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Abstract

In this work, we consider space-time point processes and study their continuous space-time evolution. We propose
an innovative nonparametric methodology to estimate the unknown space-time density of the point pattern, or, equiv-
alently, to estimate the intensity of an inhomogeneous space-time Poisson point process. The presented approach
combines maximum likelihood estimation with roughness penalties, based on differential operators, defined over
the spatial and temporal domains of interest. We first establish some important theoretical properties of the consid-
ered estimator, including its consistency. We then develop an efficient and flexible estimation procedure that lever-
ages advanced numerical and computation techniques. Thanks to a discretization based on finite elements in space
and B–splines in time, the proposed method can effectively capture complex multi-modal and strongly anisotropic
spatio-temporal point patterns; moreover, these point patterns may be observed over planar or curved domains with
non-trivial geometries, due to geographic constraints, such as coastal regions with complicated shorelines, or curved
regions with complex orography. In addition to providing estimates, the method’s functionalities also include the
introduction of appropriate uncertainty quantification tools. We thoroughly validate the proposed method, by means
of simulation studies and applications to real-world data. The obtained results highlight significant advantages over
state-of-the-art competing approaches.

Keywords: Space-time density estimation, Intensity estimation of inhomogeneous space-time Poisson point
processes, Partial differential equation regularization, Finite element method.

1. Introduction

Geo-referenced event data, recorded continuously over time, are attracting increasing interest in many scientific
fields, including epidemiology, seismology, social sciences, and many others. Examples of typical real applications
include disease surveillance, occurrence analysis of extreme natural events, crime hot-spot detection, and roadway
traffic crash mapping. Spatio-temporal event data are also frequently encountered in environmental sciences, for vari-
ous purposes, including studying the presence of rare plant species, tracking the migration phenomena of endangered
animals, and monitoring the occurrence of respiratory diseases due to pollution or global warming. In engineering
and additive manufacturing, spatio-temporal event data are, for instance, observed in multi-target tracking problems
and in the real-time monitoring of defects in selective laser melting processes for 3D printing.
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Figure 1: Locations of gastrointestinal infections in Hampshire county, UK, in some months of 2001 and 2002. Although we here plot events on
a monthly basis, the data are observed continuously over time (and space). The phenomenon is expressed differently across the irregular spatial
domain, resulting for instance in different behaviors along the western and eastern shores of Southampton Water estuary. The background map was
obtained using the RgoogleMaps package (Loecher, 2023).

Figure 1 displays a benchmark application in epidemiology, concerning the evolution of non-specific gastroin-
testinal infections over time. Points correspond to the locations of cases reported to the National Health Service
(NHS) Direct in Hampshire county, UK, in the period 2001-2003. Data are publicly available and collected during a
collaborative surveillance project in the South of England; see Diggle et al. (2009); Kaimi and Diggle (2011). The ir-
regular shape of the spatial domain influences the disease spread, resulting for instance in different behaviors along the
western and eastern shores of Southampton Water estuary. Figure 2 illustrates instead an application in seismology.
We here consider the locations of earthquakes, with magnitude greater than 4.75, that took place worldwide during
2020-2022. The dataset is sourced from the earthquake catalog of the United States Geological Survey (USGS). Since
earthquakes result from the sudden release of energy, caused by the rupture of geological faults in the Earth’s crust,
points are mainly distributed along these elongated lines. In these varied frameworks, one crucial research interest lies
in determining the underlying spatio-temporal evolution of the phenomenon. This can be rephrased in terms of esti-
mating the unknown spatio-temporal probability density, or equivalently estimating the intensity of an inhomogeneous
space-time point process, that generates the data.

Spatial point pattern analysis has been the object of an extensive and detailed literature, with a wealth of different
models proposed for the study of point distribution over space. The reader may refer, for example, to Fishman and
Snyder (1976); Daley et al. (2003); Daley and Vere-Jones (2008); Streit and Streit (2010); Baddeley et al. (2015);
Møller and Waagepetersen (2007, 2017), and references therein. Much interest has been devoted to the investigation
of methods for spatio-temporal point patterns (see, e.g., Diggle, 2013; González et al., 2016). Spatio-Temporal Kernel
Density Estimation (STKDE) has been proposed by Zhang et al. (2011) and implemented in the R packages stam

(Zhang, 2010) and sparr (Davies and Marshall, 2023). STKDE is utilized in various contexts, such as crime hot-

2



View 1 View 2 View 3 View 4

M
ay

20
20

N
ov

em
be

r2
02

0y

Figure 2: Locations of earthquakes with a magnitude greater than 4.75 that occurred worldwide in two different months of 2021. Although we here
plot events on a monthly basis, the data are observed continuously over time (and space). The pattern is highly localized and skewed along the
faults in the Earth’s crust, where earthquakes originate by the action of plate tectonic forces.

spot prediction (Hu et al., 2018), epidemiology (Elson et al., 2020, 2021), and wildlife roadkill hot-spot detection
for mitigation measures (Medinas et al., 2021). Intensity estimation in spatio-temporal Log Gaussian-Cox Processes
(LGCP) has been described in Diggle et al. (2013); Shirota and Gelfand (2017), and implemented in the lgcp R
package (Taylor et al., 2023). A very rich literature concerns spatio-temporal Bayesian hierarchical models based
on Integrated Nested Laplace Approximations (INLA, Rue et al., 2009) and stochastic Partial Differential Equations
(sPDE, Lindgren et al., 2011), reviewed in Blangiardo and Cameletti (2015); Krainski et al. (2018); Gómez-Rubio
(2020), and implemented in the packages R-INLA (https://www.r-inla.org/) and inlabru (Lindgren and Bachl,
2023; Bachl et al., 2019). To mention just some of them, the reader may refer to Yuan et al. (2017); Python et al.
(2019); Serra et al. (2014); Rodrı́guez de Rivera et al. (2018); Ugarte et al. (2014); Valente and Laurini (2020).

Many methods have been proposed to address other research questions, concerning space-time point processes.
Studies on spatio-temporal LGCPs have focused on advanced inference and the estimation of second-order parameters,
using various approaches, including the joint minimum contrast fitting method and likelihood-oriented techniques
(see, e.g., D’Angelo et al., 2023; Rodrigues and Diggle, 2012; Bayisa et al., 2020; Waagepetersen et al., 2016).
Alternative research endeavors introduce novel classes of models for spatio-temporal point processes. Li and Guan
(2014) proposed generalized linear mixed models for latent spatio-temporal point processes, incorporating functional
principal component analysis and an empirical Bayes approach. Chen et al. (2021) combines continuous-time neural
ordinary differential equations, to jointly capture spatial and temporal dependencies along with their propagation
effects. Other works develop estimators of the spatio-temporal inhomogeneous K–function, and pair correlation
function, to describe second-order characteristics of point processes (see, e.g., Gabriel, 2014; Hering et al., 2009).

Due to the inherent complexity of space-time settings, some of these state-of-the-art methodologies may come
with some limitations, either for theoretical or computational reasons. Some methods, for instance, are defined to
handle event data continuously over space and time, but their implementation requires discrete time instances. Most
techniques, though theoretically defined for generic multivariate spatial domains, have implementations that work on
regular planar spatial domains or spherical domains. Notable exceptions in this regards are for instance offered by
methods implemented in R-INLA, and by the STKDE implementation in sparr (Davies and Marshall, 2023), that
can handle space-time data recorded across irregularly shaped planar regions (Bertin et al., 2023). Other techniques
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make assumptions that allow for the simplification of the complexity characterizing the spatio-temporal phenomenon
under study. One of these is the first-order separability hypothesis for spatio-temporal point processes, which requires
that the density or intensity estimate can be factorized in spatial and temporal components. This is quite a strong
assumption in the considered framework, that should be adequately investigated on a case-by-case basis, depending
on the specific data at hand, by means of statistical tests, such as those proposed by Ghorbani et al. (2021).

In this work, we present an innovative methodology for Spatio-Temporal Density (and intensity) Estimation, with
Partial Differential Equation Regularization, referred to as STDE-PDE. We provide an effective tool for estimating the
unknown probability density on the spatio-temporal domain of interest, starting from an independent and identically
distributed sample. This estimation problem is equivalent to intensity estimation of an inhomogeneous space-time
Poisson point process. STDE-PDE combines a nonparametric maximum likelihood approach, with a regularization
based on differential operators, in space and time, with the aim of balancing adherence to data and smoothness of
the estimate. The method handles event data continuously over space and time, and does not make any assumption
about the shape of the underlying density or intensity, nor about the separability in space and time. The estimation
procedure relies on advanced optimization procedures and numerical analysis techniques, based on finite elements
in space and B–splines in time. These choices ensure efficiency and flexibility, making the proposed STDE-PDE
capable of capturing complex multi-modal and strongly anisotropic spatio-temporal point patterns, such as those
characterizing the seismology application in Figure 2. Moreover, these point patterns may be observed over planar or
curved domains endowed by non-trivial geometries, due to geographic constraints; this includes coastal regions with
complicated shorelines, as in the case of the epidemiology data in Figure 1, or curved spatial regions with complex
orography.

For the underlying mathematical structure, STDE-PDE falls within the research field of nonparametric density
estimation methods with roughness penalties. This field has so far been explored in space-only settings, by Silver-
man (1982); Gu and Qiu (1993); Gu (1993); Gu and Wang (2003); Gu et al. (2013) for regular spatial domains, by
Ferraccioli et al. (2021) for irregular planar domains, and by Arnone et al. (2022) for Riemannian manifold domains.
In particular, we here extend the works of Ferraccioli et al. (2021) and Arnone et al. (2022), by incorporating the
time dimension. This extension involves the utilization of roughness penalties in both space and time, similar to those
commonly employed in semiparametric regression settings Augustin et al. (2013); Marra et al. (2012); Bernardi et al.
(2017); Arnone et al. (2023c). In contrast to Ferraccioli et al. (2021) and Arnone et al. (2022), who did not devise
uncertainty quantification tools, we explicitly focus on addressing this aspect. In particular, following a Bayesian
analogy, we develop approximate confidence bands for the spatio-temporal density or intensity estimate, based on
the proposed estimator. With necessary simplifications, the proposed inference approach can also be applied in the
space-only settings considered by Ferraccioli et al. (2021) and Arnone et al. (2022). Finally, STDE-PDE is a new
addition to the class of statistical methods with PDE regularization originally inspired by Ramsay (2000, 2002); San-
galli et al. (2013), and reviewed in Sangalli (2021). The implementation of the proposed model further extends the
functionalities of the R/C++ fdaPDE library (Arnone et al., 2023a), providing ready-to-use tools to deal with space-time
point processes.

