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Abstract

Hierarchical Model (HiMod) reduction is a method introddce [1]
to effectively solve advection-diffusion-reaction (ADRMd fluid dynamics
problems in pipes. The rationale of the method is to regaedstiution as
a mainstream axial dynamics added by transverse componénésmain-
stream component is approximated by finite elements as dftea in classi-
cal 1D models (like the popular Euler equations for gasdyngmHowever,
the HiMod formulation includes also the transverse dynarig a spectral
expansion. A few modes are expected to capture the tramsi@mehow
secondary) dynamics with a good level of approximationsThastically re-
duces the size of the discrete problem, yet preserving acgui he method
is “hierarchical” since the selection of the number of trerse modes can
be hierarchically and adaptively performed [12]. We hawmusly consid-
ered only Dirichlet boundary conditions for the lateral \iwalf the pipe and
the procedure was tested only in 2D domains. With an apatgpselection
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of the spectral basis functions, here we extend our fornmnao 3D prob-

lems with general boundary conditions, still pursuing aseesial approach.
The modal basis functions fulfill by construction the (horangous) bound-
ary conditions associated with the solution. This is adhiely solving a
Sturm-Liouville eigenpair problem. We analyze this apgioand provide
a convergence analysis for the numerical error in the caseliokar ADR

problem in rectangles (2D) and slabs (3D). Numerical restdinfirm the

theory.

1 Introduction

Efficient numerical solution of problems characterized bsnain direction like
flow in pipes and networks has been investigated in sevengs ves withessed by
engineering and mathematical literature (see, e.g., &) 3A popular approach is
based on the reduction of the problem of interest to a onertiioeal setting along
the mainstream after dropping transversal dynamics. Ther Eguations in gas-
and haemo-dynamics are a well known example. A numericaloaph aiming
at reducing the computational cost vs a full 3D simulatiothewit discarding the
transversal dynamics has been proposed in [1, 7] and igegsdt in [6, 20, 12].
Since the axial direction is expected to drive the solutidnlevtransverse dynam-
ics is only locally important, it makes sense to split theragjmation of the two
components. Along the mainstream we consider a classicdinit® element ap-
proximation to exploit easiness and versatility of this lnoek The transversal
components are tackled by a spectral approximation. Thenedé is that the high
convergence rate of spectral approximations allow to caghe important features
of the transverse dynamics with a relatively low number ofleg This results in
accurate approximations with a low number of degrees otlfyare

The splitting of axial and transverse directions has beearsidered for com-
bining different spectral approximation methods in difier contexts. For instance,
see [13, 14, 15, 16, 17, 23], Sect. 3.4 of [10] and referertog®in. The number
of modes can be properly selected either with an a priori btihecessarily uni-
form approach[1, 7] or adaptively with either a domain $ipiif [12] or a nodewise
perspective[5]. Even though most of the theory has beenlajs»® on rectilin-
ear domains, extension to curved domains is a natural andrieng follow-up[6].
This approach was intended to improve the reliability of dimeensional models.
As opposed to purely 1D models, this approach allows in fdotal refinement
of the reliability by properly selecting the number of modes, in what has been
called a “psychologically 1D” modeling strategy. For thésmson the approach has
been calleHierarchical Model(HiMod) reduction.

One of the most significant limitations of the approach pedssp far is the con-
ditions to be prescribed on the lateral boundary of the don¥as a matter of fact,
homogeneous Dirichlet conditions were promptly includgdh®e sinusoidal ba-
sis functions adopted for this problem. Although, theseditmns describe many
practical applications, in view of generalizations of thiddd approach to more



complex problems such as fluid-structure interaction (figtance in arteries), we
need to address more general boundary conditions.

In this paper we present a method for this. The method follavetassical
approach by solving an associated Sturm-Liouville Eigee/§SLE) problem. In
this way the basis functions include the information on tbarwary conditions,
so we call this an “educated” basis function approach (S3ct.

We introduce the methodology in either 2D rectangular dosiar 3D slabs,
together with the analysis of the associated numericat @rnect. 4.

Numerical results confirming theoretical findings are pnése both in 2D and
3D (Sect. 5) domains for linear advection-diffusion-réactproblems. A back-
ward facing step geometry is used as a nontrivial slab-lim@ain.

Limitations and future developments are summarized in.$ect

Figure 1: 3D domain setting for the HiMod educated basescaupr: domain
Q = Q (left) and transverse fiber (right).

2 The HiMod approach: basics

Since in this paper we are concerned with rectangular/stebaths, we directly
assume thaf) ¢ R?¢ (d = 2,3) coincides with the Cartesian product of a 1D
domain supporting the axi3; p and transverse fibers, ¢ R%"1, i.e.,

Q= U {z} X vz

erlD

(see Fig. 1). The axial direction associated witly, is dominant with respect to
the others (i.e.L, > L,, L;). Hereafter, we choos@,p = (0,L) and~, =
v = (0,1) for the 2D case;, = v = (0,1) x (0,1) in 3D. More in general,
we may assume thd;p is a curveC : (0,L) — Q1p C R? wherex is a
curvilinear abscissa[6], while fiberg. coincide with sufficiently regular functions
of z. In this case, we regarf as the image of the reference rectangular/slab
domain{) = [0, L] x ~, according to a sufficiently regular map[1, 7].

