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Abstract

In this paper we propose a generalization of Mahalanobis distance that extends the
usual multivariate one to functional data generated by stochastic processes. We
show that this distance is well defined in L2(T ) and achieves both the goals of (i)
considering all the infinite components of data basis expansion and (ii) keeping the
same ideas on which is based the Mahalanobis distance. This new mathematical
tool is adopted in an inferential context to construct tests on the mean of Gaussian
processes for one and two populations. The tests are constructed assuming the
covariance structure to be either know or unknown. The power of all the critical
regions has been computed analytically. A wide discussion on the behavior of these
tests in terms of their power functions is realized, supported by some simulation
studies.
Keywords:Functional Data, Distances in L2, Gaussian Processes, Inference on the
mean.
AMS Subject Classification:62H15, 62M86.

1 Introduction

Nowadays, many scientific fields as biostatistics, econometrics, etc.., deal with
data concerning continuous phenomenons of time or space. For this reason, more
and more often observations are modeled as a sample of i.i.d. random functions
X1, .., Xn, typically in L2(T ) with T compact set of R. The related mean function
m and the covariance operator V usually represent the main object of the statistical
investigation. Functional Data Analysis (FDA) gathers all the statistical models
that consider data as functional objects and it is remarkable the increase of its im-
portance in the statistical literature during the last decade. A complete overview
on the most common statistical methods, computational details and case studies
in FDA, is provided, for example, in the books by Ramsey and Silverman (2002),
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Ramsey and Silverman (2005) and Ferraty and Vieu (2006). As highlighted in this
literature, a central role in this context is carried out by the Functional Principal
Component Analysis (FPCA). The basic tool for this analysis is the Karhunen-
Loève (KL) expansion, that decomposes a random function X(t) in a sum of the
mean m(t) and a series of orthonormal functions θk(t), each one multiplied by zero-
mean uncorrelated random variables

√
λkZk, (λk > 0, Var(Zk) = 1). The othonor-

mal basis (θk)k is composed by the eigenfunctions of the covariance operator V of
X , while the coefficient variances (λk)k are its eigenvalues. Hence, the dynamic of
the random function X(t)−m(t) can be fully described by the eigenstructure of V
and the distribution of the sequence (Zk)k. Since this paper is focused on Gaussian
processes, in our case (Z1, Z2, ..) are i.i.d. standard normal variables. As discussed
in Benko et al. (2009), the analysis of the principal components seems to be more
important in the functional context than in the multivariate framework. In fact, it
is one of the most feasible way to reduce data dimensionality. Moreover, in FPCA
the principal components are interpreted as the modes of variation of X(t) along
t, which is much more interpretable than arguments concerning the correlation of
principal components with original variables adopted in multivariate PCA. When
the goal of the analysis is to describe the shape of X(t), the first K principal compo-
nents θk, k = 1, ..,K, usually contain all the information needed to represent data.
Nevertheless, when to goal is to make inference on infinite dimensional objects, as
the mean function m(t), considering a fixed number of components may lead to lose
some information on the distribution of X(t) and to provide meaningless results.

Despite of the great interest in the FPCA, many inferential procedures adopted
in the multivariate PCA have not been extended yet to the functional case. For
instance, in the multivariate context the inference on the mean is typically based on
the Mahalanobis distance, since it is the best way to measure the distance between
elements because it takes into account the correlation among the variables and their
variability. However, when data belongs to an infinite dimensional space, as L2(T ),
the Mahalanobis distance is in general undefined and the inference is usually real-
ized by considering only the first K principal components. This approach is pretty
far from the Mahalanobis idea, which weights the distances along all the compo-
nents with the inverse of their variability. In this paper we propose a generalization
of Mahalanobis distance that extends the usual multivariate one to functional data
generated by stochastic processes. The new metrics has been obtained after notic-
ing a quite unconventional way to derive the classical Mahalanobis distance. We
show that this distance is well defined in L2(T ) and achieves both the goals of (i)
considering all the infinite components of data basis expansion and (ii) keeping the
same ideas on which is based the Mahalanobis distance (see Section 2). This new
mathematical tool is adopted in an inferential context to construct tests on the
mean of Gaussian processes for one and two populations. The tests are constructed
assuming the covariance structure to be either know, (3.2) and (3.4), or unknown,
(4.8) and (4.9). An extension of inferential procedures based on the Mahalanobis
distance has been proposed in Secchi et al. (2013), by considering multivariate
Gaussian data with a number of variables increasing to infinity. Nevertheless, the
test proposed in Secchi et al. (2013) doesn’t consider directly functional data and
it is not applicable if the covariance is assumed to be known. Moreover, the test
proposed in Secchi et al. (2013) doesn’t consider the differences among functions
along the components unexplored by the data.

In a typical FDA framework, the independent realizations of X are not observed
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directly as curves, but we can only measure them at some discrete values, often
with an independent additive error term. Then, the first fundamental step for
the inference is usually an estimation of the mean function m(t) via smoothing
techniques, see for instance Ramsey and Silverman (2002), Ruppert et al. (2003),
Ramsey and Silverman (2005), Cuevas et al. (2006), Ferraty and Vieu (2006),
Li and Hsing (2010), Degras (2011). In the literature, we find methods based on
splines, which can be penalized as in Ramsey and Silverman (2005) or free-knot
as in Gervini (2006), methods which deal with ridge-type least squares estimates
as in Rice and Silverman (1991), or kernel smoothers as in Yao (2007), Zhang and
Chen (2007) and Benko et al. (2009). After estimation, the inference is usually
computed by constructing confidence bands for m(t); see for instance see Yao et
al. (2005) and Ma et al. (2012) for sparse longitudinal data, Bunea et al. (2011),
Degras (2011) and Cao et al. (2012) for dense functional data. Since the main
purpose of this paper is focused on the inference of the mean function, we assume
to observe perfectly the random curves over the whole range without any noise
effect, as already considered in many other works, see Luschgy (1991), Bosq (2000),
Ferraty and Vieu (2006). In Luschgy (1991), our framework is presented as a typical
signal-plus-noise model with deterministic signal m(t) and noise X(t) − m(t). In
that paper, a locally most powerful test for smooth function m(t) is derived and its
asymptotic properties are discussed. However, in Luschgy (1991) the mean m(t) is
forced to belong to a known class of functions indexed by a real parameter, and the
resulting inference is only on that parameter, while here we let the mean function
to be any element in L2(T ).