The remainder of the paper is organized as follows. Section 2 introduces the proposed statistical model. Section
3 delves into the theoretical properties, including the well-posedness of the estimation problem, and the consistency
of the associated estimator. Section 4 addresses some necessary numerical aspects, focusing on the discretization
procedure and briefly commenting on some optimization aspects. Section 5 introduces pointwise confidence intervals
for the space-time density estimate, based on a Bayesian approach. Section 6 presents two simulation studies, com-
paring STDE-PDE with other state-of-the-art methodologies. Section 7 showcases the use of STDE-PDE in the two
applications to real-world data, from epidemiology and seismology, illustrated in Figures 1 and 2. Finally, Section 8
draws concluding remarks and outlines potential directions for future research.

2. Space-time density and intensity estimation

Let D ⊂ Rd, where d = 2, 3, and [0,T ] ⊂ R+, be the spatial and temporal domains of interest. Depending on the
specific application, D can be a compact (but possibly non-convex) subset of R2, or a two-dimensional Riemannian
manifold, embedded in R3; see, e.g., Jost (2008). Other possible forms of D will be discussed in the concluding
section. Define the spatio-temporal domain DT B D × [0,T ]. Let the pairs {(pi, ti)}ni=1 ∈ DT be n independent and
identically distributed observations, drawn from an unknown distribution with density function f : DT → R+, to be
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estimated. In order to estimate f , we adopt a nonparametric likelihood approach, which does not assume the form
of f to be known a priori, and makes use of roughness penalties to ensure regularity of the estimate. This approach
extends to space-time settings the framework considered for density estimation over spatial domains in Silverman
(1982); Goodd and Gaskins (1971); Tapia and Thompson (1978); Gu and Qiu (1993); Ferraccioli et al. (2021); Arnone
et al. (2022). We parameterize the estimation problem in terms of the log-density g = log f , to naturally satisfy the
non-negativity constraint on f . Specifically, we propose to estimate f by finding the log-density function g = log f
that minimizes the following penalized negative log-likelihood:

L(g) B −
1
n

n∑
i=1

g(pi, ti) +
∫
DT

eg(p,t) dp dt + R(g; λ), (1)

where R(g; λ) is an appropriate roughness penalty, which depends on the smoothing parameters λ, as detailed below.
Note that the first term in (1) is the negative log-likelihood. The second term instead guarantees that f has unitary
integral over DT , thus ensuring that f is a density with respect to the Lebesgue measure over DT ; see the detailed
explanation in Appendix A. Finally, the regularization term R(g; λ) in (1) prevents degenerate solutions, such as the
sums of Dirac delta functions centered at the observations, which would lead to unbounded likelihoods. We here
consider a flexible regularization R(g; λ), comprising two terms that enable the control of the regularity of the estimate
in both space and time,

R(g; λ) B λD

∫
DT

(
∆Dg(p, t)

)2 dp dt + λT

∫
DT

(
∂2g(p, t)
∂t2

)2
dp dt, (2)

where ∆D is the Laplace or Laplace-Beltrami operator, and λ =
[
λD, λT

]⊤
are smoothing parameters, with λD, λT > 0.

The Laplace and Laplace-Beltrami operators, respectively for planar and curved spatial domainsD, measure the local
curvature of g over D; similarly, the second derivative in time measures the local curvature of g over the temporal
domain [0, T ]. The presence of the two smoothing parameters, λD and λT , provides a means to control the regularity
in space and time. These smoothing parameters balance the trade-off between the log-likelihood, responsible for the
model’s adaptation to the data, and the regularization term, which seeks reduced variation in g. The penalty in (2) is
also common in regression contexts (see, e.g., Marra et al., 2012; Augustin et al., 2013), and permits the derivation of
the large sample properties of the estimators, through suitable generalization of the arguments used in more classical
spline settings by Silverman (1982).

Remark 1. The above model for density estimation can equivalently be reformulated in terms of intensity estimation
of an inhomogeneous Poisson space-time point process on DT , as detailed in Appendix B (see also the simulation
setting in Appendix F).

3. Theoretical properties

In this section, we address the main theoretical properties related the proposed method. In Section 3.1, we define
the appropriate functional embedding for the considered estimation problem, and we address its well-posedness. In
Section 3.2, we focus on the consistency of the estimator.

3.1. Functional embedding and well-posedness of the estimation problem
Let L2(D) denote the space of square integrable functions over the spatial domain D, and consider the Sobolev

space Hk(D) B {u ∈ L2(D) : Dαu ∈ L2(D) ∀|α| ≤ k}, equipped with the standard norm ||u||2Hk(D) B
∑
|α|≤k ||Dαu||2L2(D),

with Dα denoting the weak derivative of order α (see, e.g., Brezis and Brézis, 2011). Then, consider the time-
dependent Sobolev space defined as follows:

L2(0,T ; Hk(D)) B
{

u(t, p) : u(t, ·) ∈ Hk(D) for almost every t ∈ [0,T ]

and
∫
D

|u(t, p)|2 d p < ∞,
∫ T

0
||u(t, p)||2Hk(D) dt < ∞

}
.
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When endowed with the norm ||u||2L2(0,T ;Hk(D)) B
∫ T

0 ||u(t, p)||2Hk(D) dt, the space L2(0,T ; Hk(D)) is a Banach space (see,
e.g., Adams and Fournier, 2003, p. 89). Now, take the space

V2,k(0,T ;D) B
{
u ∈ L2(0,T ; Hk(D)) : ut, utt ∈ L2(0,T ; L2(D))

}
, (3)

where ut and utt denote the first- and second-order derivatives of u with respect to time. Finally, define V as the space
of functions in V2,k(0,T ;D) with k = 2, subject to homogeneous Neumann conditions at the boundary of the spatial
domain and a null velocity condition at t = 0 and at t = T , that is:

V B
{
u ∈ V2,2(0,T ;D) :

(
∇D u

)
(t) · n = 0 for t ∈ [0,T ] and ut(0, p) = ut(T, p) = 0 for p ∈ D

}
, (4)

where n denotes the outward orthonormal vector to the boundary ∂D of the spatial domain D. In this space, we
consider the associated norm:

||u||2V B ||u||
2
L2(0,T ;H2(D)) + ||ut ||

2
L2(0,T ;L2(D)) + ||utt ||

2
L2(0,T ;L2(D)). (5)

The presented framework holds also for bounded and closed two-dimensional Riemannian manifoldsD. In particular,
closed Riemannian manifolds are compact manifolds without boundaries, such as for instance the surface of a sphere.
More specifically, when D is a closed manifold, then the functional space in (4) reduces to V =

{
u ∈ V2,2(0,T ;D) :

ut(0, p) = 0 for p ∈ D
}
, where spatial boundary conditions are not needed.

The following theorem states that the density estimator introduced in Section 2 is well-posed in V .

Theorem 1. The penalized log-likelihood L(g) defined in (1) has a unique minimizer ĝ in V.

Proof. The proof is deferred to Appendix C.

3.2. Asymptotic properties of the estimator
We now investigate the infill asymptotic properties of the proposed estimator, as the number of observations n

tends to infinity. Let g0 = log f0 be the true log-density. Denote by DKL(g1, g2) the Kullback-Leibler divergence
between two log-densities g1 = log f1 and g2 = log f2 (see, e.g., Csiszár, 1975). Moreover, define the symmetrized
Kullback-Leibler distance as

DsKL(g1, g2) B DKL(g1, g2) + DKL(g2, g1) =
∫
DT

eg1 log
(

eg1

eg2

)
dp dt +

∫
DT

eg2 log
(

eg2

eg1

)
dp dt

=

∫
DT

(g1 − g2)eg1 dp dt +
∫
DT

(g2 − g1)eg2 dp dt = Eg1 [g1 − g2] + Eg2 [g2 − g1],
(6)

where we omit the integration variables p and t, to lighten the notation, and Eg[h] B
∫
DT

heg dp dt represents the mean
of h(X) when the random variable X has log-density g.

To help the derivation of the result, we introduce the linear approximation ĝ∗ of ĝ, that is calculated by minimizing
the expression

L∗(g) B −
1
n

n∑
i=1

g(pi, ti) + 1 + Eg0 [g] + Varg0 (g − g0) + λD

∫
DT

(∆Dg(p, t))2 dp dt + λT

∫
DT

(
∂2g(p, t)
∂t2

)2

dp dt.

In essence, L∗(g) is the quadratic approximation of L(g) at g0, meaning that the Taylor expansion of L and L∗ coincide
up to the second order when evaluated at g0. The introduction of L∗ and ĝ∗ is prompted by the observation that
DsKL(ĝ, g0) can be divided into two components, DsKL(ĝ, ĝ∗) and DsKL(ĝ∗, g0), whose asymptotic behaviors are simpler
to investigate.

We now make some standard assumptions on the smoothness of g0, to simplify the derivation of the asymptotic
results.

Assumption 1. The true log-density g0 is at least twice differentiable over the spatio-temporal domainDT . Moreover,
g0 is bounded above and below, and it is such that R(g0; λ) < ∞.
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Assumption 2. For g in a convex set B0 ⊂ DT around g0 containing ĝ and ĝ∗, there exists a positive constant c such
that cVarg0 ≤ Varg uniformly with respect to g.

Assumption 1 is a standard requirement for the consistency of density estimators (Silverman, 1982). It guarantees the
equivalence between the weighted L2(0,T ; L2(D))–norm with the density function f0 = eg0 , that is

∫
DT

h2 f0(p, t) dp dt,
and the conventional L2(0,T ; L2(D))–norm. Assumption 2 is a generalization to the spatio-temporal setting of As-
sumption A.3 in Gu (1993). This condition is satisfied whenever the members of B0 are bounded from above and
below. Essentially, Assumption 2 requires Assumption 1 to be satisfied by functions that are near g0, and in particular
by ĝ and ĝ∗.

For the sake of simplicity, in the following consistency result, we consider the case where λD = λT = λ. However,
in general, the result holds for λT = O(λD).

Theorem 2. Under Assumptions 1 and 2, as λ → 0 and nλ1/2 → ∞, the estimator ĝ ∈ V minimizing L(g) in (1) is
consistent with respect to the symmetrized Kullback-Leibler distance. Moreover,

DsKL(ĝ, g0) = O(n−1λ−1/2 + λ).

Proof. The proof is deferred to Appendix D.

Remark 2. Theorem 2 states the consistency of the proposed STDE-PDE estimator in the symmetrized Kullback-
Leibler distance, defined in (6). It should be pointed out that this distance controls other commonly used distances for
density functions, such as the total variation and the Hellinger distances (see, e.g., Pollard, 2002; Silverman, 1982).
This entails that the proposed estimator is also consistent with respect to the norms just mentioned.

