u(t;µtest), for any possible t ∈ (0, T ) and
µtest ∈ P, corresponds to the testing stage of a DFNN and of the decoder function of

2The AE is a particular type of neural network aiming at learning the identity function

fAE(·;θE ,θD) : x 7→ x̃ with x̃ ' x. (9)

. It is composed by two main parts:

• the encoder function fEn (·;θE) : x 7→ x̃n = fEn (x;θE), where fEn (·;θE) : RN → Rn and n� N ,
mapping the high-dimensional input x onto a low-dimensional code x̃n;

• the decoder function fD(·;θD) : x̃n 7→ x̃ = fD(x̃n;θD), where fD(·;θD) : Rn → RN , mapping
the low-dimensional code x̃n to an approximation of the original high-dimensional input x̃.
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a convolutional AE; this does not require the evaluation of the encoder function. We
remark that our DL-ROM strategy overcomes the three major computational bottlenecks
implied by the use of projection-based ROMs, since:

- the dimension of the DL-ROM can be kept extremely small;

- the time resolution required by the DL-ROM can be chosen to be larger than the
one required by the numerical solution of dynamical systems in cardiac electro-
physiology;

- the DL-ROM can be queried at any desired time instant, without requiring the
solution of a dynamical system until that time;

- the DL-ROM does not require to account for the dynamics of the gating variables,
thus avoiding any hyper-reduction stage. This advantage, already visible when
employing a single gating variable as in the test cases addressed later in this paper,
might become even more effective when dealing with more realistic ionic models
(the so-called I and II generation models), when dozens of additional variables in
the system of ODEs must be accounted for [3].

The training stage consists in solving the following optimization problem, in the
variable θ = (θE ,θDF ,θD), after the snapshot matrix S has been formed:

min
θ
J (θ) = min

θ

1

Ns

Ntrain∑
i=1

Nt∑
k=1

L(tk,µi;θ), (13)

where Ns = NtrainNt and

L(tk,µi;θ) =
ωh
2
‖u(tk;µi)− ũ(tk;µi,θDF ,θD)‖2

+
1− ωh

2
‖ũn(tk;µi,θE)− un(tk;µi,θDF )‖2,

(14)

with ωh ∈ [0, 1]. The per-example loss function (14) combines the reconstruction error
(that is, the error between the FOM solution and the DL-ROM approximation) and the
error between the intrinsic coordinates and the output of the encoder.

The architecture of DL-ROM is the one shown in Fig 1. The encoder function is
used only during the training and validation steps; it is instead discarded during the
testing phase. See [16] for further algorithmic details about the training and the testing
algorithms required to build and evaluate a DL-ROM.

We highlight that the DL-ROM technique does not require to solve a (reduced)
nonlinear dynamical system for the reduced degrees of freedom as in (7); rather, it
evaluates a nonlinear map for any given couple (t,µtest), for each t ∈ (0, T ). Numerical
results are extremely accurate, the mean relative error is indeed below 1% (see, e.g.,
Test 2), even if the causality intrinsic to the parabolic nature of the diffusion-reaction
equation providing the monodomain model is broken when computing the DL-ROM
approximation. Moreover, the map features an extremely low dimension, in the most
favorable scenario equal to nµ + 1. From a computational perspective, remarkable gains
and simplifications can be obtained against a linear ROM, since (i) no hyper-reduction
is required to enhance the evaluation of any µ- or u-dependent quantity, and (ii) even
more interestingly, there is no need to evaluate the dynamics of the recovery variable w
if one is only interested in the electrical potential.
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Fig 1. DL-ROM architecture. DL-ROM architecture used during the training
phase. In the red box, the DL-ROM to be queried for any new selected couple (t,µ)
during the testing phase. The FOM solution u(t;µ) is provided as input to block (A)
which outputs ũn(t;µ). The same parameter instance associated to the FOM, i.e. (t;µ),
enters block (B) which provides as output un(t;µ) and the error between the
low-dimensional vectors (dashed green box) is accumulated. The intrinsic coordinates
un(t;µ) are given as input to block (C) returning the ROM approximation ũ(t;µ).
Then the reconstruction error (dashed black box) is computed.

Results and discussion

We now assess the computational performances of the proposed DL-ROM strategy
on three relevant test cases in cardiac electrophysiology. Our choice of the numerical
tests is aimed at highlighting the performance of our DL-ROM method in challenging
electrophysiology problems, namely pathological cases in portion of cardiac tissues or
physiological scenarios on realistic left ventricle geometries.

The architecture used to perform all the numerical tests is the one reported in the SI
Appendix. To solve the optimization problem (13)-(14) we use the ADAM algorithm [37]
with a starting learning rate equal to η = 10−4. Moreover, we perform cross-validation
by splitting the data in training and validation and following a proportion 8:2 and we
implement an early-stopping regularization technique to reduce overfitting [34].

