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Abstract

We study the single-phase flow in a saturated, bounded heterogeneous
porous medium. We model the permeability as a log-normal random field.
We perform a perturbation analysis, expanding the solution in Taylor series.
The series is directly computable in the case of a random field parametrized
by a finite number of random variables. On the other hand, in the case of an
infinite dimensional random field, suitable equations satisfied by the deriva-
tives of the stochastic solution can be derived. We give a theoretical upper
bound for the norm of the residual of the Taylor expansion which predicts
the divergence of the series as the polynomial degree goes to infinity. We
provide a formula to compute the optimal degree for the Taylor polynomial
and the maximum achievable accuracy of the perturbation approach. Our
theoretical findings are confirmed by numerical experiments in the simple
case where the permeability field is described using one random variable.

⇤This work has been supported by the Italian grant FIRB-IDEAS (Project n. RBID08223Z)
“Advanced numerical techniques for uncertainty quantification in engineering and life science
problems”.
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1 Introduction

In many mathematical models, the input parameters are affected by uncertainty,
which may be due to the incomplete knowledge or the intrinsic variability of
certain phenomena. Some illustrative examples are flows in porous media, com-
bustion problems, earthquake engineering, biomedical engineering, finance, etc.

Starting from a suitable Partial Differential Equation (PDE) model, we de-
scribe the uncertain parameters as random variables or random fields. The aim
of the Uncertainty Quantification is to infer on the solution of the Stochastic
PDE (SPDE) by computing the statistics of the solution or of functionals of it.

The situation we are interested in is the study of single-phase flow of a fluid
in a bounded heterogeneous saturated porous medium. Randomness typically
arises in the forcing terms, as for instance pressure gradients, (see e.g. [15, 38,
39, 44, 11]), as well as in the permeability tensor, due to the impossibility of
a full characterization of conductivity properties of subsurface media (see e.g.
[46, 40, 26, 27, 19, 8]). In this work, we focus on the following linear elliptic
SPDE posed in the bounded domain D ⇢ R

d

− div(a(ω, x)ru(ω, x)) = f(x), x 2 D (1)

where u(ω, x) represents the hydraulic head, the forcing term f(x) is determinis-
tic and the permeability tensor a(ω, x) is modeled as a log-normal random field,
i.e. a(ω, x) = eY (!,x) with Y (ω, x) a Gaussian random field. Here ω represents
a random elementary event. Note that in (1) the differential operators refer to
the spatial variable x 2 D. The log-normal model is widely used in geophysical
applications: see e.g. [8, 19, 26, 27, 40]. In recent years, it has appeared also
in the mathematical literature [12, 13, 21, 24]. Given complete statistical infor-
mation on the permeability field a(ω, x), the aim of this work is to infer on the
statistical moments of the stochastic solution u(ω, x).

The Monte Carlo sampling method is the easiest way to compute the statis-
tics of u(ω, x). It features a rate of convergence independent of the dimension of
the probability space. On the other hand, it does not exploit any regularity of
the solution and the rate is of the order of M−1/2, M being the number of inde-
pendent realizations, so that a large number of realizations has to be considered
to reach a satisfactory accuracy. In recent years, a number of improvements have
been proposed and applied to SPDEs. Between them, we recall the Multilevel
Monte Carlo method [7, 16, 41] and the Quasi Monte Carlo method [25, 29].

The generalized Polynomial Chaos Expansion of the stochastic solution gives
rise to a second family of methods. It can be coupled with a projection strat-
egy (Stochastic Galerkin method [6, 20, 23, 24, 33, 38, 43]) or an interpolation
strategy (Stochastic Collocation method [5, 22, 34, 35, 45]). These approaches
strongly exploit the regularity of the solution in the random variables, but can
not handle high dimensional probability spaces.

In this work, we address the case of small randomness and consider a per-
turbation approach, alternative to Monte Carlo sampling or Polynomial Chaos
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Expansion, based on the Taylor expansion of the solution u with respect to the
Gaussian random field Y . Perturbation approaches have been widely used in the
literature. In the context of perturbations with respect to random fields (infinite-
dimensional parameter space), we mention for instance the work [28], which con-
siders equation (1) in a random domain, the contributions [26, 27, 40] from the
hydrology literature, where log-normal random models for the permeability field
are considered, and [17] which addresses problem (1) with a permeability field
described as a linear combination of countably many uniform random variables.

In the literature, whenever an infinite-dimensional random field is considered,
the majority of the authors compute only a second order correction to the mean
and variance of the stochastic solution. The aim of the present work, concerning
the log-normal model, is to understand if it is reasonable to compute higher
order corrections and to investigate the approximation properties of the Taylor
polynomial.

The main achievements of the work are the following: we derive an upper
bound on the norm of the Taylor residual; we predict the divergence of the Taylor
series and the existence of an optimal degree Kopt of the Taylor polynomial such
that, adding new terms to the Taylor polynomial will deteriorate the accuracy
instead of improving it; we provide an explicit formula for the optimal degree
Kopt for the computation of the expected value of the solution. Our theoretical
results are confirmed by some numerical tests performed in a one dimensional
setting with a permeability field parametrized by a single random variable.

We underline that the divergence of the Taylor series strongly depends on
the chosen log-normal model. Indeed, in [4] (see also [42] the authors show that,
if the permeability field is described as a finite linear combination of bounded
random variables, then the Taylor series converges.

