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Abstract

In this work we analyse the relationship among in-hospital mortality and a treatment effectiveness

outcome in patients affected by ST-Elevation Myocardial Infarction. The main idea is to carry out

a joint modelling of the two outcomes applying a Semiparametric Bivariate Probit Model to data

arising from a clinical registry called STEMI Archive. A realistic quantification of the relationship be-

tween outcomes can be problematic for various reasons. First, latent factors associated with hospitals

organization can affect the treatment efficacy and/or interact with patient’s condition at admission

time, then they can influence the mortality outcome. Such factors can be hardly measurable. Thus,

the use of classical estimation methods will clearly result in inconsistent and biased parameter es-

timates. Secondly, covariate-outcomes relationships can exhibit non-linear patterns. Provided that

proper statistical methods for model fitting in such framework are available, it is possible to employ

a simultaneous estimation approach to account for unobservable confounders. Such a framework can

also provide flexible covariate structures and model the whole conditional distribution of the response.

1 Introduction

Multiple outcomes are often used to properly characterize an effect of interest. Nevertheless, it often

happens that the outcome of main interest is difficult or even impossible to measure. In general, realistic
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quantification of the effect of a predictor of interest on a particular response variable can be a difficult task

in statistical analysis based on observational data. A solution is to control for confounders, i.e. variables

that are associated with both covariates and response. However, important confounders may be either

unknown or too expensive to measure or not easily quantifiable (unobservable confounders). As pointed

out in Sobotka et al. (2013), this problem, which is known as endogeneity of the explanatory variable of

interest, poses serious limitations to covariate adjustment since the use of classical techniques will yield

biased and inconsistent estimates. Further issues which deserve attention are the possible presence of

non-linear covariate response relationships, and how these change when considering the whole response

variable distribution.

Instrumental variable techniques are widely used for isolating the effect of a given predictor in the pres-

ence of unobserved confounding (e.g Marra & Radice, 2011b; Wooldridge, 2010, and references therein),

and are increasingly used in epidemiological and medical studies (e.g. Goldman et al., 2001). In the

context of binary responses, it is well known, from both theoretical and empirical results, that bivariate

likelihood estimation methods are superior to conventional two-stage instrumental variable procedures

(e.g. Bhattacharya et al., 2006; Wooldridge, 2010). First introduced by Heckman (1978), the recursive

bivariate probit model represents an effective way to estimate the effect a binary regressor has on a binary

outcome in the presence of unobservables. The semiparametric version of Heckman’s model is an impor-

tant extension since undetected nonlinearity can have severe consequences on the estimation of covariate

effects (e.g. Marra & Radice, 2011a). Marra & Radice (2011a) proposed a penalized maximum likelihood

fitting procedure to estimate the recursive bivariate probit model with non-linear confounder-response

relationships.

The motivating problem of this work arises from the clinical context, that is a context where multiple

outcomes often are used in order to characterize the patient’s status or the performances of healthcare

service with respect to patients’ management. This is a framework where unobservable confounders are

very popular as well.

In clinical context, during the last decade, the increased capability of data collection has made avail-

able a huge amount of information about procedures and outcomes. More and more often multiple

outcomes are measured in order to characterize treatment effectiveness or to evaluate the impact of large

policy initiatives. The case study considered in the following concerns patients affected by ST-Elevation

Myocardial Infarction (STEMI) and admitted to any hospital of Lombardia, the Italian regional district

whose capital is Milan. Data come from a clinical registry named STEMI Archive (Lombardia, 2009;
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Ieva, 2013), which is a result of a wider comprehensive project (The Strategic Program “Exploitation,

integration and study of current and future health databases in Lombardia for Acute Myocardial Infarc-

tion”). This project is funded by Italian Ministry of Health. Its main goal is to enhance the integration

of different sources of health information in order to automate and streamline clinicians’ workflow, so

that data collected once can be used multiple times for different aims. Specifically, they can serve for

measuring performances of healthcare systems, for understanding how hospitals work and for increasing

efficacy of healthcare offer in terms of costs and patterns of care.

In general, clinical registries and administrative databases are more and more often used nowadays

to answer epidemiological enquires (see Saia et al., 2009; Hasday et al., 2002; Dalby et al., 2003). The

idea is to use information collected possibly with different purposes in order to analyze the efficacy and

efficiency of the healthcare system on patients’ outcomes. Thus, integrated healthcare systems for data

collection measuring multiple outcomes play a fundamental role in complex clinical environments.

