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Abstract

A simple but successful strategy for building a discrete diffu-
sion operator in finite volume schemes of industrial use is to correct
the standard two-point flux approximation with a term accounting
for the local mesh non-orthogonality. Practical experience with a
variety of different mesh typologies, including non-orthogonal tetra-
hedral, hexahedral and polyhedral meshes, has shown that this dis-
crete diffusion operator is accurate and robust whenever the mesh
is not too distorted and sufficiently regular. In this work, we show
that this approach can be interpreted as equivalent to introduc-
ing an anisotropic operator that accounts for the preferential di-
rections induced by the local mesh non-orthogonality. This allows
to derive a convergence analysis of the corrected method under a
quite weak global assumption on mesh distortion. This convergence
proof, which is obtained for the first time for this finite volume
method widely employed in industrial applications, provides a ref-
erence framework on how to interpret some of its variants commonly
implemented in commercial finite volume codes. Numerical exper-
iments are presented that confirm the accuracy and robustness of
the results. Furthermore, we also show empirically that a least
square approach to the gradient computation can provide second
order convergence even when the mild non-orthogonality condition
on the mesh is violated.
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1 Introduction

Finite volume methods have been extremely popular in compu-
tational fluid dynamics (CFD) in the past and they still are an area
of active research in numerical mathematics. Among the many dif-
ferent developments in this field, we recall the finite volume element
scheme [9], the multi-point flux approximation schemes (MPFA)
[1], [2], [3], or more recent variants, such as the mixed finite volume
scheme (MFV) [16], the hybrid finite volume scheme (HFV) [23], [25]
and the discrete duality finite volume schemes (DDFV) [4],[5], [11],
[12], [32], [33], [34]. All these methods share indeed many common
features, as discussed in [18].

In this work, however, we will focus on cell centered schemes,
in which a single unknown is associated to each mesh cell. Cell
centered finite volume methods are widely employed in industrial
codes [7], [40] for a number of practical reasons. Indeed, they rely
on relatively simple data structures, even for general unstructured
meshes, and they allow for easy treatment of boundary conditions
at singular boundary points, such as inner corners, while effectively
handling general shapes of the computational domain. Cell cen-
tered methods can be naturally parallelized by domain decompo-
sition techniques, guaranteeing minimal interprocessor communica-
tions, especially in their low order variants, due to the use of discrete
operators built from local stencils. They allow an easy implemen-
tation of locally adaptive multilevel refinement strategies and they
can be easily equipped with very efficient geometric multigrid pro-
cedures [43]. Finally, cell centered finite volume methods also allow
an immediate extension to nonlinear coupled problems [24].

Known drawbacks of cell centered schemes are the reduced accu-
racy in strongly heterogeneous diffusion problems [25] with respect
to MPFA, MFV or HFV schemes, as well as the only asymptot-
ical recovery of the discrete Stokes formula, in contrast with the
exact discrete property provided for example by DDFV schemes
[11]. On the other hand, MPFA, MFV, HFV and DDFV schemes
achieve such properties by introducing additional unknowns at se-
lected mesh locations, thus implying an additional cost with respect
to cell centered discretizations. It is still an open question if similar
accuracy improvements can be obtained from cell centered schemes
by introducing additional unknowns through local mesh refinement.

For these reasons, it is important to understand the analyti-
cal behaviour of cell centered finite volume discretizations on the
typical non-orthogonal meshes practicaly required for industrial ap-
plications [7], [40]. For these applications, the so-called Gauss cor-
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rected scheme, widely adopted by finite volume practitioners [30],
[36], [37], [39], [42], appears to be a simple, robust and sufficiently
accurate option. Notice that this scheme can also be interpreted as
a specific realization of the recently introduced asymmetric gradient
discretization method [17].

To the best of the authors’ knowledge, the convergence proper-
ties of this finite volume method have never been analyzed in the
case of non-orthogonal meshes. Indeed, convergence analyses of fi-
nite volume schemes for diffusion operators on unstructured mesh
types are usually limited to polyhedral meshes satisfying an ortho-
gonality condition [21], [22]. This is quite restrictive in practice,
since none of the robust mesh generators usually adopted for pre-
processing of industrial configurations are able to guarantee this
condition.

In this work, we show that it is possible to prove the conver-
gence of the Gauss corrected scheme on unstructured meshes sat-
isfying a global and rather weak mesh regularity condition. This
goal is achieved adapting the approach used in [22] for the conver-
gence analysis of a cell-centered finite volume scheme for anisotropic
diffusion problems on orthogonal meshes. A preliminary version of
these results has been presented in [14]. Furthermore, we also show
empirically that a least square approach to the gradient compu-
tation can provide second order convergence even when the mild
non-orthogonality condition on the mesh is violated. It is to be re-
marked that existing convergence proofs for finite volume methods
on non-orthogonal meshes either involve discretization schemes not
guaranteeing local flux conservativity [24], [25], or DDFV schemes
employing additional degrees of freedom [4], [5], or two-dimensional
diamond schemes on meshes satisfying more restrictive regularity
conditions [13]. We will focus here on the isotropic steady state
diffusion equation

−div(α∇u) = f, in Ω, (1a)

u = 0, on ∂Ω. (1b)

We will assume that α : Ω → R is a measurable function, α ∈
L∞(Ω), such that 0 < α0 ≤ α(x) for a.e. x ∈ Rd, with α0 ∈ R,
and for f ∈ L2(Ω). The classical weak formulation of problem (1)
consists in finding u ∈ H1

0 (Ω) such that∫
Ω
α(x)∇u(x) · ∇v(x) dx =

∫
Ω
f(x) v(x) dx, ∀v ∈ H1

0 (Ω). (2)

Rather than proving convergence directly for the finite volume scheme
associated to the strong problem formulation (1), we will identify a
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discrete weak formulation underlying the finite volume scheme and
then to prove convergence of its solution to that of the continuous
weak problem (26).

The paper is organized as follows. In section 2, several funda-
mental definitions of mesh related quantities and discrete functional
spaces are introduced. In section 3, the cell centered finite volume
method that is the focus of our analysis is presented. In section
4, the discrete weak formulation is recovered and in section 5, the
convergence analysis of the Gauss corrected scheme is presented. In
section 6, the results of some numerical experiments are reported. A
proposal to overcome the constraints on the mesh for some specific
three-dimensional mesh types is introduced in section 7. Finally, in
section 8 some conclusions are drawn and some future developments
are outlined.

2 Meshes and discrete spaces

The finite volume method is a mesh-based discretization tech-
nique suitable for any number of space dimensions, but in this work
we only consider the d = 3 case. Since the computational domains
of practical interest are usually of complex geometry, the focus here
is on meshes composed of arbitrarily shaped polyhedral cells, in the
sense of the formal definition below, see also [19], [25].

Definition 2.1. (Polyhedral mesh): Let Ω be a bounded, open
polyhedral subset of Rd. A polyhedral mesh for Ω is denoted by D =
(M,F ,P,V), where the quadruple includes:

1. M is a finite family of non-empty, connected, polyhedral, open,
disjoint subsets of Ω called cells (or control volumes), such that
Ω = ∪K∈MK. For any K ∈M, ∂K = K \K is the boundary
of K, |K| > 0 denotes the measure of K, and hK = diam(K)
is the diameter of K, that is the maximum distance between
two points in K.

2. F = Fint ∪ Fext is a finite family of disjoint subsets of Ω
representing the faces. Let Fint be the set of interior faces
such that, for all σ ∈ Fint, σ is a non-empty open subset of
a hyperplane in Rd with σ ⊂ Ω, and let Fext be the set of
boundary faces such that, for all σ ∈ Fext, σ is a non-empty
open subset of ∂Ω. It is assumed that, for any K ∈ M, there
exists a subset FK ⊂ F such that ∂K = ∪σ∈FKσ. The set
of cells sharing one face σ is Mσ = {K ∈ M : σ ∈ FK}.
It is assumed that, for all σ ⊂ F , either Mσ has exactly two
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elements and then σ ⊂ Fint, or MK has exactly one element
and then σ ⊂ Fext. For all σ ∈ F , |σ| > 0 denotes the (d− 1)-
dimensional measure of σ, and xσ is the barycenter of σ.

3. P = (xK)K∈M is a family of points of Ω indexed by M, such
that for all K ∈ M, xK ∈ K and it is called the center of K,
possibly corresponding to its barycenter. It is assumed that all
cells K ∈ M are xK-star-shaped, in the sense that if x ∈ K,
then the line segment [xK ,x] ⊂ K.

4. V is the finite set of vertices of the mesh. For K ∈ M, VK
collects all the vertices belonging to K, while for σ ∈ F , Vσ
collects all the vertices belonging to σ.

The size of the polyhedral mesh is defined as hD = sup{hK ,K ∈M}.

Furthermore, for any K ∈ M and for any σ ∈ FK , nK,σ is
the constant unit vector normal to σ and outward to K. For any
K ∈M, the set of neighbors of K is denoted by

NK = {L ∈M \ {K},∃σ ∈ Fint,Mσ = {K,L}}. (3)

Additionally dK,σ denotes the orthogonal distance between xK and
σ ∈ FK

dK,σ = (x− xK) · nK,σ, (4)

which is constant for all x ∈ σ. From the assumption that K is
xK-star-shaped, it follows that dK,σ > 0 and that it also holds:∑

σ∈FK

|σ| dK,σ = d |K| ∀K ∈M. (5)

For all K ∈M and σ ∈ FK , DK,σ denotes the cone with vertex xK
and basis σ, also called half-diamond, that is the volume defined by

DK,σ = {txK + (1− t)y, t ∈ (0, 1), y ∈ σ}. (6)

For all σ ∈ F , Dσ = ∪K∈MσDK,σ denotes the diamond associated
to face σ, as in Figure 1.

Definition 2.1 covers a wide range of meshes, including meshes
with non-convex cells, with non-planar faces requiring triangulation,
or with hanging nodes. Furthermore, Definition 2.1 also includes
tetrahedral and hexahedral meshes as particular cases, as well as
meshes with wedge and pyramidal cells.

Finite volume methods are traditionally introduced in discrete
functional spaces of piecewise constant functions [21]. In recent
analyses [27], [28], associated inner products, norms and seminorms
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Figure 1: Non-orthogonal generally polyhedral mesh: the line segment
(xL − xK) is not aligned with the face normal unit vector nK,σ. Fur-
thermore, the intersection point yσ between the face σ and the vector
(xL−xK) is not necessarily coincident with the face centroid xσ. The
half diamonds DK,σ and DL,σ are represented with dashed and dotted
lines, respectively.

are exploited to recast the discrete flux balance equations into an
equivalent variational form, which naturally allows to derive stabil-
ity estimates and to investigate the numerical convergence of specific
schemes [25]. In the classical finite volume framework, the discrete
flux balance equation corresponding to problem (1) takes the form∑

σ∈FK

FK,σ(u) =

∫
K
f(x) dx ∀K ∈M (7)

where the face flux is such that

FK,σ ≈ −
∫
σ
α(x)∇u(x) · nK,σ dγ(x)

and dγ(x) denotes the infinitesimal face area element. A relevant
feature of the scheme is the flux conservativity property

FK,σ(u) + FL,σ(u) = 0 , (8)

which is assumed to hold for all interior faces σ ∈ Fint, where K
and L are the cells sharing the face σ.