4. Estimation procedure

In this section, we focus on the numerical strategies employed to effectively address the problem outlined in
Section 2. Section 4.1 faces the aspects related to the discretization procedure, aiming to approximate the quantities
involved in the estimation functional (1). Section 4.2 deals with the minimization of the estimation functional, in
its discretized form, encompassing topics such as optimization algorithms and initialization procedures. Section 4.3
discusses the choice of the smoothing parameters.

4.1. Discretization of the objective functional

Our goal is to determine the minimizer of the functional L(g) in (1) within the space of spatio-temporal density
functions V in (4). However, this infinite-dimensional problem lacks a closed-form analytical solution. Hence, we
must seek a numerical approximation. To achieve this, we proceed with a suitable discretization procedure, based on
a finite element method in space and B–splines in time.

We discretize the spatial domain D through Delaunay triangulations (see, e.g., Hjelle and Dæhlen, 2006). Figure
3 illustrates the triangulations for the spatial domains in the two applications under consideration. Such triangulation
can for instance be created starting from the boundary ∂D, and can be refined or coarsened according to criteria
concerning maximum allowed triangle area, minimum allowed triangle angle, distribution of the data points and/or
geometry of the domain. The library fdaPDE Arnone et al. (2023a) includes various functionalities to create, refine
or coarsen the mesh. To effectively represent point patterns with highly localized features, while employing a limited
number of mesh nodes (and thus a reduced computational cost), it is advantageous to build adaptive data-driven spatial
meshes. In this regard, for instance, for the application to earthquakes on the globe, we rely on the coarsening strategy
presented by Dassi et al. (2015). Specifically, we start from a fine and regular mesh, and iteratively simplify it, taking
into account both the surface’s geometry and the data distribution, to obtain a mesh that is finer where more events are
observed, while respecting the shape of the domain. As described in Dassi et al. (2015), such strategy also improves
the inferential properties of the resulting estimators.
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Figure 3: Left: regular spatial mesh with 778 nodes of the Southampton region, Hampshire county, UK. Right: data-driven adaptive spatial mesh
with 2 000 nodes over the Earth’s surface. Red points are 1 000 locations randomly sampled among the data available in the original datasets.

Let TD denote the triangulation and Vr
TD

the space of piecewise polynomial functions of degree r over TD. For-
mally:

Vr
TD
B

{
hTD ∈ C(TD) : hTD

∣∣∣
τ
∈ Pr ∀τ ∈ TD

}
,

where Pr is the space of polynomials of degree r. Let {ξξξl}
K
l=1 be the nodes of the mesh, which coincide with the vertices

of the triangles in TD in the linear case. Additionally, let {ψk}
K
k=1 denote the finite element basis functions of Vr

TD
:

these functions ψk(p) ∈ Vr
TD

are piecewise polynomials of degree r, and satisfy ψk(ξξξl) = δkl for k, l = 1, . . . ,K (see,
e.g., Quarteroni, 2009, for an introduction to finite elements). The library fdaPDE (Arnone et al., 2023a) currently
supports linear and quadratic finite elements (r = 1, 2), over planar, surface as well as volumetric domains.

For the temporal dimension, we adopt cubic B–spline functions {φm}
M
m=1, defined over [0,T ]; see De Boor (1978)

for a theoretical treatment. With the considered spatial and functional bases, we can now represent the spatio-temporal
log-density function g(p, t) by the basis expansion

g(p, t) =
K∑

k=1

M∑
m=1

ckmψk(p)φm(t), (7)

where {ckm : k = 1, . . . ,K and m = 1, . . . ,M} are the expansion coefficients to be stored in c B [c]km. As a re-
sult, the original infinite-dimensional problem of estimating the function g ∈ Vr

TD
is now transformed into a finite-

dimensional estimation problem of estimating the vector of coefficients c. To this end, we need a discretization of
the objective functional L(g) in (1). We introduce the vector of K spatial basis functions ψψψ B

[
ψ1 . . . ψK

]⊤
,

the vector of M temporal basis functions φφφ B
[
φ1 . . . φM

]⊤
, and the matrices Ψ B [Ψ]ik = ψk(pi) ∈ Rn×K and

Φ B [Φ]im = φm(ti) ∈ Rn×M that store the evaluations of the K spatial basis functions at the n spatial points {pi}
n
i=1,

and the evaluations of the M temporal basis functions at the n temporal instances {ti}ni=1. Moreover, we introduce the
mass, stiffness, and penalty matrices, in space and time, as follows:

R0 B

∫
TD

ψψψψψψ⊤ ∈ RK×K , K0 B

∫ T

0
φφφφφφ⊤ ∈ RM×M , R1 B

∫
TD

(∇TDψψψ)(∇TDψψψ)⊤ ∈ RK×K

PD B R⊤1 R−1
0 R1 ∈ RK×K , PT B

∫ T

0
φφφttφφφ

⊤
tt ∈ RM×M , P B 2λD (K0 ⊗ PD) + 2λT (PT ⊗ R0) ∈ RKM×KM
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where [(∇TDψψψ)(∇TDψψψ)⊤]i j = ∇TDψ j · ∇TDψi and φφφtt B
[
∂2φ1/∂t2 . . . ∂2φM/∂t2

]⊤
is the vector of second-order

derivatives of the temporal bases with respect to time.
We are now ready to discretize the functional L(g).

Approximation of the log-likelihood. LetΥ ∈ Rn×KM be the matrix whose ith row in R1×KM is defined as the Kronecker
product between the ith rows of Φ and Ψ. Denoting by 1 the unitary vector of length n, we can discretize the first term
of L(g) as:

−
1
n

n∑
i=1

g(pi, ti) ≈ −
1
n

1⊤Υc.

Approximation of the integral of the density function. We employ a standard Gaussian quadrature rule, with q = 6
quadrature nodes and associated weights wD ∈ Rq in space, and r = 5 quadrature nodes and associated weights
wT ∈ Rr in time (Quarteroni, 2009). Therefore, given a right-open interval ι ⊂ [0,T ], with endpoints coinciding with
two consecutive knots of the chosen temporal discretization, we have:∫

DT

eg(p,t) dp dt ≈
∑
ι⊂[0,T ]

∑
τ∈TD

κ(wT ⊗ wD)⊤ exp{(Φι ⊗ Ψτ)c},

where: Ψτ ∈ Rq×K is the matrix containing the evaluations of the K spatial basis functions at the q spatial quadrature
nodes in the triangle τ ∈ TD; Φι ∈ Rr×M is the matrix having as entries the evaluations of the M temporal basis
functions at the r temporal quadrature nodes; κ is the determinant of the transformation matrix mapping the reference
triangle {(0, 0), (0, 1), (1, 0)} onto the triangle τ ∈ TD and the reference interval [−1, 1] onto the interval ι ⊂ [0,T ].

Approximation of the penalization terms. In analogy with the works by Bernardi et al. (2017) and Arnone et al.
(2023c), in spatio-temporal regression contexts, the discretization of the penalization term in space and time can be
written as

λD

∫
DT

(
∆Dg(p, t)

)2 dp dt + λT

∫
DT

(
∂2g(p, t)
∂t2

)2

dp dt ≈ λDc⊤(K0 ⊗ PD)c + λT c⊤(PT ⊗ R0)c.

To summarize, the minimization of the objective functional L(g) over the density functions g ∈ V is numerically
addressed as the minimization over the coefficients c ∈ RKM of the discretized objective functional L̃(c), defined as:

L̃(c) B − 1⊤Υc + n
∑
ι⊂[0,T ]

∑
τ∈TD

κ(wT ⊗ wD)⊤ exp{(Φι ⊗ Ψτ) c} + λDc⊤(K0 ⊗ PD)c + λT c⊤(PT ⊗ R0) c. (8)

4.2. Minimization of the discretized estimation functional

We now cover the main aspects connected to the minimization of the functional L̃(c) in (8). In Lemma C.1 in
Appendix C, we prove that the non-linear functional L(g) in (1) is strictly convex. This entails that the associated
minimization problem

ĉ B arg min
c∈RKM

L̃(c) (9)

can be solved using standard iterative optimization algorithms (see, e.g. Nocedal and Wright, 1999; Lange, 2013).
The fdaPDE library implements several optimization algorithms, with the default option being the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method, described in Liu and Nocedal (1989) and Nocedal (1980),
with 5 correction vectors and two-loop recursion. Convergence is guaranteed regardless of the initialization. How-
ever, having a good initial guess c0 can significantly reduce the overall computational cost. To this aim, the library
implements a data-driven initialization procedure, that extends to spatio-temporal settings the approach proposed
by Ferraccioli et al. (2021), based on the spatial discretization of a heat diffusion process. This alternative shows
significant advantages when the empirical distribution significantly deviates from the uniform distribution over DT ,
achieving computational savings of up to 70% for highly non-uniform densities.
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4.3. Selection of the smoothing parameters
In order to select appropriate values for the smoothing parameters λD and λT , we perform K–fold cross-validation

based on the L2–norm of the distance between the estimated density f̂ and the true density f , that is
∫
DT

( f̂ (p, t) −
f (p, t))2 dp dt. This leads to the following cross-validation error on the kth validation set, for k = 1, . . . ,K,

CVerrk(λD, λT ) B
∫
DT

(
f̂ −[k]
λD,λT

(p, t)
)2 dp dt −

2
nk

nk∑
i=1

f̂ −[k]
λD,λT

(p[k]
i , t[k]

i ), (10)

where: f̂ −[k]
λD,λT

is the density estimate calculated using the training data (contained in all the K folds except the kth one),
(p[k]

i , t[k]
i ) is the ith observation in the validation set (kth fold), and nk is the cardinality of this last set. The quantity

in 10 is obtained neglecting the term that does not depend on the pair (λD, λT ) (see Ferraccioli et al. (2021) for more
details), and can be efficiently calculated by exploiting the finite element formulation introduced in Section 4.1. At
the beginning of the cross-validation procedure, data are randomly distributed in the folds, which are designed in such
a way that they do not exclusively contain observations recorded at specific time instances.

The K resulting errors in (10) are then averaged to produce the final cross-validation error CVerr(λD, λT ). The
procedure is repeated for each pair (λD, λT ), exploring all the possible values provided in the input. Among those, the
optimal proposals in space and time are selected by minimizing CVerr.