The outline of the paper is the following. Section 2 introduces the problem
at hand and states some results on the statistical moments of the L1-norm
of a sufficiently smooth Gaussian random field extending the results in [12]. In
Section 3 we expand the stochastic solution of the SPDE in Taylor series, provide
bounds on the norm of both the Taylor polynomial and the Taylor residual, and
predict the divergence of the Taylor series. In Section 4 we state the existence and
provide a formula to compute the optimal degree of the Taylor polynomial such
that, adding new terms to the Taylor polynomial will deteriorate the accuracy
instead of improving it. Finally, Section 5 is focused on some numerical tests in a
one-dimensional case which confirm the divergence of the Taylor series predicted
in Section 3.

2 Problem setting

Let (Ω,F ,P) be a complete probability space, where Ω is the set of outcomes, F
the σ-algebra of events and P : Ω ! [0, 1] a probability measure. Let D be an
open bounded domain in R

d (d = 2, 3) with locally Lipschitz boundary. We are
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interested in the Darcy boundary value problem with stochastic permeability:
given f 2 L2(D) and g 2 H1/2(ΓD), find u 2 Lp

(
Ω;H1(D)

)
s.t. u|ΓD

= g, and
Z

D
a(ω, x)ru(ω, x) ·rv(x) dx =

Z

D
f(x)v(x) dx 8v 2 H1

ΓD
(D), a.s. in Ω (2)

where {ΓD, ΓN} is a partition of the boundary of the domain ∂D, and homo-
geneous Neumann boundary conditions are imposed on ΓN . We denoted with
H1

ΓD
(D) the subspace of H1(D) of functions whose trace vanishes on ΓD, and

with Lp
(
Ω;H1(D)

)
the Bochner space of functions v(ω, x) such that kvkLp(Ω;H1) :=✓Z

Ω
kv(ω)kp

H1 dP(ω)

◆1/p

< 1.

We describe the permeability field as a log-normal random field a(ω, x) =
eY (!,x), where Y : Ω ⇥ D̄ ! R is a Gaussian random field. The log-normal
model is frequently used in geophysical applications: see for example [46, 19,
8, 26, 27, 40]. Let us define the mean-free Gaussian random field Y 0(ω, x) =
Y (ω, x) − E [Y ] (x), and assume that its covariance kernel CovY 0 : D ⇥D ! R

is Hölder continuous with exponent t for some 0 < t  1. In [10] the following
proposition is proved, which extends the result in [12] obtained only for centered
second order stationary random fields Y with covariance function:

CovY (x1, x2) = ν(kx1 − x2k)

for some ν 2 C0,1(R+).

Proposition 2.1 Let Y : Ω⇥D̄ ! R be a Gaussian random field with covariance
function CovY 2 C0,t(D ⇥D) for some 0 < t  1. Suppose E [Y ] 2 C0,t/2(D̄).
Then there exists a version of Y whose trajectories belong to C0,↵(D̄) a.s. for
0 < α < t/2.

In what follows, we identify the Hölder regular version of the field with Y (ω, x),
so that kY (ω)kL1(D), amin(ω) := min

x2D̄
a(ω, x) and amax(ω) := max

x2D̄
a(ω, x) are

well-defined random variables. Using the Fernique’s theorem (see e.g. [18]), in
[12] the author shows that

1

amin(ω)
2 Lp(Ω,P), amax(ω) 2 Lp(Ω,P), 8 0 < p < +1.

The well-posedness of problem (2) follows from the Lax Milgram Lemma applied
for almost all ω 2 Ω and the Lp integrability of 1

amin(!)
. See [21, 24, 12].

Remark 2.1 From the point of view of applications it is very interesting to study
also the case of a random field conditioned to available observations. Take for
example the fluid flow in a heterogeneous porous medium: the permeability varies
randomly, and can be measured only in a certain number of spatial points. As-
suming that Noss point-wise measurements of the permeability have been collected
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(e.g. by exploratory wells), one can construct a conditioned random field Y whose
covariance function is non-stationary, but still Hölder continuous with the same
exponent, so that Proposition 2.1 holds.

2.1 Upper bounds for the statistical moments of kY 0kL1(D)

Let us denote by σ2 :=
1

|D|

Z

D
Var [Y (·, x)] dx. If Y (ω, x) is a stationary field,

then its variance is independent of x 2 D and coincides with σ2. By a little
abuse of notation, in what follows we will refer to σ2 as the variance of Y also
in the case of a non-stationary random field.

Let us start from the Karhunen-Loève expansion of the Gaussian random
field Y (ω, x) (see e.g. [31, 32]):

Y (ω, x) = E [Y ] (x) + σ

+1X

j=1

p
λj φj(x) ξj(ω), (ω, x) 2 Ω⇥D, (3)

where {λj}j≥1 is the decreasing sequence of non-negative eigenvalues of the

operator L2(D) 3 v 7!
Z

D
CovY (x1, x2)v(x2) dx2 2 L2(D), {φj(x)}j≥1 are the

corresponding eigenfunctions, which form an orthonormal basis for L2(D), and
{ξj(ω)}j≥1 are the centered independent Gaussian random variables with unit

variance defined as ξj(ω) =
1p
λj

Z

D
(Y (ω, x)− E [Y ] (x))φj(x) dx. Under the

assumption Rγ :=

+1X

j=1

λj kφjk2C0,γ(D̄) < +1, in [13] the author shows that

E

h∥∥Y 0
∥∥k
L1(D)

i
 CY 0 Rk/2

γ σk (k − 1)!!, 8 k > 0 integer, (4)

where CY 0 is a positive constant independent of σ.
An estimate of the type (4) can also be obtained with the Euler characteristic

heuristic method proposed in [1] and further analyzed in [14], which, however, is
valid only for smooth fields:

E

h∥∥Y 0
∥∥k
L1(D)

i
 eCY 0 σk−2 k (k − 1)!!, 8 k > 0 integer, (5)

where eCY 0 is a positive constant independent of k and σ. We refer to [10] for the
proof of (5) in the case of a field defined on a d-dimensional rectangle D = [0, T ]d.