The convergence analysis of cell centered finite volume schemes
on arbitrary polyhedral meshes [25] may also require to introduce
the space HD(Ω) ⊂ Lp(Ω), which consists of the functions that are
piecewise constant on each cell K ∈ M. For all v ∈ HD(Ω) and for
all K ∈ M, the constant value of v in K is denoted by vK . Con-
sequently, discrete functional analysis results for the convergence of
finite volume schemes [21], [25] can be exploited.
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In addition, in order to introduce proper test functions to check
the convergence of the discrete solution to the continuous solution of
the weak formulation, for all functions ψ ∈ C(Ω) a projection opera-
tor PD : C(Ω)→ HD(Ω) is defined, such that PDψ = (ψ(xK))K∈M.

3 A cell centered diffusion scheme for

non-orthogonal meshes

The vast majority of finite volume schemes for diffusive problems
are based on the application of the discrete Gauss theorem. The
numerical approximation is derived as∫

K
∇·(α∇u) dx =

∑
σ∈FK

∫
σ
αnK,σ ·∇u dγ ≈

∑
σ∈FK

F
(d)
K,σ(u) (9)

where the numerical flux through face σ is computed as

F
(d)
K,σ(u) = |σ|αK,σ nK,σ · ∇K,σu, ∀σ ∈ FK (10)

and depends on the definition of the the face normal gradient. Usu-
ally, αK,σ is approximated by the surface value interpolation Iσα,
obtained from standard interpolation schemes. Linear interpolation
is often chosen to preserve second order accuracy, while harmonic
interpolation is sometimes selected, especially when the scalar dif-
fusivity field α is strongly non-homogeneous [21]. A variety of alter-
native schemes can be constructed to approximate the face normal
gradient nK,σ · ∇K,σu, each with its own specific features. Most of
them are traditionally studied empirically, by directly testing them
on specific meshes and representative flow problems [29], [41].

The simplest scheme for the face normal gradient is represented
by the two-point flux approximation [21]

nK,σ ·∇K,σu =
uL − uK
dK,σ + dL,σ

. (11)

Even though unconditionally monotone and coercive [15], it is of lim-
ited accuracy on unstructured meshes, where mesh non-orthogonality
may lead to severe errors in the approximation of the diffusion fluxes
[20]. In order to compensate for the unavoidable non-orthogonality
of realistic unstructured meshes, a simple but effective solution is
provided by the Gauss corrected scheme, which introduces a non-
orthogonal correction term [36] in the two-point flux scheme, thus
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obtaining the approximation

nK,σ ·∇K,σu =
uL − uK
dK,σ + dL,σ

+

(
nK,σ −

xL − xK
nK,σ · (xL − xK)

)
· ∇σu.

(12)

Here, the first term corresponds to the two-point flux contribution
in Eq.(11), expressing the diffusion flux component in the direction
of the line segment (xL − xK), while the second term accounts for
the local mesh non-orthgonality across the face σ, expressed as the
difference between the correct face normal diffusive flux estimated
from a proper face gradient and the diffusive flux along the direction
of (xL−xK). In order to avoid oscillatory solutions [41], it is impor-
tant that the gradient ∇σu at face σ is evaluated using a different
scheme from the one employed in the first term of Eq.(12). Thus,
the gradient ∇σu is usually estimated at face σ by interpolation of
the neighbouring cells gradients ∇Ku and ∇Lu for Mσ = {K,L},
which can be either the standard linear interpolation or, for in-
creased simplicity, the midpoint rule. Indeed, if the cell derivatives
are linear approximations, the diffusion flux will be more accurate
than first order on very regular meshes [36]. The Gauss corrected
scheme allows more accurate approximations than the two-point
flux approximation (11), but it is not, in general, unconditionally
coercive on arbitrary unstructured meshes. As a consequence, on
irregular meshes it may become a source of numerical instability.
On orthogonal grids, this scheme reduces to the classical two-point
flux scheme, since the correction term vanishes.

Following [10], on a general unstructured polyhedral mesh like
that of Definition 2.1, the centered discrete gradient operator ∇D :
HD(Ω)→ HD(Ω)d is defined as the piecewise constant function

∇Ku =
1

|K|
∑
σ∈FK

|σ| (Iσu− uK)nK,σ (13)

for u ∈ HD(Ω). Since for any closed control volume the geometrical
relations∑

σ∈FK

|σ|nK,σ · e(i) =
∑
σ∈FK

|σ|n(i)
K,σ = 0 i = 1, . . . , d (14)

hold, with nK,σ = n
(i)
K,σe

(i) , Eq.(13) is also equal to

∇Ku =
1

|K|
∑
σ∈FK

|σ| Iσu nK,σ, (15)
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which is easily recognized as the finite volume discretization of the
gradient based on the Gauss theorem [30]. For this reason, the
gradient approximation in Eq.(13) is often identified as the Gauss
gradient scheme.

The consistency of the discrete gradient in Eq.(13) has been
analyzed in [25]. It stems directly from the geometrical identity∑

σ∈FK

|σ|nK,σ(xσ − xK)ᵀ = |K|I, ∀K ∈M, (16)

where (xσ − xK)ᵀ is the transpose of the vector (xσ − xK) ∈ Rd,
see Figure 1, and I ∈ Rd×Rd is the identity matrix. For any affine
function ψ : Ω → R defined by ψ(x) = g · x + c, with g ∈ Rd
and c ∈ R, assuming that uσ = ψ(xσ) and uK = ψ(xK), it results
that uσ − uK = (xσ − xK)ᵀg = (xσ − xK)ᵀ∇ψ. Hence, expression
(13) leads to ∇Ku = ∇ψ, which amounts to linear exactness for
any affine function ψ on K ∈ M, provided that Iσu = uσ, which is
verified whenever xσ = yσ, ∀σ ∈ Fint, see Figure 1.

Finally, if the face gradient ∇σu in Eq.(12) is computed using
a linear interpolation operator applied to the cell gradients recon-
structed via the Gauss scheme (15) from both cells sharing the face
σ, the non-orthogonal correction term in Eq.(12) is associated to a
large stencil which includes, besides cells K and L sharing face σ,
all their neighbouring cells M ∈ NK ∪NL.

By applying the Gauss corrected scheme from Eq.(12) to the
diffusion problem (1), one obtains the finite volume scheme∑

L∈NK

FK,L +
∑

σ∈FK,ext

FK,σ =

∫
K
f(x) dx, ∀K ∈M (17)

where the diffusive fluxes FK,L = −F (d)
K,σ take the forms

FK,L = αK|L
|σ|
dK,L

(uK − uL)

− αK|L|σ|
(
nK,σ −

iK,L
nK,σ · iK,L

)
· ∇σu, ∀K|L∈Fint

(18a)

FK,σ = αK,σ
|σ|
dK,σ

uK

− αK,σ|σ|
(
nK,σ −

iK,σ
nK,σ · iK,σ

)
· ∇σu, ∀σ∈FK,ext

(18b)

with the shorthand notation dK,L = dK,σ + dL,σ and using the unit
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vectors

iK,L =
xL − xK
|xL − xK |

, ∀K|L ∈ Fint (19a)

iK,σ =
xσ − xK
|xσ − xK |

, ∀σ ∈ FK,ext. (19b)

The diffusivity in Eq.(18) is defined as

αK|L =
1

|Dσ|

∫
Dσ

α(x) dx, ∀K|L ∈ Fint (20a)

αK,σ =
1

|DK,σ|

∫
DK,σ

α(x) dx, ∀σ ∈ FK,ext, (20b)

which define piecewise constant functions over the diamond cells
Dσ and DK,σ dual to internal and external mesh faces respectively.
Finally, it is important to notice that the fluxes (18) are locally
conservative, since

FK,L = −FL,K , ∀K|L ∈ Fint. (21)

In the definition of the fluxes, a reconstruction of the face gradi-
ent ∇σu must be employed. For this purpose, a linear interpolation
operator is selected at internal faces

∇σu = Iσ∇u =
dL,σ
dK,L

∇Ku+
dK,σ
dK,L

∇Lu, ∀σ ∈ Fint, (22)

while at boundary faces the simplest choice is ∇σu = ∇Ku, for all
σ ∈ FK,ext. Here, we will use the approximation

∇σu = − uK
dK,σ

nK,σ + (∇Ku− (nK,σ · ∇Ku)nK,σ) , ∀σ ∈ Fext,

in order to recover nK,σ · ∇σu = −uK/dK,σ at boundaries. The
linear interpolation makes use of (15) with linear interpolation of
the face values

Iσu =
dL,σ
dK,L

uK +
dK,σ
dK,L

uL, ∀σ ∈ Fint (23)

while the boundary face values follow directly from the homoge-
neous Dirichlet conditions in problem (1). Additionally, in practical
implementations it is customary to compute the scalar diffusivity
αK|L at internal faces K|L ∈ Fint by a linear interpolation operator
as αK|L = Iσα.
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To allow for the treatment of non-orthogonal polyhedral meshes,
it is useful to consider the associated isotropic diffusion problem

Γα = αI, (24)

where Γα is isotropic diffusivity tensor associated to the scalar dif-
fusivity α. This allows to reformulate problem (1) as

−div(Γα∇u) = f, in Ω, (25a)

u = 0, on ∂Ω (25b)

with Γα(x) naturally verifying the usual assumptions [22]. Similarly,
the associated weak formulation is given by

u ∈ H1
0 (Ω),∫

Ω
Γα(x)∇u(x) · ∇v(x) dx =

∫
Ω
f(x) v(x) dx,

∀v ∈ H1
0 (Ω).

(26)

It is possible to derive a finite volume scheme for diffusion problems
with tensorial diffusivity by constructing a local discrete gradient
[22], in order to obtain at cell face σ a consistent approximation of
the diffusive flux −

∫
σ (Γα(x)∇u(x)) ·nσ dγ(x), with usual notation

for finite volume schemes. To this purpose, it is beneficial to rewrite
the diffusive flux for an internal face K|L ∈ Fint using the diffusivity
tensor from Eq.(24). Since Γα is symmetric, it follows that

FK,L = −|σ| (ΓK,L∇K,Lu) · nK,σ = −|σ|∇K,Lu · (ΓK,LnK,σ) . (27)

In order to allow for the treatment of non-orthogonal meshes, the
following diffusivity tensor decomposition can be applied

ΓK,L = αK,LI = Γ
‖
K,L + Γ

∦
K,L (28)

with anisotropic (directional) diffusivity tensors

Γ
‖
K,L = αK,L

1(
iᵀK,LnK,σ

)2 iK,Li
ᵀ
K,L (29a)

Γ
∦
K,L = αK,L

I − 1(
iᵀK,LnK,σ

)2 iK,Li
ᵀ
K,L

 (29b)

by following the natural directions locally identified from the non-
orthogonal polyhedral mesh. Notice also that both diffusivity ten-

sors are symmetric, since Γ
‖
K,L = (Γ

‖
K,L)ᵀ and Γ

∦
K,L = (Γ

∦
K,L)ᵀ, and

that
Γ
‖
K,L = Γ

‖
L,K and Γ

∦
K,L = Γ

∦
L,K . (30)
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A similar flux decomposition can be carried out at boundary faces
σ ∈ Fext by substituting the unit vector iK,L with iK,σ.