5. Confidence bands

In this section, we leverage a Bayesian analogy to derive pointwise confidence intervals for spatio-temporal den-
sities, based on the proposed estimator. It should be noted that previous works on density estimation in space-only
domains, such as those by Ferraccioli et al. (2021) and Arnone et al. (2022), did not develop tools for quantifying
uncertainty. With the necessary simplifications, the inference approach introduced here can also be used to compute
confidence intervals for densities over spatial domains, based on the estimators in Ferraccioli et al. (2021) and Arnone
et al. (2022). The confidence bands we propose rely on the approach discussed in Leonard (1982) to address uni-
variate problems related to a penalized likelihood functional, and subsequently considered by O’Sullivan (1988), who
presented numerical results for univariate log-densities. These confidence bands significantly enhance the proposed
method by providing valuable insights into the uncertainty associated with the estimated density.

Setting

L̃0(c) B −
1
2

c⊤Rc L̃1(c) B
1
n

1⊤Υc −
∑
ι⊂T

∑
τ∈TD

κ(wT ⊗ wD)⊤ exp{(Φι ⊗ Ψτ) c},

we can rewrite the discretized functional in (8) as follows:

−
L̃(c)

n
= L̃1(c) + L̃0(c).

We can then reinterpret the problem of estimating c that minimizes functional (8) as the Bayesian problem of finding
the posterior distribution of c under the log-likelihood L̃1(c), with the prior distribution c ∼ N(0,R−1). Continuing
with this Bayesian analogy, the posterior distribution for c is proportional to the following term:

exp
(
L̃1(c) −

1
2

c⊤Rc
)
.

Moreover, the estimated coefficients ĉ is the posterior mode and provides an approximation of the distribution’s mean.
The posterior covariance can be approximated by the dispersion matrix D, that is,

D−1 = −
∂2log π(ĉ| {(pi, ti)}ni=1)

∂(ĉ ĉ⊤)
= −

∂2L̃1(ĉ)
∂(ĉ ĉ⊤)

+ R = Ĥ + R,

where Ĥ is the Hessian of the log-likelihood, defined as

Ĥ =
∑
ι⊂T

∑
τ∈TD

κ (Φι ⊗ Ψτ)⊤
[
(wT ⊗ wD)⊤ exp{(Φι ⊗ Ψτ)ĉ}

]
(Φι ⊗ Ψτ).
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This leads to a Gaussian approximation of the posterior distribution: c | {(pi, ti)}ni=1 ∼ N(ĉ,D). Following this analogy,
the approximated posterior distribution of the log-density function g is N((Ψ ⊗ Φ)⊤ ĉ, (Ψ ⊗ Φ)⊤ (2D/n) (Ψ ⊗ Φ)).
Specifically, the pointwise approximated Bayesian posterior variance for the estimated log-density is given by:

σ̂2(p, t) =
2
n

(ψψψ(p) ⊗ φφφ(t))⊤ D (ψψψ(p) ⊗ φφφ(t)), (11)

from which we can build pointwise (1 − α)% credible bands, that we might in turn reinterpret as confidence intervals.
It is worth noting that, as often discussed in nonparametric regression settings (see, e.g., Genovese and Wasserman,

2008; Hall and Horowitz, 2013, and related references), such approaches may lead to overly conservative confidence
bands. Various strategies have been explored in the literature to address this issue. In our setting, we solve this problem
by scaling the smoothing parameters λD and λT , which are used to compute σ̂2(p, t) in (11), by an appropriate scaling
factor, determined through a standard bootstrapping procedure.

6. Simulation studies

In this section, we present some simulation studies that illustrate the performances of the proposed method. In
Section 6.1, we introduce state-of-the-art competing methods. In Section 6.2, we define three common measures
of error for spatio-temporal density functions, to quantify the methods’ performance. In Section 6.3, we show a
simulation over a simple planar domain. In Sections 6.4and 6.5, we present simulation studies over a spherical domain.
This very specific form of curved domain is considered here to enable comparisons with at least one competing
method. Indeed, to the best of our knowledge, there currently is a lack of software implementing possible competing
methods over general two-dimensional Riemannian manifolds. In Section 6.6 we outline some addition simulation
studies reported in the appendix; in particular, Appendix H shows a simulation on a non-spherical two-dimensional
manifold. It should be pointed out that some competing methods are designed for intensity estimation; for these
methods, the estimates are appropriately normalized over DT . As detailed in Appendix B, STDE-PDE can also be
used to estimate the intensity of inhomogeneous space-time Poisson processes. A simulation study in an intensity
estimation setting is reported in Appendix F.

6.1. Competing methods
We consider the following state-of-the-art competitors:

INLA: the model for intensity estimation of spatio-temporal point processes developed in Chapter 8.3 of Krainski et al.
(2018), and implemented in the R package R-INLA (www.r-inla.org). The model is based on the sPDE approach
described in Lindgren et al. (2011), with the penalized complexity priors derived in Fuglstad et al. (2019) for the range
and the marginal standard deviation.

LGCP: the model for intensity estimation of spatio-temporal log-Gaussian Cox processes, as presented by Brix and
Diggle (2001) and Diggle et al. (2005), and implemented in the R package LGCP (Taylor et al., 2023). We here employ
a bivariate Gaussian kernel in space and lowess smoother in time.

STKDE: the model for fixed-bandwidth kernel density estimation from spatio-temporal point patterns, as presented
in Fernando and Hazelton (2014) and Davies et al. (2018), and implemented in the R package sparr (Davies and
Marshall, 2023). For the simulations over curved surfaces, we rely on the STKDE version for data aggregated over
time, described by Zhang et al. (2011) and implemented in the R package stam (Zhang, 2010).

6.2. Measures of error
To compare the various competing methods, we consider the following measures of error:

L2–norm of the error (errL2 ):

errL2 ( f̂ , f ) B || f̂ − f ||2L2(0,T ;L2(D)) =

∫
DT

(
f̂ (p, t) − f (p, t)

)2 dp dt,

where the integral overDT is numerically approximated by summing over a fine evaluation grid in [0,T ] and using a
regular lattice that coversD.
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Kullback-Leibler divergence (KL):

KL( f̂ , f ) B
∫
DT

f̂ (p, t) log
(

f̂ (p, t)
f (p, t)

)
dp dt,

computed resorting to the functionalities provided by the R package philentropy (Drost and Nowosad, 2024).

Hellinger distance (H):

H( f̂ , f ) B
(

1
2

∫
DT

(√
f̂ (p, t) −

√
f (p, t)

)2

dp dt
)1/2

.

6.3. Simulation 1: a mixture of time-dependent Gaussian distributions on a squared region

In Simulation 1, we consider point data scattered over a squared spatial domain and recorded over the time interval
from 0 to 1. The true density is defined as a mixture of 4 time-dependent Gaussian distributions, whose means
and variances evolve over time as reported in Appendix E. The second row in Figure 5 displays the true density
at some time instances, showing its multimodal pattern, with modes having different directions and intensities of
anisotropy. We generate n = 5 000 independent observations from this density, adopting the acceptance-rejection
technique (Casella et al., 2004; Neal, 2003). The sampling process is repeated 30 times. The first row of Figure 5
shows the data obtained in the first simulation repetition.

In this simulation, we consider all the competing methods introduced in Section 6.1. For discretization over
space for the proposed STDE-PDE and for INLA, we employ regular spatial meshes of the squared domain, having
respectively 793 nodes for STDE-PDE and 789 nodes for INLA, generated using the respective software. For LGCP
and STKDE we use a regular 32 × 32 spatial grid. For discretization in time, we use 7 evenly spaced knots for
STDE-PDE and INLA, and 9 evenly spaced time instances for LGCP and STKDE, from 0 to 1, extremes excluded.
Smoothing parameters for STDE-PDE are selected via 10–fold cross-validation, as presented in Section 4.3.

Figure 5 qualitatively compares the mean estimates obtained by the various methods over the 30 simulation re-
petitions. The figure highlights that STDE-PDE accurately captures the spatial structure of the true density and
its variation in time. Figure 4 gives the boxplots of the measures of error introduced in Section 6.2, over the 30
simulation repetitions, computed on a fine grid of 1 024 locations in space and 9 instances in time. The proposed
method outperforms all others according to all measures of error.
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Figure 4: Simulation 1. Boxplots of L2–norm of the error (left), Kullback-Leibler divergence (center), and Hellinger distance (right) of the estimates
provided by proposed STDE-PDE and the competing methods introduced in Section 6.1, namely INLA, LGCP, and STKDE, over 30 simulation
repetitions.
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Figure 1: Simulation 1. View of the sample (first row), true density (second row), and mean estimates of STDE-PDE (third row), INLA (fourth
row), LGCP (fifth row), and STKDE (sixth row), over 30 simulation repetitions, at different time instances. All the plots have the same color scale,
with bluish colors corresponding to low-density values.
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Figure 5: Simulation 1. View of the sample (first row), true density (second row), and mean estimates of STDE-PDE (third row), INLA (fourth
row), LGCP (fifth row), and STKDE (sixth row), over 30 simulation repetitions, at different time instances. All the plots have the same color scale,
with bluish colors corresponding to low-density values.
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Figure 6: Simulation 1. Boxplots of empirical coverage probabilities of 95% confidence intervals over 30 simulation repetitions: STDE-PDE (left)
and INLA (right).

Figure 6 presents inference results, comparing STDE-PDE with INLA, the only competitor equipped with built-in
inference capabilities. We compute the coverage probabilities of the 95% confidence intervals for the estimates over
the 30 simulation repetitions. For STDE-PDE we follow the procedure outlined in Section 5. We evaluate the results
at 5 different time instances and on a regular 32 × 32 spatial grid, focusing on areas characterized by non-negligible
density values, specifically where the true density exceeds 10−3. We obtain an overall median empirical coverage of
0.962 (with an IQR of 0.048) for STDE-PDE, and of 0.881 (with an IQR of 0.094) for INLA. Figure 6 illustrates
the empirical coverage for the different time instances. For the proposed method, the median empirical coverage is
close the nominal value, 0.95, for any time considered instant. Furthermore, the interquartile range of the empirical
coverage remains narrow and more stable across time, with respect to the competing method, avoiding both under-
and over-conservative behaviors.

6.4. Simulation 2: a mixture of time-dependent Kent distributions on a spherical domain

In Simulation 2 we examine a space-time point pattern over the surface of the unit sphere recorded from 0 to 1
in time. We generate 10 000 independent observations from a mixture of 5 time-dependent Kent distributions (Kent,
1982; Mardia et al., 2000), with parameters defined in Appendix E. Correct sampling on a sphere, and more generally
on a two dimensional manifold, is not trivial; we refer the reader to Arnone et al. (2022) for details on how this can
be appropriately performed.