The bound (5) is weaker than (4) as it predicts a scaling σk−2 instead of
σk for the k-th moment of the random variable kY 0kL1(D). On the other hand,

the bound (4) involves the exponential term R
k/2
γ where Rγ depends on the

covariance function of the random field.
To lighten the notations, in the rest of the paper we assume the Gaussian

random field Y (ω, x) to be centered.
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3 Perturbation analysis in the infinite dimensional case

Thanks to the Doob-Dynkin Lemma [36], the solution u of problem (2) is a
function of Y : u = u(Y, x). In this section, under the assumption of small
standard deviation of Y , we perform a perturbation analysis based on the Taylor
expansion of the solution u in a neighborhood of the zero-mean of Y and we study
the approximation properties of the Taylor polynomial of u. We exhibit upper
bounds for the norm of the K-th degree Taylor polynomial TKu and residual
RK = u− TKu. The divergence of the Taylor series for any σ > 0 is predicted.

3.1 Taylor expansion

Let 0 < σ < 1 be the standard deviation of the centered Gaussian random field
Y (ω, x). Given a function u(Y ) : L1(D) ! H1(D) which is (K + 1)-times
Gateaux differentiable, we denote its k-th (0  k  K+1) Gateaux derivative in
Ȳ 2 L1(D) evaluated in the vector (Y, . . . , Y )| {z }

k times

as Dku(Ȳ )[Y ]k. The K-th order

Taylor polynomial of u centered in 0 is:

TKu(Y, x) :=

KX

k=0

Dku(0)[Y ]k

k!
, K ≥ 1 (6)

where D0u(0)[Y ]0 := u0(x) is independent of the random field Y . The K-th
order residual of the Taylor expansion RKu(Y, x) := u(Y, x)− TKu(Y, x) can be
expressed as

RKu(Y, x) :=
1

K!

Z 1

0
(1− t)KDK+1u(tY )[Y ]K+1dt. (7)

See for example [3, 2].
In the case where Y is a finite dimensional random vector Y = (Y1, . . . , YN )

the Taylor polynomial can be explicitly computed, so that we can approximate
u with TKu and the statistics of u with the statistics of TKu. This situation can
be achieved for example by truncating a Karhunen-Loève or Fourier expansion of
Y . On the other hand, in the infinite-dimensional setting, it is possible to derive
deterministic recursive equations solved by the increasing order corrections of
the statistical moments of TKu. See [10]. For example, for the computation of
the expected value of u, one can write deterministic recursive problems for the
k-th order term E

⇥
Dku(0)[Y ]k

⇤
and approximate E [u] as

E [u] ⇡ E
⇥
TKu

⇤
=

KX

k=0

1

k!
E

h
Dku(0)[Y ]k

i
,

This approach is known in literature as moment equations (see e.g. [39, 44, 4, 28,
37, 40, 26]). We do not detail here the derivation and algorithmic implementation
of the moment equations, which can be found in [10]. Rather, we investigate the
accuracy of the Taylor expansion for the problem at hand.
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3.2 Upper bound on the norm of the Taylor polynomial

The problem solved by u0 is the deterministic Laplacian problem: given f 2
L2(D) and g 2 H1/2(ΓD), find u0 2 H1(D) such that u|ΓD

= g and
Z

D
ru0(x) · rv(x) dx =

Z

D
f(x)v(x) dx 8 v 2 H1

ΓD
(D). (8)

The problem solved by the k-th Gateaux derivative of u, Dku(0)[Y ]k (k ≥ 1) is
(see e.g. [5, 26, 40])

k-th derivative problem - log-normal random field

Given u0 2 H1(D) and all lower order derivatives

Dlu(0)[Y ]l 2 Lp
⇣
Ω;H1

ΓD
(D)

⌘
, l < k,

find Dku(0)[Y ]k 2 Lp
⇣
Ω;H1

ΓD
(D)

⌘
s.t.

Z

D
rDku(0)[Y ]k · rv dx = −

kX

l=1

✓
k
l

◆Z

D
Y lrDk−lu(0)[Y ]k−l · rv dx

8 v 2 H1
ΓD

(D), a.s. in Ω.

(9)

By the Lax Milgram lemma, the boundness of kY kL1(D) and a recursion argu-
ment, we can state the following result.

Theorem 3.1 Problem (9) is well-posed, that is it admits a unique solution

Dku(0)[Y ]k 2 Lp
⇣
Ω;H1

ΓD
(D)

⌘
for any 0 < p < +1, that depends continuously

on the data. Moreover, it holds

kDku(0)[Y ]kkH1(D)  C

 
kY kL1(D)

log 2

!k

k! < +1, 8k ≥ 1 a.s. in Ω (10)

where C = C
⇣
CP ,

∥∥u0
∥∥
H1(D)

⌘
, CP being the Poincaré constant.

Proof. For every fixed ω 2 Ω, problem (9) is of the form: find w 2 H1
ΓD

(D) such that

A (w, v) = L (v) 8v 2 H1
ΓD

(D),

where the bilinear form A and the linear form L are respectively defined as

A : H1
ΓD

(D)⇥H1
ΓD

(D) ! R, A (w, v) =

Z

D

rw(x) · rv(x) dx

7



L : H1
ΓD

(D) ! R, L (v) = −
kX

l=1

✓
k
l

◆Z

D

Y lrDk−lu(0)[Y ]k−l · rv dx.