The inference of the mean of a Gaussian process has been treated also in Bunea
et al. (2011), with observations at discrete times and additive noise terms. They
propose a computationally simple method based on threshold projection estimators,
providing fully data-driven estimator and confidence sets for m(t). However, the
confidence level is achieved only asymptotically and for any sample size n the balls
are constructed with a fixed number of components, while the inferential procedures
proposed in this paper consider all the infinite dimensional space. In fact, instead
of the correction implemented to construct the threshold in Bunea et al. (2011),
we adopt a distance dp tuned by a parameter that smoothly determines how to
weight the contributions along all the infinite components of L2(T ). Moreover, this
parameter plays a crucial role in the power of the tests (see Section 5), which is
a topic rarely discussed in literature. In fact, inferential tools in functional data
analysis are typically based on confidence bands and so the properties of the tests
under the alternative hypothesis are barely considered. In this paper, not only
the powers of all the critical regions are computed analytically, but Section 5 is
mainly dedicated to discuss this point. The confidence band suggested in Cao et
al. (2012) takes into account the variability of the random process X along the
interval T , but the effect of the covariance among different times is included in the
model only through a parameter. Then, it’s easy to visualize and to interpret the
confidence bands, but the level is reached only asymptotically. The spline estimator
and the confidence band for the mean function proposed in Cao et al. (2012) are
asymptotically the same as if all random trajectories are observed entirely and
without errors. This result is achieved by letting both the sample size and the
number of observation points opportunely increase to infinity in order to control
the covariance of the mean estimator. As mentioned in Cao et al. (2012), this
provides a theoretical justification for treating functional data as perfectly recorded
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random curves over the whole range, as done here. Moreover, in many applications
it is reasonable to model also the noise as a Gaussian process ǫ(t) independent of
X(t) with covariance operator Vǫ, since random errors in correspondence to closed
times are usually correlated. Then, each observed random curve can be model as
a Gaussian process with the same mean m(t) and covariance operator V + Vǫ, and
the tests proposed in this paper can be perfectly applied to this framework.

When the covariance of the process X is unknown, the elements λk, θk of the
eigen-structure of V used to compute the distance dp are estimated respectively

by the eigenvalues λ̂k and eigenfunctions θ̂k of the empirical covariance operator
V̂n computed from data. Naturally, an eigenfunction θk is univocally determined
(up to sign) only if corresponding eigenvalue λk has multiplicity one. Then, many
methods in the functional principal component estimation usually require some
necessary regularity condition on the unknown covariance function, see for instance
Bosq (2000). However, we don’t need these assumptions since the distance dp de-
fined in this paper is invariant with respect to both the sign of θk and the choice
of the basis in the eigenspaces associated to λk with multiplicity greater than one.
Starting from discrete and noisy observation, the usual approach is to estimate
the sample curves nonparametrically (e.g., by B-splines) and then to derive the
principal components from the empirical covariance function, see Besse and Ram-
say (1986), Ramsey and Dalzell (1991). Rice and Silverman (1991), Pezzulli and
Silverman (1993) or Silverman (1996) introduce smoothing techniques in the eige-
nanalysis and Lacantore et al. (1999) investigate the robustness in the principal
component estimation. Yao et al. (2005) and Hall and Hosseini-Nasab (2006) pro-
pose nonparametric estimation methods for sparse data. In Benko et al. (2009)
inferential procedures on testing the eigenstructure of V based on a bootstrap tech-
nique is studied. This is a generalization of the asymptotic results on the empirical
eigenvalues and eigenfunctions distribution realized in Dauxois et al. (1982) in the
case of functions directly observable. Moreover, Benko et al. (2009) shows that
under mild conditions the error in the estimation derived from considering discrete
and noisy data is first-order asymptotically negligible, and so the inference may
proceed as if the functions were directly observed.

In Section 2 the new distance dp is introduced and its mathematical properties
are discussed. Then, in Section 3 and 4 we construct critical regions for the inference
on the mean of Gaussian processes for one and two populations. In Section 3 we
analyze the situation of known covariance function, while in Section 4 the covariance
is estimated from data. For all the proposed critical regions, the analytic expression
of the power is computed as a function of the real mean in L2(T ). Finally, in
Section 5 we discuss the statistical properties of the tests proposed in the paper,
specially focusing on the power study, guided by some simulation studies.

2 A generalization of Mahalanobis distance in functional

framework

In this section, we introduce a new metric defined in an infinite dimensional space,
which generalizes the Mahalanobis distance used in the multivariate context. Let
first consider a finite dimensional framework. Let X ∈ R

K , K ∈ N, be a random
element with mean m ∈ R

K and covariance matrix V ∈ R
K×K , and call θ1, ..., θK

the eigenvectors of V and λ1 ≥ ... ≥ λK > 0 the associated eigenvalues. For
any couple (y, w) of elements of R

K , the usual metric is the euclidian distance
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de(y, w) =
√∑K

k=1((y − w)T θk)
2, where aT b =

∑K
i=1 aibi is the usual inner product

in R
K . However, when y and w are realization of X , the Mahalanobis distance, i.e.

dM (y, w) =

√√√√
K∑

k=1

(
(y − w)T θk

)2

λk
,

may be more useful since it takes into account the correlations and the variabil-
ity described by the covariance structure of X. Here, we are going to highlight
an interesting relation between these two distances. Let introduce the function
f(·; y, w) : R+ → R

+ defined as follows

f(c; y, w) =

K∑

k=1

fk(c; y, w) =

K∑

k=1

(
(y − w)T θk

)2 · exp(−λkc).

First, note that, for any fixed c ∈ R
+,
√
f(c; y, w) is a distance, since it can be seen

as the euclidian distance among ỹ :=
∑K

k=1

(
(y − w)T θk exp(−λkc/2)

)
· θk and

w̃ :=
∑K

k=1

(
(y − w)T θk exp(−λkc/2)

)
· θk. Moreover, we have:

(1) f(c; y, w) is non increasing in c;

(2) limc→∞ fk(c; y, w) = 0, ∀λk > 0;

(3) f(0; y, w) = d2e(y, w).

Then, for any fixed c ∈ R
+,
√
f(c; y, w) represents a distance among y and w that

is less than or equal to the euclidian distance. In particular, fk(c; y, w) is the contri-
bution to this distance along the component θk. Moreover, as c increases the term
fk(c; y, w) get smaller. The decreasing rate of fk(c; y, w) is ruled by λk: the greater
is λk the faster fk(c; y, w) vanishes. Then, the term exp(−λkc) is a quantity that
penalizes the contribution of the euclidian distance along θk and this penalization is
strong for high λk and irrelevant for low λk. In the Mahalanobis distance a similar
behaviour is obtained by rescaling with respect to λk; this rescaling makes stronger
the components with low λk and weaker the ones with high λk. Then, we can think
to measure how fast fk(c; y, w) vanishes by integrating over c, so we obtain

∫ ∞

0

fk(c; y, w)dc =

(
(y − w)T θk

)2

λk

So the Mahalanobis distance can be seen as the square root of the area below the
function f(c; y, w):

dM (y, w) =

√√√√
K∑

k=1

(
(y − w)T θk

)2

λk
=

√√√√
K∑

k=1

∫ ∞

0

fk(c; y, w)dc =

√∫ ∞

0

f(c; y, w)dc

(2.1)
We want to extend these ideas to a functional framework. Let y and w be

elements of L2(T ) realization of a stochastic process X ∈ L2(T ). Let m(t) =
E[X(t)] be the mean function and V the covariance operator of X , i.e. V is a
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linear compact integral operator from L2(T ) to L2(T ) acting as follows: (V a)(s) =∫
T v(s, t)a(t)dt ∀a ∈ L2(T ), where v is the covariance function defined as v =
E[(X(t) −m(t))(X(s) −m(s))]. Then, denote with (λk)k and (θk)k the sequences
of the eigenvalues and the associated eigenfunctions of v, respectively. Let 〈a, b〉 =∫
T
a(t)b(t)dt be the usual inner product in L2(T ), so the Mahalanobis distance is

dM (y, w) =

√√√√
∞∑

k=1

(〈y − w, θk〉)2
λk

,

which could be undefined since the series can diverge for some y, w ∈ L2(T ). For
this reason, a typical practice is to fix an integer K ∈ N and consider the truncated
version of the Mahalanobis distance, summing up only the first K components.
However, when this approach is used to measure the entire space L2(T ), we can
point out two main drawbacks:

• the contribution given by the projections in the space orthogonal to θ1, .., θK
is not considered in the distance. Then, for any choice of K, we may have
y, w ∈ L2(T ) such that the truncated Mahalanobis distance is arbitrarily
small and the euclidian distance is arbitrarily large, which seems unreason-
able.