We compare the proposed method to STKDE for data aggregated over time (Zhang et al., 2011), considering 9
evenly spaced time instances from 0 to 1, extremes excluded. We could not find available implementations of other
techniques acting on non-planar spatial domains. For the proposed STDE-PDE we use a regular spatial mesh with
606 nodes over the surface of the unit sphere, and 9 evenly spaced knots in time from 0 to 1, extremes excluded; the
smoothing parameters are selected by 10–fold cross-validation.

Figure 7 qualitatively compares the mean estimates obtained by the various methods over the 30 simulation rep-
etitions. The figure highlights the remarkably good fit returned by STDE-PDE, which can effectively capture each
component of the mixture distribution, as it shifts around the sphere. The good performances of the proposed method
are confirmed by Figure 8, that gives the boxplots, over the 30 simulation repetitions, of the measures of error intro-
duced in Section 6.2, computed on a grid of 5 016 locations in space and 9 instances in time.
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Figure 7: Simulation 2. Front view of the sample (first row), true density (second row), and mean estimates of STDE-PDE (third row), STKDE
(fourth row), over 30 simulation repetitions, at different time instances. All the plots have the same color scale, with bluish colors corresponding to
low density values.
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Figure 8: Simulation 2. Boxplots of L2–norm of the error (left), Kullback-Leibler divergence (center) and Hellinger distance (right) of the estimates
provided by the STDE-PDE and the STKDE methods, over 30 simulation repetitions.
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6.5. Simulation 3: a highly localized and skewed density on a spherical domain

In Simulation 3, we consider another space-time point pattern over the unit sphere, that is highly localized along
elongated regions, mimicking the behavior of earthquake data, that cluster around Earth’s fault lines. We sample
10 000 observations from a mixture of 25 time-dependent Kent distributions, whose parameters are provided in Ap-
pendix E; the resulting density is highly anisotropic, localized, and skewed along elongated ridges. Mean estimates
and measures of error, over 30 simulation repetitions, are provided in Figures 9 and 10. STKDE appears to over-
smooth the signal, while the proposed STDE-PDE proves to be particularly well suited to this complex data setting,
capturing the strongly localized and skewed modes of the signal.
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Figure 9: Simulation 3. Front view of the sample (first row), true density (second row), and mean estimates of STDE-PDE (third row), STKDE
(fourth row), over 30 simulation repetitions, at different time instances. All the plots have the same color scale, with bluish colors corresponding to
low density values.
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Figure 10: Simulation 3. Boxplots of L2–norm of the error (left), Kullback-Leibler divergence (center), and Hellinger distance (right) of the
estimates provided by the STDE-PDE and STKDE methods, over 30 simulation repetitions.

6.6. Additional simulation studies

In addition to Simulations 1, 2, and 3, presented in Sections 6.3, 6.4 and 6.5, we have conducted several other tests,
reported in the appendix. Appendix F presents intensity estimation of an inhomogeneous Poisson process, considering
the same point patter in Simulation 1. We here compare the proposed method to INLA and LGCP, obtaining the same
ordering among the techniques obtained for Simulation 1. Appendix G shows an additional simulation on a planar
domain, considering a true density that combines high-frequency and low-frequency components, that significantly
overlap over time. Appendix H considers a space-time point pattern on a non-spherical two-dimensional manifold. We
here compare the proposed STDE-PDE with a separable method for density estimation based on k–nearest neighbors,
which we implemented solely for comparison purposes, since none of the main available competing methods is
currently implemented to handle such data. STDE-PDE outperforms such competing method, that relies on the
first-order separability assumption, even though the data are generated from a density that satisfies such assumption.

7. Applications to epidemiological and seismological studies

In this section, we show two illustrative real data examples, concerning gastrointestinal infections (Section 7.1)
and earthquakes with large magnitude (Section 7.2).

7.1. Gastrointestinal infections

We analyze cases of gastrointestinal symptoms reported to the National Health Service (NHS) Direct in Hampshire
county, United Kingdom, during the period 2001 to 2003. The dataset, provided by Taylor et al. (2013), comprises
10 069 observations. Some temporal snapshots of the observed data are illustrated in Figure 1

In this application, we examine all the competing methods introduced in Section 6.1 and already considered in the
simulation study presented in Section 6.3. We maintain the settings and options adopted for competing methods in
Simulation 1. For estimation over the Southampton region of interest, we employ the regular spatial mesh with 778
nodes displayed in the left panel of Figure 3 for STDE-PDE, a mesh with 776 nodes produced with R-INLA for INLA,
and a regular 32 × 32 grid for LGCP and STKDE. For estimation in time, we use 7 knots. Smoothing parameters for
STDE-PDE are selected via 10–fold cross-validation.

Figure 11 shows qualitative results. The proposed STDE-PDE returns an estimate that captures the strongly local-
ized peaks of new cases; the estimate highlights different behaviors of the phenomenon along the western and eastern
shores of Southampton Water estuary. In Figure 12 (left panel) we also provide quantitative comparisons among the
estimates provided by the different methods, in terms of the 10–fold cross-validation error in (10), highlighting the
comparative advantage of the proposed method.
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Figure 11: Application to gastrointestinal infections. View of the density estimates for STDE-PDE (first row), INLA (second row), LGCP (third
row), and STKDE (fourth row), at different time instances. All the plots have the same color scale, with bluish colors corresponding to low density
values of gastrointestinal infections in Hampshire county, UK.

7.2. Earthquakes of large magnitude

We now analyze the locations of earthquakes with magnitude greater than 4.75 worldwide from 2020 to 2022.
The dataset contains 8 080 observations and is taken from the USGS earthquakes catalog (https://earthquake.
usgs.gov/earthquakes/search/). In this setting, we compute the estimates with STDE-PDE over a regular dis-
cretization in time, with 7 knots, and the adaptive data-driven spatial mesh shown in the right panel of Figure 3, with
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2 000 nodes. As indicated in Section 4.1, this mesh naturally permits a more accurate estimation along the faults, at
a lower computational cost with respect to a uniformly fine mesh. For the considered competing methods, we follow
the same choices detailed for the simulation study presented in Section 6.4. For STKDE, we aggregate locations on a
three-monthly basis.
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Figure 12: Left: Application to gastrointestinal infections; boxplots of 10–fold cross-validation errors for STDE-PDE and the competing methods
introduced in Section 6.1, namely INLA, LGCP, and STKDE. Right: Application to earthquakes of large magnitude; boxplots of 10–fold cross-
validation errors for STDE-PDE and STKDE.
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Figure 13: Application to earthquakes of large magnitude. View of the density estimates over the Australian, Eurasian and Pacific plates, for
STDE-PDE (first row), STKDE (second row), at different time instances. All the plots have the same color scale, with red colors corresponding to
high density of earthquakes.
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Figure 2 shows some temporal snapshots of the observed data and Figure 13 the estimate at the corresponding
times. The density estimate produced by STDE-PDE correctly displays elongated ridges of high values in correspon-
dence of the faults in the Earth’s crust. Figure 12 (right panel) displays the boxplots of 10–fold cross-validation errors,
offering quantitative confirmation of the accuracy of the estimates obtained through the proposed method.

8. Discussion and future research directions

The proposed STDE-PDE offers an interesting addition to the literature on space-time density and intensity esti-
mation. Simulation studies and real-world applications highlight the robust performance of STDE-PDE in comparison
to state-of-the-art methodologies, showing a strong ability to capture complex multi-modal spatio-temporal densities.
The proposed method is shown to accurately work on two-dimensional spatial domains with non-trivial shapes, in-
cluding general two-dimensional Riemannian manifolds. In future studies, we will show the ability of the method
to model time-varying point patterns in complicated three-dimensional spatial domains, leveraging the techniques
recently developed by Arnone et al. (2023b) for data observed in non-convex volumes.

STDE-PDE can be extended in various directions. One interesting research line concerns replicated spatio-
temporal point process, addressed by Gervini (2022) by means of log-linear models for latent intensity functions.
Another fascinating direction is related to the modeling of space-varying temporal densities, as those considered by
Menafoglio et al. (2014, 2016); Scimone et al. (2022). These densities differ from the spatio-temporal densities con-
sidered in this work, as they maintain unitary integration at each spatial location. Complementary research could
instead focus on time-varying spatial density estimation problems.

Of particular significance is the expansion of the proposed method into semiparametric approaches, particularly in
scenarios where supplementary information is available, either through covariates or specific insights into the nature
of the phenomenon being studied. For instance, the considered point process could be endowed with pairwise inter-
actions, as in Gibbs processes. This situation could be accommodated by penalized composite-likelihood approaches,
such as those considered by Illian and Hendrichsen (2010); Guan et al. (2015); Daniel et al. (2018). Additionally, in
the proposed modeling framework, knowledge about the physics governing the phenomenon under investigation could
also be included through physics-informed penalties, such as those discussed in Arnone et al. (2019) in space-time
regression settings.

An interesting theoretical investigation goes towards the exploration of a potential conceptual analogy between the
nonparametric penalized likelihood approach, followed in this work, and stochastic methods such as classical or sPDE-
based log Gaussian Cox processes. In the geostatistical setting, the connection between penalized spline smoothing
and kriging has for instance been investigated by Kimeldorf and Wahba (1970); Furrer and Nychka (2007); Laslett
(1994). To the best of our knowledge, instead, in the point process framework, such potential analogy has not yet
been investigated in the literature, not even in the simpler one-dimensional and two-dimensional settings considered
by Silverman (1982) and Gu and Qiu (1993).

Finally, a challenging development goes towards generalizations of STDE-PDE to model marked point processes.
In the application to earthquake data presented in Section 7.2, this extension would enable the inclusion of the mag-
nitude in the analysis. In addition, modeling marked point processes could for instance allow the monitoring of
spatio-temporal extreme value trends, in relation to meteorological and socio-economic factors, as done in the study
on air pollution in Spain conducted by Wang et al. (2023).
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Appendix
The appendix related to this article, containing proofs of the theorems, details of the presented simulation studies,

and additional simulations, is available as online supplementary material at ***please insert here the URL as https:
// ***.
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Brezis, H., Brézis, H., 2011. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer.
Brix, A., Diggle, P.J., 2001. Spatiotemporal prediction for log-gaussian cox processes. Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 63, 823–841.
Casella, G., Robert, C.P., Wells, M.T., 2004. Generalized accept-reject sampling schemes. Lecture Notes-Monograph Series 45, 342–347.
Chen, R.T., Amos, B., Nickel, M., 2021. Neural spatio-temporal point processes, in: International Conference on Learning Representations.
Csiszár, I., 1975. I-divergence geometry of probability distributions and minimization problems. The Annals of Probability 3, 146–158.
Daley, D.J., Vere-Jones, D., 2008. An Introduction to the Theory of Point Processes: Volume II: General Theory and Structure. Springer.
Daley, D.J., Vere-Jones, D., et al., 2003. An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods. Springer.
D’Angelo, N., Adelfio, G., Mateu, J., 2023. Locally weighted minimum contrast estimation for spatio-temporal log-gaussian cox processes.