It is easy to verify that A is continuous and coercive. Moreover, L is continuous:

|L (v)| 
kX

l=1

✓
k
l

◆ ∣∣∣∣
Z

D

Y lrDk−lu(0)[Y ]k−l · rv dx

∣∣∣∣


kX

l=1

✓
k
l

◆
kY klL1

∥∥Dk−lu(0)[Y ]k−l
∥∥
H1

kvkH1 .

Thanks to the Lax Milgram Lemma we conclude the well-posedness of problem (9)
a.s. in Ω. To prove (10), let us take v = Dku(0)[Y ]k in (9). By the Cauchy-Schwarz
inequality

Z

D

∣∣rDku(0)[Y ]k
∣∣2 dx 

kX

l=1

✓
k
l

◆ ∣∣∣∣
Z

D

Y lrDk−lu(0)[Y ]k−l · rDku(0)[Y ]kdx

∣∣∣∣


kX

l=1

✓
k
l

◆
kY klL1

∥∥rDk−lu(0)[Y ]k−l
∥∥
L2

∥∥rDku(0)[Y ]k
∥∥
L2

By defining Sk :=
1

k!

∥∥rDku(0)[Y ]k
∥∥
L2

, we have:

Sk 
kX

l=1

kY klL1

l!
Sk−l. (11)

We prove by induction that
Sk  Ck kY kkL1 S0, (12)

where {Ck}k≥1 are defined by recursion as

8
><
>:

C0 = 1

Ck =

kX

l=1

1

l!
Ck−l.

(13)

If k = 1, (12) easily follows from (11). Now, let us suppose that (12) is verified for every
Sj with j = 1, . . . , k − 1. Then, using (11), the inductive hypothesis and the definition
of the coefficients Ck in (13),

Sk 
kX

l=1

kY klL1

l!
Sk−l =

k−1X

l=1

kY klL1

l!
Sk−l +

kY kkL1

k!
S0


k−1X

l=1

kY klL1

l!
Ck−l kY kk−l

L1 S0 +
kY kkL1

k!
S0

= kY kkL1

 
k−1X

l=1

Ck−l

l!
+

1

k!

!
S0 = kY kkL1 Ck S0,
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so that (12) is verified. In [9], the authors show by induction that Ck 
✓

1

log 2

◆k

8 k ≥ 0. Hence,

Sk 
✓kY kL1

log 2

◆k

S0.

In conclusion,

∥∥Dku(0)[Y ]k
∥∥
H1


q
C2

P + 1
∥∥rDku(0)[Y ]k

∥∥
L2


q

C2
P + 1 S0

✓kY kL1

log 2

◆k

k!


✓q

C2
P + 1

∥∥u0
∥∥
H1

◆✓kY kL1

log 2

◆k

k!,

so that (10) is proved with C =
p
C2

P + 1
∥∥u0
∥∥
H1

. Moreover, since kY kL1 2 Lq(Ω,P)

for any 0 < q < +1, we conclude that Dku(0)[Y ]k 2 Lp
(
Ω;H1

ΓD

)
for any 0 < p < +1.

2

Combining (10) and (5) we give an estimate for the Lp
(
Ω;H1(D)

)
-norm of

the Taylor polynomial TKu.

Theorem 3.2 Under the assumptions such that the upper bound (5) holds, then
for every p ≥ 1 integer,

∥∥TKu
∥∥
Lp(Ω;H1(D))


∥∥u0
∥∥
H1(D)

+ C
KX

k=1

✓
σ

log 2

◆k (
σ−2 kp (kp− 1)!!

)1/p
(14)

where C = C
⇣
CP ,

∥∥u0
∥∥
H1(D)

, eCY 0

⌘
.

Proof. Applying the Lp-norm in probability to both sides of (10) and using (5), we
have

∥∥TKu
∥∥
Lp(Ω;H1)


KX

k=0

1

k!

∥∥Dku(0)[Y ]k
∥∥
Lp(Ω;H1)


∥∥u0
∥∥
H1(D)

+ C

KX

k=1

1

k!

✓
1

log 2

◆k

k!
⇣
E

h
kY kpkL1

i⌘1/p


∥∥u0
∥∥
H1(D)

+ C

KX

k=1

✓
σ

log 2

◆k (
σ−2 kp (kp− 1)!!

)1/p
,

where C =
⇣
eCY 0

⌘1/pp
C2

P + 1
∥∥u0
∥∥
H1(D)

. 2

The behavior of the upper bound (14), given by the product of an exponential
term and a bifactorial term, is depicted in Figure 1 for three value of the standard
deviation σ = 0.05, 0.1, 0.15 and p = 1 (left), p = 2 (right).

Exploiting the upper bound (4) instead of (5), we obtain similar results as in
Theorem 3.2, where a behavior σk is predicted, but the constant Rγ depending
on the covariance function of Y is involved.
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Figure 1: Upper bound (14) for three values of σ: σ = 0.05, 0.1, 0.15. Left
p = 1, right p = 2.

3.3 Upper bound on the norm of the Taylor residual

The problem solved by DKu(tY )[Y ]K , t 2 (0, 1), is: given u0 2 H1(D) and all

lower order derivatives Dlu(tY )[Y ]l 2 Lp
⇣
Ω;H1

ΓD
(D)

⌘
, l < K, find

DKu(tY )[Y ]K 2 Lp
⇣
Ω;H1

ΓD
(D)

⌘
s.t.