• all the contributions of the L2(T ) distance are basically multiplied by 1/λk ·
1{λk≥λK}, which is not decreasing in λk. This is incoherent with the idea of
penalizing the L2(T ) distance with a term that is inversely proportional to
the size of the corresponding eigenvalue λk.

Our goal is to use the new representation (2.1) of the Mahalanobis distance to com-
pute a metric that solves these problems. Note that (2.1) can be straightforwardly
extended to the functional framework. In fact, for any couple of elements of L2(T )
(y, w) we can define the function f(·; y, w) as

f(c; y, w) =

∞∑

k=1

(〈y − w, θk〉)2 · exp(−λkc).

Notice that this series is finite for any c ∈ R
+. As explained before, the Mahalanobis

distance can be computed as
√∫∞

0
f(c; y, w)dc. However, in the infinite dimensional

case, when the Mahalanobis distance is not defined, the function f(c; y, w) is not
integrable in R

+.
To deal with this case we introduce a function g(·; p), tuned by a parameter p > 0,
such that

•
∫∞

0
g(c; p)dc < ∞.
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This ensures that f(c; y, w) · g(c; p) is integrable for any p > 0, in fact

∫ ∞

0

f(c; y, w) · g(c; p)dc =

∫ ∞

0

∞∑

k=1

(〈y − w, θk〉)2 · exp(−λkc) · g(c; p)dc

≤
∫ ∞

0

∞∑

k=1

(〈y − w, θk〉)2 · g(c; p)dc

=

(∫ ∞

0

g(c; p)dc

) ∞∑

k=1

(〈y − w, θk〉)2

=

(∫ ∞

0

g(c; p)dc

)
d2e(y, w) < ∞

Without loss of generality we choose g is such that
∫∞

0
g(c; p)dc = p. Now, we are

able to construct a corresponding distance defined as

dp(y, w) :=

√∫ ∞

0

f(c; y, w) · g(c; p)dc =

√√√√
∫ ∞

0

∞∑

k=1

(〈y − w, θk〉)2 · exp(−λkc) · g(c; p)dc

(2.2)
that is finite for any couple of functions y and w. To prove that dp(y, w) is a distance
it’s sufficient to note that dp(y, w) is the L

2(T )−distance between the following two
elements

ỹ =
∞∑

k=0

〈y, θk〉
(∫ ∞

0

exp(−λkc) · g(c; p)dc
) 1

2

· θk,

w̃ =

∞∑

k=0

〈w, θk〉
(∫ ∞

0

exp(−λkc) · g(c; p)dc
) 1

2

· θk.

where ỹ and w̃ are elements of L2(T ) since
∫∞

0
exp(−λkc)·g(c; p)dc ≤

∫∞

0
g(c; p)dc <

∞.

Observe that if the function g is such that for any p > 0

• g(c; p) is a non increasing and non negative function in c,

• g(0; p) = 1,

then f · g and f satisfy the same properties, in the sense that f(0; y, w) · g(0; p) =
d2L2(T )(y, w) and, for any fixed c ∈ R

+,
√
f(c; y, w) · g(c; p) represents a distance

among y and w dominated by the euclidian distance.
Moreover, for any fixed c ∈ (0,∞), we assume that g satisfies the following

• g(c; p) is a non decreasing and non negative function of p.

• limp→∞ g(c; p) = 1.

As a consequence, the larger p the greater the distance dp(y, w). Moreover, even
if dp(y, w) is finite for any couple of functions y and w, when p goes to infinity
dp(y, w) can diverge since it tends to the Mahalanobis distance that can diverge in
the infinite dimensional case.
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In order to write the distance dp(y, w) in a more suitable way, let us define

hk(p) :=

∫ ∞

0

λk exp(−λkc) · g(c; p)dc

and so

dp(y, w) =

√√√√
∞∑

k=1

d2M,k(y, w) · hk(p)

where dM,k(y, w) =

√
(〈y − w, θk〉)2 /λk is the term representing the contribution

of the Mahalanobis distance along the kth component. We can prove the following
results

• limk→∞ hk(p) = 0.

• limp→∞ hk(p) = 1 for any k such that λk > 0.

In fact,

lim
k→∞

hk(p) = lim
k→∞

∫ ∞

0

λk exp(−λkc) · g(c; p)dc

=

(
lim
k→∞

λk

)
·
(∫ ∞

0

(
lim
k→∞

exp(−λkc)

)
· g(c; p)dc

)

=

(
lim
k→∞

λk

)
·
(∫ ∞

0

g(c; p)dc

)
= 0

and

lim
p→∞

hk(p) = lim
p→∞

∫ ∞

0

λk exp(−λkc) · g(c; p)dc

=

∫ ∞

0

λk exp(−λkc) ·
(

lim
p→∞

g(c; p)

)
dc

=

∫ ∞

0

λk exp(−λkc)dc = 1.

There are many different ways to choose g. Some meaningful examples are:

• g(c; p) = 1{c≤p}. In this case hk(p) = (1 − exp(−λkp)).

• g(c; p) = exp(−c/p). In this case hk(p) = λk/(λk + 1/p).

3 Inference on the mean of a Gaussian process with known

covariance function

The main aim of this paper is to construct testing procedures on the means of
Gaussian processes and to discuss their statistical properties. In particular, we
propose critical regions based on the generalized distance dp presented in Section 2.
First, the covariance structure is assumed to be known, then in Section 4 we extend
these tests to a more general situation where the covariance function is estimated
from data.

Let X1, .., XL be L ≥ 1 Gaussian processes with probability laws PX1
, .., PXL

,
and denote with m1, ...,mL ∈ L2(T ) the corresponding means. Assume that
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PX1
, .., PXL

have the same covariance function v, and denote with (λk)k the ordered
eigenvalues of v and with (θk)k the associated eigenfunctions. For any l = 1, .., L,
let X1,l, ..., Xnl,l be nl i.i.d. realizations of PXl

, and denote with X̄l the pointwise
sample mean: (X1,l + ... + Xnl,l)/nl. In this section, we propose critical regions
associated to the following inferential problems:

(a) testing the mean of a Gaussian process against an arbitrary function in L2(T )

(b) comparing the means of two Gaussian processes with the same covariance
function

Part (a):
Fix l = 1, .., L, m0 ∈ L2(T ) and consider the following hypothesis test

H0 : ml = m0 vs H1 : ml 6= m0. (3.1)

To construct a critical region of level α for test (3.1), consider the Karhunen-Loève
decomposition of Xi,l, i = 1, .., nl,

Xi,l(t) = ml(t) +

∞∑

k=1

Zki,l

√
λkθk(t),

where (Zki,l)
∞
k=1 is a sequence of independent standard normal variables, since PXl

is Gaussian. We have that
( √

nl ·
〈X̄l −ml, θk〉√

λk

)

k

=

(
1√
nl

nl∑

i=1

Zki,l

)

k

i.i.d. ∼ N (0, 1) .