Computational Statistics & Data Analysis 180.
Daniel, J., Horrocks, J., Umphrey, G.J., 2018. Penalized composite likelihoods for inhomogeneous gibbs point process models. Computational

Statistics & Data Analysis 124, 104–116.
Dassi, F., Ettinger, B., Perotto, S., Sangalli, L.M., 2015. A mesh simplification strategy for a spatial regression analysis over the cortical surface of

the brain. Applied Numerical Mathematics 90, 111–131.
Davies, T.M., Marshall, J.C., 2023. sparr: spatial and spatiotemporal relative risk. https://CRAN.R-project.org/package=sparr. R package

version 2.3-10.
Davies, T.M., Marshall, J.C., Hazelton, M.L., 2018. Tutorial on kernel estimation of continuous spatial and spatiotemporal relative risk. Statistics

in Medicine 37, 1191–1221.
De Boor, C., 1978. A Practical Guide to Splines. Springer.
Diggle, P., Rowlingson, B., Su, T.l., 2005. Point process methodology for on-line spatio-temporal disease surveillance. Environmetrics 16, 423–434.
Diggle, P.J., 2013. Statistical Analysis of Spatial and Spatio-Temporal Point Patterns. CRC Press.
Diggle, P.J., Knorr-Held, L., Rowlingson, B.S., Su, T.L., Hawtin, P., Bryant, T.N., 2009. On-line monitoring of public health surveillance data, in:

Monitoring the Health of Populations: Statistical Principles and Methods for Public Health Surveillance. Oxford University Press, pp. 233–266.
Diggle, P.J., Moraga Serrano, P.E., Rowlingson, B.S., Taylor, B., 2013. Spatial and spatio-temporal log-gaussian cox processes: Extending the

geostatistical paradigm. Statistical Science 28, 542–563.
Drost, H.G., Nowosad, J., 2024. philentropy: similarity and distance quantification between probability. https://CRAN.R-project.org/

package=philentropy. R package version 0.8.0.
Elson, R., Davies, T.M., Jenkins, C., Vivancos, R., O’Brien, S.J., Lake, I.R., 2020. Application of kernel smoothing to estimate the spatio-temporal

variation in risk of stec o157 in england. Spatial and Spatio-temporal Epidemiology 32.
Elson, R., Davies, T.M., Lake, I.R., Vivancos, R., Blomquist, P.B., Charlett, A., Dabrera, G., 2021. The spatio-temporal distribution of covid-19

infection in england between january and june 2020. Epidemiology & Infection 149.
Fernando, W.S., Hazelton, M.L., 2014. Generalizing the spatial relative risk function. Spatial and Spatio-Temporal Epidemiology 8, 1–10.
Ferraccioli, F., Arnone, E., Finos, L., Ramsay, J.O., Sangalli, L.M., 2021. Nonparametric density estimation over complicated domains. Journal of

the Royal Statistical Society Series B: Statistical Methodology 83, 346–368.

21

https://
https://
https://CRAN.R-project.org/package=fdaPDE
https://CRAN.R-project.org/package=sparr
https://CRAN.R-project.org/package=philentropy
https://CRAN.R-project.org/package=philentropy


Fishman, P., Snyder, D., 1976. The statistical analysis of space-time point processes. IEEE Transactions on Information Theory 22, 257–274.
Fuglstad, G.A., Simpson, D., Lindgren, F., Rue, H., 2019. Constructing priors that penalize the complexity of gaussian random fields. Journal of

the American Statistical Association 114, 445–452.
Furrer, E.M., Nychka, D.W., 2007. A framework to understand the asymptotic properties of kriging and splines. Journal of the Korean Statistical

Society 36, 57–76.
Gabriel, E., 2014. Estimating second-order characteristics of inhomogeneous spatio-temporal point processes: influence of edge correction methods

and intensity estimates. Methodology and Computing in Applied Probability 16, 411–431.
Genovese, C., Wasserman, L., 2008. Adaptive conficence bands. The Annals of Statistics 36, 875–905.
Gervini, D., 2022. Doubly stochastic models for spatio-temporal covariation of replicated point processes. Canadian Journal of Statistics 50,

287–303.
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Appendix A. Derivation of the unconstrained minimization problem

In this section, we demonstrate that the second term in the functional L(g) in (1) ensures that
∫
DT

eĝ(p,t) dp dt = 1,

and thus that f̂ = eĝ is a proper density over DT . Indeed, in order to estimate the log-density g, by using a penalized
likelihood approach, one would minimize the objective functional

Lc(g) B −
1
n

n∑
i=1

g(pi, ti) + R(g; λ), (A.1)

under the constraint that
∫
DT

eĝ(p,t) dp dt = 1. Equivalently, one would minimize the functional Lc(g) in (A.1) over

the space Vc B
{
g ∈ V :

∫
DT

eg(p,t) dp dt = 1
}
. Note that Vc is the restriction of the space V , defined in equation

(4) in Section 3.1, to functions such that
∫
DT

eĝ(p,t) dp dt = 1. In other words, Vc is the restriction of the space V
to log-densities. The following theorem states the equivalence of the constrained minimization problem, introduced
above, with the unconstrained minimization introduced in Section 2.

Theorem A.1. The minimization of Lc(g) in (A.1) in the constrained space Vc is equivalent to the minimization of
L(g) in (1) in the unconstrained space V.

Proof. We start by observing that when g ∈ Vc, L(g) = Lc(g) + 1; thus the functional L and Lc differ by a constant on
Vc. This entails that in the space Vc the minimization of L(g) is equivalent to the minimization of Lc(g). We now show
that for each g ∈ V there exist a g∗ ∈ Vc such that L(g∗) ≤ L(g). Given g ∈ V , define g∗ = g − log

∫
DT

eg(p,t) dp dt.
By construction, g∗ ∈ V and eg∗ satisfies the unitary integration constraint, therefore g∗ ∈ Vc. Moreover, since g and
g∗ differ only by a constant, the differential operators in space and time applied to g and g∗ coincide, implying that
R(g; λ) = R(g∗; λ). Let h B

∫
DT

eg(p,t) dp dt, we derive the following:

L(g∗) = −
1
n

n∑
i=1

g∗(pi, ti) + 1 + R(g∗; λ)

= −
1
n

n∑
i=1

g(pi, ti) + log
∫
DT

eg(p,t) dp dt + 1 + R(g; λ)

= L(g) −
∫
DT

eg + log
∫
DT

eg(p,t) dp dt + 1

= L(g) − h + log h + 1.
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Since the inequality h − log h ≥ 1 holds for all h > 0, then L(g∗) ≤ L(g) with equality only if h = 1. This implies that
ĝ minimizes L(g) if and only if

∫
DT

eĝ(p,t) dp dt = 1, hence if and only if ĝ minimizes Lc(g) in Vc.

Remark A.1. The proof of the theorem extends the arguments proposed by Silverman (1982) to the case of interest.
The result critically depends on the choice of the penalizing term R(g; λ), which must be expressible as a bilinear form
with differential operators depending solely on partial derivatives. In our case, after defining the bilinear form as

b(g1, g2) B
∫
DT

∆D(g1)∆D(g2) dp dt + c
∫
DT

∂2g1

∂t2

∂2g2

∂t2 dp dt, where c B
λT

λD
, (A.2)

then, the regularization term can be written as R(g; λ) = λD b(g, g).

Appendix B. Intensity estimation of an inhomogeneous Poisson process

In this section, we briefly discuss the connection between the spatio-temporal density estimation problem, intro-
duced in Section 2, and the problem of intensity estimation of an inhomogeneous space-time Poisson point process.
Firstly, we derive the log-likelihood of such a point process with inhomogeneous intensity function γ : DT → R+.
According to González et al. (2016), the underlying distribution can be factorized into two terms. The first term refers
to the Poisson univariate random variable N, with mean Γ(DT ) B

∫
DT
γ(p, t) dp dt, that characterizes the number of

events observed overDT . The second term regards the set of mutually independent and identically distributed spatio-
temporal observations drawn from the random variable X, whose occurrence density is pX(pi, ti) B γ(pi, ti)/Γ(DT ).
Following Daley and Vere-Jones (2008) and Diggle (2013), the likelihood can be defined as the probability of getting
n points {(pi, ti)}ni=1 inDT , multiplied by the joint conditional density for these observations, that is,

pN(n)pX|N
(
(p1, t1), . . . , (pn, tn)|n

)
=
Γ(DT )n

n!
e−Γ(DT )︸             ︷︷             ︸

pN (n)

n!
n∏

i=1

γ(pi, ti)
Γ(DT )︸   ︷︷   ︸
pX (pi,ti)

= e−Γ(DT )
n∏

i=1

γ(pi, ti), (B.1)

where pX|N
(
(p1, t1), . . . , (pn, tn)|n

)
is obtained similarly to Streit and Streit (2010) and Daley et al. (2003) in the simpler

spatial framework. Hence, starting from the likelihood in (B.1) and setting ϕ = log γ, we end up with the penalized
negative log-likelihood:

P(ϕ) B −
n∑

i=1

ϕ(pi, ti) +
∫
DT

eϕ(p,t) + R(ϕ; λ̃), (B.2)

The following proposition states the equivalence between the density and the intensity estimation problem.

Proposition B.1. The estimate of the intensity γ̂ = eϕ̂ can be obtained by minimizing P(ϕ) in V or equivalently as
γ̂ = n f̂ , where f̂ = eĝ is the density estimated by minimizing the objective functional L(g) in V, with λ = λ̃/n and L(g)
defined as in (1) in Section 2.

Proof. Let us assume that the intensity function takes the form γ = C f , where C is a positive real-valued constant,
and f : DT → R+ is a density function over DT , for which

∫
DT

f (p, t) dp dt = 1. Hence, log(γ) = log(C) + log( f ) =
log(C) + g, and the functional in (B.2) can be expressed in terms of C and g as follows:

P(C, g) = −n log C −
n∑

i=1

g(pi, ti) +C + R(g, λ̃).