By substituting the tensor decomposition from Eqs.(28)-(29)
into the finite volume fluxes (27), one obtains that

ΓK,LnK,σ = Γ
‖
K,LnK,σ + Γ

∦
K,LnK,σ

= αK,L
1

iᵀK,LnK,σ
iK,L

+ αK,L

(
nK,σ −

1

iᵀK,LnK,σ
iK,L

)
,

(31)

which directly corresponds to the terms of the Gauss corrected scheme
appearing in Eq.(18). In particular, the first term in Eq.(31), cor-

responding to the anisotropic diffusivity tensor Γ
‖
K,L, is amenable

to approximation by a two-point flux scheme, in a manner similar
to what is done in the perpendicular bisection method in [31]. This
term, when inserted into the finite volume diffusive flux, yields

F
‖
K,L = −|σ|

(
Γ
‖
K,L∇K,Lu

)
· nK,σ = −|σ|∇K,Lu ·

(
Γ
‖
K,LnK,σ

)
= −αK,L

|σ|
iᵀK,LnK,σ

iK,L · ∇K,Lu

= −αK|L
|σ|

iᵀK,LnK,L

uK − uL
|xL − xK |

,

(32)
that generates a directional derivative which can be easily approxi-
mated via a two-point flux scheme. On the other hand, the second
term in the diffusive flux corresponding to the anisotropic diffusivity

tensor Γ
∦
K,L must be treated via a reconstruction of the cell gradient.

it is important also to notice that, from the tensor decomposition
in Eqs.(28)-(29), the two-point flux portion increases its dominance
for increasing mesh non-orthogonality, due to the increasing angle
between the unit vectors nK,σ and iK,L. This property is benefi-
cial in guaranteeing diagonal dominance of the linear system matrix
and thus numerical stability, as will be clear from the rest of the
discussion.

4 Discrete weak formulation

Returning to the diffusive fluxes from Gauss corrected scheme (18),
using the diffusivity tensor decomposition in Eqs.(28)-(29), the finite
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volume fluxes can be rewritten in the form

FK,L = αK|L τK|L (uK − uL)− |σ|∇K|Lu ·
(

Γ
∦
K,LnK,σ

)
, (33a)

FK,σ = αK,σ τK,σ uK − |σ|∇K,σu ·
(

Γ
∦
K,σnK,σ

)
, (33b)

for the internal and external faces, respectively. In these formulae,
the transmissivities

τK|L =
|σ|
dK,L

, ∀K|L ∈ Fint and τK,σ =
|σ|
dK,σ

, ∀σ ∈ FK,ext (34)

are introduced to simplify the notation and ∇K|Lu denotes a generic
discrete gradient operator, still to be defined, that is piecewise con-
stant on the diamond cells DK|L for all K ∈ M and L ∈ NK . If
one defines the diamond cell gradient from the linear interpolation
of cell gradients as in Eq.(22), then the fluxes become

FK,L = αK|L τK|L (uK − uL)

+
(
−∇Ku ·

(
Γ
∦
K,LaK,L

)
+∇Lu ·

(
Γ
∦
K,LaL,K

))
,

(35a)

FK,σ = αK,σ τK,σ uK −∇Ku ·
(

Γ
∦
K,σaK,σ

)
, (35b)

where the vector quantities

aK,L = |σ|
dL,σ
dK,L

nK,σ, ∀K|L ∈ Fint (36a)

aK,σ = |σ|nK,σ, ∀σ ∈ FK,ext. (36b)

have been introduced, which are such that aK,L 6= aL,K gener-
ally. Notice also the approximation introduced in the boundary term
∇K,σu ≈ ∇Ku. It is now possible to derive the weak formulation
underlying the finite volume scheme (17). By multiplying Eq.(17)
by the test function vK and summing the result for all K ∈M, one
obtains∑
K∈M

vK
∑
L∈NK

FK,L +
∑
K∈M

vK
∑

σ∈FK,ext

FK,σ =
∑
K∈M

vK

∫
K
f(x) dx

that, after discrete integration by parts, produces∑
K|L∈Fint

(FK,L vK + FL,K vL) +
∑
K∈M

∑
σ∈FK,ext

FK,σvK

=
∑
K∈M

vK

∫
K
f(x) dx

14



from which, due to flux conservativity (21), one obtains that∑
K|L∈Fint

FK,L(vK − vL) +
∑
K∈M

∑
σ∈FK,ext

FK,σvK

=
∑
K∈M

vK

∫
K
f(x) dx.

(37)

By substituting into Eq.(37) the fluxes (35) with the face gra-
dient from the linear interpolation of the Gauss scheme (15), it is
possible to identify two terms T1 and T2 = T2,int + T2,ext in the
expression

T1 + T2,int + T2,ext =
∑
K∈M

vK

∫
K
f(x) dx, (38)

where

T1 =
∑

K|L∈Fint

αK|LτK|L(uK − uL)(vK − vL)

+
∑
K∈M

∑
σ∈FK,ext

αK,στK,σuKvK ,
(39a)

T2.int =
∑

K|L∈Fint

(
−∇Ku ·

(
Γ
∦
K,LaK,L

)
+ ∇Lu ·

(
Γ
∦
K,LaL,K

))
(vK − vL),

(39b)

T2.ext = −
∑
K∈M

∑
σ∈FK,ext

∇Ku ·
(

Γ
∦
K,σaK,σ

)
vK . (39c)

Notice that term T1 defines a symmetric bilinear form

[u, v]D,α,‖ =
∑

K|L∈Fint

αK|LτK|L(uK − uL)(vK − vL)

+
∑
K∈M

∑
σ∈FK,ext

αK,στK,σuKvK
(40)

which is a discretization of the term
∫

Ω∇u(x) ·
(

Γ
‖
α(x)∇v(x)

)
dx,

directly corresponding to the portion of diffusive fluxes that can

be ascribed to the anisotropic diffusion tensor Γ
‖
α. This expresses

the flux component that is parallel to the local vector (xL − xK)
associated to internal faces σ = K|L, or to the vector (xσ − xK)
associated to boundary faces. The term T2 = T2,int+T2,ext contains
instead the vectors aK,L and aK,σ, related to the diffusivity tensor

15



Γ
∦
α, but it is not yet in a form readily corresponding to a discrete

weak formulation. To this purpose, it is convenient to rewrite T2 as

T2 =
∑
K∈M

∑
L∈NK

−∇Ku ·
(

Γ
∦
K,LaK,L

)
(vK − vL)

−
∑
K∈M

∑
σ∈FK,ext

∇Ku ·
(

Γ
∦
K,σaK,σ

)
vK

=
∑
K∈M

∇Ku ·

 ∑
L∈NK

Γ
∦
K,LaK,L(vL − vK)


−
∑
K∈M

∇Ku ·

 ∑
σ∈FK,ext

Γ
∦
K,σaK,σvK

 .

The two summation terms between brackets contained in the last
expression correspond to the internal faces and the boundary faces
contributions, respectively. They can be interpreted as a discreti-

zation of the term
∫
K Γ

∦
α∇v(x) dx for all K ∈ M, which allows to

introduce the piecewise constant function (Γ
∦
α∇v)D that is defined

on each cell K ∈M as

(Γ∦
α∇v)K =

1

|K|

 ∑
L∈NK

Γ
∦
K,LaK,L(vL − vK)

−
∑

σ∈FK,ext

Γ
∦
K,σaK,σvK

 ,

(41)

expressing the fact that the test function gradient cannot be sepa-

rated from the diffusivity tensor Γ
∦
α, since the latter is a face-based

quantity defined from the local mesh non-orthogonality (i.e., from
the angle between iK,L and nK,σ unit vectors). In this case, the
term T2 can be rewritten as a non-symmetric discrete bilinear form

〈∇u,∇v〉D.α,∦ =
∑
K∈M

|K|∇Ku · (Γ∦
α∇v)K = T2 (42)

which is thus associated to the diffusivity tensor Γ
∦
α, expressing

the contribution of diffusion from a local direction not aligned with
(xL − xK) at internal faces, or with (xσ − xK) at boundary faces.

Thus, the discrete weak formulation implied when using the
Gauss corrected scheme for the heterogeneous isotropic diffusion

16



problem (1) takes the form

u ∈ HD,

[u, v]D,α,‖ + 〈∇u,∇v〉D,α,∦ =
∑
K∈M

vK

∫
K
f(x) dx,

∀v ∈ HD.

(43)

Several remarks are in order on the basis of the previously in-
troduced formulation. Similarly to [22], cell gradients can lead to
a discrete inner product whenever the mesh geometry allows for a
direct estimation of face normal fluxes, e.g., in the case of an orthog-
onal polyhedral mesh. When instead anisotropic effects (directional
bias) emerge locally on cell faces due to mesh non-orthogonality, the
construction of face gradients becomes inevitable, as done in [25].
In this latter case, the diffusivity tensor is necessarily defined on
diamond cell support.

Secondly, the linear interpolation operator used to obtain the
face gradient ∇σu in the Gauss corrected scheme from a linear com-
bination of cell gradients calculated via the Gauss gradient scheme
for all K|L ∈ Fint implies that

∇K,Lu =
|DL,σ|
|Dσ|

∇Ku+
|DK,σ|
|Dσ|

∇Lu, (44)

which defines the face gradient as the diamond cell gradient obtained
via an inverse volume weighting procedure. The same conclusion is
also valid for the scalar diffusivity αK|L defined from Eq.(20).

Finally, when the scalar diffusivity αK|L appearing inside the
fluxes (33) is computed by a linear interpolation procedure, the

anisotropic diffusivity tensor Γ
∦
K,L in the Gauss corrected scheme

becomes

Γ
∦
K|L =

(
dL,σ
dK,L

αK +
dK,σ
dK,L

αL

)I −
iK,Li

ᵀ
K,L(

iᵀK,LnK,σ

)2


=

(
dL,σ
dK,L

αK +
dK,σ
dK,L

αL

)
JK,L

where the face non-orthogonality symmetric tensor JK,L has been
defined. As a consequence, the diffusive flux (33) can be recast into
the form

FK,L = αK|L τK|L (uK − uL)− |σ|
(
dL,σ
dK,L

αK +
dK,σ
dK,L

αL

)
×
(
dL,σ
dK,L

∇Ku+
dK,σ
dK,L

∇Lu
)
· (JK,LnK,σ)

17



from which, after introducing the vectors

bK,L = |σ|
(
dL,σ
dK,L

)2

JK,LnK,σ (45a)

bL,K = |σ|
(
dK,σ
dK,L

)2

JL,KnL,σ, (45b)

one obtains that

FK,L = αK|L τK|L (uK − uL)− αK∇Ku · bK,L + αL∇Lu · bL,K

+ |σ| (αK∇Lu+ αL∇Ku) ·

(
dK,σdL,σ
d2
K,L

JK,LnK,σ

)
. (46)

Notice that, if the last term vanishes, the same structure of the
anisotropic diffusion fluxes from [22] is recovered, similarly to the
case of cell based diffusion coefficients, but with differently defined
bK,L and bL,K vectors. This implies that a weak formulation similar
to the one in [22] can also be obtained in this case. Nevertheless, on
generally non-orthogonal meshes, the last term in Eq.(46) vanishes
only when αK∇Lu = −αL∇Ku, i.e., only on internal faces where
the flux is zero. In all the other meaningful cases, the last term in
Eq.(46) is non zero and it is responsible for the cross terms inside
the non-orthogonal correction 〈∇u,∇v〉D,α,∦ appearing in the weak
formulation (43).