In such framework, the STEMI Archive consists of a clinical collection of data related to patients

admitted in all hospitals of Regione Lombardia with STEMI diagnosis. One of the innovative contents of

this survey is represented by process indicators recorded in it. They can be used to evaluate treatment

times with the aim of designing a preferential therapeutic path to reperfusion in STEMI patients. In

this sense, this survey represents an instrument both for epidemiological enquiries and for organizational

optimization of the cardiological healthcare networks, quantifying the policies effects on multiple outcomes

measured at patient’s level. Within the data available from the STEMI Archive, there are two binary

outcomes of interest: in-hospital mortality and reperfusion efficacy. The first one indicates if a patient

is discharged alive from hospital. The second one indicates if a reduction greater than 70% of the ST-

segment1 elevation in the Electrocardiographic signal has been achieved after 1 hour from the reperfusion

procedure, i.e., the primary angioplasty (Percutaneous Transluminal Coronary Angioplasty or PTCA).

These outcomes are clearly correlated and the interest lies in their joint modelling in order to accomplish

a manyfold goal:

1. performance evaluation (in terms of in-hospital survival) of the healthcare structure the patients

are admitted to;

2. quantification of the influence of procedural variables on outcomes: how do the management of the

patterns of care affects the quality of life after discharge?

1The ECG signal can be divide into different waves and segments, delimited by some relevant points (landmarks), listed in
alphabetical order starting from letter P. The P wave represents atrial depolarization, the ventricular depolarization causes
the QRS complex, that is followed by the ST segment. The ventricular depolarization is responsible of the T and the U
waves. See Lindsay (2006), among others, for details.

3



3. evaluation of the relationship between outcomes, i.e., success in reperfusion practices and mortality,

taking advantage by the joint modeling of their dependence on categorical and continuous covariates.

The article is then organized as follows: in Section 2 we present the recursive bivariate probit model

proposed by Marra & Radice (2011a), highlighting the aspects that make such a model particulary

suitable for carrying out the analysis of STEMI Archive data; in Section 3 the case-study is described

and results of the analysis are proposed. Section 4 contains the discussion of results and conclusions.

All the analyses have been carried out using R software, version 2.15.3, and in particular we refer to the

R-package SemiParBIVProbit, presented in Marra & Radice (2012).

2 Recursive bivariate probit model

The bivariate probit model is a natural extension of probit regression model, where the disturbances of

the two equations are assumed to be correlated in the same spirit as the seemingly unrelated regression

model (Greene, 2012). The recursive version of the bivariate probit allows us to estimate the effect of

interest while accounting for unobserved confounders (Maddala, 1983). The general specification is

y∗1i = xT

1iα1 + ε1i

y∗2i = γy1i + xT

2iα2 + ε2i

, i = 1, . . . , n, (1)

where n denotes the sample size, y∗1i and y∗2i are continuous latent variables which determine the observed

binary outcomes y1i and y2i through the rule 1(y∗vi > 0), for v = 1, 2. Moreover, xT

1i = (1, x12i, . . . , x1P1i)

is the ith row vector of the n × P1 model matrix X1, and α1 is a parameter vector. Similarly, xT

2i is

the ith row vectors of the n × P2 model matrix X2, α2 is a coefficient vector and γ is the parameter

of the endogenous binary variable y1i. The error terms (ε1i, ε2i) are assumed to follow the distribution

N ([0, 0], [1, ρ, ρ, 1]), where ρ is the correlation coefficient and the error variances are normalized to unity

since the parameters in the model can only be identified up to a scale coefficient (e.g. Greene, 2012). To

identify the parameters of the second equation in (1), it is typically assumed that the exclusion restriction

on the exogenous variables holds. That is, the covariates in the first equation should contain at least

one or more regressors (usually referred to as instruments) not included in the second equation. These

regressors have to induce variation in y1i, have not to directly affect y2i, and have to be independent of

(ε1i, ε2i) given covariates. However, as shown in Han & Vytlacil (2013), Marra & Radice (2011a) and

Wilde (2000), the presence of this restriction may not be necessary to obtain consistent estimates of the

model parameters.
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Marra & Radice (2011a) proposed an extension of this model which allows for flexible functional

dependence of the responses on continuous covariates: the semiparametric recursive bivariate probit

model. This extension is important because the neglect of the presence of nonlinearity may have severe

consequences on the estimation of covariate effects (Chib & Greenberg, 2007; Marra & Radice, 2011a).