Hence, the sequence (nl · d2M,k(X̄l,ml))k is composed by i.i.d. chi-squared random
variables with 1 degree of freedom, so that

nl · d2p(X̄l,ml) = nl ·
∞∑

k=1

d2M,k(X̄l,ml)hk(p) ∼
∞∑

k=1

χ2
1,khk(p)

where (χ2
1,k)

∞
k=1 is a sequence of i.i.d. chi-squared variables with 1 d.f. Let us

denote as ξ2α,p the 1 − α quantile of the distribution of
∑∞

k=1 χ
2
1,khk(p). Then, we

construct the following critical region of level α

R1
α =

{
nl · d2p(X̄l,m0) > ξ2α,p

}
(3.2)

for any p > 0 and nl ∈ N. The quantiles ξ2α,p are obtained from the distribu-
tion of

∑∞
k=1 χ

2
1,khk(p) computed in simulation. Note that the probability law of∑∞

k=1 χ
2
1,khk(p) depends on the whole sequence (λk)k, on the choice of g and on

the parameter p.
Let us investigate the power of test (3.1) based on the critical region (3.2). First,
note that under the alternative hypothesis

d2M,k(X̄l,m0) =

( 〈X̄l −m0, θk〉√
λk

)2

=

( 〈X̄l −ml, θk〉√
λk

+
〈ml −m0, θk〉√

λk

)2

∼ χ2
1,k(νk)

where χ2
1,k(νk) is a non-central chi-squared with 1 d.f. and νk = d2M,k(ml,m0) is

the non centrality parameter. Hence, we have that

nl · d2p(X̄l,m0) ∼
∞∑

k=1

χ2
1,k (νk)hk(p), νk = nl · d2M,k(ml,m0)
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where (χ2
1,k(νk))

∞
k=1 are independent. Then, the power of (3.2) can be obtained as

follows
β1 = Pml 6=m0

(
R1

α

)
= Pml 6=m0

(
nl · d2p(X̄l,m0) > ξ2α,p

)

= Pml 6=m0

(
∞∑

k=1

χ2
1,k (νk)hk(p) > ξ2α,p

)

with νk = nl · d2M,k(ml,m0). Note that the power tends to one as nl increases.

Remark 3.1 It is worth to note that this test doesn’t have the problem of a low
power when ml and m0 are arbitrarily distant in L2(T ), which can occur when
the inference is computed only with the first components. To see this, consider the
quantity d2p(X̄l,m0) used to compute the power β1 of the test (3.2). It is possible to
show that

E
[
d2p(X̄l,m0)

]
=

∞∑

k=1

[
1

nl
+

( 〈ml −m0, θk〉√
λk

)2
]
hk(p) ≥ C1 · d2L2(ml,m0),

Var
(
d2p(X̄l,m0)

)
=

∞∑

k=1

[
2

n2
l

+
4

nl

( 〈ml −m0, θk〉√
λk

)2
]
hk(p)

2 ≤ C2·(1+p·d2L2(ml,m0)),

where C1, C2 > 0 are constants independent of ml and m0.

From this, we have that E
[
d2p(X̄l,m0)

]
/
√
Var

(
d2p(X̄l,m0)

)
goes to infinity as

d2L2(ml,m0) diverges. Hence, the power β1 of the test (3.2) tends to one when
d2L2(ml,m0) increases.

Part (b):
Fix l1, l2 = 1, .., L (L ≥ 2), l1 6= l2 and consider the following hypothesis test

H0 : ml1 = ml2 vs H1 : ml1 6= ml2 . (3.3)

The assumption that Xl1 and Xl2 have the same covariance function can be tested
using various inferential procedures presented in literature (see for example Benko
et al. (2009), Panaretos et al. (2010), Fremdt et al. (2013), Pigoli et al. (2014)).
Under the null hypothesis, using the Karunen-Loève decomposition of X̄l1 and X̄l2

we have that
( 〈X̄l1 − X̄l2 , θk〉√

λk

)

k

i.i.d. ∼ N
(
0,

1

nl1

+
1

nl2

)

and then (
1

nl1

+
1

nl2

)−1

· d2p(X̄l1 , X̄l2) ∼
∞∑

k=1

χ2
1,khk(p)

where (χ2
1,k)

∞
k=1 are all independent. As a consequence, the following critical region

R2
α =

{(
1

nl1

+
1

nl2

)−1

· d2p(X̄l1 , X̄l2) > ξ2α,p

}
(3.4)
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is of level α for any p > 0 and nl1 , nl2 ∈ N.
Let us investigate the power of test (3.4). Following similar arguments used in case
(a), we obtain that

(
1

nl1

+
1

nl2

)−1

·d2p(X̄l1 , X̄l2) ∼
∞∑

k=1

χ2
1,k (νk)hk(p), νk =

(
1

nl1

+
1

nl2

)−1

·d2M,k(ml1 ,ml2)

where (χ2
1,k(νk))

∞
k=1 are independent. Then, the power of (3.4) can be obtained as

follows

β2 = Pml1
6=ml2

(
R2

α

)
= Pml1

6=ml2

((
1

n1
+

1

n2

)−1

· d2p(X̄l1 , X̄l2) > ξ2α,p

)

= Pml1
6=ml2

(
∞∑

k=1

χ2
1,k (νk)hk(p) > ξ2α,p

)

with νk =
(

1
nl1

+ 1
nl2

)−1

· d2M,k(ml1 ,ml2). Note that the power tends to one when

nl1 and nl2 go to infinity.

4 Inference on the mean of a Gaussian process with unknown

covariance function

In this section, we extend the inferential procedures presented in Section 3 to the
case of unknown covariance structure. We propose tests similar to (3.2) and (3.4),
where the covariance operator and related eigenvalues and eigenfunctions are esti-
mated from data. For any l = 1, .., L, let us introduce

v̂l,nl
:=

1

nl − 1

nl∑

i=1

(
Xi,l(s)− X̄l(s)

) (
Xi,l(t)− X̄l(t)

)
.

the estimator of v computed using the nl realizations of PXl
: X1,l, ..., Xnl,l. Then,

call N = n1 + ...+ nL the total number of realizations from X1, ..., XL and define

v̂N :=
1

N − L

L∑

l=1

(nl − 1)v̂l,nl
(4.1)

the pooled estimator of v computed using all data. Let us denote with (λ̂k)k
the ordered eigenvalues of v̂N and (θ̂k)k the associated eigenfunctions. Naturally,

λ̂k = 0 ∀k ≥ N , so the eigenfunctions (θ̂N , θ̂N+1, ..) can be arbitrary chosen such

that (θ̂k)k is an orthonormal basis of L2(T ).
First, it is worth to highlight an important point concerning all the tests pre-

sented in this section. The inferential procedures proposed for the case of unknown
covariance function are asymptotic, in the sense that the nominal level of the tests
is achieved when the size of samples used to estimate v is large. This could be
different from the number of data involved in the estimation of the means to be
tested. In fact, all the asymptotic results hold for N → ∞, which does not imply
the divergence of all the sample sizes n1, .., nL (when L ≥ 1). Naturally, since
N = n1 + ... + nL, at least one among n1, .., nL must goes to infinity if N → ∞,
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but this is not necessarily the size of the sample drawn from the processes used to
estimate the means considered in the hypothesis test.