Z

D
etY rDKu(tY )[Y ]K · rv dx = (15)

−
KX

l=1

✓
K
l

◆Z

D
Y letY rDK−lu(tY )[Y ]K−l · rv dx

8 v 2 H1
ΓD

(D), a.s. in Ω. Following an analogous reasoning as in Theorem 3.2,
we find that problem (15) is well-posed and

kDKu(tY )[Y ]KkH1(D)  C etkY kL1(D)

 
kY kL1(D)

log 2

!K

K! < +1, (16)

8 K ≥ 1 a.s. in Ω, where C =
q

C2
P + 1

∥∥u0
∥∥
H1(D)

.

Theorem 3.3 Under the assumptions such that the upper bound (5) holds, then,
for every p ≥ 1 integer,

∥∥RKu
∥∥
Lp(Ω;H1(D))

 C (K + 1)!

✓
1

log 2

◆K+1
∥∥∥∥∥∥

+1X

j=K+1

kY kjL1

j!

∥∥∥∥∥∥
Lp(Ω;H1(D))

< +1,

(17)
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where C = C
⇣
CP ,

∥∥u0
∥∥
H1(D)

, eCY 0

⌘
. In particular, for p = 1,

∥∥RKu
∥∥
L1(Ω;H1(D))

 C (K + 1)!

✓
1

log 2

◆K+1 +1X

j=K+1

σj−2

(j − 2)!!
. (18)

Proof. Using (16), we find

∥∥RKu
∥∥
H1

 1

K!

Z 1

0

(1− t)K
∥∥DK+1u(tY )[Y ]K+1

∥∥
H1

dt

 C (K + 1)

✓kY kL1

log 2

◆K+1 Z 1

0

(1− t)KetkY k
L1dt,

where C =
p
C2

P + 1
∥∥u0
∥∥
H1(D)

. Let

IK :=

Z 1

0

(1− t)KetkY k
L1dt. (19)

By induction, we show that

IK =
K!

kY kK+1
L1

+1X

j=K+1

kY kjL1

j!
. (20)

Indeed, for K = 0, using the integration by parts formula we find:

I0 =

Z 1

0

etkY k
L1dt =

(
ekY k

L1 − 1
)

kY kL1

=
1

kY kL1

+1X

j=1

kY kjL1

j!
.

Suppose now that relation (20) holds for K − 1. Then, integrating by parts,

IK =


(1− t)K

etkY k
L1

kY kL1

]1

0

+
K

kY kL1

Z 1

0

(1− t)K−1etkY k
L1dt

= − 1

kY kL1

+
K

kY kL1

IK−1

= − 1

kY kL1

+
K

kY kL1

(K − 1)!

kY kKL1

+1X

j=K

kY kjL1

j!

=
K!

kY kK+1
L1

+1X

j=K+1

kY kjL1

j!
.

Hence,
∥∥RKu(Y, x)

∥∥
H1

 C (K + 1)!

✓
1

log 2

◆K+1 +1X

j=K+1

kY kjL1

j!
.

Observe that, since
NX

j=K+1

kY kjL1

j!
 ekY k

L1 8 N and ekY k
L1 is Lp(Ω,P)-integrable for

each 1  p < 1, then the dominated convergence theorem states that
+1X

j=K+1

kY kjL1

j!
is

11



Lp(Ω,P)-integrable for each 1  p < 1 and relation (17) follows. Moreover, if p = 1,

E

2
4

+1X

j=K+1

kY kjL1

j!

3
5 =

+1X

j=K+1

E

h
kY kjL1

i

(j!)
.

Using (5), we conclude

∥∥RKu(Y, x)
∥∥
L1(Ω;H1)

 C (K + 1)!

✓
1

log 2

◆K+1 +1X

j=K+1

σj−2

(j − 2)!!
,

with C = eCY 0

p
C2

P + 1
∥∥u0
∥∥
H1(D)

. 2

Using the upper bound (4) instead of (5), we predict that the Lp
(
Ω;H1(D)

)
-

norm of RKu behaves as σK+1 as a function of σ.
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Figure 2: Semilogarithmic plot of the estimate (18) as a function of K, for
different values of the standard deviation σ.

In Figure 2 we plot in semilogarithmic scale the estimate (18) as a function of
the order of the residual K. We deduce the divergence of the Taylor series for any
σ > 0 and the existence of an optimal degree Kσ

opt depending on σ and p such that
adding new terms to the Taylor polynomial will deteriorate the accuracy instead
of improving it. We highlight that we simply predicted and did not actually
prove the divergence of the Taylor series. To do that, it is necessary to show the
divergence of a lower bound for the norm of the residual RKu. Nevertheless, in
Section 5 we focus on the simple case of a single random variable and we perform
numerical tests which confirm the divergence of the Taylor series.

4 Optimal order of approximation and minimal error

In the previous section we have predicted the divergence of the Taylor series 8 σ >
0 and the existence of an optimal degree Kσ

opt of the Taylor polynomial, which
can be estimated as the argmin of the right-hand side in (17). Let b(σ,K) =

C (K + 1)!
⇣

1
log 2

⌘K+1 ∥∥∥
P+1

j=K+1
kY kL1

j!

∥∥∥
Lp(Ω;H1(D))

. The estimate (17) states

12



that, for every σ > 0 fixed, the minimal error errσmin we can commit using a
perturbation approach is bounded by

errσmin  argminKb(σ,K) = b(σ,Kσ
opt). (21)

Here, we provide an approximation for both Kσ
opt and errσmin in the case p = 1

(estimate (18)).