To evaluate the performance of the DL-ROM, we use the loss function (14) and on
an error indicator defined as

εrel =
1

Ntest

Ntest∑
i=1


√∑Nt

k=1 ||uk(µtest,i)− ũk(µtest,i)||2√∑Nt
k=1 ||uk(µtest,i)||2

 . (15)

Neural networks required by our DL-ROM technique have been implemented by
means of the Tensorflow deep learning framework [38]; numerical simulations have been
carried out on a workstation equipped with an Nvidia GeForce GTX 1070 8 GB GPU.
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Test 1: Two-dimensional slab with ischemic region

We consider the computation of the transmembrane potential in a square slab Ω =
(0, 10 cm)2 of cardiac tissue in presence of an ischemic (non-conductive) region. The
ischemic region may act as anatomical driver of cardiac arrhythmias like tachycardias
and fibrillations. The system we want to solve is a slight modification of equations (1),
accounting for the presence of a non-conductive region which affects both the conductivity
tensor and the ionic current term. The ischemic portion of the domain is modeled by
replacing the conductivity tensor D(x), defined in (2), with D̄(x;µ) = σ(x,µ)D(x),
where the function σ(x,µ) is given by

σ(x;µ) = ρ(x;µ) + σ0(1− ρ(x;µ)),

ρ(x;µ) = 1− exp

(
− (x1 − µ1)4 + (x2 − µ2)4

2α2

)
.

(16)

In this case, nµ = 2 parameters are considered, representing the coordinates of the center

of the scar, belong to the parameter space P = [3.5, 6.5 cm]
2
. Moreover, α = 7 cm2,

σ0 = 10−4, the transversal and longitudinal conductivities are σt = 12.9 · 0.1 cm2/ms
and σl = 12.9 · 0.2 cm2/ms, respectively, and f0 = (1, 0)T , meaning that the tissue fibers
are parallel to the x−axis. Similarly, the ionic current Iion(u,w) in (1) is replaced by
Īion(u,w;µ) = ρ(x;µ)Iion(u,w). The applied current takes the form

Iapp(x, t) = C exp

(
− ||x||

2

β

)
1[0,t̄](t̃),

where C = 100 mA, β = 0.02 cm2 and t̄ = 2 ms. The parameters appearing in (3) are
set to K = 8, a = 0.01, b = 0.15, ε0 = 0.002, c1 = 0.2, and c2 = 0.3, see [39]. The
equations have been discretized in space through linear finite elements by considering
N = 64 × 64 = 4096 grid points. For the time discretization and the treatment of
nonlinear terms, we use a one-step, semi-implicit, first order scheme (see [15] for further
details) by considering a time step ∆t = 0.1/12.9 over (0, T ) with T = 400 ms.

For the training phase, we uniformly sample Nt = 1000 time instances over (0, T ) and
consider Ntrain = 49 training-parameter instances, with µtrain = (3.5 + i0.5, 3.5 + j0.5),
i, j = 0, . . . , 6. The maximum number of epochs is set equal to Nepochs = 10000, the
batch size is Nb = 40 and, regarding the early-stopping criterion, we stop the training
if the loss function does not decrease in 500 epochs. For the testing phase, Ntest = 36
testing-parameter instances µtest = (3.75 + i0.5, 3.75 + j0.5), i, j = 0, . . . , 5, have been
considered.

In Figs 2 and 3 we show the FOM and the DL-ROM solutions, the latter obtained
with n = 3 for the testing-parameter instance µtest = (6.25, 6.25) cm at t̃ = 100 and 356
ms, respectively, together with the relative error εk ∈ RN , for k = 1, . . . , Nt, defined as

εk =
|uk(µtest)− ũk(µtest)|√

1
Nt

∑Nt
k=1 ||uk(µtest)||2

. (17)

While (15) is a synthetic indicator, the quantity defined in (17) is instead a function
of the space independent variable. In Fig 2 the tissue is depolarized except for the
region occupied by scar and surrounding it, which is clearly characterized by a slower
conduction. In Fig 3 the tissue is starting to repolarize and even if the shape of the
ischemic region is not sharply reproduced, the DL-ROM solution is able to capture the
diseased (non-conductive) nature of this portion of tissue.

In Fig 5 we show the action potentials (APs) computed at the six points P1, . . . , P6

reported in Fig 4. The DL-ROM is able to provide an accurate reconstruction of the
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Fig 2. Test 1: comparison between FOM and DL-ROM solutions for a
testing-parameter instance. FOM solution (left), DL-ROM solution with n = 3
(center) and relative error εk (right) for the testing-parameter instance
µtest = (6.25, 6.25) cm at t̃ = 100 ms. The maximum of the relative error εk is 10−3

and it is associated to the diseased tissue.

Fig 3. Test 1: comparison between FOM and DL-ROM solutions for a
testing-parameter instance. FOM solution (left), DL-ROM solution with n = 3
(center) and relative error εk (right) for the testing-parameter instance
µtest = (6.25, 6.25) cm at t̃ = 356 ms. The maximum of the relative error εk is 10−3

and it is associated to the diseased tissue.

AP at almost all points; the maximum error is associated to the point P3, the closest
one to the center of the scar, for t̃ ≥ 200 ms. However, even in this case, the DL-ROM
technique is able to capture the difference, in terms of AP values, between the diseased
and the healthy tissue.

Fig 4. Test 1: location of points Pi. FOM solution evaluated for
µtest = (6.25, 6.25) cm at t̃ = 400 ms together with the points P1, . . . , P6.