Here, the critical regions will be constructed with statistics based on estimators
of the generalized Mahalanobis distance d̂p,N , since the covariance structure, which
is required to compute dp, is supposed unknown in this section. The estimator of
dp based on the covariance estimator v̂N is defined as follows

d̂2p,N (y, w) :=

N−1∑

k=1

d̂2M,k(y, w) · ĥk(p) + p

∞∑

k=N

(
〈y − w, θ̂k〉

)2
, (4.2)

with y, w ∈ L2(T ). In (4.2), d̂2M,k(·, ·) and ĥk(p) indicate the quantities d2M,k(·, ·)
and hk(p), with (λk)k and (θk)k replaced by (λ̂k)k and (θ̂k)k. Comparing the defini-

tion of d̂p,N in (4.2) and dp in (2.2), we note how the first N−1 components are sim-

ilar, while the terms k ≥ N are different because λ̂k = 0 ∀k ≥ N and so d̂M,k would
be undefined for k ≥ N . Then, in (4.2) we have introduced a correction in order to

make the estimate d̂p,N as close as possible to dp. In particular, since λ−1
k hk(p) → p

as λk → 0, then in (4.2) we have redefined d̂M,kĥk(p) := p ·
(
〈y − w, θ̂k〉

)2
for any

k ≥ N .

Now we study the asymptotic properties of the covariance estimator in order to
construct tests based on the distance d̂p,N with the same structure of (3.2) and (3.4).
First, we need the following auxiliar result:

Theorem 4.1 For any N,n0 ∈ N, let jN = (jN,1, ..., jN,n0
) be a vector of inte-

gers (jN,1, .., jN,n0
∈ N) and let (YjN ,WjN )N be a couple of stochastic processes,

independent of the sequence (v̂k)k, and such that

sup
N≥1

E[‖YjN −WjN ‖2] < ∞. (4.3)

Then, we have that

E

[
|d̂2p,N (YjN ,WjN )− d2p(YjN ,WjN )|

]
→N 0. (4.4)

The proof of Theorem 4.1 is reported in Appendix A. This result is essential to
show through Slutsky’s Theorem the statistics based on d̂p,N and those based on
dp converge to an asymptotic distribution. We highlight this in the following result

Corollary 4.2 For any l = 1, .., L and for any m0 ∈ L2(T ) we have that

nl · d̂2p,N (X̄l,m0)
D−→N

∞∑

k=1

χ2
1,k(νk)hk(p) (4.5)

where νk = nl · d2M,k(ml,m0). Moreover, when L ≥ 2, for any l1, l2 = 1, .., L, we
have that

(
1

nl1

+
1

nl2

)−1

· d̂2p,N (X̄l1 , X̄l2)
D−→N

∞∑

k=1

χ2
1,k(νk)hk(p), (4.6)

where νk =
(

1
nl1

+ 1
nl2

)−1

· d2M,k(ml1 ,ml2).
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Proof. First, consider equation (4.5). Let us apply Theorem 4.1 with jN = nl,
YjN =

√
nl · X̄l and WjN =

√
nl ·m0 to obtain

nl · E
[
|d̂2p,N (X̄l,m0)− d2p(X̄l,m0)|

]
→N 0.

Then, since in Section 3 we showed that

nl · d2p(X̄l,m0)
D−→N

∞∑

k=1

χ2
1,k(νk)hk(p)

with νk = nl ·d2M,k(ml,m0), the result (4.5) is given by Slutsky’s Theorem. To prove
equation (4.6) we follow the same arguments used in first part of the proof, with

jN = (nl1 , nl2)
T , YjN = X̄l1 ·

(
1

nl1

+ 1
nl2

)−1/2

and WjN = X̄l2 ·
(

1
nl1

+ 1
nl2

)−1/2

.

Corollary 4.2 ensures us that, for hypothesis tests (3.1) and (3.3), the critical
regions based on covariance estimator have the same structure of those in (3.2)
and (3.4) where the covariance function is assumed to be known. However, the
asymptotic distribution

∑∞
k=1 χ

2
1,k(νk)hk(p) depends on the eigenvalues of v, which

are unknown here. Then, to compute the tests we need this further asymptotic
result

Theorem 4.3 Let (χ2
1,k)k be a sequence of i.i.d. chi-squared with 1 d.f. inde-

pendent of v̂N . Let ξ̂2α,p be the 1 − α quantile of the conditional distribution of∑∞
k=1 χ

2
1,kĥk(p) given (λ̂k)k. Then, we have that

ξ̂2α,p
p−→N ξ2α,p (4.7)

The proof of Theorem 4.3 is reported in Appendix B.
Finally, we can use Corollary 4.2 and Theorem 4.3 to construct the critical

regions for hypothesis tests (3.1) and (3.3).

Part (a):
Consider the hypothesis tests (3.1). From Slustsky’s Theorem, equations (4.5)
and (4.7), we have that the following critical region is asymptotically in N of level
α:

R3
α =

{
nl · d̂2p,N (X̄l,ml) > ξ̂2α,p

}
. (4.8)

Following the same arguments, we can compute the power of test (4.8) as follows

β3 = Pml 6=m0

(
R3

α

)
= Pml 6=m0

(
nl · d2p(X̄l,m0) > ξ̂2α,p

)

→N Pml 6=m0

(
∞∑

k=1

χ2
1,k (νk)hk(p) > ξ2α,p

)

with νk = nl · d2M,k(ml,m0).

Part (b):
Assume L ≥ 2 and consider the hypothesis tests (3.1). From Slustsky’s Theorem,
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equations (4.6) and (4.7), we have that the following critical region is asymptotically
in N of level α:

R4
α =

{ (
1

nl1

+
1

nl2

)−1

· d̂2p,N (X̄l1 , X̄l2) > ξ̂2α,p

}
(4.9)

Following the same arguments, we can derive the power of test (4.9) as follows

β4 = Pml1
6=ml2

(
R4

α

)
= Pml1

6=ml2

(
nl · d2p(X̄l,m0) > ξ̂2α,p

)

→N Pml1
6=ml2

(
∞∑

k=1

χ2
1,k (νk)hk(p) > ξ2α,p

)

with νk =
(

1
nl1

+ 1
nl2

)−1

· d2M,k(ml1 ,ml2).

5 Inferential Properties and Simulation Studies

In this section, we highlight some interesting properties concerning the tests pre-
sented in Section 3 and 4. In particular, we mainly focus on three aspects:

(1) general properties of the tests power function;

(2) dependence of the test power function on the choice of the parameter p;

(3) asymptotic properties of the tests with unknown covariance function.

The discussion is supported and guided by same simulation studies.