5 Convergence analysis

The term T1 defined in Eq.(40) and appearing in the discrete weak
formulation (43) exactly corresponds to the symmetric bilinear form
appearing in [22] for isotropic diffusion operators on polyhedral
meshes satisfying the additional orthogonality condition

(xL − xK) ⊥ nK,σ. (47)

However, in the present analysis the same inner product corresponds
only to the portion of the discrete bilinear form containing the con-
tribution to the diffusive flux that is parallel to the local mesh direc-
tion, as identified from the cell-to-cell vector (xL − xK). Formally,
it is possible to define the discrete inner product

[u, v]D,α,‖ =
∑

K|L∈Fint

αK|LτK|L(uK − uL)(vK − vL)

+
∑
K∈M

∑
σ∈FK,ext

αK,στK,σuKvK
(48)

18



from which the associated norm

‖u‖D = ([u, u]D,1,‖)
1/2 (49)

directly follows, where we have set α = 1. Such norm verifies the
discrete Poincaré inequality

‖w‖L2(Ω) ≤ diam(Ω)‖w‖D, ∀w ∈ HD (50)

as from [21]. Furthermore, a relative compactness result in L2(Ω)
also holds.

Lemma 5.1 ([22], Lemma 2.1). Let Ω be a bounded open connected
polyhedral subset of Rd, d ∈ N? and let (Dn, un)n∈N be a sequence of
discretizations such that, for all n ∈ N, Dn is an admissible finite
volume mesh in sense of Definition 2.1 and un ∈ HDn(Ω). Assume
that limn→∞ hDn = 0 and that there exists a constant C1 > 0 such
that ‖u‖Dn ≤ C1, for all n ∈ N. Then there exists a subsequence
of (Dn, un)n∈N, for simplicity denoted again by (Dn, un), and some
u ∈ H1

0 (Ω) such that un tends to u in L2(Ω) as n → ∞, and the
inequality ∫

Ω
|∇u(x)|2 dx ≤ lim

n→∞
inf ‖un‖2Dn (51)

holds. Furthermore, for all regular functions L∞(Ω), one has also
that

lim
n→∞

[un, PDnϕ]Dn,α,‖ =

∫
Ω

Γ‖α(x)∇u(x) · ∇ϕ(x) dx,

∀ϕ ∈ C∞c (Ω).

(52)

with PD : C(Ω)→ HD(Ω) the projection operator from Section 2.

Proof. The proof is similar to the one reported in [22], which is
obtained for orthogonal meshes, even if orthogonality is not strictly
required, after substitution of the scalar diffusivity α with the dif-

fusivity tensor Γ
‖
α.

From the discussion leading to the discrete weak form (43), it
is useful to define a discrete gradient with anisotropic diffusivity
biasing, see also Eq.(41).

Definition 5.1 (Discrete gradient with Γ
∦
α biasing). Let Ω be a

bounded open connected polyhedral subset of Rd, d ∈ N?. Let D be an
admissible finite volume discretization in sense of Definition (2.1).
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The discrete gradient with Γ
∦
α anisotropic biasing ∇D,α,∦ : HD → Hd

D
is defined for any u ∈ HD as the piecewise constant function

∇D,α,∦u(x) = (Γ∦
α∇u)K

=
1

|K|

 ∑
L∈NK

Γ
∦
K,LaK,L(uL − uK)−

∑
σ∈FK,ext

Γ
∦
K,σaK,σ uK

 ,

for a.e. x ∈ K, ∀K ∈M,
(53)

where the discrete anisotropic diffusivity tensor Γ
∦
K,L (and Γ

∦
K,σ) is

defined in (29) and the vector quantities aK,L (and aK,σ) are defined
in (36).

From the diffusivity tensor decomposition in Eqs.(28)-(29), it

is possible to split the Γ
∦
α-biased discrete gradient into two other

discrete gradients.

Definition 5.2 (Decomposition of Γ
∦
α-biased discrete gradient). Let

Ω be a bounded open connected polyhedral subset of Rd, d ∈ N? and
let D be an admissible finite volume discretization in sense of Defi-

nition (2.1). Let ∇D,α,∦ be the Γ
∦
α-biased discrete gradient, as from

Definition 5.1, for any u ∈ HD. Then the Γ
∦
α-biased discrete gradi-

ent can be decomposed into the sum of two other discrete gradients

∇D,α,∦u(x) = ∇D,αu(x)−∇D,α,‖u(x) (54)

where

∇D,αu(x) = (α∇u)K

=
1

|K|

 ∑
L∈NK

αK|L τK|L dL,σnK,σ(uL − uK)

−
∑

σ∈FK,ext

αK,σ |σ|nK,σ uK

 ,

for a.e. x ∈ K, ∀K ∈M,

(55)
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represents a diffusivity weighted discrete gradient, while

∇D,α,‖u(x) = (Γ‖α∇u)K

=
1

|K|

 ∑
L∈NK

αK|L τK|L dL,σ
iK,L

nK,σ · iK,L
(uL − uK)

−
∑

σ∈FK,ext

αK,σ |σ|
iK,L

nK,σ · iK,L
uK

 ,

for a.e. x ∈ K, ∀K ∈M,

(56)

can be interpreted as a Γ
‖
α-biased discrete gradient.

For this finite volume diffusion scheme, the mesh regularity is
measured by the factor

θ̃D = min

{
min

{
dK,σ
dL,σ

,
hK
dK,σ

,nK,L · iK,L : σ ∈ Fint
}
,

min

{
hK
dK,σ

, iK,σ · nK,σ : σ ∈ Fext
} }

, (57)

which expresses bounds in the empirical measures of mesh regularity
that will be presented in Section 6. As a first result, one introduces

the bound on the L2(Ω)d-norm of the Γ
∦
α-biased gradient on any

element of HD.

Lemma 5.2 (Bound on ∇D,α,∦u). Let Ω be a bounded open con-

nected polyhedral subset of Rd, d ∈ N?. Let D be an admissible finite
volume discretization in sense of Definition 2.1 and let 0 < θ ≤ θ̃D.
Then, the exists C1 depending only on d, α and θ such that, for all
u ∈ HD, one has

‖∇D,α,∦u‖L2(Ω)d ≤ C1 ‖u‖D. (58)

Proof. Let u ∈ HD. Similarly as in [22], one introduces, for all
K ∈ M, L ∈ NK and σ = K|L the difference quantities δK,σx =
(xL−xK) and δK,σu = (uL−uK), and for all σ ∈ FK,σ the quantities
δK,σx = (xσ − xK) and δK,σu = −uK . Then, the inner product
norm in (49) leads for a given K ∈M to

‖u‖2D = [u, u]D,1,‖

=
∑

K|L∈Fint

τK|L(uL − uK)2 +
∑
K∈M

∑
σ∈FK,ext

τK,σ(−uK)2

=
∑
K∈M

1

2

∑
L∈NK

τK|L(δK,Lu)2 +
∑
K∈M

∑
σ∈FK,ext

τK,σ(δK,σu)2.
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Then, Definition 5.1 leads to

|K|(Γ∦
α∇u)K =

∑
σ∈FK

ασ τσ dL,σ

(
nK,σ −

δK,σx

dK,L

)
δK,σu.

By using the Cauchy-Schwartz inequality, one obtains that

|K|2
∣∣∣(Γ∦

α∇u)K

∣∣∣2 ≤ ∑
σ∈FK

τσα
2
σ

∣∣∣∣dL,σ (nK,σ − δK,σx

dK,L

)∣∣∣∣2
×
∑
σ∈FK

τσ (δK,σu)2 ,

from which, by introducing the upper bound for the scalar diffusivity
Cα ≥ α2

σ, for all σ ∈ F , and by noticing that, for σ ∈ FK , one has

τσ ≤ |σ|
dK,σ

and that δK,σx ≤ (xσ − xK), it follows that

|K|2
∣∣∣(Γ∦

α∇u)K

∣∣∣2 ≤ Cα ∑
σ∈FK

d|DK,σ|
∣∣∣∣ dL,σdK,σ

nK,σ −
dL,σ
dK,σ

xσ − xK
dK,L

∣∣∣∣2
×
∑
σ∈FK

τσ (δK,σu)2

≤ Cαd
∑
σ∈FK

|DK,σ|
∣∣∣∣ dL,σdK,σ

nK,σ

∣∣∣∣2 ∑
σ∈FK

τσ (δK,σu)2

≤ Cα
d

θ2
|K|

∑
σ∈FK

τσ (δK,σu)2 .

Finally, after summing over all K ∈M, one obtains that∑
K∈M

|K|
∣∣∣(Γ∦

α∇u)K

∣∣∣2 ≤ Cα d

θ2

∑
K∈M

∑
σ∈FK

τσ (δK,σu)2

≤ Cα
d

θ2

∑
K∈M

 ∑
σ∈FK,int

τσ (δK,σu)2

+ 2
∑

σ∈FK.ext

τσ (δK,σu)2


= 2Cα

d

θ2
‖u‖2D

from which (58) follows with C1 = (1/θ)
√

2Cα d.

It is now possible to state a weak convergence property for the
diffusion weighted discrete gradient.
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Lemma 5.3 (Weak convergence of∇D,αu). Let Ω be a bounded open
connected polyhedral subset of Rd, d ∈ N?. Let D be an admissible
finite volume discretization in sense of Definition (2.1) and let 0 <
θ ≤ θ̃D. Assume that there exists u ∈ HD and a function u ∈ H1

0 (Ω)
such that u tends to u in L2(Ω) as hD → 0, while ‖u‖D remains
bounded. Then ∇D,αu weakly converges to α∇u in L2(Ω)d as hD →
0. Additionally, ∇D,α,‖u weakly converges to Γ

‖
α∇u as hD → 0.