Proposition 4.1 Let 0 < σ  log 2p
5

. Then, the optimal degree of the Taylor

expansion can be estimated as

K̄σ :=

⌊
log2 2

σ2

⌫
− 4. (22)

Proof. The first step of the proof consists in showing that

∥∥RKu
∥∥
L1(Ω;H1(D))

 C
1

(log 2)2(1− σ)
v(K), (23)

where v(K) =

✓
σ

log 2

◆K−1

(K + 2)!! and C independent of K. Starting from (18) and

using that
+1X

j=K+1

σj−2

(j − 2)!!
 1

1− σ

σK−1

(K − 1)!!

we find:

∥∥RKu
∥∥
L1(Ω;H1(D))

 C
1

1− σ

✓
1

log 2

◆K+1

(K + 1)!
σK−1

(K − 1)!!

= C
1

1− σ

✓
1

log 2

◆K+1

σK−1(K + 1)K(K − 2)!!

 C
1

1− σ

✓
1

log 2

◆K+1

σK−1(K + 2)!!,

so that (23) is proved. To find the argmin of v(K), we consider log(v(K)):

log(v(K)) =

⇢
(2n− 3) logα+ log(2n)!!, if K = 2n− 2,
(2n− 4) logα+ log(2n− 1)!!, if K = 2n− 3.

where α =
σ

log 2
. We analyze the two cases K odd or even separately, using that (2n)!! =

2nn!, (2n− 1)!! =
(2n)!

2nn!
and e

⇣n
e

⌘n
 n!  e n

⇣n
e

⌘n
. We conclude that

log(v(n))  w(n) + C̄

where
w(n) := 2n logα+ n log 2 + (n+ 1) log(n+ 1)− n (24)

13



Table 1: This Table contains the optimal Kσ
opt = argminKb(σ,K) (p = 1) and

its estimate K̄σ in (22).
σ Kσ

opt K̄σ

0.10 45 44
0.15 19 17
0.18 11 10
0.20 9 8

and C̄ is the positive constant

C̄ =

⇢
−3 logα+ 1, if K = 2n− 2,
−4 logα+ log 2, if K = 2n− 3.

(25)

Note that we have bounded (n + 1) log n with (n + 1) log(n + 1) in view of having a

simpler derivative
d

dn
w(n). We look for the argmin(w(n)) by imposing

d

dn
w(n) = 0,

that is
2 logα+ log 2 + log(n+ 1) = 0,

which implies n =

⌊
1

2α2

⌫
− 1, so that we can choose K̄σ =

⌊
1

α2

⌫
− 4. 2
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Figure 3: Semilogarithmic plot of b(σ,K), the right-hand side of (18) (continuous
line), and of the points

(
K̄σ, b(σ, K̄σ)

)
(black dot) for different values of σ.

In Table 1 we report the optimal Kσ
opt = argminKb(σ,K) and its estimate

K̄σ (22) for different values of σ. Figure 3 represents the upper bound b(σ,K) of
the error (see (21)) and the points

(
K̄σ, b(σ, K̄σ)

)
(black dot) for different values

of σ. We take the values b(σ, K̄σ) as an estimate of the minimal error we can
commit (maximum accuracy achievable) by performing a perturbation approach
as in the previous section.
As Table 1 and Figure 3 suggest, the estimate (22) of the optimal K is quite
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sharp. Moreover, the smaller is σ, the bigger is Kσ
opt and the smaller is the

minimal error we can commit.

Remark 4.1 Suppose that the permeability field is modeled using a finite number
of independent standard Gaussian random variables:

Y (ω, x) = σ
NX

n=1

p
λnYn(ω)φn(x),

and define Y(ω) = (Y1(ω), . . . , YN (ω)). This situation can be achieved for exam-
ple by approximating the Gaussian field Y (ω, x) by a N -terms Karhunen-Loève
expansion (see e.g. [23, 31, 32, 30]). The stochastic solution u(Y(ω), x) of the
Darcy problem belongs to Lp

⇢

(
R
N ;H1(D)

)
, the Banach space of functions v :

R
N ⇥D ! R such that kvkLp

ρ(RN ;H1(D)) :=
(R

R
N kv(Y, ·)kp

H1ρ(Y)dY
)1/p

< 1,

where ρ(Y) = 1
(2⇡)N/2 e

−
kYk2

2 is the joint probability density of the vector Y(ω).

In this setting the Gateaux derivative DKu(0)[Y ]K simplifies: DKu(0)[Y ]K =P
|k|=K ∂k

Y
u(0, x)Yk, and the Taylor polynomial is explicitly computable.

The theoretical estimates on the norm of the Taylor polynomial (Section 3.2)
and Taylor residual (Section 3.3) still hold with Rγ,N :=

PN
n=1 λn kφnk2C0,γ in-

stead of Rγ.

Remark 4.2 In [4] (see also [17]) the authors study the Darcy problem (2)
where the permeability is a linear combination of independent bounded ran-
dom variables: a(ω, x) = E[a](x) +

PN
n=1 φn(x)Yn(ω), with Yn ⇠ U ([−γn, γn]),

0 < γn < +1 8 n, and φn 2 L1(D) 8 n. In this case, under the assumption of
small variability of the field, the Taylor series is proved to be convergent. Hence,
the divergence of the Taylor series predicted in Theorem 3.3 is strongly related to
the log-normal permeability model.