The semiparametric version of the classic bivariate probit can be written as

y∗1i = x̃T

1iδ1 +

K1
∑

k1=1

s1k1
(x̆1k1i) + ε1i

y∗2i = γy1i + x̃T

2iδ2 +

K2
∑

k2=1

s2k2
(x̆2k2i) + ε2i

, i = 1, . . . , n, (2)

where x̃T

1i = (1, x̃12i, . . . , x̃1Q1i) is the ith row vector of X̃1, the n × Q1 model matrix for the parametric

model components (such as intercept, dummy and categorical variables), with corresponding parameter

vector δ1, and the s1k1
are unknown smooth functions of the K1 continuous covariates x̆1k1i. Similarly,

x̆T

2i is the ith row vectors of the n × Q2 model matrix X̆2, with coefficient vector δ2, and the s2k2
are

unknown smooth terms of the K2 continuous regressors x̆2k2i. Smooth terms are subject to identifiability

constraints such as
∑

i svkv
(x̆vkvi) = 0, v = 1, 2, kv = 1, . . . , Kv. The smooth functions are approximated

using regression splines (e.g. Wood, 2006). Here, function sk(x̆ki), where subscript v has been suppressed

to avoid clutter, is given by
∑Jk

j=1 βkjbkj(x̆ki) = bk(x̆ki)
Tβk, where the bkj(x̆ki) are known spline basis

functions, with corresponding regression parameters βkj , Jk is the number of spline bases, bk(x̆ki) is

a vector consisting of the basis functions evaluated at x̆ki, i.e., bk(x̆ki)
T = {bk1(x̆ki), . . . , bkJk

(x̆ki)},

and βk is the corresponding parameter vector. Basis functions are typically chosen to have convenient

mathematical properties and good numerical stability. Possible choices include B-splines, cubic regression

and thin plate regression splines (see, e.g., Marra & Radice (2010) for an overview). Based on this

representation, the equations in (2) can written as y∗1i = x̃T

1iδ1 + bT

1iβ1 + ε1i = η1i + ε1i, and y∗2i =

γy1i + x̃T

2iδ2 + bT

2iβ2 + ε2i = η2i + ε2i, where, for v = 1, 2, bT

vi =
{

bv1(x̆v1i)
T, . . . ,bvKv

(x̆vKvi)
T
}

, βT
v =

(βT

v1, . . . ,β
T

vKv
) and ηvi has the obvious definition.

2.1 Estimation and Inference

In the bivariate probit model the data identify the four possible events (y1i = 1, y2i = 1), (y1i = 1, y2i = 0),

(y1i = 0, y2i = 1) and (y1i = 0, y2i = 0) with probabilities p11i = Φ2(η1i, η2i; ρ), p10i = Φ(η1i) − p11i,

p01i = Φ(η2i) − p11i and p00i = 1 − p11i − p10i − p01i, where Φ and Φ2 are the distribution functions of

a standardized univariate normal and a standardized bivariate normal with correlation ρ, respectively.
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Therefore, the log-likelihood function is

ℓ(θ) =
n

∑

i=1

{y1iy2i log(p11i) + y1i(1 − y2i) log(p10i) + (1 − y1i)y2i log(p01i) + (1 − y1i)(1 − y2i) log(p00i)} ,

(3)

where θT = (δT

1 , βT

1 , γ, δT

1 , βT

2 , ρ) according to the notation introduced in the previous section. When us-

ing regression splines, to avoid overfitting, the model parameters are typically estimated by maximization

of

ℓp(θ) = ℓ(θ) −
1

2
βTSλβ, (4)

where βT = (βT

1 , βT

2 ), Sλ =
∑2

v=1

∑Kv

kv=1 λvkv
Svkv

and the Svkv
are positive semi-definite known square

matrices measuring the (second-order, here) roughness of the smooth terms in the model, i.e. βT

(

∑2
v=1

∑Kv

kv=1 λvkv
S

∑2
v=1

∑Kv

kv=1 λvkv

∫

f ′′

vkv
(x̆vkv

)2dx̆vkv
. The λvkv

are smoothing parameters controlling the trade-off be-

tween fit and smoothness. Given values for λvkv
, maximization of (4) is straightforward. However,

smoothing parameter estimation has to be settled in practice. This usually involves the use of specialized

numerical routines minimizing, for instance, a prediction error criterion so that the estimated smooth

functions are as close as possible to the true functions. In the current context, multiple smoothing pa-

rameter estimation is achieved by minimization of the approximate unbiased risk estimator (Craven &

Wahba, 1979). Full computational details can be found in Marra & Radice (2011a).