The AP variability across the parameter space characterizing both the FOM and
the DL-ROM solutions is shown in Fig 6. Still with a DL-ROM dimension n = 3, we
report the APs for µtest = (µtest, µtest) cm, with µtest = 3.75, 4.25, 4.75, 5.25, 5.75, 6.25,
evaluated at P = (7.46, 6.51) cm. The DL-ROM is able to capture such variability over
P ; moreover, the larger µtest, the smaller the distance between the point P and the scar,
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Fig 5. Test 1: comparison between the FOM and DL-ROM APs at Pi. APs
evaluated for µtest = (6.25, 6.25) cm at points P1, . . . , P6. The DL-ROM, with n = 3, is
able to to sharply reconstruct the AP in almost all the points and the main features are
captured also for the points close to the scar.

with their proximity impacting on the shape and the values of the AP. In particular, for
µtest = 6.25, the point P falls into the grey zone.

Fig 6. Test 1: variability of the FOM and DL-ROM solutions over the
parameter space. FOM (right) and DL-ROM (left) AP variability over P at
P = (7.46, 6.51) cm. The DL-ROM sharply reconstructs the FOM variability over P.

By using the DL-ROM technique and setting the dimension of the nonlinear trial
manifold equal to the dimension of the solution manifold, i.e. n = 3, we obtain an error
indicator (15) of εrel = 2.01 · 10−2. In order to assess the computational efficiency of
DL-ROM, we compare it with the POD-Galerkin ROM relying on Nc local reduced bases;
we report in Table 1 the maximum and minimum number of basis functions, among all
the clusters, required by the POD-Galerkin ROM [14,15] to achieve the same accuracy.

In Fig 7 we compare the CPU time required to solve the FOM (through linear finite
elements) over the time interval (0, T ), with the one needed by DL-ROM with n = 3, and
the POD-Galerkin ROM with Nc = 6 local reduced bases, at testing time, by varying
the FOM dimension N . Here, with testing time we refer, both for the DL-ROM and the
POD-Galerkin ROM, to the time needed to query the ROM over the whole interval (0, T ),
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Table 1. Test 1: dimensions of the POD-Galerkin ROM linear trial
manifolds by varying the number of clusters.

Nc = 1 Nc = 2 Nc = 4 Nc = 6
250 219 200 193

107 35 26

Maximum and minimum dimensions of the local reduced bases (that is, linear trial
manifolds) built by the POD-Galerkin ROM for different numbers Nc of clusters.

by using for each technique the proper time resolution, for a given testing-parameter
instance. Since the DL-ROM solution can be queried at a given time without requiring
any solution of a dynamical system to recover the former time instances, the DL-ROM
can employ larger time windows compared to the time steps required by the solution of
the FOM and POD-Galerkin ROM dynamical systems for the cases at hand. This fact
also has a positive impact on the data used during the training phase3. The speed-up
obtained, for each value of N considered, is reported in Table 1. Both the DL-ROM
and the POD-Galerkin ROM allow us to decrease the computational costs associated to
the computation of the FOM solution for a testing-parameter instance. However, for a
desired level of accuracy, CPU times required by the POD-Galerkin ROM during the
testing phase are remarkably higher than the ones required by a DL-ROM with n = 3.

Fig 7. Test 1: FOM, DL-ROM and POD-Galerkin ROM CPU
computational times. CPU time required to solve the FOM, by DL-ROM at testing
time with n = 3 and by the POD-Galerkin ROM at testing time with Nc = 6 vs. N .
The DL-ROM provides the smallest testing computational time for each N considered.

Both the DL-ROM and the POD-Galerkin ROM depend on the FOM dimension
N . In the case of DL-ROM, the dependency on N at testing time, for a fixed value
of ∆t, is due to the presence of the decoder function; indeed, the process of learning
the reduced dynamics (and so the dimension of the nonlinear trial manifold) does not
depend on the FOM dimension. On the other hand, the dependence of the POD-Galerkin
ROM on the FOM dimension also impacts on the dimension of the local linear trial
manifolds: in general, by increasing N the dimension of each local linear subspace also
increases. Referring to Fig 7 and Table 2, the CPU time required by the DL-ROM at

3Indeed, in order to build the snapshot matrix, we uniformly sample Nt time instances of the FOM
solution over T/∆t = 4000 time steps; for each training parameter instance, only 25% of 4000 snapshots
are retained from the FOM solution in the DL-ROM case, against 4000 snapshots in the POD-Galerkin
ROM case.
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testing time scales linearly with N , instead the one required by the POD-Galerkin ROM
scales linearly with

√
N . In particular, even for the larger FOM dimension considered

(N = 16384 for this test case), our DL-ROM is 19 times faster than the POD-Galerkin
ROM. We are not able to run simulations for N > 16384, because of the limitation of the
computing resources we have at our disposal. Despite the trend in Fig 7 is apparently
not favorable for the DL-ROM technique, practice indicates that the CPU time for
DL-ROM is smaller than the one for the POD-Galerkin ROM for small values of N , in
other words only with very large values of N the POD-Galerkin ROM outperforms the
DL-ROM strategy. Indeed, a linear fitting of the DL-ROM and the POD-Galerkin ROM
CPU times4 in Fig 7 highlights that for N = 65536 and N = 262144, DL-ROM could be
almost 10 and 5 times, respectively, faster than the POD-Galerkin ROM for the same
values of N . Note that the results of this section have been obtained by employing the
DL-ROM on a single CPU, an architecture which is not favorable to neural networks5.
Further improvements are expected when employing our DL-ROM on a GPU for a given
testing-parameter instance.