We recall that the regularizing term R(· ; λ̃) solely depends on derivatives of the argument, implying that it annihilates
constant terms. Since C is a constant, the minimization of (B.2) can be carried out in two steps. Firstly, by differenti-
ating P(C, g) with respect to C and solving the resulting equation for which the derivative equals zero, we get Ĉ = n.
Following this initial step, neglecting constant terms and diving all by n, the functional simplifies to

P(n, g) = −
1
n

n∑
i=1

g(pi, ti) + R
(
g;
λ

n

)
. (B.3)
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We are only left to differentiate P(n, g) with respect to g, but this is exactly the density estimation problem we tackled
in Appendix A. In accordance with the reasoning presented for the density estimation procedure, we can address the
unitary integration constraint of f over DT by incorporating the integral term directly into the functional in (B.3).
Then, setting λ = λ/n leads to the same functional in (1). In light of these considerations, a spatio-temporal intensity
estimate can be obtained either by directly minimizing the functional P(ϕ) in (B.2), or equivalently, by multiplying
the density estimate, attained by minimizing L(g), by the number of observations n.

Appendix C. Proof of Theorem 1

In this section, we address the uniqueness and the existence of a minimizer for the functional L(g) defined in (1)
in the functional space V in (4). The proof of Theorem 1 is assured by Theorem 4.1 from Gu and Qiu (1993), which
was formulated within a general framework, provided that all the necessary hypothesis for its validity are met. The
following two lemmas ensure these hypothesis.

Lemma C.1. The functional

J(g) B −
1
n

n∑
i=1

g(pi, ti) +
∫
DT

eg(p,t) dp dt

is continuous and strictly convex in V. Consequently, if a minimizer for L(g) exists, it is unique.

Proof. J is continuous, being the sum of a linear term and a combination of continuous operators. Let now g1, g2 ∈ V ,
α ∈ [0, 1], and g = αg1 + (1 − α)g2. J is convex. Indeed:

J(g) = α
{
−

1
n

n∑
i=1

g1(pi, ti)
}
+ (1 − α)

{
−

1
n

n∑
i=1

g2(pi, ti)
}
+

∫
DT

eαg1(p,t)e(1−α)g2(p,t) dp dt

≤ α

{
−

1
n

n∑
i=1

g1(pi, ti)
}
+ (1 − α)

{
−

1
n

n∑
i=1

g2(pi, ti)
}
+

∫ T

0

{∫
D

eg1(p,t) dp
}α{∫

D

eg2(p,t) dp
}1−α

dt

≤ αJ(g1) + (1 − α)J(g2) ∀α ∈ [0, 1] ∀g1, g2 ∈ V,

where we first applied Hölder’s and then Young’s inequalities to the integral term. Strict convexity is a consequence of
the following observations: Hölder’s inequality becomes an equality if and only if eg1 and eg2 are linearly dependent,
that is ∃ c1, c2 ∈ R s.t. g1 = g2 + log(c2/c1); Young’s inequality becomes an equality if and only if

∫
D

eg1(p,t) dp =∫
D

eg2(p,t) dp, meaning that strict convexity is only achieved when g1 = g2.

Let V0 denote the null space of the differential operator with respect to the regularization term R(g; λ) in (2).
Formally, V0 B {g ∈ V : ||g||b = 0}, where || · ||b is the norm induced by the inner product b(g, g) in (A.2). Let V⊥0 be
the orthogonal space of V0 such that V = V0 ⊕ V⊥0 .

Lemma C.2. V0 is a finite-dimensional space. Moreover, || · ||b is a norm in the space V⊥0 and is equivalent to the
V–norm defined in (5).

Proof. Let g0 ∈ V0, meaning that g0 is the solution of
b(g, g) = 0 inDT

∇D g(p, t) · n = 0 on ∂D for t ∈ [0,T )
gt(p, 0) = 0 for p ∈ D.

This is possible if and only if:∆Dg(p, t) = 0 inD for t ∈ [0,T ]
∇D g(p, t) · n = 0 on ∂D for t ∈ [0,T ]

∧

gtt(p, t) = 0 in (0, T ) for p ∈ D
gt(p, 0) = gt(p,T ) = 0 for p ∈ D.
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The only admissible solution is the constant function g0 = c0, where c0 ∈ R, defined over DT . This proves that V0 is
of finite dimension.

Before moving to the second requirement, we observe that

||g||2b =
∫ T

0
||∆Dg||2L2(D) dt + c

∫ T

0
||gtt ||

2
L2(D) dt = ||∆Dg||2L2(0,T ;L2(D)) + c||gtt ||

2
L2(0,T ;L2(D)),

where c is the constant defined in (A.2). Moreover, the V–norm can also be defined as follows, using an equivalent
norm of the standard H2(D)–norm (Maz’ya, 2013):

||g||2V = ||g||
2
L2(0,T ;L2(D)) + ||∇Dg||2L2(0,T ;L2(D)) + ||∆Dg||2L2(0,T ;L2(D)) + ||gt ||

2
L2(0,T ;L2(D)) + ||gtt ||

2
L2(0,T ;L2(D)).

For the equivalence in V⊥0 we need to show that there exist two real positive constants m and M such that:

m||g̃||2b ≤ ||g̃||
2
V ≤ M||g̃||2b, ∀g̃ ∈ V⊥0 . (C.1)

We focus first on the right-hand side inequality, ||g̃||2V ≤ M||g̃||2b. Applying the provided analogies and noting that

g̃ ∈ V⊥0 satisfies
∫ T

0

(
g0, g̃(p, t)

)
L2(D) dt = 0 ∀g0 ∈ V0, we obtain:

||g̃||2L2(0,T ;L2(D)) ≤ C2
p||∇DT g̃||2L2(0,T ;L2(D)) = C2

p||∇Dg̃ + g̃t ||
2
L2(0,T ;L2(D)) ≤ 2C2

p

(
||∇Dg̃||2L2(0,T ;L2(D)) + ||g̃t ||

2
L2(0,T ;L2(D))

)
,

where, in the first inequality we used classical Poincaré–Sobolev inequality, see Maz’ya (2008, p. 40), and Cp is the
Poincaré constant. Then,

||g̃||2V ≤ (2C2
p + 1)

(
||∇Dg̃||2L2(0,T ;L2(D)) + ||g̃t ||

2
L2(0,T ;L2(D))

)
+ ||∆Dg̃||2L2(0,T ;L2(D)) + ||g̃tt ||

2
L2(0,T ;L2(D))

≤ C̃
(
||∆Dg̃||2L2(0,T ;L2(D)) + ||g̃tt ||

2
L2(0,T ;L2(D))

)
≤ M||g̃||2b,

where M = C̃ max{1, 1/c}, and the second inequality holds thanks to the homogeneous Neumann boundary conditions.
The left-hand side inequality in (C.1) is straightforward and is satisfied for m = min{1, 1/c}.

Appendix D. Proof of Theorem 2

In this section, our focus turns to the consistency of the minimizer for L(g) as outlined in (1), operating within
the functional space V as characterized in (4). The proof of Theorem 2 follows from Theorem 5.3 in Gu and Qiu
(1993), subject to the fulfillment of the essential hypotheses for its validity. To ensure the requirements we rely on the
following two Lemmas.

Lemma D.1. Let g0 be the true log-density and ĝ be the minimizer of L(g) defined as in (1). Then

DsKL(g0, ĝ) =2λ
[∫
DT

∆Dĝ∆D(g0 − ĝ) dp dt + c
∫
DT

∂2ĝ
∂t2

∂2(g0 − ĝ)
∂t2 dp dt

]
+

1
n

n∑
i=1

(ĝ − g0)(Xi) − Eg0 [ĝ − g0].

Proof. Set

Ag,h(α) B −
1
n

n∑
i=1

(g + αh)(Xi) +
∫
DT

eg+αh dp dt + λ
[ ∫
DT

(
∆D(g + αh)

)2 dp dt + c
∫
DT

(
∂2(g + αh)

∂t2

)2
dp dt

]
.

By differentiating Ag,h with respect to α and setting α = 0, it results that

∂Ag,h

∂α
(0) = −

1
n

n∑
i=1

h(Xi) + Eg[h] + 2λ
[∫
DT

∆Dg∆Dh dp dt + c
∫
DT

∂2g
∂t2

∂2h
∂t2 dp dt

]
.

Observe that the term above is null, since ĝ is the minimizer of (1). Finally, setting g = ĝ and h = ĝ − g0 we obtain
the desired result.
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Lemma D.2. Under Assumption 1, there exists an infinite set of functions {ϕ j(p)} and {ψi(t)} of space and time
eigenfunctions such that, by setting {ωk(p, t)} = {ϕ j(p)ψi(t)}, then in L2(0,T ; L2(D)) it follows that:

Cov(ωk, ωl) = δkl and
∫
DT

(
∆Dωk∆Dωl + c

∂2ωk

∂t2

∂2ωl

∂t2 dp dt
)
=

(
η2

k + c ξ2
k
)
δkl,

where δkl denotes the Kronecker delta function, 0 ≤ ηk → 0, and 0 ≤ ξk → 0. Moreover, as k → ∞ the following
asymptotic property holds:

η2
k + c ξ2

k ∼ k2.

Proof. The proof exploits the peculiar formulation chosen for the regularization term R(g; λ), which accounts sepa-
rately for the regularity of the density function in spatial and temporal domains. This implies that we can consider
the following two problems: the one of finding the eigenvalues and eigenfunctions of the operator ∆D when time
is fixed; and the one of finding the eigenvalues and eigenfunctions of the operator ∂2/∂t2 when space is fixed, with
homogeneous Neumann boundary conditions in space and time respectively. That is:∆Dϕ(p) = ηϕ(p) inD

∇D ϕ(p) · n = 0 on ∂D
and

ψtt(t) = ξψ(t) in (0,T )
ψt(0) = ψt(T ) = 0.

According to the related literature (Brezis and Brézis, 2011; Chavel, 1984; Agmon, 2010), the eigenvalues ηk and
ξk are infinitely many and ηk, ξk → ∞ as k increases. In addition, if DT is bounded and regular enough, then
ηk ∼

|D|

4π k and ξk ∼ k1/2 as k → ∞, leading the desired asymptotic behavior. The corresponding eigenfunctions can be
orthonormalized in L2(D) and L2(T ) respectively. Therefore:∫

DT

ωk(p, t)ωl(p, t) dp dt =
∫ T

0
ψk(t)ψl(t) dt

∫
D

ϕk(p)ϕl(p) dp = δkl

and∫
DT

(
∆Dωk∆Dωl + λ̃

∂2ωk

∂t2

∂2ωl

∂t2

)
dp dt =

∫
DT

[(
ψk∆Dϕk

)(
ψl∆Dϕl

)
+ c

(
ϕk
∂2ψk

∂t2

)(
ϕl
∂2ψl

∂t2

)]
dp dt =

(
η2

k + c ξ2
k
)
δkl.