5.1 Simulations on the power function

The first goal is to highlight some general properties of the tests presented in this
paper. Without loss of generality, the simulations realized for this task only concern
the case H0 : m1 = m0 vs H1 : m1 6= m0, with the critical region R1

α in (3.2).
Consider a Gaussian process in L2([0, 1]) with probability law PX1

. The mean
function m1(t) is supposed to be unknown, while the covariance functions v(s, t)
is defined from the sequences of its eigenvalues (λk)k, λk = (k + 1)−4, and its
eigenfunctions: θ1(t) = 1{t∈[0,1]} and

θ2k(t) =
√
2 sin(k ·2πt)1{t∈[0,1]}, θ2k+1(t) =

√
2 cos(k ·2πt)1{t∈[0,1]}, k = 1, 2, ...

Let us consider the hypothesis test (3.1) with m0(t) = t(1 − t)1{t∈[0,1]} as mean
function supposed in H0 and set α = 0.05 as significance level. We construct
the critical region R1

α (3.2) with n = 10 i.i.d. Gaussian processes with law PX1
,

simulated through the Karunen-Loève expansion, using K = 100 components and
a grid of 500 equispaced points in T = [0, 1]. The distance dp used as statistics
in R1

α (3.2) has been realized with the choice of hk(p) = (1 − exp(−λkp)), that
comes from g(c; p) = 1{c≤p}. In this first part of the section the role of p is not
important, so let us fix p = 103. To better understand the power of R1

α in (3.2), we
compute the power for different mean functions in H1, defined as follows: m1k(t) =
m0(t) + 0.03 · θk(t), for k = 1, .., 10. Note that all the possible mean functions
m1k have the same L2-distance from the tested mean m0: dL2(m1k,m0) = 0.03
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Fig. 1: The empirical power of test (3.2) for m1k(t) = m0(t) + 0.03 · θk(t), for
k = 1, .., 10, realized with 103 simulations, n = 10 and p = 103.

∀k = 1, .., 10. The empirical power has been computed by realizing 103 times
the test (3.2), each one using n = 10 independent Gaussian processes generated
from PX1

(Figure 1). From Figure 1 we note that the power is strictly increasing
in k, even if dL2(m1k,m0) = 0.03 ∀k = 1, .., 10. In fact, the test statistics is
constructed with the distance dp, which is able to distinguishes the differences of
m1k −m0 along the principal components θk and to weight them according to the
variability of X along the components λk. This is exactly the same idea under
the Mahalanobis distance. Naturally, we need to fix a parameter p that rules how
much we can distinguish different low variances, since the Mahalanobis distance
obtained with p → ∞ is not defined in infinite dimensional space. However, the
important thing here is that for any choice of p > 0, the test really considers all the
infinite components, without any truncation. In the next section will show that the
parameter p plays an important statistical role in the inferential properties of the
tests and setting p arbitrary large is not in general the right choice for the analysis.

5.2 Simulations on the test power depending on p

The second goal is to discuss how the choice of the parameter p affects the tests
presented in the paper. Without loss of generality, we only consider the hypothesis
test H0 : m1 = m0 vs H1 : m1 6= m0, with the critical region R1

α expressed
in (3.2). The discussion on the role of p for the other critical regions is analogous.
In Section 3 we derived the analytic expression of the power of (3.2) as

β1 = P

(
∞∑

k=1

χ2
1,k (νk)hk(p) > ξ2α,p

)

with νk = n · d2M,k(m1,m0). To better understand how the power function depends
on the choice of the parameter p, we compute the power for different values of
p > 0, when the true mean m1(t) is one of the following
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(a) m1(t) = m0(t), the function in the null hypothesis m0(t) coincides with the
true mean m1(t) ⇒ dM,k(m1,m0) = 0 ∀k ≥ 1.

(b) m1(t) = m0(t) +
√
λ1 · θ1(t), m0(t) and m1(t) only differs in the first compo-

nent ⇒ dM,1(m1,m0) = 1, dM,k(m1,m0) = 0 ∀k 6= 1.

(c) m1(t) = m0(t)+
√
λ5 ·θ5(t), m0(t) andm1(t) only differs in the 5th component

⇒ dM,5(m1,m0) = 1, dM,k(m1,m0) = 0 ∀k 6= 5.

(d) m1(t) = m0(t) +
∑∞

k=10

√
λk · θk(t), m0(t) and m1(t) differs in all the com-

ponents but the first 9 ⇒ dM,k(m1,m0) = 1 ∀k ≥ 10, dM,k(m1,m0) = 0
∀k < 10.

For each case (a)-(b)-(c)-(d), the power has been computed by replying 103 times
the test (3.2), each one using n = 10 independent Gaussian processes generated
from PX1

. In Figure 2 the four cases are separately reported: on the left there is
an example of the functional sample x1, .., x10 (yellow lines), the real mean m1 (red
line) and the tested mean m0 (blue line), while on the right we depict the empirical
power of R1

α (3.2) (blue lines) with p ∈ {10−2, 10−1, ..., 108}. The dotted orange
curves represent the same procedure realized with n = 20 and n = 50. The aim of
these orange lines is to show that the power increases with the sample size n, for
any p > 0 and for any mean m1 ∈ H1 (see cases (b)-(c)-(d)).

In case (a), the null hypothesis is true, then the proportion of rejection of
R1

α (3.2) is equal to the level α = 0.05 for any choice of p > 0.
Now, consider case (b), where the first component is the only difference among

m0(t) and m1(t). When p is small, the term h1(p) is very relevant with respect
to (hk(p), k ≥ 2); then, the non-centrality quantity dM,1(m1,m0) = 1 multiplied
by h1(p) makes the power higher. However, the more p increases, the more terms
(hk(p), k = 1, 2, ..) become close to one; so, the test statistics d2p(X̄n,m0) is influ-
enced now by more components and, the first one becomes less relevant; hence,
since m0(t) and m1(t) only differ in the first component dM,k(m1,m0) = 0 ∀k ≥ 2,
the power decreases as p increases.

In case (c), the 5th component is the only difference among m0(t) and m1(t).
Then, for small p we have h5(p) ≃ 0, so the contribute of dM,5(m1,m0) = 1 is
irrelevant and the power is low. As p increases, h5(p) becomes closer to one and
the power grows. However, since dM,k(m1,m0) = 0 ∀k > 5, when p increases a lot,
there are too many irrelevant component influencing the test statistics d2p(X̄n,m0),
and the power falls down.

In case (d), m0(t) and m1(t) have the same contributions in the first 9 com-
ponents. When p is small we have that hk(p) ≃ 0 k ≥ 10, so the test is unable
to detect any difference and the power is low. As p increases, some hk(p) k ≥ 10
become close to one, the statistics d2p(X̄n,m0) is influenced by dM,k(m1,m0) = 1
k ≥ 10 and the power grows. When p goes to infinity, almost all components of
the statistics d2p(X̄n,m0) have a contribution dM,k(m1,m0) = 1, so that the power
tends to one.

5.3 Discussion on the role of p

From Figure 2, we note that the choice of the parameter p > 0 somehow determines
in which components the test R1

α (3.2) performs well in detecting possible differences
among the supposed mean m0(t) and true mean m1(t). In fact, for any given m0,
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(a) m1 = m0
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(b) m1 = m0 +

√

λ1 · θ1
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(c) m1 = m0 +
√

λ5 · θ5
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(d) m1 = m0 +
∑

∞

k=10

√

λk · θk

Fig. 2: For each case (a)− (b)− (c)− (d) we have two figures; on the left: the func-
tional sample x1, .., x10 (yellow lines), the real mean m1 (red line) and the
tested mean m0 (blue line); on the right: the empirical power of test (3.2)
for p ∈ {10−2, 10−1, ..., 108} realized with 103 simulations, with n = 10 (red
lines), n = 20 and n = 50 (orange dotted lines).