The inferential theory for models involving penalized regression splines is not standard. This is

because of the presence of penalties which undermines the use of classic asymptotic results for practical

modelling. As explained in Marra & Radice (2011a), confidence intervals (CIs) for the components in the

semiparametric bivariate probit model can be constructed using the results for the well known Bayesian

‘confidence’ intervals typically employed in a generalized additive model context (e.g. Gu, 2002). The

resulting intervals include both a bias and variance component, a fact that makes such intervals have

good observed frequentist coverage probabilities across the function (Marra & Wood, 2012). Interval

calculations are therefore based on θ|y∽̇N (θ̂,Vθ), where y contains the response vectors, θ̂ is the estimate

of θ, and Vθ represents the inverse of the penalized information matrix obtained at convergence of

the algorithm (see Marra & Radice (2011a) for further details). Given this result, CIs for linear and

nonlinear functions of the model parameters can be easily obtained. Note that, for parametric model

components, using the result above is equivalent to using classic likelihood results since such terms are

not penalized. Also, there is no contradiction in fitting model (2) by penalized log-likelihood estimation

and then constructing CIs adopting a Bayesian approach, and such a procedure has been employed many

times in the literature (e.g. Gu, 2002; Wood, 2006).
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Note that in the absence of smooth functions in the model, as in (1), classic unpenalised maximum

likelihood estimation can be reliably employed and traditional frequentist results used for inference.

However, it is not possible to know whether smooth components are required before the analysis. In fact,

using a more flexible model can help reducing the risk of misspecification due to undetected nonlinearity,

which, as mentioned earlier, can have severe consequences on parameter estimation (Chib & Greenberg,

2007; Marra & Radice, 2011a).

2.2 Average treatment effect

Since latent variables do not typically have well-defined unit of measurements, parameter γ in model

(1) may not be interpretable. For this reason the effect of the treatment y1i on the response probability

P (y2i = 1|y1i) is calculated. This can be done using the average treatment effect (ATE; e.g. Wooldridge,

2010). Given estimates for the model components, the ATE can be estimated as follows

1

n

n
∑

i=1

Φ2

(

η̂
(y1i=1)
2i , η̂1i; ρ̂

)

Φ(η̂1i)
−

Φ2

(

η̂
(y1i=0)
2i ,−η̂1i;−ρ̂

)

1 − Φ(η̂1i)
,

where η̂
(y1i=r)
2i indicates the linear predictor evaluated at r equal to 1 or 0.

Coefficient ρ is also of interest as it is useful to ascertain the presence of unobserved confounding

(endogeneity). Specifically, ρ can be interpreted as the correlation between the unobserved confounders

in the two equations (e.g. Monfardini & Radice, 2008). If ρ = 0 then ε1i and ε2i are uncorrelated and

hence there is not a problem of endogeneity. In this case, estimation of the second equation in either

(1) or (2) will yield consistent parameter estimates. Moreover, if the model (1) or (2) were fitted with

intercepts only, it turns out that ρ is precisely the tetrachoric correlation, i.e., a Pearson correlation

between two bivariate normal variables that have been observed on a dichotomous scale (Pearson, 1900).

Confidence intervals can be obtained using the delta method (see Chiburis et al., 2011).