5 Single random variable - Numerical results

In the previous sections, we predicted the divergence of the Taylor series of the
stochastic solution u in the case where the permeability field a(ω, x) is described
as a log-normal random field. Recall that the Taylor polynomial is directly
computable only in the finite-dimensional setting. Here we consider a simple
case, where a(ω, x) = eφ(x)Y (!), with Y ' N (0, σ2). We compute the Taylor
polynomial of u and perform some numerical tests, which confirm the divergence
of the Taylor series for every σ > 0.

Suppose Y ⇠ N (0, σ2), with 0 < σ < 1 and φ 2 L1(D). Theorem 3.1 states
that the boundary value problem solved by the k-th derivative of u, ∂k

Y u(0, x),
is well-posed, and

∥∥∥∂k
Y u(0, x)

∥∥∥
H1(D)

 C

✓kφkL1

log 2

◆k

k!, (26)
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where C = C
⇣
CP ,

∥∥u0
∥∥
H1(D)

⌘
. In the same way, (16) implies

∥∥∥∂k
Y u(tY, x)

∥∥∥
H1(D)

 C et|Y |kφkL1

✓kφkL1

log 2

◆k

k!. (27)

Using the upper bound (26) and the value of the statistical moments of |Y |

E [|Y |p] = C σp(p− 1)!!, C =

(
1 if p is evenq

2
⇡ if p is odd

(28)

we deduce

∥∥TKu
∥∥
Lp
ρ(R;H1(D))


∥∥u0
∥∥
H1(D)

+ C
KX

k=1

✓kφkL1 σ

log 2

◆k

((pk − 1)!!)1/p (29)

where TKu(Y, x) :=

KX

k=0

∂k
Y u(0, x)

k!
Y k is the K-th order Taylor polynomial and

C = C
⇣
CP ,

∥∥u0
∥∥
H1(D)

⌘
. Similarly, using (27), we derive the following estimate

for the K-th order integral residual RKu(Y, x) :=
1

K!

Z 1

0
(1−t)K∂K+1

Y u(tY, x)Y K+1dt:

∥∥RKu
∥∥
Lp
ρ(R;H1(D))

 C(K + 1)!

✓
1

log 2

◆K+1
∥∥∥∥∥∥

+1X

j=K+1

(|Y | kφkL1)j

j!

∥∥∥∥∥∥
Lp
ρ(R;H1(D))

,

which can be particularized if p = 1 as follows:

∥∥RKu
∥∥
L1
ρ(R;H

1(D))
 C(K + 1)!

✓
1

log 2

◆K+1 +1X

j=K+1

(σ kφkL1)j

j!!
, (30)

where C = C
⇣
CP ,

∥∥u0
∥∥
H1(D)

⌘
.

We develop some numerical computations in a 1D case, with D = [0, 1],
homogeneous Dirichlet boundary conditions imposed on ΓD = {0, 1}, f(x) = x
and φ(x) = cos(πx). The problems solved by u0(x) and ∂k

Y u(0, x) respectively
are: Z 1

0
(u0(x))0v0(x)dx =

Z 1

0
f(x)v(x)dx, u0(0) = u0(1) = 0 (31)

8 v 2 H1
0 ([0, 1]), and

Z 1

0
(∂k

Y u(0, x))
0v0(x)dx = −

kX

l=1

✓
k
l

◆Z 1

0
φ(x)l(∂k−l

Y u(0, x))0v0(x)dx, (32)
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∂k
Y u(0, 0) = ∂k

Y u(0, 1) = 0, 8 v 2 H1
0 ([0, 1]), 8k ≥ 1. Note that the apex in

problems (31) and (32) means the derivative with respect to x. Let {ϕi}Nh−1
i=1 be

the piecewise linear finite element basis associated with a uniform partition of
[0, 1] in Nh subintervals of length h = 1/Nh. Applying the finite element method
(FEM) to problem (31), we end up with the following system:

AU0 = F 0, (33)

where the stiffness matrix is tridiagonal, symmetric and its generic element is

given by Aij =

Z 1

0
ϕ0
i(x)ϕ

0
j(x)dx, the right-hand side is a vector whose j-th

element is F 0
j =

Z 1

0
f(x)ϕj(x)dx, and U0 is the unknown vector. Similarly,

applying the linear FEM to the k-th problem (32), we end up with the following
system:

AUk = −
kX

l=1

✓
k
l

◆
F lUk−l, (34)

where the stiffness matrix is the same as in (33), and the right-hand side contains
the solutions U0, . . . , Uk−1 of the l-th problem for l = 0, . . . , k−1 and the matrices

F l
ij =

Z 1

0
(φ(x))lϕ0

j(x)ϕ
0
i(x)dx, for l = 1, . . . , k.
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Figure 4: Relative error
kuh−TKuhkL

p
ρ(R;L2(D))

kuhkLp
ρ(R;L2(D))

computed by linear FEM in space

and a high order Hermite quadrature formula in probability, for p = 1 (left) and
p = 2 (right).

Let Y be fixed and let us denote with uh(Y, x) the linear FEM solution of
the Darcy problem collocated in Y , so that

TKuh(Y, x) =

KX

k=0

Nh−1X

i=1

Uk
i

k!
ϕi(x)Y

k.

17



In Figure 4 we plot in semilogarithmic scale the relative error
kuh−TKuhkL

p
ρ(R;L2(D))

kuhkLp
ρ(R;L2(D))

(p = 1, 2) computed by linear FEM in space and a high order Hermite quadra-
ture formula in the Y variable, for different values of the standard deviation
0 < σ < 1. Note that we have chosen the same spatial discretization both for
uh and TKuh, so that we observe only the truncation error of the Taylor series.
These figures give numerical evidence of both the divergence of the Taylor series
8 σ, and the existence of an optimal degree of the Taylor polynomial Kσ

opt de-
pending on σ (see Section 4). Moreover, the higher is p, the worse is the behavior
of the norm of the residual, since it starts diverging for a smaller K.
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Figure 5: Comparison between the computed error
∥∥uh − TKuh
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L1
ρ(R;L

2(D))
and

the theoretical estimate (30).
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Figure 6: Comparison between the computed norm
∥∥TKuh
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Lp
ρ(R;L2(D))

and its

theoretical estimate (29), for p = 1 (left) and p = 2 (right).