Table 2. Test 1: DL-ROM and POD-Galerkin ROM vs. FOM speed-up.

N = 256 N = 1024 N = 4096 N = 16384
FOM vs. DL-ROM 472 536 539 412
FOM vs. POD-Galerkin ROM 3 6 12 22

DL-ROM and POD-Galerkin ROM vs. FOM speed-up by varying N . The DL-ROM
speed-up is remarkably higher than the one obtained by using the POD-Galerkin ROM.

In Figs 8 and 9 we show the feature maps of the first convolutional layer of the
encoder function σ1(W k

1 ∗ u1(µtest) + bk1), for k = 1, . . . , 8, in the DL-ROM neural
network when the FOM solution for the testing-parameter instances µtest = (3.75, 3.75)
cm and µtest = (6.25, 6.25) cm at t = 0.2 ms, are provided as inputs. At this stage, the
feature maps retain most of the information present in the FOM solution. Moreover, by
considering the two testing-parameter instances, we observe the translation equi-variance
property [34] that convolutional layers hold when applied to the part of cardiac tissue
corresponding to the scar. Moving to deeper layers, feature maps become increasingly
abstract, and less visually interpretable; however, the extracted high-level features are
still related both to the ischemic region and the electrical activation pattern.

We highlight that since the DL-ROM solution can be evaluated at any desired time
instance without solving any dynamical system, the resulting computational time entailed
by the DL-ROM at testing time are drastically reduced compared to the ones required by
the FOM or the POD-Galerkin ROM to compute solutions at a particular time instance.
In Fig 10 we show the DL-ROM, FOM and POD-Galerkin ROM CPU time needed to
compute the approximated solution at t̄, for t̄ = 1, 10, 100 and 400 ms averaged over
the testing set and with N = 4096. We perform the training phase of the POD-Galerkin
ROM over the original time interval (0, T ) ms and we report the results for Nc = 6,
the number of clusters for which the smallest computational time is obtained. The
DL-ROM CPU time to compute ũ(t̄;µtest) does not vary over t̄ and, by choosing t̄ = T ,
the DL-ROM speed-ups are equal to 7.3× 104 and 6.5× 103 with respect to the FOM
and the POD-Galerkin ROM, with Nc = 6, computational times.

4N = 65536 and N = 262144 for this test case represent FOM dimensions corresponding to mesh
sizes h needed to solve, by means of linear finite elements, the problem on a 3D slab geometry both for
physiological and pathological electrophysiology in the case a ten Tusscher-Panfilov ionic model [40] is
used. This latter would indeed require smaller values of h compared to the Aliev-Panfilov model, due to
the shape of the AP. See, e.g., [41, 42] for further details.

5Indeed, all tests are performed on a node (20 Intel® Xeon® E5-2640 v4 2.4GHz cores), using 5
cores, of our in-house HPC cluster.
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Fig 8. Test 1: activations of the first convolutional layer of the encoder
function for a testing-parameter instance. Feature maps of the first convolutional
layer of the encoder function in the DL-ROM neural network for the testing-parameter
instance µtest = (3.75, 3.75) cm at t̃ = 0.2 ms.

Fig 9. Test 1: activations of the first convolutional layer of the encoder
function for a testing-parameter instance. Activations of the first convolutional
layer of the encoder function in the DL-ROM neural network for the testing-parameter
instance µtest = (6.25, 6.25) cm at t̃ = 0.2 ms.

Test 2: Two-dimensional slab with figure of eight re-entry

The most recognized cellular mechanisms sustaining atrial tachycardia is re-entry [43].
The particular kind of re-entry we deal with in this test case is called figure of eight
re-entry, and can be obtained by solving equations (1). To induce the re-entry, we apply
a classical S1-S2 protocol [3,44]. In particular, we consider a square slab of cardiac tissue
Ω = (0, 2 cm)2 and apply an initial stimulus at the bottom edge of the domain, i.e.

I1
app(x, t) = 1Ω1

(x)1[ti1,t
f
1 ](t̃), (18)

where Ω1 = {x ∈ Ω : y ≤ 0.1}, ti1 = 0 ms and tf1 = 5 ms.
A second stimulus under the form

I2
app(x, t;µ) = 1Ω2(µ)(x)1[ti2,t

f
2 ](t̃), (19)

with Ω2(µ) = {x ∈ Ω : (x− 1)2 + (y − µ)2 ≤ (0.2)2}, ti2 = 70 ms and tf2 = 75 ms, is then
applied. The parameter µ, consisting in the y-coordinate of the center of the second
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Fig 10. Test 1: FOM, POD-Galerkin ROM and DL-ROM CPU
computational times. FOM, POD-Galerkin ROM and DL-ROM CPU computational
times to compute ũ(t̄;µtest) vs. t̄ averaged over the testing set. Thanks to the fact that
the DL-ROM can be queried at any time istance it is extremely efficient in computing
ũ(t̄;µtest) with respect to both the FOM and the POD-Galerkin ROM.

circular stimulus, ranges in the parameter space P = [0.8, 1.1] cm. This choice has been
made to obtain a re-entry elicited and sustained until T = 175 ms.