Proof. In or Let ϕ ∈ C∞c (Ω). Assume that hD is small enough
that, for all K ∈ M and x ∈ K, if ϕ(x) 6= 0 then FK,ext = ∅.
Consider the term TD1 defined as

TD1 =

∫
Ω
PDϕ(x)∇D,α,∦u(x) dx =

∑
K∈ M

|K|ϕ(xK) (Γ∦
α∇u)K

=
∑

K|L∈Fint

(
ϕ(xK) dL,σ αK|L τK|L

×
(
nK,σ −

(xL − xK)

dK,L

)
(uL − uK)

)
+

∑
K|L∈Fint

(
−ϕ(xL) dK,σ αK|L τK|L

×
(
nK,σ −

(xL − xK)

dK,L

)
(uK − uL)

)
=

∑
K|L∈Fint

(ϕ(xK) dL,σ + ϕ(xL) dK,σ)

× αK|L τK|L
(
nK,σ −

(xL − xK)

dK,L

)
(uL − uK)

in which τK|L

(
nK,σ − (xL−xK)

dK,L

)
defines a sort of non-orthogonal

transmissivity, while the first term between brackets can be rewrit-
ten as

ϕ(xK) dL,σ + ϕ(xL) dK,σ

= ϕ(xK)(xσ − xL) · nL,σ + ϕ(xL)(xσ − xK) · nK,σ

=

(
ϕ(xK) + ϕ(xL)

2
(xL − xK)

+ (ϕ(xK)− ϕ(xL))

(
xK + xL

2
− xσ

))
· nK,σ.

The term TD1 can be decomposed into a sum of two terms TD1 =
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TD2 + TD3 , where

TD2 =
∑

K|L∈Fint

nK,σ · (xL − xK)
ϕ(xK) + ϕ(xL)

2

× αK|L τK|L
(
nK,σ −

(xL − xK)

dK,L

)
(uL − uK),

TD3 =
∑

K|L∈Fint

nK,σ ·
(
xK + xL

2
− xσ

)
(ϕ(xK)− ϕ(xL))

× αK|L τK|L
(
nK,σ −

(xL − xK)

dK,L

)
(uL − uK).

Starting with the analysis of term TD3 , by Cauchy-Schwartz inequal-
ity one gets

(
TD3
)2 ≤ ∑

K|L∈Fint

τK|L α
2
K|L

∣∣∣∣xK + xL
2

− xσ

∣∣∣∣2

× (ϕ(xK)− ϕ(xL))2

∣∣∣∣nK,σ − (xL − xK)

dK,L

∣∣∣∣2
×

∑
K|L∈Fint

τK|L(uL − uK)2,

in which, due to triangle inequality∣∣∣∣xK + xL
2

− xσ

∣∣∣∣ ≤ 1

2
|xL − xσ|+

1

2
|xK − xσ| ≤ hD,

while due to mesh regularity∣∣∣∣nK,σ − (xL − xK)

dK,L

∣∣∣∣
=

∣∣∣∣nK,σ − iK,L
nK,σ · iK,L

∣∣∣∣ ≤ 1 +

∣∣∣∣ iK,L
nK,σ · iK,L

∣∣∣∣ ≤ 1 +
1

θ
,

from which, after introducing Cα ≥ α2
K|L, it follows that

(
TD3
)2 ≤ CσC2

(
1 +

1

θ

)2

h2
D |Ω| ‖u‖2D

with C2 only depending on d, Ω and ϕ. Thus one concludes that
limhD→0 T

D
3 = 0. Successively, consider the term TD2 that can be
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rewritten as the sum of two terms

TD2 =
∑

K|L∈Fint

αK|L |σ|
ϕ(xK) + ϕ(xL)

2

×
(
nK,σ −

iK,L
nK,σ · iK,L

)
(uL − uK)

=
∑

K|L∈Fint

αK|L |σ|nK,σ
ϕ(xK) + ϕ(xL)

2
(uL − uK)

−
∑

K|L∈Fint

αK|L |σ|
iK,L

nK,σ · iK,L
ϕ(xK) + ϕ(xL)

2
(uL − uK)

= TD2,1 + TD2,2.

Compare term TD2,1 with the term

TD4 = −
∫

Ω
α(x)u(x)∇ϕ(x) dx

= −
∑
K∈M

∑
σ∈FK,int

αK|L uK

∫
K|L

ϕ(x)nK,σ dγ(x)

=
∑

K|L∈Fint

αK|L(uL − uK)

∫
K|L

ϕ(x)nK,σ dγ(x),

which is such that

lim
hD→0

TD4 = −
∫

Ω
α(x)u(x)∇ϕ(x) dx =

∫
Ω
α(x)ϕ(x)∇u(x) dx.

Due to the fact that midpoint face interpolation is first order accu-
rate ∣∣∣∣∣ 1

|σ|

∫
K|L

ϕ(x) dγ(x)− ϕ(xK) + ϕ(xL)

2

∣∣∣∣∣ ≤ hD‖∇ϕ‖L∞(Ω),

one has that(
TD4 − TD2,1

)2
≤

∑
K|L∈Fint

(αK|L |σ|nK,σ)2(uL − uK)2

×
∑

K|L∈Fint

∣∣∣∣∣ 1

|σ|

∫
K|L

ϕ(x) dγ(x)− ϕ(xK) + ϕ(xL)

2

∣∣∣∣∣
2

≤
∑

K|L∈Fint

(αK|L |σ|nK,σ)2(uL − uK)2
∑

K|L∈Fint

hD‖∇ϕ‖L∞(Ω),
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from which it follows that limhD→0

(
TD4 − TD2,1

)2
= 0. Thus, TD2,1 =

TD1 − TD2,2 converges to TD4 and, due to density of C∞c (Ω) in L2(Ω),

∇D,αu weakly converges to α∇u as hD → 0. Thus, the term TD2,2
can be compared to

TD5 = −
∫

Ω

(
Γ∦
α(x)− α(x)I

)
u(x)∇ϕ(x) dx

= −
∑
K∈M

∑
σ∈FK,∫

αK|L
iK,Li

ᵀ
K,L(

iᵀK,LnK,σ

)2uK

∫
K|L

ϕ(x)nK,σ dγ(x)

which is such that

lim
hD→0

TD5 =

∫
Ω

Γ‖α(x)u(x)∇ϕ(x) dx = −
∫

Ω
Γ‖α(x)ϕ(x)∇u(x) dx.

By a similar procedure, the term TD2,2 converges to term TD5 and so

∇D,α,‖u weakly converges to Γ
‖
α∇u as hD → 0.

The diffusion weighted discrete gradient provides indeed a con-
sistent gradient scheme.

Lemma 5.4 (Consistency of ∇D,α). Let Ω be a bounded open con-
nected polyhedral subset of Rd, d ∈ N?. Let D be an admissi-
ble finite volume discretization in sense of Definition (2.1) and let
0 < θ ≤ θ̃D. Let u ∈ C2(Ω) be such that u = 0 on ∂Ω. Then there
exists C3, depending only on Ω, θ, u and α such that

‖∇D,αPDu− α∇u‖L2(Ω)d ≤ C3hD (59)

Proof. From Definition 5.2 for any K ∈M one has

|K|(∇D,αPDu)K =
∑
L∈NK

αK|L τK|L dL,σnK,σ(u(xL)− u(xK))

−
∑
K∈M

∑
σ∈FK,ext

αK,σ |σ|nK,σu(xK)

Let (α∇u)K be the mean value of α∇u over K

(α∇u)K =
1

|K|

∫
K
α(x)∇u(x) dx.

Due to the regularity of u and the homogeneous Dirichlet boundary
conditions, the flux consistency error estimates include a constant
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C4, only depending on L∞ norm of second derivatives of u (and of
α), such that for all σ = K|L ∈ Fint, one has

|eσ| ≤ C4hD with eσ = (α∇u)K · nK,σ − αK|L
u(xL)− u(xK)

dK,L

while for all σ ∈ Fext one has

|eσ| ≤ C4hD with eσ = (α∇u)K · nK,σ − αK,σ
−u(xK)

dK,σ

These flux consistency errors allow to recast (∇D,αPDu)K as

|K|(∇D,αPDu)K =
∑
L∈NK

|σ|dL,σnK,σ(α∇u)K · nK,σ

−
∑

σ∈FK,ext

|σ|dK,σnK,σ(α∇u)K · nK,σ +RK

where the consistency residual term is defined as

RK = −
∑
L∈NK

|σ|dL,σnK,σeσ −
∑

σ∈FK,ext

|σ|dK,σnK,σeσ.

From the geometrical identity valid for any vector x0,v ∈ Rd and
for all K ∈M

1

|K|
∑
σ∈FK

|σ|(xσ − x0)nK,σ · v = v, (60)

which is a direct consequence of Eq.(16), it follows that

|K|(∇D,αPDu)K ≤
1

θ
|K|(α∇u)K +RK .

Due to flux consistency error estimates, it also follows that

|RK | ≤
∑
L∈NK

|σ|dL,σ|eσ|+
∑

σ∈FK,ext

|σ|dK,σ|eσ|

≤ C4

θ
hD

∑
σ∈FK

|σ|dK,σ = C4
d

θ
|K|hD.

(61)

As a consequence, one obtains that∑
K∈M

|K| |(∇D,αPDu)K − (α∇u)K |2

≤
∑
K∈M

C2
4

(
d

θ

)2

h2
D|K| =

(
C4
d

θ

)2

h2
D|Ω|.

(62)
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Using u ∈ C2(Ω) and α regularity, there exists C5, only dependent
on L∞ norm of the second derivatives of u, such that∑

K∈M

∫
K
|α∇u− (α∇u)K |2 ≤ C5h

2
D. (63)

From Eqs.(84) and (85), one gets the existence of Cc, only dependent
on Ω, θ, u and α, such that (59) holds.

In order to complete the convergence analysis, an upper bound
in ‖ · ‖D and the properties of weak consistency and convergence
must also be proved for the Gauss gradient scheme appearing in the
discrete bilinear form defined in Eq.(42). Remember that, as also
argued in [24], even though consistent, the Gauss gradient scheme
does not allow to obtain coercivity and hence uniqueness. Neverthe-
less, in practical implementations also the Gauss gradient scheme
suffices in obtaining stable coercive diffusion operators, as widely
verified in the numerical tests reported in Section 6. This is both
a consequence of the limited non-orthogonality encountered in un-
structured meshes used herein, and so a limited importance of the
non-orthogonal correction term in the Gauss corrected scheme, and
also a result of the action of [u, v]D,α term, that provides a consistent
stabilization term to the bilinear form 〈u, v〉D,α,∦.

It is now possible to prove convergence of the weak formulation
associated to the Gauss corrected scheme, provided an assumption of
the limited contribution from the mesh non-orthogonality correction
term. In particular, one requires the condition of small gradient
distortion ∑

K∈M
|K|∇Du · ∇D,1u ≥

∑
K∈M

|K|∇Du · ∇D,1,‖u (64)

which states that the diffusivity weighted discrete gradient with
unit diffusivity ∇D,1u has a preferential alignment with the Gauss

(stabilized) gradient ∇Du with respect to the Γ
‖
α-weighted gradient

∇D,1,‖u with unit diffusivity α = 1. Notice that this sufficient condi-
tion for convergence is already known to finite volume practitioners,
which usually require limited mesh non-orthogonality to have stable
discretizations. In the present analysis, the role of condition (64) is
made clear in proving the discrete H1(Ω) estimate.

Lemma 5.5 (Discrete H1(Ω) estimate). Under assumption (64)
and the hypotheses of the heterogeneous diffusion problem (1), let D
be an admissible finite volume discretization in sense of Definition
(2.1) and let 0 < θ ≤ θ̃D. Assume that 0 < α0 ≤ α(x) for a.e.
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x ∈ Ω and also assume that u ∈ HD is a solution of the discrete
weak problem (43). Then the following estimate holds

α0‖u‖D ≤ diam(Ω)‖f‖L2(Ω). (65)

Proof. Consider the discrete weak formulation (43) and set v = u,
to obtain

[u, u]D,α,‖ + 〈∇u,∇u〉D.α,∦ =

∫
Ω
u(x)f(x) dx.