3 Case study

In this section we present the analyses carried out fitting a semiparametric bivariate probit model like

in (2) to the data arising from STEMI Archive, the clinical registry gathering patients admitted with

ST-segment Elevation Myocardial Infarction diagnosis in any hospital of Regione Lombardia district. A

complete description of this clinical registry is provided in Ieva (2013), where the Archive is presented

together with the motivating clinical setting. Among the most important patient information provided

by this clinical registry there are:
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- mode of admission, i.e., if a patient reaches the hospital on her/his own or delivered by three

different types of rescue units of 118 (the national toll-free number for emergencies);

- demographic features, like age and sex;

- clinical appearance, i.e., variables describing the patient’s status at admission. Among others, we

focus on killip class (binary variable categorizing the severity of infarction into 0 = less severe and

1 = more severe) and Ejection Fraction (EF);

- risk factors, like hypertension, diabetes, smoking and Chronic Kidney Disease (CKD);

- times to treatment (on/off hours), times to treatment, times to intervention and all the process

indicators concerned with pre- and in-hospital phase (Symptom Onset to Door time - OD, Door to

Balloon time - DB, total ischaemic time - OB, etc.);

- clinical outcomes, i.e., in-hospital mortality and treatment efficacy (STres), quantified by a reduction

of ST segment elevation in the ECG.

We focus our readings on patients who underwent PTCA (Primary Transluminal Coronary Angioplasty),

the most common reperfusion procedure for Acute Myocardial Infarctions. The population considered

for the following analyses consists of 1069 statistical units.

In this application, the binary outcomes of interest are patients’ in-hospital mortality and the efficacy

of the reperfusion treatment they undergo. The efficacy is determined by the reduction of ST segment

elevation one hour after the surgery: if the reduction is over 70% the procedure is considered effective.

Thus it is clear why the joint modelling of in-hospital mortality and reperfusion efficacy makes sense.

Not only they are likely to be correlated, but a strong clinical interest lies in quantifying the degree of

correlation among these two. Moreover, reperfusion efficacy indicator is a binary variable whose values

depend on the latent recovered ability of the coronary arteries to work properly. So the framework

presented in Marra & Radice (2011a) seems to be the proper way to address the problem of interest.

The variable selection has been carried out according to both clinical knowhow and the statistical

stepwise approach, similarly to what proposed in Ieva & Paganoni (2011); Grieco et al. (2012) and

Guglielmi et al. (2012, 2013). Then the model (2) has been fitted to STEMI Archive data with the

following specifications:

1. for the outcome y∗

1
(the reperfusion efficacy, STres) we retained a binary variable (x̃11) indicating

if the patient reaches the hospital on her/his own (access), and two continuous variables (x̆11 and
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x̆12), being the age (age) of the patient and her/his total ischaemic time (O2B, i.e., the time between

the symptom onset and the PTCA procedure), respectively;

2. for the outcome y∗

2
(the in-hospital mortality, mortality) we retained a categorical variable (x̃21)

indicating the patient’s killip class (killip), and a continuous variable (x̆21) measuring her/his

ejection fraction (EF) at the entrance.

Therefore, for i = 1, . . . , 1069, model (2) becomes:

Equation 1: STres∗1i = δ10 + δ11 × accessi + δ12 × agei + s11(O2B1i) + ε1i

Equation 2: Mortality∗1i = δ20 + δ21 × STres + δ22 × killip + δ23 × EF + ε2i

(5)

Table 1 shows the estimates provided by the bivariate probit model for the mortality outcome (second

equation of (5), lower panel in the Table) and the indicator of successful reperfusion therapy (first equation

of (5), upper panel in the Table).

eq
u
a
ti

o
n

1

Coefficient estimate std. err. p-val
intercept δ10 1.3811 0.2488 < 0.0000

access δ11 0.2129 0.0933 0.0225
age δ12 -0.0088 0.0036 0.0140

Smooth term edf est. rank p-val
s(O2B) s11 1.356 2 0.0041

eq
u
a
ti

o
n

2 Coefficient estimate std. err. p-val
intercept δ20 1.7708 0.4656 0.0001

STres δ21 -1.2480 0.2109 < 0.0000
killip δ22 0.7223 0.2544 0.0045

EF δ23 -0.0748 0.0119 < 0.0000

Table 1: Parametric and smoothed coefficients’ estimates obtained fitting the semiparametric bivariate PROBIT
model in (2) to STEMI Archive data.

It can be noticed that all the selected covariates are significant. In particular, the treatment efficacy

decrases as the age increases, as expected. The way of admission of patients delivered by 118 eases

the good prognosis, too. It is worth noting that the total ischaemic time effect is nonlinear, being the

smoother degrees of freedom significantly greater than one. This confirms the clinical knowhow according

to which the way the delay affects the treatment efficacy is definitely nonlinear Gersh et al. (2005).