We restrict our study to the time interval [95, 175] ms, i.e. we do not consider the
first time instances in which the re-entry has not arisen yet, being them equal over
P. The time step is ∆t = 0.2/12.9. We consider N = 256 × 256 = 65536 grid points,
implying a mesh size h = 0.0784 mm; this mesh size is recognized to correclty solve
the tiny transition front developing during depolarization of the tissue, as highlighted
in [41,42]. The fibers are parallel to the x-axis and the conductivities in the longitudinal
and transversal directions to the fibers are σl = 2× 10−3 cm2/ms and σt = 3.1× 10−4

cm2/ms, respectively. The parameters appearing in (3) are set to K = 8, a = 0.1,
b = 0.1, ε0 = 0.01, c1 = 0.14, and c2 = 0.3, see [45].

The snapshot matrix is built by solving problem (1), completed with the applied
currents 18 and 19, by means of linear finite elements and a semi-implicit scheme,
over Nt = 400 time instances. Moreover, we consider Ntrain = 13 training-parameter
instances uniformly distributed in the parameter space and Ntest = 12 testing-parameter
instances, each of them corresponding to the midpoint of two consecutive training-
parameter instances. The maximum number of epochs is set equal to Nepochs = 6000,
the batch size is Nb = 3, due to the high GPU memory occupation of each sample.
Regarding the early-stopping criterion, we stop the training if the loss does not decrease
in 1000 epochs.

In Fig 11 we show the FOM solution and the DL-ROM one obtained by setting
the reduced dimension to n = 5, for the testing-parameter instance µtest = 0.9625
cm, at t̃ = 141.2 ms and t̃ = 157.2 ms, together with the relative error εsk ∈ RN , for
k = 1, . . . , Nt, defined as

εsk =
|uk(µtest)− ũk(µtest)|

‖uk(µtest)‖1
. (20)

The trend of the relative error (20) over time, for the selected testing-parameter
instance µtest = 0.9625 cm, is depicted in Fig 12; we highlight that the error is always
smaller than 1%. In particular, in Fig 12 we show the mean (over the domain), the
median, and the first and third quartile of the relative error, as well as its minimum.
The interquartile range (IQR) shows that the distribution of the error is almost uniform
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Fig 11. Test 2: comparison between FOM and DL-ROM solutions for a
testing-parameter instance. FOM solution (left), DL-ROM one (center) with n = 5,
and relative error εsk (right) at t̃ = 141.2 ms (top) and t̃ = 157.2 ms (bottom), for the
testing-parameter instance µtest = 0.9625 cm. The relative error εsk is below the 2%
both for t̃ = 141.2 ms and t̃ = 157.2 ms, the maximum value of the error being
associated to very few points of the domain.

over time, and that the maximum error is associated to the first time instant – this
latter being the time instant at which the solution is most different over P.

Fig 12. Test 2: trend of the relative error over time. Relative error εsk vs. t̃
with n = 5 for the testing-parameter instance µtest = 0.9625 cm (the red band indicates
the IQR). The distribution of the error maintains uniform over time.

In Fig 13 we show the FOM and the DL-ROM solutions, the latter obtained by
setting n = 5, for the last time instance, i.e. at t̃ = 175 ms, for µtest = 0.8125 cm and
µtest = 1.0625 cm, in order to point out the variability of the solution over the parameter
space and the ability of DL-ROM to capture it.

We now compare the computational times required by the FOM, the POD-Galerkin
ROM (for different values of Nc) and the DL-ROM, keeping for all the same degree
of accuracy achieved by DL-ROM, i.e. εrel = 7.87 × 10−3, and running the code on
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Fig 13. Test 2: comparison between FOM and DL-ROM solutions for
different testing-parameter instances. FOM solution (left), DL-ROM one (center)
with n = 5, and relative error εsk (right) at t̃ = 175 ms, for the testing-parameter
instance µ = 0.8125 cm (top) and µ = 1.0625 cm (bottom). The relative error εsk is
below the 2.8% both for µ = 0.8125 cm and µ = 1.0625 cm, the maximum value of the
error being associated to very few points of the domain.

the hardware each implementation is optimized for – a CPU for the FOM and the
POD-Galerkin ROM, a GPU6 for the DL-ROM. In Table 3 we report the CPU time
needed to compute the FOM solution, and the POD-Galerkin ROM (at the testing
phase), both on a full 64 GB node (20 Intel® Xeon® E5-2640 v4 2.4GHz cores), and the
GPU time required by the DL-ROM to compute 875 time instances (the same number of
time instants considered in the solution of the dynamical systems associated to the FOM
and the POD-Galerkin ROM) at testing time, by fixing its dimension to n = 5, on an
Nvidia GeForce GTX 1070 8 GB GPU. For the sake of completeness, we also report the
computational time required by the DL-ROM when employing a single CPU node. It is
evident that a POD-Galerkin ROM, built employing a global reduced basis (Nc = 1),
is not amenable to a complex and challenging pathological cardiac electrophysiology
problem like the figure of eight re-entry. Using a nonlinear approach, for which the
solution manifold is approximated through a piecewise linear trial manifold (as in the
case of Nc = 2 or Nc = 4 local reduced bases) reduces the online computational time.
However, the DL-ROM still confirms to provide a more efficient ROM, almost 5 (or 2)
times faster on the CPU, and 39 (or 19) faster on the GPU, than the POD-Galerkin
ROM with Nc = 2 (or Nc = 4) local reduced bases.