In ©2 we solve the standard scalar linear advection-diffuseaction (ADR)
problem completed - for the moment being - with full homogaree Dirichlet



boundary conditions. With standard notation for the Sobsfeaces[19], the prob-
lem reads: find: € V = H{(Q) such that

a(u,v) = /Q [V u-Vo+(B8-Vutou)v| d = /va dQ=F(v) YveV, (1)

where the boundary() consists of the two transverse fibdts = {0} x v and

'y = {L} x v and of the lateral boundary,, = 002 \ {I'; UT'y} (see Fig. 1).
We assume the diffusivity coefficient € L>°(Q2), with x > po > 0 a.e. in
Q, the convective field@3 € [L>(Q)]?, the reactive coefficient € L>°(1), and
the forcing termf € L?(2). We also assume that di#) € L>°(Q) and that
—2div(8) + o > 0 a.e. inQ, so that the well-posedness of (1) follows from the
Lax-Milgram lemma.

The HiMod formulation requires a specific functional segtiliVe introduce the
one-dimensional spadé p = H¢(Q1p) associated with the supporting fiber. On
the transverse direction we consider a set of modal funetign } with & € N*,
defined ony and setV, ., = span({yy}). Since the Dirichlet conditions are
enforced in an essential way, basis functigisvanish onl",,. The corresponding
truncated finite dimensional spatg,, is defined as

Vym = span({@x frq)- 2

Thus, the hierarchically reduced semi-discrete spaceided with(2 is given by
the tensor product of the spacggs, andV/, ,,,, i.e., by

m
Vin = ViDp®Vym = {v(:c,y) = ka(:c)gok(y), with v, € Vipfork=1... m}
k=1
3

We assume thdt,,, C V for anym € N (conformity hypothesjsand that, for any
veV,

lim < inf Hv—vaV) =0 (spectral approximability hypothesis)
m——4+00 \ vy €Vin

When we letm tend to infinity, we identify the spackE,,. The conformity and
spectral approximability properties postulated igp imply that V., is dense in
H (D).

The basis functions, do not need to be generally orthonormal. However, if
we assume they are orthonormal with respect tolthey)-scalar product:, ),
the coefficients, in (3) coincide with the standard Fourier coefficients

Vi = (v>90/€)’7' (4)

Different choices are possible for the modal basis, inclgdrigonometric func-
tions, Legendre polynomials or wavelets. The problem attgenerally drives
this choice.



The fully-discrete HiMod formulation can be provided byroducing a uni-
form subdivision7;, of steph along ©2;p, with the nodest;, ¢ = 0,1,..., N.
In [12] a HiMod reduction based on an adaptive choice of théitfwa 7}, is pre-
sented. We denote by” the subspace df; p of the piecewise continuous linear
functions associated withy, and vanishing at, = 0 andxy, = L. Higher degree
polynomials may be considered as well. kgtdenote the Lagrangian basis func-
tion in V" associated with the node. Thus, we can consider the discrete modal
representation

m m Np
zy) = Y up(@)er(y) = DYk thi(2)pr(y), ®)
k=1 k=1 1=1
whereu,, ; are the actual unknowns of the discrete HiMod formulation
findu? € VI :a(uh ,ot)=F@h) vl evh, (6)

with ug () = Z uy ;i (w) € Vi, and wherd/! = V@V, . A straightforward

choice for the test function in (6) ig!,(z,y) = Y(x)pi(y), withl =1,..., Ny,
j = 1,...,m. Then, the HiMod formulation (6) reduces to: fing, € R™r

such that, for any =1,....mandforanyl =1,..., N,
m  Np
5% 3¢l 10 5%
];Z{/Q[ 5@ 22 ) 22 ) 1 ) 2 ()
b @ @) debu = [ o)y, @)
with

(@, 9)0;W)en(y) dy, 1 (z) = / B1(,¥) 03 (v) 0 (3) dy,

~ [
T () :/(H(xa}’)‘ﬁ;(}’)‘ﬁ;c(}’)+ﬁ2(33a}’)90;'(3’)90k(3’)+U(3373’)90j(}’)90k(}’))d}’>
Y
f(x Y)SDJ( )d}’a

Y

8
wherey;(y) denotes the derivative of the generic modal functigrwith respect
toy. Coefficientsmj,fj (s,t = 0,1) collect the transverse contributions after the
reduction phase. If the modal basis is orthogonal the coatiput of these coef-
ficients is further simplified. On the contrary, definitio® become significantly
more involved for non-rectangular domains[1].