Concerning the mortality outcome, as expected the more severe the infarction (quantified by killip

class), the higher the mortality. Also a reduced ejection fraction plays the role of increasing the mortality,

as it is known by clinial practice.

The estimated correlation coefficient of the recursive bivariate probit model is equal to 0.394 and it is

significantly different from zero at the 5% level (IC(ρ) = (0.0637, 0.644)), hence supporting the presence
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of unobserved confounders. In fact, it is usual that a lot of unexplained variability exists in complex

healthcare processes where patterns of care consist of multiple phases. It derives from the variability

existing at patient’s level plus a variability induced by the complex process of patient’s management.

Then it is crucial to find correlations and to identify which procedures clinicians can act upon in order

to improve the process of care.

Table 2 shows ATE estimates obtained using the bivariate probit model (upper line) and the naive

model (lower line). Since the naive model does not account for unobserved confounding, in this case the

ATE has been estimated by fitting the equation of interest alone using univariate probit regression.

ATE of estimate CI
SBP model -2.05 (-4.88,0.77)

naive model -1.92 (-20.63,16.78)

Table 2: ATE estimates obtained by fitting the semiparametric bivariate probit and the naive approach, respectively

It can be observed that the confidence intervals of ATE strongly modify if we take into account the

unobservables. It is reasonable to expect ATE to be negative, since the better the efficacy, the lower the

mortality probability. Then, even if there is no evidence for considering the point estimates different from

0, in both cases the estimates are concentrated on negatives values. Moreover, the modification of the

CIs seems to suggest that with a greater number of observation, our tenet on ATE could be confirmed.

Anyway, in this case results suggest that the presence of unobserved confounders detected by the bivariate

model may be regarded as variables which do not interfere with the relationship of interest but whose

presence inflates the variance of the estimates.

In this study we were concerned with the possible detrimental effect of unobserved confounders on

the effect of interest (reperfusion efficacy on mortality). Based on our analysis, this does not seem to be

an issue as the SBP and naive models produced similar point estimates. However, the use of a bivariate

probit model may still be preferred as it may allow for more reliable inferences.

4 Conclusions

It is more and more frequent in clinical practice that multiple outcomes are measured for properly char-

acterizing an effect of interest in terms of diseases or for assessing healthcare policies and performances.

Nevertheless, it often happens that (some) outcomes are difficult (even impossible) to be measured, or

that confounders are difficult to be accounted for when modelling such outcomes by means of suitable

covariates. Instrumental variables are nowadays an established method for isolating the effect of a given

10



predictor in the presence of unobserved confounding.

In this work we showed an application of a semiparametric bivariate probit model to a couple of

binary outcomes representing the in-hospital mortality and an indicator of the reperfusion efficacy in

patients affected by Acute Myocardial Infarction. The efficacy is determined by the reduction of ST

segment elevation one hour after the surgery: if the reduction is over 70% the procedure is considered

effective. Data come from a clinical registry called STEMI Archive Lombardia (2009). This case study

claims for the joint modelling of the in-hospital mortality and reperfusion efficacy outcomes. It makes

sense not only because they are likely to be correlated, but a strong clinical interest lies in quantifying

the degree of correlation among these two. Moreover, reperfusion efficacy indicator is a binary variable

whose values depend on the latent recovered ability of the coronary arteries to work properly. In this

sense, this modelling strategy represents a step forward with respect to the results pointed out in Ieva

& Paganoni (2011) and then in (Ieva & Paganoni, 2010; Grieco et al., 2012), since a joint modelling of

correlated outcomes is possible, as well as parametric and nonparametric definition of the relationship

between outcomes and covariates.

Results are strongly coherent with clinical practice. This enables a better comprehension of the

disease-recovery dynamics, and enables better predictions for new patients entering the study. In general,

accounting and adjusting for confounders is extremely important in complex processes such clinical ones

are, since so many source of latent interaction may arise. This appears clearly looking at results reported

in Table 2.

In general, diagnosis and management of AMI patients are difficult and may strongly benefit of the aid

of statistical models that provide effective risk stratification of patients. In fact, flexible models that are

able to properly profile patients adjusting for case mix and confounders are extremely of interest in the

context of modern clinical practice, since the more accurate predictions and more reliable prognoses they

provide enable to gain insights of the economic burden of AMI, supporting an effective clinical decision

making.
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