In Fig 14 we show the trend of the error indicator (15) over the testing set versus the
CPU computational time both for the DL-ROM and the POD-Galerkin ROM at testing
phase. Slight improvements of the performance of DL-ROM, in terms of accuracy, are
obtained for a small increase of the DL-ROM dimension n, coherently with our previous
findings reported in [16]. Indeed, the DL-ROM is able, also in this case, to accurately
represent the solution manifold by a reduced nonlinear trial manifold of dimension

6Indeed, at each layer of a neural network thousands of identical computations must be performed.
The most suitable hardware architectures to carry out this kind of operations are GPUs because (i) they
have more computational units (cores) and (ii) they have a higher bandwidth to retrieve from memory.
Moreover, in applications requiring image processing, as CNNs, the graphics specific capabilities can be
further exploited to speed up calculations.
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Table 3. Test 2: FOM, POD-Galerkin ROM and DL-ROM computational
times.

time [s] FOM/ROM dimensions
FOM (CPU) 382 N = 65536
DL-ROM (CPU/GPU) 15/1.2 n = 5
POD-Galerkin ROM Nc = 1 (CPU) 103 n = 1538
POD-Galerkin ROM Nc = 2 (CPU) 70 n = 1158, 751
POD-Galerkin ROM Nc = 4 (CPU) 33 n = 435, 365, 298, 45

POD-Galerkin ROM and DL-ROM computational times along with FOM and reduced
trial manifold(s) dimensions. DL-ROM provides a more efficient ROM with respect the
POD-Galerkin ROMs.

nµ + 1 = 2; for the case at hand, we report the results for n = 5 (very close to the
intrinsic dimension nµ + 1 = 2 of the problem, and much smaller than the POD-Galerkin
ROM dimension), providing slightly smaller values of the error indicator (15) than in
the case n = 2. Regarding instead the POD-Galerkin ROM, in Fig 14 we report results
obtained for different tolerances εPOD = 10−4, 5 ·10−4, 10−3, 5 ·10−3, 10−2. In the cases
Nc = 2 and Nc = 4 we only report the results related to the smallest POD tolerances,
which indeed allow us to meet the prescribed accuracy on the approximation of the
gating variable, which would otherwise impact dramatically on the overall accuracy of
the POD-Galerkin ROM. Moreover, we do not consider more than Nc = 4 local reduced
bases in order not to generate too small local linear subspaces. As shown in Fig 14, the
proposed DL-ROM outperforms the POD-Galerkin ROM in terms of both efficiency and
accuracy.

Fig 14. Test 2: trend of the error indicator versus the CPU testing
computational time. Error indicator εrel vs. CPU testing computational time for
different values of Nc and εPOD. The DL-ROM outperforms the POD-Galerkin ROM
in terms of both efficiency and accuracy.

In Fig 15 we show the solutions obtained through the POD-Galerkin ROM with
Nc = 2 (top) and Nc = 4 (bottom) local reduced bases, along with the relative error
defined in (20), for the testing-parameter instance µtest = 0.9625 cm at t̃ = 157.2 ms.
In both cases, we have considered the setting yielding the most efficient POD-Galerkin
ROM approximation, which require about 30 (40, respectively) seconds to be evaluated.
By comparing Fig 15 and Fig 11 (bottom), we observe that the DL-ROM outperforms
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the POD-Galerkin ROM in terms of accuracy.

Fig 15. Test 2: POD-Galerkin ROM solutions for different
testing-parameter instances. POD-Galerkin ROM solution (left) and relative error
εsk (right) for Nc = 2 (top) and Nc = 4 (bottom) at t̃ = 157.2 ms, for µtest = 0.9625 cm.

In Fig 16 we show the action potentials obtained through the FOM, the DL-ROM and
the POD-Galerkin ROM (with Nc = 4 local reduced bases), for the testing-parameter
instance µtest = 0.9625 cm, and evaluated at P1 = (0.64, 1.11) cm and P2 = (0.69, 1.03)
cm. These two points are close to the left core of the figure of eight re-entry, where a
shorter action potential duration, and lower values of AP due to the meandering of the
cores, are observed. The AP dynamics at those points is accurately captured by the
DL-ROM, while the POD-Galerkin ROM might fail in this respect.