Finally, under Assumption 1, the standard L2(0,T ; L2(D)) scalar product can be substituted by the scalar product
induced by the true log-density g0, that is

∫
DT
ωkωleg0 dp dt, obtaining that Cov(ωk, ωl) = δkl.

Appendix E. Data generation for Simulations 1, 2 and 3

The true spatio-temporal density function used in Simulation 1 of Section 6.3 is a mixture of 4 time-dependent
Gaussian distributions over the square [−6, 6] × [−6, 6], obtained by introducing variability over time to the density
adopted in Ferraccioli et al. (2021). Mean and variances are given by

µ1 =

[
−2

−1.5 − 0.5t

]
Σ1 =

[
0.8 −0.2 − 0.4t

−0.2 − 0.4t 0.8

]
µ2 =

[
2 + t
−2 − t

]
Σ2 =

[
1.5 − 0.5t 0

0 1.5 − 0.5t

]
µ3 =

[
−2

1.5 + 1.5t

]
Σ3 =

[
0.8 + t 0

0 0.8

]
µ4 =

[
2

2 − t

]
Σ4 =

[
1 0.9 − 0.3t

0.9 − 0.3t 1

]
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for t ∈ [0, 1]. We set mixing weights as π(t) ∝
[
ηavg(Σ1|t), ηavg(Σ2|t), ηavg(Σ3|t), ηavg(Σ4|t)

]⊤
, where ηavg(A)

denotes the average of the eigenvalues of the matrix A. Thanks to these mixing weights, a larger number of points is
sampled from the distributions presenting stronger anisotropy.

The true spatio-temporal density function used in Simulation 2 of Section 6.4 is a mixture of 5 time-dependent
Kent distributions over the surface of the unit sphere, with scale parameters (concentration κi and ovalness βi) given
by

κ1 = 18 κ2 = 15 κ3 = 20 κ4 = 20 κ5 = 20
β1 = 0 β2 = 7 β3 = 10 β4 = 7 β5 = 4

and position parameters (mean directions γ1,i, major axis γ2,i and minor axis γ3,i) given by

γ1,1 =

−0.5 + t
−0.5 + t
0.8 + t

 γ2,1 =

−0.7789
0.6157
0.1188

 γ3,1 =

−0.5696
−0.6154
−0.5449


γ1,2 =

−0.3
−0.3
0.2

 γ2,2 =

−0.8651
0.3803
−0.3270

 γ3,2 =

 0.1483
−0.4289
−0.8911


γ1,3 =

 0.5
−0.5
0.8

 γ2,3 =

−0.6665
−0.7432
−0.0584

 γ3,3 =

 0.5754
−0.4629
−0.6743


γ1,4 =

0.2−1
0

 γ2,4 =

 0.6365
−0.0304
−0.7707

 γ3,4 =

−0.7546
−0.2314
−0.6140


γ1,5 =

 0.6 + t
−0.5 + t
0.3 + t

 γ2,5 =

 0.6365
−0.0304
−0.7707

 γ3,5 =

 0.7546
−0.2314
−0.6140


for t ∈ [0, 1]. The mean directions γ1,1, . . . , γ1,5 are then normalized to lay on the unit sphere (while major and
minor axes are already normalized in the definitions above). Finally, we use equal mixing weights, thus sampling
approximately the same number of points from each distribution in the mixture.

The true spatio-temporal density function used in Simulation 3 of Section 6.5 is a mixture of 25 Kent distributions
over the surface of the unit sphere. All the components have the same time-dependent scale parameters: κ = 400 and
β = 125 + 100 |t − 0.5|. Position parameters, instead, are constant over time, and their values are here omitted due to
space constraints.

Appendix F. Simulation 4: intensity estimation of inhomogenueus Poisson Process

In this section, we report the results obtained in a simulated intensity estimation problem, analogous to the density
estimation problem described in Section 6.3. We here consider the proposed STDE-PDE for intensity estimation, as
described in Section 2 and detailed in Section Appendix B, and compare it to LGCP and INLA. All methods are run
under the same specifications described in Section 6.3 for Simulation 1. Figure F.1 displays the boxplots over 30
simulation repetitions of the errL2 , computed as detailed in Section 6.2. The other measures of error defined in Section
6.2 are metrics in the space of probability distributions and therefore are not suitable for intensity functions. The
ordering of methods remains unchanged, and we can draw the same considerations already discussed for Simulation
1 in the density estimation setting.
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Figure F.1: Simulation 4: intensity estimation of inhomogenueus Poisson Process. Boxplots of L2–norm of the error of the estimates of the intensity
provided by the proposed STDE-PDE and the considered competing method for intensity estimation, namely INLA and LGCP, over 30 simulation
repetitions.

Appendix G. Simulation 5: additional simulation on planar domain

In this section, we show an additional simulation on a planar domain. The true spatio-temporal density function
is a mixture of 4 time-dependent Gaussian distributions over the square [−6, 6] × [−6, 6], with the following set of
parameters:

µ1 =

[
−3.5 + 1.5t
−3.5 + 1.5t

]
Σ1 = 3.0

[
0.8 0.4
0.4 0.8

]
µ2 =

[
1.7 + t
−2 − 1.4t

]
Σ2 = 3.0

[
1.5 − 0.5t −0.5t
−0.5t 1.5 − 0.5t

]
µ3 =

[
−2 − t

1.5 + 1.7t

]
Σ3 = 1.0

[
1.6 −1.2t
−1.2t 1.6

]
µ4 =

[
2

2 − 1.5t

]
Σ4 = 1.5

[
1 0.9 − 0.3t

0.9 − 0.3t 1

]

for t ∈ [0, 1]. We set mixing weights as π(t) =
[
0.7 η (a), 0.8 η (a), 0.4 η (a), 0.25 η (b)

]⊤
, where a = 10t + 1,

b = 10 (0.5 + sign(0.5 − t)(t − 0.5)) + 2, and η(·) denotes the Gamma density with shape parameter 7.5 and unit scale
parameter. The top panels of Figure G.2 show the true density: such density encompasses both high-frequency and
low-frequency components, that may significantly overlap; moreover, the density has significant mass close to the
boundary of the domain.

Figure G.2 shows the estimated fields and Figure G.1 reports the errors, showing that the ordering of the methods
remains the same as for Simulation 1. For the two methods that consider the shape of the domain, STDE-PDE and
INLA, we observe some minor edge-effects in the estimates. This is to be expected in this simulation setting, where the
shape of the domain only influences the observability of the process, but not the process itself. This fact has a higher
impact on the coverage of the confidence intervals. INLA turns out to be over-conservative, with a coverage equal
to one (median coverage = 1.000, IQR = 0.000), while STDE-PDE appears under-conservative (median coverage =
0.933, IQR = 0.133).
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Figure G.1: Simulation 5, additional simulation on planar domain. Boxplots of L2–norm of the error (left), Kullback-Leibler divergence (center),
and Hellinger distance (right) of the estimates provided by proposed STDE-PDE and the competing methods introduced in Section 6.1, namely
INLA, LGCP, and STKDE, over 30 simulation repetitions.

Appendix H. Simulation 6: point pattern on a non-spherical two-dimensional manifold

In this section, we include an additional simulation on a general two-dimensional Riemannian manifold. Since we
could not find available implementations of competing methods capable to handle space-time point patterns over this
type of domains, we here consider as a benchmark method k-Nearest Neighbors Spatio-Temporal Density Estima-
tion, referred to as KNNSTDE. This model separably combines the estimates obtained in space and time (Mack and
Rosenblatt, 1979). We implement KNNSTDE using the R package TDA Fasy et al. (2024), which relies on Euclidean
distances in Rd (with d = 2, 3) rather than on geodetic distances. To facilitate this competing technique, we sample
data according to a first-order separable density function, meaning that f (p, t) = fD(p) fT (t), and we define the spatial
component based on Euclidean distances. More specifically, we consider fD(p) =

(
sin(px) + cos(py) + pz + 5.1590

)3,
with px, py and pz denoting the Cartesian coordinates of the location p, whereas fT (t) is a Beta distribution over [0, 1]
with shape parameters α = β = 2. Such components are then normalized to get a proper density on the considered
DT . Given the shape of fT (t), the sample size evolves symmetrically in [0, 1], increasing until time t = 0.50 and then
decreasing again. We sample 10 000 data from the true density, and repeat the sampling 30 times. Figure H.1 shows
the data sampled on the surface domain for the first simulation repetition.
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Figure G.2: Simulation 5, additional simulation on planar domain. View of the sample (first row), true density (second row), and mean estimates of
STDE-PDE (third row), INLA (fourth row), LGCP (fifth row), and STKDE (sixth row), over 30 simulation repetitions, at different time instances.
All the plots have the same color scale, with bluish colors corresponding to low-density values.
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Figure H.1: Simulation 6: point pattern on a non-spherical two-dimensional manifold. Front view of the sample at different time instances over the
temporal domain [0, 1].

We compute STDE-PDE estimates using a mesh of 964 nodes, and 6 time knots in [0, 1]. Smoothing parameters
are selected by 10–fold cross-validation, as detailed in Section 4.3. Figure H.2 compares the true density and the
mean estimates, over 30 simulation repetitions, at t = 0.10. The presented method accurately estimates all the
modes of the true density, also those falling close to the boundary. This is also true at the beginning of the temporal
interval, at t = 0.10, even though STDE-PDE does not exploit the first-order separability assumption, differently
from KNNSTDE, and solely a fairly limited number of observations is available, as appreciable from the left panel
in Figure H.1. Although this simulation has been engineered to facilitate the benchmark method KNNSTDE, the
proposed STDE-PDE outperforms the results achieved by KNNSTDE, as also illustrated by the error boxplots in
Figure H.3.

True density STDE-PDE KNNSTDE

tim
e
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0.
10
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× 10
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Figure H.2: Simulation 6: point pattern on a non-spherical two-dimensional manifold. True density (left), and mean estimates over 30 simulation
repetitions obtained by the proposed STDE-PDE (center) and KNNSTDE (right), at a time instant at the beginning of the temporal domain [0, 1].
All the plots have the same color scale, with bluish colors corresponding to low density values.
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Figure H.3: Simulation 6: point pattern on a non-spherical two-dimensional manifold. Boxplots of L2–norm of the error (left), Kullback-Leibler
divergence (center) and Hellinger distance (right), of the estimates provided by the proposed STDE-PDE, and the considered competing method
KNNSTDE, over 30 simulation repetitions.
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