5 Inferential Properties and Simulation Studies 18

the test (3.1) can provide different results according to the value of the parameter
p.

When we set a small p, we obtain a test whose power of detecting differences
between m0 and the true mean m1 is not indicated to discriminate many different
components with their own variability, but is more adapted to look at the shape
of the function. In other words, the distance dp among m1 and m0 is closer to the
L2-distance than the Mahalanobis one. This can be a good choice when we are
interested in the general closeness among the supposed mean m0 and the true m1,
regardless the micro-structure’s features. For instance, in case (b) m0 is quite far
from m1 and the test with low p works well. At the contrary, in case (c) and (d)
the macro-structure of m0 and m1 are not so different and so for low p the power
is low. When we set a large p, the test explores much more components taking
into account their own variability, since in the distance dp many weights hk(p)/λk

are close to 1/λk. Hence, the distance dp among m1 and m0 which influences the
power is more inspired to the Mahalanobis distance’s idea than to the classical L2-
distance. Despite of this good property, there are two aspects that we should be
aware of when we set a large p:

• each component is less relevant in the test statistics. For instance, in the
cases (b) and (c), m0(t) and m1(t) differ for only one component; then, when
p is very large that component becomes negligible and the power of the test
decreases. The opposite case is (d), in which the power tends to one for
large p because the first nine components, which are in favour of H0, become
negligible.

• the test statistics less reflects the macro-structure of the function. For in-
stance, in case (b), the curves m0(t) and m1(t) seem very far because the
difference among m0(t) and m1(t) concerns the first component. However,
for large p the test is more interested in looking at the average behaviour of
many components and that distance easily visualized in the graphic is forgot-
ten. The opposite case is (d), in which m0(t) and m1(t) seem very similar at
first sight. However, for large p the test doesn’t care about the visualization
of the curves and it’s more concentrated on the average difference in many
components, which leads to reject H0 with high probability.

In conclusion, there is not an optimal choice for p: according to the main inter-
est associated to the test, we should opportunely set the parameter p to detect
differences related to a specific aim.

5.4 Simulations on tests with unknown covariance function

In this part, we want to to show that the critical regions based on the estimated
covariance function present asymptotically the same power of the critical regions
with known covariance structure. We remind that the term asymptotic here is
referred to the number of data used to estimate the covariance function. We realized
simulations for the hypothesis test H0 : m1 = m0 vs H1 : m1 6= m0, with the critical
region R3

α expressed in (4.8), since the properties of test aiming at comparing means
from two populations are analogous. We adopt the same framework presented in
the previous part of this section. In addition to the n1 = 10 processes from PX1

previously defined, let us introduce n2 i.i.d. Gaussian processes with probability
law PX2

, having the same covariance function v(s, t) of PX1
. These N = n1 + n2
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(c) m1 = m0 +
√

λ5 · θ5
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∑

∞

k=10

√

λk · θk

Fig. 3: For each case (a) − (b) − (c) − (d) we represent the empirical power of
tests (3.2) (red line) and (4.8) (orange lines) for p ∈ {10−2, 10−1, ..., 108},
n1 = 10, n2 ∈ {100, 500, 1000}, realized with 103 simulations.

processes provides the covariance estimate v̂N as expressed in (4.1). For each n2 ∈
{100, 500, 1000}, we compute the power of R3

α (4.8) as function of the parameter
p ∈ {10−2, 10−1, ..., 108}. This procedure is repeated changing the true mean m1

of PX1
, as specified in the cases (a) − (b) − (c) − (d) These power functions are

represented in Figure 3 with orange dotted lines. The blue lines indicate the power
of test R1

α (3.2) adopted when the covariance v is known. As we can see form
Figure 3 the power functions of R3

α (4.8) tends to the power of R1
α (3.2) as N goes

to infinity. Moreover, this convergence is faster when p is smaller and slower when
p is large.
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Appendix A

Proof. [Proof of Theorem 4.1] The purpose of the proof is to show that ∀ǫ > 0

lim
N→∞

E

[
|d̂2p,N (YjN ,WjN )− d2p(YjN ,WjN )|

]
≤ ǫ.

First, fix an integer kǫ ≥ 1 such that

2p

∞∑

k=kǫ+1

E

[
(〈YjN −WjN , θk〉)2

]
< ǫ. (5.1)

The existence of kǫ is ensured by Condition (4.3). Then, consider the following
decomposition

E

[
|d̂2p,N (YjN ,WjN )− d2p(YjN ,WjN )|

]
≤

∞∑

k=kǫ+1

E
[
d2M,k(YjN ,WjN )

]
· hk(p)

+
N−1∑

k=kǫ+1

E

[
d̂2M,k(YjN ,WjN ) · ĥk(p)

]
+ p

∞∑

k=N

E

[(
〈YjN −WjN , θ̂k〉

)2]

+

kǫ∑

k=1

E

[
|d2M,k(YjN ,WjN ) · hk(p)− d̂2M,k(YjN ,WjN ) · ĥk(p)|

]

= AN + BN + CN .

First, consider the term AN . We have that

AN =

∞∑

k=kǫ+1

E
[
d2M,k(YjN ,WjN )

]
· hk(p) =

∞∑

k=kǫ+1

E

[
(〈YjN −WjN , θk〉)2

]
· hk(p)

λk

≤ p ·
(

∞∑

k=kǫ+1

E

[
(〈YjN −WjN , θk〉)2

])
< ǫ/2

where the last passage is due to (5.1).
Second, consider the term BN . Since hx(p) ≤ xp ∀x > 0, we have that

BN =

N−1∑

k=kǫ+1

E

[
d̂2M,k(YjN ,WjN ) · ĥk(p)

]
+ p

∞∑

k=N

E

[(
〈YjN −WjN , θ̂k〉

)2]

≤ p ·
(

∞∑

k=kǫ+1

E

[(
〈YjN −WjN , θ̂k〉

)2]
)

= p ·
(
E
[
‖YjN −WjN ‖2

]
−

kǫ∑

k=1

E

[(
〈YjN −WjN , θ̂k〉

)2]
)

= p ·
(

∞∑

k=kǫ+1

E

[
(〈YjN −WjN , θk〉)2

])

− p ·
(

kǫ∑

k=1

E

[(
〈YjN −WjN , θ̂k〉

)2
− (〈YjN −WjN , θk〉)2

])
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and by using the same arguments adopted to treat the term AN we obtain

BN ≤ ǫ/2 + p ·
(

kǫ∑

k=1

E

[∣∣∣∣
(
〈YjN −WjN , θ̂k〉

)2
− (〈YjN −WjN , θk〉)2

∣∣∣∣
])

Now, consider the second term by defining

DN :=

kǫ∑

k=1

E

[∣∣∣∣
(
〈YjN −WjN , θ̂k〉

)2
− (〈YjN −WjN , θk〉)2

∣∣∣∣
]
.