After assumption (64) it follows that∑
K∈M

|K|∇Du · ∇D,1,∦u ≥ 0

which allows to conclude that

〈∇u,∇u〉D.α,∦ =
∑
K∈M

∇Ku · (Γ∦
α∇u)K ≥

∑
K∈M

α0∇Ku ·∇D,1,∦u ≥ 0,

from which one obtains

[u, u]D,α,‖ + 〈∇u,∇u〉D.α,∦ ≥ [u, u]D,α,‖ ≥ α0‖u‖2D. (66)

From the Cauchy-Schwartz inequality and from the discrete Poincaré
inequality (50) one also obtains∫

Ω
u(x)f(x) dx ≤ ‖u‖L2(Ω)‖f‖L2(Ω)

≤ diam(Ω)‖u‖D‖f‖L2(Ω).

(67)

Combining together Eqs.(66) and (67) allows to recover the discrete
estimate (65).

Corollary 5.6 (Existence and uniqueness of a discrete solution).
Assume (64) and the hypotheses of problem (1). Let D be an admis-
sible finite volume discretization in sense of Definition (2.1) and let
0 < θ ≤ θ̃D. Then, there exists a unique solution to problem (43).

Proof. Assume f = 0 in the finite dimensional system (43). From
the discrete Poincaré inequality (50) one gets u = 0, thus proving
that the linear problem (43) is uniquely solvable.

Finally, it is possible to state the convergence of the finite vol-
ume Gauss corrected scheme to the solution of the associated weak
problem (43).
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Theorem 5.7 (Convergence of Gauss corrected scheme). Assuming
the sufficient condition (64) and the hypotheses of the heterogeneous
diffusion problem (1), let D be an admissible finite volume discreti-
zation in sense of Definition (2.1) with 0 < θ ≤ θ̃D. Assume that
0 < α0 ≤ α(x) for a.e. x ∈ Ω and also assume that u ∈ HD is
a solution to the discrete weak problem (43). Then u converges in
L2(Ω) to u, that is the weak solution to problem (1) in the sense of
(26), as hD → 0.

Proof. The convergence proof uses the compactness technique pre-
sented in [26]. Consider a subsequence of admissible discretizations
(Dn)n∈N such that hD → 0 as n → ∞ while θDn ≥ θ for all n ∈ N.
Using Lemma 5.5 one can apply Lemma 5.1, which is a discrete
counterpart of the Rellich theorem and gives the existence of a sub-
sequence, for simplicity denoted again with (Dn)n∈N, and of some
u ∈ H1

0 (Ω) such that the solution uDn to problem (43) tends to u
in L2(Ω) as n → ∞. Let ϕ ∈ C∞c (Ω) and select v = PDϕ as test
function in problem (43), from which one has

[u, PDnϕ]Dn,α,‖ + 〈∇u,∇PDnϕ〉Dn.α,∦ =

∫
Ω
f(x)PDnϕ dx. (68)

Let then n→∞ in Eq.(68). Thanks to Lemma 5.3 and Lemma
5.4, but also to their counterparts for the ∇Du in Appendix 8, con-
sidering the decomposition

〈∇u,∇u〉D,α,∦ = 〈∇u,∇u〉D,α − 〈∇u,∇u〉D,α,‖,

one obtains the convergence of the diffusivity weighted gradient por-
tion 〈∇u,∇u〉D,α contained within 〈∇u,∇u〉D.α,∦ term

lim
n→∞

∫
Ω
∇Dnu · (Γα∇PDnϕ) dx =

∫
Ω
∇u · (Γα)∇ϕ dx.

From Lemma 5.1 and Lemma 5.3 one also obtains that the sum of
the remaining terms in problem (43) is such that

lim
n→∞

∫
Ω

(
[u, PDnϕ]Dn,α,‖ −∇Dnu · (Γ

‖
α∇PDnϕ) dx

)
= 0.

Due to the fact that

lim
n→∞

∫
Ω
f(x)PDnϕ(x) dx =

∫
Ω
f(x)ϕ(x) dx,

one gets that any limit u of a subsequence of solutions satisfies
the weak problem (26) with v = ϕ. Uniqueness of the solution to
(26) together with a classical density argument allow to deduce the
convergence of the whole sequence u to the weak problem solution
u in L2(Ω) as hD → 0, since θ ≤ θ̃D.
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(a) (b) (c) (d)

Figure 2: Different mesh types used in the numerical test: (a) orthog-
onal hexahedral, (b) skewed hexahedral, (c) triangular prismatic, (d)
polygonal prismatic.

6 Numerical results

The Gauss corrected finite volume diffusion scheme in Eq.(12) was
tested on a number of different mesh types commonly adopted in
industrial applications. These include meshes composed of regular
orthogonal hexahedra, skewed hexahedra, triangular prismatic and
polygonal prismatic cells. All these meshes were constructed by
means of a commercial finite volume mesh generator [6], which usu-
ally produces meshes of acceptable non-orthogonality, as commonly
required in practical applications. In particular, the polygonal pris-
matic mesh was obtained after geometric dualization of the triangu-
lar prismatic one. Notice also that finer meshes are not produced by
conformal refinement techniques, but generated ex novo. It should
be remarked again that the Gauss corrected scheme reduces to the
two-point flux approximation on orthogonal meshes.

The different mesh types are summarized in Table 1, where rele-
vant quantities are reported. These include the parameters normally
observed as quality indices after the mesh generation process, which
are:

• Non-orthogonality, measured by the angle between the line seg-
ment (xL−xK), joining cell centroids adjacent to face σ ∈ FK ,
and the face normal nK,σ, that is

θσ = arccos

(
(xL − xK) · nK,σ
|xL − xK |

)
,

∀σ ∈ FK,int, ∀K ∈M. (69)

A value close to 0 is optimal , since it reduces the amount of
non-orthogonal correction with respect to the two-point flux
approximation, see, e.g., Eq.(12). Here, both the mean non-
orthogonality angle 〈θσ〉 = 1

#Fint
∑

σ∈Fint θσ and the maxi-
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Mesh 〈d〉Ω 〈θσ〉 θmax ARmax Smax

hex 1.0000× 10−1 0 0 1 0
5.0000× 10−2 0 0 1 0
2.5000× 10−2 0 0 1 0
1.2500× 10−2 0 0 1 0

hexSkew 1.0033× 10−1 9.017 15.138 2.085 0.145
5.0265× 10−2 8.982 15.392 2.352 0.162
2.5160× 10−2 8.953 15.531 2.520 0.175
1.2587× 10−2 8.935 15.588 2.615 0.181

triPrism 7.4413× 10−2 3.396 11.059 2.963 0.221
3.7505× 10−2 2.862 10.651 2.969 0.218
1.8748× 10−2 2.780 10.652 3.146 0.241
9.3825× 10−3 2.574 11.008 3.176 0.239

polyPrism 9.7486× 10−2 5.246 14.912 2.790 0.741
4.9855× 10−2 3.945 14.587 2.778 0.739
2.5063× 10−2 3.416 15.082 2.777 0.739
1.2582× 10−2 3.022 14.802 2.777 0.739

Table 1: Main geometric parameters for the different mesh types used
in the accuracy test.

mum non-orthogonality angle θmax = maxσ∈Fint θσ are consid-
ered.

• Aspect ratio, defined for each cell K ∈M as

ARK = max

{
ARBB(K),

∑d
i=1 |σi|

6|K|2/3

}
, ∀K ∈M, (70)

where ARK is the bounding box aspect ratio

ARBB(K) =
maxσi∈FBB(K)

{|σi|}
minσi∈FBB(K)

{|σi|}
, ∀K ∈M, (71)

defined in terms of the cell bounding box BB(K) which en-
closes the cell K with a set of faces σi (i = 1, . . . , d) having nor-
mals oriented along the axes of the Cartesian reference frame
used for the mesh definition. A value close to 1 indicates that
the cell is isotropic. Mesh statistics generally consider the max-
imum value of the cell aspect ratio ARmax = maxK∈MARK .

• Skewness, defined as the distance between the intersection
point yσ = [xL,xK ] ∩ σ between the line segment (xL − xK)
connecting adjacent cell centroids and separating face σ ∈ Fint
and the face centroid xσ, that is

Sσ =
|(xσ − yσ)|

fσ
, ∀σ ∈ F , (72)

32



10−3 10−2 10−1 100

〈d〉Ω

10−5

10−4

10−3

10−2

10−1

ε 2

O(h2)

hex

hexSkew

triPrism

polyPrism

(a)

10−3 10−2 10−1 100

〈d〉Ω

10−5

10−4

10−3

10−2

10−1

ε ∞

O(h2)

hex

hexSkew

triPrism

polyPrism

(b)

Figure 3: Relative error curves for different mesh types: (a) L2 relative
error ε2 = ‖e‖2/‖u‖2, (b) L∞ relative error ε2 = ‖e‖∞/‖u‖∞.

where the normalization factor fσ is

fσ = max {0.2 |(xL − xK)|,

max
i∈Vσ

∣∣∣∣(xi − xσ) · (xσ − yσ)

|(xσ − yσ)|

∣∣∣∣} , ∀σ ∈ Fint

(73a)

fσ = max {0.4 |(yσ − xK)|,

max
i∈Vσ

∣∣∣∣(xi − xσ) · (xσ − yσ)

|(xσ − yσ)|

∣∣∣∣} , ∀σ ∈ Fext.

(73b)

The optimal value for Sσ is 0, indicating that yσ = xσ, for
which linear interpolation between adjacent cell values achieves
second order consistency in face integral quantities. Mesh
statistics generally take into account the maximum value of
skewness Smax = maxσ∈F Sσ.

The mesh resolution is measured by the mean magnitude of the cell
to cell distance, that is 〈d〉Ω = 〈|(xK − xL)|〉K|L∈Fint .