Fig 16. Test 2: FOM, POD-Galerkin ROM and DL-ROM APs at P1 and
P2. AP obtained through the FOM, the DL-ROM and the POD-Galerkin ROM with
Nc = 4, for the testing-parameter instance µtest = 0.9625 cm, at P1 = (0.64, 1.11) cm
and P2 = (0.69, 1.03) cm. The POD-Galerkin ROM approximations are obtained by
imposing a POD tolerance εPOD = 10−4 and 10−3, resulting in error indicator (15)
values equal to 5.5× 10−3 and 7.6× 10−3, respectively.
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Test 3: Three-dimensional ventricle geometry

We finally consider the solution of the coupled system (1) in a three-dimensional
left ventricle (LV) geometry, obtained from the 3D Human Heart Model provided by
Zygote [46]. Here, we consider a single (nµ = 1) parameter, given by the longitudinal
conductivity in the fibers direction. The conductivity tensor takes the form

D(x;µ) = σtI + (µ− σt)f0 ⊗ f0, (21)

where σt = 12.9 · 0.02 mm2/ms; f0 is determined at each mesh point through a rule-based
approach, by solving a suitable Laplace problem [47]. The resulting fibers field is reported
in Fig 17. The applied current is defined as

Fig 17. Test 3: fibers distribution. Fibers field on the Zygote LV geometry.

Iapp(x, t) =
C

(2π)3/2α
exp

(
− ||x− x̄||2

2β

)
1[0,t̄](t̃),

where t̄ = 2 ms, C = 1000 mA, α = 50, β = 50 mm2, x̄ = [44.02, 1349.61, 63.28]
T

mm.
In order to build the snapshot matrix S, we solve problem (1) completed with

the conductivity tensor (21) by means of linear finite elements, on a mesh made by
N = 16365 vertices, and a semi-implicit scheme in time over a uniform partition of
(0, T ) with T = 300 ms and time step ∆t = 0.1/12.9. We uniformly sample Nt = 1000
time instances in (0, T ) and we zero-padded [34] the snapshot matrix to reshape each
column in a 2D square matrix. The parameter space is provided by P = 12.9 · [0.04, 0.4]
mm2/ms; here we consider Ntrain = 25 training-parameter instances and Ntest = 24
testing-parameter instances computed as in Test 2. In this case, the maximum number
of epochs is set to Nepochs = 30000, the batch size is Nb = 40 and the training is stopped
if the loss does not decrease over 4000 epochs.

In Fig 18 we report the FOM solution for two testing-parameter instances, i.e.
µ = 12.9 · 0.0739 mm2/ms and µ = 12.9 · 0.1991 mm2/ms, at t̃ = 276 ms, to show the
variability of the FOM solution over the parameter space. As expected, front propagation
is faster for larger values of the parameter µ.

In Fig 19-20 we report the FOM and DL-ROM solutions, the latter with n = 10, at
t̃ = 42.1 ms and t̃ = 222.1 ms, for two testing-parameter instances, µtest = 12.9 · 0.1435
mm2/ms and µtest = 12.9 · 0.3243 mm2/ms. The DL-ROM approximation is essentially
as accurate as the FOM solution.
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Fig 18. Test 3: FOM solutions for different testing-parameter instances.
FOM solutions for µ = 12.9 · 0.0739 mm2/ms (left) and µ = 12.9 · 0.1991 mm2/ms
(right) at t̃ = 276 ms. By increasing the value of mu the wavefront propagates faster.

Fig 19. Test 3: comparison between FOM and DL-ROM solutions for a
testing-parameter instance at different time instances. FOM solution (left)
and DL-ROM one (right), with n = 10, at t̃ = 42.1 ms (top) and t̃ = 276 ms (bottom),
for the testing-parameter instance µtest = 12.9 · 0.1435 mm2/ms.

Also for this test case, it is possible to build a reduced nonlinear trial manifold of
dimension very close to the intrinsic one – nµ + 1 = 2 – as long as the maximum number
of epochs Nepochs is increased; the choice n = 10 is obtained as the best trade-off between
accuracy and efficiency of the DL-ROM approximation in this case.

The DL-ROM approximation can also replace the FOM solution when evaluating
outputs of interest. For instance, in Fig 21 and 22 we show the FOM and DL-ROM
activation maps, the latter obtained by choosing n = 10 as DL-ROM dimension. Given
the electric potential u = u(x, t;µ), the (unipolar) activation map at a point x ∈ Ω is
evaluated as the minimum time at which the AP peak reaches x, that is,

AC(x;µ) = arg min
t∈(0,T )

(
u(x, t;µ) = max

t∈(0,T )
u(x, t;µ)

)
.

Here we compare the activation maps ACFOM and ACDL−ROM obtained through the
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Fig 20. Test 3: comparison between FOM and DL-ROM solutions for a
testing-parameter instance at different time instances. FOM solution (left)
and DL-ROM one (right), with n = 10, at t̃ = 42.1 ms (top) and t̃ = 276 ms (bottom),
for the testing-parameter instance µtest = 12.9 · 0.3243 mm2/ms.

FOM and the DL-ROM, respectively, by evaluating the maximum of the relative error

εAC(x;µ) =
|ACFOM (x;µ)−ACDL−ROM (x;µ)|

|ACFOM (x;µ)|

over the N mesh points; in the case µ = µtest = 12.9 · 0.31, the maximum relative error
is equal to 4.32× 10−5.

Fig 21. Test 3: FOM activation map. FOM activation map for the
testing-parameter instance µtest = 12.9 · 0.31 mm2/ms.