and note that

DN =

kǫ∑

k=1

E

[∣∣∣∣
(
〈YjN −WjN , θ̂k − θk〉+ 〈YjN −WjN , θk〉

)2
− (〈YjN −WjN , θk〉)2

∣∣∣∣
]

≤
kǫ∑

k=1

E

[(
〈YjN −WjN , θ̂k − θk〉

)2
+ 2|〈YjN −WjN , θ̂k − θk〉||〈YjN −WjN , θk〉|

]

Now, for any k = 1, ..., kǫ, by using Cauchy-Shwarz we obtain

≤ E

[
‖YjN −WjN ‖2‖θ̂k − θk‖2

]
+ 2

√
E

[
‖YjN −WjN ‖2‖θ̂k − θk‖2

]
E [(〈YjN −WjN , θk〉)2]

From (〈YjN − WjN , θk〉)2 ≤ ‖YjN − WjN ‖2 and since (v̂k)k and (YjN ,WjN )N are
independent we get that

≤ E
[
‖YjN −WjN ‖2

]
E

[
‖θ̂k − θk‖2

]
+ 2E

[
‖YjN −WjN ‖2

]√
E

[
‖θ̂k − θk‖2

]

Then,

DN ≤ E
[
‖YjN −WjN ‖2

] kǫ∑

k=1

([
‖θ̂k − θk‖2

]
+ 2

√
E

[
‖θ̂k − θk‖2

])

≤ E
[
‖YjN −WjN ‖2

]
kǫ max

k=1,..,kǫ

{[
‖θ̂k − θk‖2

]
+ 2

√
E

[
‖θ̂k − θk‖2

]}
→N 0

from the consistency of estimated eigenfunctions (see Dauxois et al. (1982), Bosq
(2000), Horvath and Kokoszka (2012)). This implies that Bn < ǫ/2 + o(1).
Finally, consider the term CN . We have that

CN ≤
kǫ∑

k=1

E




∣∣∣∣∣∣∣

( 〈YjN −WjN , θk〉√
λk

)2

· hk(p)−


〈YjN −WjN , θk〉√

λ̂k




2

· ĥk(p)

∣∣∣∣∣∣∣




+

kǫ∑

k=1

E




∣∣∣∣∣∣∣


 〈YjN −WjN , θk〉√

λ̂k




2

· ĥk(p)−


 〈YjN −WjN , θ̂k〉√

λ̂k




2

· ĥk(p)

∣∣∣∣∣∣∣




≤
kǫ∑

k=1

E

[
(〈YjN −WjN , θk〉)2

∣∣∣∣∣
hk(p)

λk
− ĥk(p)

λ̂k

∣∣∣∣∣

]

+p ·
kǫ∑

k=1

E

[∣∣∣∣(〈YjN −WjN , θk〉)2 −
(
〈YjN −WjN , θ̂k〉

)2∣∣∣∣
]

= EN + DN
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We showed above that DN →N 0, then let us consider the term En. Since
(YjN ,WjN )N is independent of (v̂k)k, and since the function x 7→ hx(p)/x is con-
tinuous, we have that

En ≤
(

kǫ∑

k=1

E

[
(〈YjN −WjN , θk〉)2

])
max

k=1,..,kǫ

{
E

[∣∣∣∣∣
hk(p)

λk
− ĥk(p)

λ̂k

∣∣∣∣∣

]}

≤ sup
n≥1

{
E
[
‖YjN −WjN ‖2

]}
·Mp max

k=1,..,kǫ

{
E

[∣∣∣λk − λ̂k

∣∣∣
]}

→n 0,

from the consistency of estimated eigenvalues (see Dauxois et al. (1982), Bosq
(2000), Horvath and Kokoszka (2012)), that implies that Cn = o(1).
Putting all together we have shown that

lim
N→∞

E

[
|d̂2p,N (YjN ,WjN )− d2p(YjN ,WjN )|

]
≤ ǫ.

for any ǫ > 0, which concludes the proof.

Appendix B

Proof. [Proof of Theorem 4.3] To obtain the thesis we should prove that

∞∑

k=1

χ2
1,kĥk(p)

D−→
∞∑

k=1

χ2
1,khk(p)

where (χ2
1,k)k is a sequence of i.i.d. chi-squared with 1 d.f. independent of v̂N . In

particular, we will show that ∀ǫ > 0

lim
n→∞

E

[∣∣∣∣∣

(
∞∑

k=1

χ2
1,kĥk(p)

)
−
(

∞∑

k=1

χ2
1,khk(p)

)∣∣∣∣∣

]
≤ ǫ,

so that the convergence holds in L1. First, fix an integer kǫ ≥ 1 such that

2p

∞∑

k=kǫ+1

λk < ǫ. (5.2)

In fact, note that

E

[∣∣∣∣∣

(
∞∑

k=1

χ2
1,kĥk(p)

)
−
(

∞∑

k=1

χ2
1,khk(p)

)∣∣∣∣∣

]
≤ E

[
∞∑

k=1

χ2
1,k|ĥk(p)− hk(p)|

]

=

∞∑

k=1

E

[
|ĥk(p)− hk(p)|

]

since (χ2
1,k)k is independent of v̂N . Then, we decompose the series in the following

three terms

=

kǫ∑

k=1

E

[
|ĥk(p)− hk(p)|

]
+

∞∑

k=kǫ+1

E

[
ĥk(p)

]
+

∞∑

k=kǫ+1

hk(p)

= AN + BN + CN .
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Since the function x 7→ hx(p) is continuous, for the first term we have

AN =

kǫ∑

k=1

E

[
|ĥk(p)− hk(p)|

]
≤ Mp·

kǫ∑

k=1

E

[
|λ̂k − λk|

]
= Mpkǫ·

(
max

k=1,..,kǫ

{
E

[
|λ̂k − λk|

]})

that tends to zero from the consistency of estimated eigenvalues (see Dauxois et al.
(1982), Bosq (2000), Horvath and Kokoszka (2012)).
Concerning the term CN we have

CN =

∞∑

k=kǫ+1

hk(p) = p

∞∑

k=kǫ+1

λk <
ǫ

2

from (5.2).
Then, consider the term BN . We have

BN ≤ p · E
[

∞∑

k=kǫ+1

λ̂k

]
= p ·

(
E

[
∞∑

k=1

λ̂k

]
− E

[
kǫ∑

k=1

λ̂k

])

where the first term can be written as

E

[
∞∑

k=1

λ̂k

]
= E

[∫
v̂N (t, s)dtds

]
=

∫
E [v̂N (t, s)] dtds =

∞∑

k=1

λk.

Then, putting all together we have

BN ≤ p ·
(

∞∑

k=1

λk − E

[
kǫ∑

k=1

λ̂k

])
= p ·

(
∞∑

k=kǫ+1

λk − E

[
kǫ∑

k=1

(λ̂k − λk)

])

≤ p ·
(

∞∑

k=kǫ+1

λk +

kǫ∑

k=1

E

[
|λ̂k − λk|

])
<

ǫ

2
+ p · kǫ ·

(
max

k=1,..,kǫ

{
E

[
|λ̂k − λk|

]})

and the last quantity tends to zero from the consistency of estimated eigenvalues
(see Dauxois et al. (1982), Bosq (2000), Horvath and Kokoszka (2012)). This
concludes the proof.
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