Numerical experiments were carried out on Ω = (0, 1)× (0, 1)×
(0, 1) assuming α(x) = 1 and considering the exact solution of prob-
lem (1) given by u(x1, x2, x3) = x1(1 − x1)x2(1 − x2)x3(1 − x3).
On each mesh, the error is measured as e(xK) = uK − u(xK) for
K ∈M and it allows to estimate empirically the rate of convergence
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Mesh 〈d〉Ω ‖e‖2 ‖e‖∞ p2 p∞

hex 1.0000× 10−1 9.2721× 10−5 1.3410× 10−4 1.984 1.882
5.0000× 10−2 2.3439× 10−5 3.6372× 10−5 1.996 1.946
2.5000× 10−2 5.8771× 10−6 9.4379× 10−6 1.999 1.975
1.2500× 10−2 1.4704× 10−6 2.4011× 10−6 − −

hexSkew 1.0033× 10−1 8.7858× 10−5 1.5863× 10−4 1.988 1.809
5.0265× 10−2 2.2232× 10−5 4.5431× 10−5 2.001 1.914
2.5160× 10−2 5.5665× 10−6 1.2077× 10−5 2.004 1.957
1.2587× 10−2 1.3890× 10−6 3.1135× 10−6 − −

triPrism 7.4413× 10−2 5.7868× 10−5 1.3136× 10−4 2.036 1.886
3.7505× 10−2 1.4340× 10−5 3.6076× 10−5 2.040 1.946
1.8748× 10−2 3.4852× 10−6 9.3566× 10−6 2.025 1.835
9.3825× 10−3 8.5803× 10−7 2.6272× 10−6 − −

polyPrism 9.7486× 10−2 8.8853× 10−5 1.8380× 10−4 2.096 2.011
4.9855× 10−2 2.1796× 10−5 4.7717× 10−5 2.118 1.941
2.5063× 10−2 5.0781× 10−6 1.2557× 10−5 2.330 2.292
1.2582× 10−2 1.0198× 10−6 2.5873× 10−6 − −

Table 2: Error behaviour in the numerical convergence test.

between two successive mesh sizes. The Gauss corrected scheme is
implemented with the deferred correction approach, with the non-
orthogonal correction term implemented explicitly and thus requir-
ing outer iterations which are terminated with a tolerance level of
1.0 × 10−4. The associated linear system is solved by a precondi-
tioned conjugate gradient method with tolerance 1.0 × 10−16 and
DIC preconditioning.

The error norms ‖e‖2 and ‖e‖∞ together with the correspond-
ing empirical orders of convergence p2 and p∞ are reported in Ta-
ble 2, while the relative errors norms ε2 = ‖e‖2/‖u‖2 and ε2 =
‖e‖∞/‖u‖∞ are shown in Figure 3. From both quantities, it is ev-
ident that second order accuracy is empirically verified for hexahe-
dral, skewed hexahedral, triangular prismatic and polyhedral pris-
matic mesh types. It is remarkable that the accuracy of the Gauss
corrected scheme appears insensitive to the cell shape, with only
minimal differences in the infinity norm.

7 Beyond the Gauss gradient scheme

The Gauss discrete gradient operator ∇D that was introduced
in Eq.(13) is bounded, weakly convergent and consistent, but gener-
ally it is not coercive. Thus, on strongly non-orthogonal meshes, the
correction term in the Gauss corrected approach may not be coer-
cive and consequently hamper the convergence of the finite volume
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(a) (b)

Figure 4: Strongly non-orthogonal mesh types used in the numerical
test: (a) tetrahedral and (b) polyhedral meshes.

scheme.
To verify this point empirically, the same diffusion problem stud-

ied empirically in section 6 is now solved on a sequence of highly
non-orthogonal tetrahedral and polyhedral meshes, see Figure 4,
whose geometric parameters are summarized in Table 3. It is im-
portant to notice that the maximum non-orthogonality angle is such
thats θmax > π/4 almost for every mesh, with the only exception
of the two coarsest polyhedral meshes. This implies that the non-
orthogonal correction term is the dominant term in the numerical
flux.

The Gauss corrected scheme can still be applied, provided that a
coercive gradient scheme is adopted for the non-orthogonal correc-
tion term. To this end, we assess here the performance a gradient
approximation based on a least square fit, based on the fact that
in linear upwind schemes it is known empirically to provide a co-
ercive gradient discretization in the case of highly non-orthogonal
tetrahedral meshes. Notice that, on orthogonal meshes it reduces
to the Gauss scheme, hence becoming non-coercive. But this is of
no concern as long as it is adopted only for the construction of the
non-orthogonal correction term in the Gauss corrected fluxes.

Following [8], on a non-orthogonal mesh like that of Defini-
tion 2.1, we define the discrete gradient operator ∇LSD : HD(Ω) →
HD(Ω)d as the piecewise constant function

∇LSK u =
∑

σ∈FK,int

(uL − uK)vK,σ +
∑

σ∈FK,ext

(uσ − uK)vK,σ (74)

for u ∈ HD(Ω), where the least squares vectors

vK,σ = wK,σW
−1
K (xL − xK) , ∀σ∈FK,int (75a)

vK,σ = wK,σW
−1
K (xσ − xK) , ∀σ∈FK,ext (75b)
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Mesh 〈d〉Ω 〈θσ〉 θmax ARmax Smax

tet 4.2582× 10−2 19.058 59.778 5.614 0.569
2.1113× 10−2 19.307 63.201 7.166 0.743
1.1023× 10−2 19.597 65.714 8.468 0.926
5.5488× 10−3 19.741 66.510 8.370 0.901

poly 1.0481× 10−1 11.688 38.598 4.592 1.062
5.3575× 10−2 11.801 40.406 3.188 1.134
2.8269× 10−2 11.925 47.784 4.048 1.234
1.4341× 10−2 11.944 50.781 4.188 1.439

Table 3: Main geometric parameters for the highly non-orthogonal
mesh types used in the accuracy test.

are defined from the weighting tensor

WK =
∑

σ∈FK,int

wK,σ (xL − xK) (xL − xK)ᵀ

+
∑

σ∈FK,ext

wK,σ (xσ − xK) (xσ − xK)ᵀ , ∀K∈M
(76)

as well as from the face weights wK,σ, ∀σ ∈ FK and ∀K ∈ M.
Different expressions for the face weights can be adopted. Here, we
use the formulae

wK,σ =
dK,σ
dK,L

|σ|
| (xL − xK) |2

, ∀σ∈FK,int (77a)

wK,σ =
|σ|

| (xL − xK) |2
, ∀σ∈FK,ext. (77b)

The least squaress gradient scheme is empirically constructed from
the approximate Taylor expansion at adjacent cell centroids and face
centroids

u(xL) ≈ uK +∇LSK u · (xL − xK) , ∀σ∈FK,int, (78a)

u(xσ) ≈ uK +∇LSK u · (xσ − xK) , ∀σ∈FK,ext, (78b)

requiring the minimization of the piecewise constant mean-square-
error objective function

GK =
∑

σ∈FK,int

wK,σ
(
uL − uK −∇LSK u · (xL − xK)

)2
+

∑
σ∈FK,ext

wK,σ
(
uσ − uK −∇LSK u · (xσ − xK)

)2
.
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Figure 5: Relative error curves for non-orthgonal mesh types: (a) L2

relative error ε2 = ‖e‖2/‖u‖2, (b) L∞ relative error ε2 = ‖e‖∞/‖u‖∞.
The Gauss (G) gradient scheme is assessed against the leastSquares
(LS) scheme.

Mesh Grad 〈d〉Ω ‖e‖2 ‖e‖∞ p2 p∞

tet G 4.2582× 10−2 2.6231× 10−4 7.9063× 10−4 −0.234 −0.104
G 2.1113× 10−2 3.0907× 10−4 8.5032× 10−4 −0.062 0.007
G 1.1023× 10−2 3.2172× 10−4 8.4668× 10−4 −0.039 −0.022
G 5.5488× 10−3 3.3056× 10−4 8.5973× 10−4 − −

tet LS 4.2582× 10−2 3.5338× 10−5 1.1860× 10−4 1.978 1.518
LS 2.1113× 10−2 8.8216× 10−6 4.0872× 10−5 1.917 1.782
LS 1.1023× 10−2 2.5376× 10−6 1.2836× 10−5 2.064 1.955
LS 5.5488× 10−3 6.1543× 10−7 3.3552× 10−6 − −

poly G 1.0481× 10−1 1.0196× 10−4 2.6907× 10−4 3.094 2.685
G 5.3575× 10−2 1.2782× 10−5 4.4394× 10−5 −0.388 −0.366
G 2.8269× 10−2 1.6381× 10−5 5.6089× 10−5 −0.411 −0.061
G 1.4341× 10−2 2.1646× 10−5 5.8460× 10−5 − −

poly LS 1.0481× 10−1 1.2148× 10−4 3.2076× 10−4 2.009 2.061
LS 5.3575× 10−2 3.1556× 10−5 8.0425× 10−5 1.957 1.830
LS 2.8269× 10−2 9.0307× 10−6 2.4964× 10−5 1.983 1.886
LS 1.4341× 10−2 2.3513× 10−6 6.9417× 10−6 − −

Table 4: Error behaviour for Gauss (G) and leastSquares (LS) gradient
schemes in the numerical convergence test on highly non-orthogonal
meshes.

The results of the comparison between the Gauss and least squares
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gradient schemes in the construction of the non-orthogonal term in-
side the Gauss corrected diffusion scheme are reported in Figure 5
and Table 4. On the strongly non-orthogonal tetrahedral meshes,
the Gauss gradient does not allow to obtain a coercive numerical
flux and leads to stagnation. The same discrete gradient scheme
converges only on the first two coarser polyhedral meshes, while it
diverges again on the two finest polyhedral meshes. On the con-
trary, when the non-orthogonal correction term of the Guss cor-
rected scheme is constructed from the least squares gradient scheme,
a convergent second order behaviour is recovered on all the highly
non-orthogonal meshes considered here. Even though in the present
investigation no analytical results have been obtained for this dis-
crete gradient scheme, it appears to be able to overcome the main
limitation of the Gauss discrete gradient on strongly non-orthogonal
meshes.

8 Conclusions

In this work, we have proven the convergence of the Gauss corrected
scheme on unstructured meshes satisfying a global and rather weak
mesh regularity condition. This goal has been achieved adapting the
approach used in [22] for the convergence analysis of a cell-centered
finite volume scheme for anisotropic diffusion problems on orthog-
onal meshes. We have also shown empirically that a least square
approach to the gradient computation can provide second order con-
vergence even when the mild mesh regularity condition is violated.
To the best of the authors’ knowledge, the convergence properties
of the finite volume method analyzed here have never been studied
rigorously in the case of non-orthogonal meshes. Indeed, conver-
gence analyses of finite volume schemes for diffusion operators on
unstructured mesh types are usually limited to polyhedral meshes
satisfying an orthogonality condition [21], [22]. This is quite restric-
tive in practice, since none of the robust mesh generators usually
adopted for pre-processing of industrial configurations are able to
guarantee this condition.

From our development, it can be seen how the analysis of finite
volume schemes is greatly simplified if it is approached from the as-
sociated discrete weak formulation using the functional tools defined
in [26]. In particular, from this approach several interesting con-
clusions can be drawn, without recourse to the classical consistency
analysis in terms of Taylor series expansion. In the case of industrial
finite volume schemes, such as the one analyzed here, these conclu-
sions are particularly interesting, because they shed some light over
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the properties of techniques for which typically only empirical results
are available. The role of the discrete gradient scheme is fundamen-
tal in many terms of the associated weak form, and its relevance is
also reflected in the finite volume formulation, even though it may
not be completely apparent when starting directly from the flux bal-
ance equations. By working with the weak form, conclusions about
the coercivity of the finite volume scheme can be drawn, which are
often considered inaccessible in the finite volume framework. Rel-
evant discrete functional analysis results can be applied directly,
in order to establish conditions for convergence and eventually to
obtain error estimates under sufficient regularity assumptions. In
particular, this approach allows to identify the mesh regularity re-
quirements and the sufficient conditions for convergence, as well as
to suggest possible future improvements.