In Fig 23 (left) we report the action potentials obtained with the FOM and the
DL-ROM, this latter with n = 20, computed at point P = [36.56, 1329.59, 28.82] mm
for the testing-parameter instance µtest = 12.9 · 0.31 mm2/ms. Moreover, we also
report the best approximation of the FOM action potential over a POD space of same
dimension n = 20 for the sake of comparison. Clearly, in dimension n = 20 the DL-ROM
approximation is much more accurate than the POD best approximation; to reach the
same accuracy (about εrel = 5.7 × 10−3, measured through the error indicator (15))
achieved by the DL-ROM with n = 20, n = 120 POD modes would be required.
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Fig 22. Test 3. DL-ROM activation map. DL-ROM activation map for the
testing-parameter instance µtest = 12.9 · 0.31 mm2/ms with n = 20.

In Fig 23 (right) we highlight instead the improvements, in terms of efficiency, enabled
by the use of the DL-ROM technique. In particular, we point out the CPU time required
to solve the FOM for a testing parameter instance, and the one required by DL-ROM
(of dimension n = 10) at testing time, by using the time resolutioin each solution
computation requires and by varying the FOM dimension N on a 6-core platform7 the
FOM solution with N = 16365 degrees of freedom requires about 40 minutes to be
computed, against 57 seconds required by the DL-ROM approximation, thus implying a
speed-up almost equal to 41 times.

Fig 23. Test 3: FOM, DL-ROM and optimal-POD APs for a
testing-parameter instance. FOM and DL-ROM CPU computational times.
FOM, DL-ROM and optimal-POD APs for the testing-parameter instance
µtest = 12.9 · 0.31 mm2/ms (left). For the same n, the DL-ROM is able to provide more
accurate results than the optimal-POD. CPU time required to solve the FOM and by
DL-ROM at testing time with n = 10 vs N (right). The DL-ROM is able to provide a
speed-up equal to 41.

Conclusion

In this work we have proposed a new efficient reduced order model obtained using
deep learning algorithms to boost the solution of parametrized problems in cardiac
electrophysiology. Numerical results show that the resulting DL-ROM technique, formerly

7Numerical tests have been performed on a MacBook Pro Intel Core i7 6-core with 16 GB RAM.
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introduced in [16], allows one to accurately capture complex wave propagation processes,
both in physiological and pathological scenarios.

The proposed DL-ROM technique provides ROMs that are orders of magnitude
more efficient than the ones provided by common linear (projection-based) ROMs, built
for instance through a POD-Galerkin reduced basis method, for a prescribed level of
accuracy. Through the use of DL-ROM, it is possible to overcome the main compu-
tational bottlenecks shown by POD-Galerkin ROMs, when addressing parametrized
problems in cardiac electrophysiology. The most critical points related to (i) the linear
superimposition of modes which linear ROMs are based on; (ii) the need to account for
the gating variables when solving the reduced dynamics, even if not required; and (iii)
the necessity to use (very often, expensive) hyper-reduction techniques to deal with terms
that depend nonlinearly on either the transmembrane potential or the input parameters,
are all addressed by the DL-ROM technique, which finally yields more efficient and
accurate approximation than POD-Galerkin ROMs. Moreover, larger time resolutions
can be employed when using a DL-ROM, compared to the ones required by the numerical
solution of a dynamical systems through a FOM or a POD-Galerkin ROM. Indeed, the
DL-ROM approximation can be queried at any desired time, without requiring to solve
a dynamical system until that time, thus drastically decreasing the computational time
required to compute the approximated solution at any given time.

Outputs of clinical interest, such as activation maps and action potentials, can be
more efficiently evaluated by the DL-ROM technique than by a FOM built through the
finite element method, while maintaining a high level of accuracy. This work is a proof-
of-concept of the DL-ROM technique ability to investigate intra- and inter- subjects
variability, towards performing multi-scenario analyses in real time and, ultimately,
supporting decisions in clinical practice. In this respect, the use of DL-ROM techniques
can foster assimilation of clinical data with physics-driven computational models.

Supporting information

SI Code. Code and data. The code used in this work can be downloaded from:
https://github.com/stefaniafresca/DL-ROM. The training and testing datasets will
be made available upon request to the authors.

SI Appendix. DL-ROM neural network architecture. Here we report the con-
figuration of the DL-ROM neural network used for our numerical tests. We employ a
12-layers DFNN equipped with 50 neurons per hidden layer and n neurons in the output
layer, where n corresponds to the dimension of the reduced nonlinear trial manifold.
The architectures of the encoder and decoder functions are instead reported in Table 4
and 5.

Layer Input Output Kernel size # of filters Stride Padding
dimension dimension

1 [5, 5] 8 1 SAME

2 [5, 5] 16 2 SAME

3 [5, 5] 32 2 SAME

4 [5, 5] 64 2 SAME

5 N 256

6 256 n

Table 4. Attributes of convolutional and dense layers in the encoder fEn .
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Layer Input Output Kernel size # of filters Stride Padding
dimension dimension

1 n 256

2 256 N

3 [5, 5] 64 2 SAME

4 [5, 5] 32 2 SAME

5 [5, 5] 16 2 SAME

6 [5, 5] 1 1 SAME

Table 5. Attributes of dense and transposed convolutional layers in the decoder fD.
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