Figure 5 compares the computed absolute error
∥∥uh − TKuh

∥∥
L1
ρ(R;L

2(D))
with

the theoretical estimate (30). Figure 6 compares the theoretical upper bound for
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the L1
⇢

(
R;H1(D)

)
and L2

⇢

(
R;H1(D)

)
norms of the Taylor polynomial (see (29))

with the same quantities computed by linear FEM in space and a high order
Hermite quadrature formula in the Y variable.

Both the estimates for the Taylor polynomial (29) and the Taylor residual (30)
are quite pessimistic. This is a consequence of the estimate on

∥∥∂k
Y u(0, x)

∥∥
H1(D)

,
which is itself very pessimistic.
With the aim of improving the theoretical bounds on the norm of the Taylor
polynomial and residual, we assume that the growth of the derivatives follows
the ansatz: ∥∥∥∂k

Y u(0, x)
∥∥∥
L2(D)

⇠
✓
γ kφkL1

log 2

◆k

k! (35)

for a suitable value of γ. Then we try to fit the value of γ starting from the
numerical results obtained. In this specific example, the fitting procedure gives

γ =
1

3.5
. Nevertheless, we highlight that the choice of γ strongly depends on

φ(x), whereas it seems rather insensitive to other quantities such as the loading
term f(x), the boundary conditions or the number of intervals in the mesh Nh.
In Figure 7 we plot in semilogarithmic scale the quantity

∥∥∂k
Y u(0, x)

∥∥
L2(D)

com-

puted by linear FEM, compared with the theoretical estimate (26) and the fitted

one (35) with γ =
1

3.5
. The agreement of the computed norm

∥∥∂k
Y u(0, x)

∥∥
L2(D)

with the fitted estimate (35) is remarkable, which strongly indicates that the
ansatz (35) is appropriate.
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Figure 7: Comparison between the quantity
∥∥∂k

Y u(0, x)
∥∥
L2(D)

computed by linear

FEM, its theoretical estimate (26) and the fitted one (35) with γ =
1

3.5
.

We then use the fitted value γ =
1

3.5
in the estimate (29) of the norm of the
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Figure 9: Comparison between the computed quantity
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its theoretical estimate (37) with the fitted value γ =
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3.5
.
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Taylor polynomial

∥∥TKu
∥∥
Lp
ρ(R;H1(D))


∥∥u0
∥∥
H1(D)

+ C

KX

k=1

✓
γ σ kφkL1

log 2

◆k

((pk − 1)!!)1/p (36)

as well as on the norm of the residual (30)

∥∥RKu
∥∥
L1
ρ(R;H

1(D))
 C (K + 1)!

✓
γ

log 2

◆K+1 +1X

j=K+1

(kφkL1 σ)j

j!!
. (37)

Figures 8 and 9 compare the computed quantities
(∥∥TKuh

∥∥
Lp
ρ(R;H1(D))

for p =

1, 2 and
∥∥RKuh

∥∥
L1
ρ(R;H

1(D))
respectively

)
with the fitted bounds (36) and (37)

respectively. We underline that, with the ansatz (35) on the growth of the deriva-
tives we are able to sharply predict the optimal degree of the Taylor polynomial
Kσ

opt.
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Figure 10: Error
∥∥E [uh]− E

⇥
TKuh

⇤∥∥
L2(D)

as a function of σ.

Finally, we analyze the behavior of the error
∥∥E [uh]− E

⇥
TKuh

⇤∥∥
L2(D)

as a
function of σ. Figure 10 shows this error in logarithmic scale. Observe that the
exponential behavior σK+1 predicted in (30), is confirmed.

6 Conclusions

The present work addresses the Darcy problem describing the single-phase flow
in a bounded heterogeneous porous medium occupying the domain D ⇢ R

d,
d = 2, 3, where the permeability tensor is modeled as a log-normal random field:
a(ω, x) = eY (!,x). Under the assumption of small variability of the field Y , we
perform a perturbation analysis and study the approximation properties of the
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Taylor polynomial of order K. We predict the divergence of the Taylor series, and
we confirm it by numerical examples with just one random variable. We state
the existence of an optimal degree Kσ

opt of the Taylor polynomial, and provide a
formula to compute it in the case where the L1

(
Ω;H1(D)

)
-norm is considered.

The results obtained in this work are very important in view of deriving an
approximation of the statical moments of u. For example, if we look for an
approximation of the expected value E [u], the underlying idea consists in deriv-
ing and numerically solving the recursive deterministic problem for the expected
value of the k-th order derivative Dku(0)[Y ]k, k = 0, . . . ,Kσ

opt, and then lin-

early combine them: E [u] ⇡PKσ
opt

k=0
1
k!E

⇥
Dku(0)[Y ]k

⇤
. The k-th order derivative

equation requires in turn the study of the problems solved by the correlations
between Dku(0)[Y ]k and Y . These quantities belongs to tensor product spaces
and, when discretized, are represented by high dimensional tensors, so that suit-
able numerical technique have to be adopted. This discussion can be found in
[10] and is a topic of a forthcoming paper.
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