The basic idea of correcting the two-point flux approximation
with an additional term accounting for the local mesh non - ortho-
gonality can also be found in many other finite volume schemes [13],
[35], [36], [37], [38], [39], [41], and thus similar analysis techniques
could also be applied to investigate sufficient conditions for conver-
gence of other diffusion schemes. Connections with the asymmetric
gradient schemes recently proposed in [17] also suggest a possible
alternative to the present analysis. Finally, the diffusion operator
analyzed in this work was used in [14] as the basis for the construc-
tion of accurate and efficient stabilized pressure correction methods
for colocated finite volume schemes. The properties and advantages
of these methods will be discussed in a series of forthcoming com-
panion papers.
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Appendix: Properties of the Gauss gra-

dient scheme

The Gauss gradient operator∇D introduced in Eq.(13) is bounded,
weakly convergent and consistent. In order to prove these proper-
ties, it is sufficient to rewrite it in the form

∇Ku =
1

|K|
∑
σ∈FK

|σ|
dK,σ
dK,L

(uL − uK)nK,σ (79)

which allows to prove that is is bounded in the L2(Ω)d-norm.

Lemma 8.1 (Bound on ∇Du). Let Ω be a bounded open connected
polyhedral subset of Rd, d ∈ N?. Let D be an admissible finite volume
discretization in sense of Definition 2.1 and let 0 < θ ≤ θ̃D. Then,
the exists C depending only on d, α and θ such that, for all u ∈ HD,
one has

‖∇Du‖L2(Ω)d ≤ C ‖u‖D. (80)

Proof. Let u ∈ HD. As in Lemma 5.2, one introduces, for all
K ∈M, L ∈ NK and σ = K|L, the difference quantities δK,σx and
δK,σu, from which the inner product norm in (49) leads for a given
K ∈M to

‖u‖2D =
∑
K∈M

1

2

∑
L∈NK

τK|L(δK,Lu)2 +
∑
K∈M

∑
σ∈FK,ext

τK,σ(δK,σu)2.

Then, from Eq.(79) one obtains that

|K|(∇u)K =
∑
σ∈FK

τσ dK,σδK,σu.

By using the Cauchy-Schwartz inequality, one obtains that

|K|2 |(∇u)K |2 ≤
∑
σ∈FK

τσ |dK,σnK,σ|2
∑
σ∈FK

τσ (δK,σu)2

≤
∑
σ∈FK

d |DK,σ| τσ
∑
σ∈FK

τσ (δK,σu)2

= d |K|
∑
σ∈FK

τσ (δK,σu)2 .
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Summing over all K ∈M, one obtains that∑
K∈M

|K| |∇Ku|2 ≤ d
∑
K∈M

∑
σ∈FK

τσ (δK,σu)2

≤ d
∑
K∈M

 ∑
σ∈FK,int

τσ (δK,σu)2 + 2
∑

σ∈FK.ext

τσ (δK,σu)2


= 2 d‖u‖2D

from which (58) follows with C =
√

2d.

First, the weak convergence of ∇D,αu will be studied, while suc-
cessively a similar result will be obtained for ∇D,α,‖u.

Lemma 8.2 (Weak convergence of ∇,αu). Let Ω be a bounded open
connected polyhedral subset of Rd, d ∈ N?. Let D be an admissible
finite volume discretization in sense of Definition (2.1) and let 0 <
θ ≤ θ̃D. Assume that there exists u ∈ HD and a function u ∈ H1

0 (Ω)
such that u tends to u in L2(Ω) as hD → 0, while ‖u‖D remains
bounded. Then ∇Du weakly converges to α∇u in L2(Ω)d as hD → 0.

Proof. Let ϕ ∈ C∞c (Ω). Assume that hD is small enough that, for
all K ∈ M and x ∈ K, if ϕ(x) 6= 0 then FK,ext = ∅. Consider the
term TD1 defined as

TD1 =

∫
Ω
PDϕ(x)∇Du(x) dx =

∑
K∈ M

|K|ϕ(xK)∇Ku

=
∑

K|L∈Fint

(ϕ(xK) dK,σ + ϕ(xL) dL,σ)αK|L τK|LnK,σ(uL − uK).

The first term between brackets can be rewritten as

ϕ(xK) dK,σ + ϕ(xL) dL,σ

= ϕ(xK)(xσ − xK) · nK,σ + ϕ(xL)(xL − xσ) · nK,σ

=

(
ϕ(xK) + ϕ(xL)

2
(xL − xK)

+ (ϕ(xK)− ϕ(xL))

(
xσ −

xK + xL
2

))
· nK,σ.

The term TD1 can be decomposed into a sum of two terms TD1 =
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TD2 + TD3 , where

TD2 =
∑

K|L∈Fint

τK|L (uL − uK)nK,σ dK,L
ϕ(xK) + ϕ(xL)

2
,

TD3 =
∑

K|L∈Fint

τK|L (uL − uK)nK,σ

(
xσ −

xK + xL
2

)
· nK,σ.

Starting with the analysis of term TD3 , by Cauchy-Schwartz and
then triangle inequalities one gets(
TD3
)2 ≤ ∑

K|L∈Fint

τK|L(uL − uK)2

×
∑

K|L∈Fint

τK|L (ϕ(xK)− ϕ(xL))2 ×
∣∣∣∣(xσ − xK + xL

2

)
· nK,σ

∣∣∣∣2
in which, due to triangle inequality∣∣∣∣(xσ − xK + xL

2

)
· nK,σ

∣∣∣∣ ≤ 1

2
|xσ − xK |+

1

2
|xσ − xL| ≤ hD,

while due to mesh regularity∣∣∣∣nK,σ − (xL − xK)

dK,L

∣∣∣∣
=

∣∣∣∣nK,σ − iK,L
nK,σ · iK,L

∣∣∣∣ ≤ 1 +

∣∣∣∣ iK,L
nK,σ · iK,L

∣∣∣∣ ≤ 1 +
1

θ
,

from which it follows that(
TD3
)2 ≤ C hD |Ω| ‖u‖2D

with C only depending on d, Ω and ϕ. Thus one concludes that
limhD→0 T

D
3 = 0. Successively, compare TD2 with the term

TD4 = −
∫

Ω
u(x)∇ϕ(x) dx

=
∑

K|L∈Fint

(uL − uK)

∫
K|L

ϕ(x)nK,σ dγ(x),

which is such that

lim
hD→0

TD4 = −
∫

Ω
u(x)∇ϕ(x) dx =

∫
Ω
ϕ(x)∇u(x) dx.
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Due to the fact that midpoint face interpolation is first order accu-
rate ∣∣∣∣∣ 1

|σ|

∫
K|L

ϕ(x) dγ(x)− ϕ(xK) + ϕ(xL)

2

∣∣∣∣∣ ≤ hD‖∇ϕ‖L∞(Ω),

one has that(
TD4 − TD2

)2
≤

∑
K|L∈Fint

( |σ|nK,σ)2(uL − uK)2

×
∑

K|L∈Fint

∣∣∣∣∣ 1

|σ|

∫
K|L

ϕ(x) dγ(x)− ϕ(xK) + ϕ(xL)

2

∣∣∣∣∣
2

≤
∑

K|L∈Fint

|σ|2(uL − uK)2
∑

K|L∈Fint

h2
D‖∇ϕ‖2L∞(Ω),

from which it follows that limhD→0

(
TD4 − TD2

)2
= 0. Thus, TD2

converges to TD4 and, due to density of C∞c (Ω) in L2(Ω),∇Du weakly
converges to ∇u as hD → 0. Since

lim
hD→0

TD4 =

∫
Ω
u(x)∇ϕ(x) dx = −

∫
Ω
ϕ(x)∇u(x) dx,

by density of C∞c (Ω) in L2(Ω), one obtains the weak convergence of
∇Du(x) to ∇u(x) as hD → 0.

Lemma 8.3 (Consistency of ∇D). Let Ω be a bounded open con-
nected polyhedral subset of Rd, d ∈ N?. Let D be an admissi-
ble finite volume discretization in sense of Definition (2.1) and let
0 < θ ≤ θ̃D. Let u ∈ C2(Ω) be such that u = 0 on ∂Ω. Then there
exists C, depending only on Ω, θ, u and α such that

‖∇DPDu−∇u‖L2(Ω)d ≤ C3hD (81)

Proof. From Eq.(79) for any K ∈M one has

|K|(∇DPDu)K =
∑
L∈NK

τK|L dK,σ nK,σ (u(xL)− u(xK))

−
∑
K∈M

∑
σ∈FK,ext

τK,σ dK,σ nK,σ u(xK)
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Let (∇u)K be the mean value of ∇u over K

(∇u)K =
1

|K|

∫
K
∇u(x) dx.

Due to the regularity of u and the homogeneous Dirichlet boundary
conditions, the flux consistency error estimates include a constant
C, only depending on L∞ norm of second derivatives of u (and of
α), such that for all σ = K|L ∈ Fint, one has

|eσ| ≤ ChD with eσ = (∇u)K · nK,σ −
u(xL)− u(xK)

dK,L

while for all σ ∈ Fext one has

|eσ| ≤ ChD with eσ = (∇u)K · nK,σ −
−u(xK)

dK,σ

These flux consistency errors allow to recast (∇DPDu)K as

|K|(∇DPDu)K =
∑

σ∈FK,ext

|σ|dK,σnK,σ(∇u)K · nK,σ +RK

where the consistency residual term is defined as

RK = −
∑
σ∈FK

|σ|dK,σnK,σeσ.

From the geometrical identity valid for any vector v ∈ Rd and for
all K ∈M

1

|K|
∑
σ∈FK

|σ|(xσ − x0)nK,σ · v = v, (82)

which is a direct consequence of the fact that each cell is a closed
volume, it follows that

|K|(∇DPDu)K = |K|(∇u)K +RK

Due to flux consistency error estimates, it also follows that

|RK | ≤ C hD
∑
σ∈FK

|σ| dK,σ = C hD d |K|. (83)

As a consequence, one obtains that∑
K∈M

|K| |(∇DPDu)K − (∇u)K |2

≤
∑
K∈M

|K|C2h2
Dd

2 = |Ω|C2h2
Dd

2.
(84)
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Due to the regularity u ∈ C2(Ω), there exists another C, only
dependent on L∞ norm of the second derivatives of u, such that∑

K∈M

∫
K
|∇u− (∇u)K |2 ≤ Ch2

D. (85)

From Eqs.(84) and (85), one gets the existence of Cc, only dependent
on Ω and u, such that (81) holds.
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tization on unstructured grids for inhomogeneous, anisotropic
media. Part I: Derivation of the methods. SIAM Journal of
Scientific Computing, 19(5):1700–1716, 1998.

[2] I. Aavatsmark, T. Barkve, O. Böe, and T. Mannseth. Discre-
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[25] R. Eymard, T. Gallouët, and R. Herbin. Discretization of
heterogeneous and anisotropic diffusion problems on general
nonconforming meshes SUSHI: a scheme using stabilization
and hybrid interfaces. IMA Journal of Numerical Analysis,
30(4):1009–1043, 2010.
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