Discretization (7) leads to an algebraic systenmofcoupled 1D problems,
where the coefficients coupling the different 1D equatioosoant for the trans-
verse dynamics. The HiMod discrete soluti@l) converges to the continuous one
u form — 400 andh — 0, as stated in Proposition 3.1 of [7].
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Remark 2.1 Non-homogeneous boundary conditions of Dirichlet, Neumemrd
Robin type are promptly prescribed on the inflow/outflow ltawiesT; andT'; in
the HiMod framework with standard methods[7].

2.1 Dirichlet problems in 3D

In this section, we demonstrate for the first time some perémces of the HiMod
method in 3D. This allows to stress how a good accuracy maybkerned with
a relatively low number of degrees of freedom. This is cruiciathe prospected
application of the method on complex networks.

Let us consider the following advection-diffusion-reaatiproblem in a slab

—Au+B-Vu+ou=Ff inQ=(0,0.2)x (0,0.1) x (0,0.1)
u=20 onl’'; UL, 9
V’LL"I’LZO Onr27

with 'y = {0} x [0,0.1] x [0,0.1], 'y = {0.2} x [0,0.1] x [0,0.1] andT",, =
o0\ (I'y UTy), and where3 = (5,1,0)7 is a horizontal windg = 0.3 models

an absorption phenomenon, alfids a source term localized in correspondence
with two spheric areas &t defined byf (z,y, z) = 100( f1(z,y, 2) + fa(z,y, 2)),
with f1(z,y,2) = exp (— 900[(z — 0.025)% + (y — 0.0125)* + (= — 0.0125)?]),
fo(,y, 2) = exp (—900[(z—0.05)%+ (y— 0.0875)% + (2 — 0.0875)?] ). Figure 2,
left shows the contour surfaces of the finite element appration of the solution
computed via the libraryi f eV! on a structured uniform mesh with sizes =
0.1, hy = 0.05, h, = 0.05, respectively. The HiMod approximation is obtained
using 50 modal functions and a 1D uniform grid with step= 0.1 (Fig. 2, right).

Figure 2: 3D ADR problem with wall Dirichlet boundary condits: Piecewise
linear FE solution (left); HiMod solution (right).

I1Li f eV is an open source finite element library developed by MOX ditd@mico di Milano,
Italy, the Department of Mathematics at EPFL, Switzerland the Department of Mathematics and
Computer Science at Emory University, USA.



Figure 3: 3D ADR problem: longitudinal sections of the FEuidin (top-left) and
of the HiMod solutions forn = 9 (top-right), m = 16 (bottom-left) andn = 25
(bottom-right).

The consistency between the two solution is promptly redlizy a visual in-
spection. In Figure 3 we consider three longitudinal sestiof both the reference
and the HiMod solution af = 0.1, 0.05, 0.09 respectively. We select increasing
values for the modal index:, namely,m = 9, m = 16 andm = 25. More pre-
cisely, this choice ofn corresponds t8, 4 and5 modes along the two transverse
directions, respectively. We appreciate the qualitativevergence of the HiMod
solution to the finite element one for increasing values:of

To make the comparison more quantitative, we solve the s@uation with
B = (5,1,1)T, o = 3 and we select the source term and the Dirichlet condition
onT'; so that the exact solution ig..(z,y,z) = 107y(0.1 — 3)z(0.1 — 2)(z —
0.2)% exp(2y2(0.2 — x)?). In Fig. 4 we plot thel.2(2)-norm of the global error, as
a function of the total number of the degrees of freedom (dof)he left, and as a
function of the assembly time (ini f eV') on the right.

As expected for the convergence properties of the specaradverse approxi-
mation, the HiMod procedure attains a similar accuracy dffefielements (or bet-
ter) with less dof. Precisely, the structured FE grid fesguv, N, N, dof, where
N, N, and N, are the numbers of dof along the three directions. For HiMed w
haveN,m dof, so form < N, N, we have a computational advantage.

These results confirm the rationale of the HiMod approacteresa few modes
are enough to have an accurate solution as opposed to piapdroximations,
where transverse dynamics are completely discarded.
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Figure 4: 3D ADR problem with lateral Dirichlet boundary clitions: L?((2)-
norm of the global error as a function of the number of doft{lahd of the as-
sembly time[s] (right) for a standard 3D linear finite elerndiscretization (circle
markers) and for a HiMod approximation (square markers).

3 The Sturm-Liouville Eigenvalue (SLE) problem in the
HiMod framework

In order to construct a set of basis functions incorporagjageral (homogeneous)
boundary conditions oir,,, we consider the classical SLE problem[8]. We con-
sequently focus on the transverse fihec R¢~!. In particular, we are interested
in the casesl = 2,3, where we have 1D and 2D fibers respectively. We recall
here some basic results that can be found for instance ir}.[8y@write down the
proofs of the results that generalize to the case 3 of the ones found there.

3.1 Spectrum of a self-adjoint elliptic operator

Let £, be a linear elliptic symmetric operator defined over the l@gbounded
domainy. Then, we consider the eigenvalue problem

Lsor(y) = Mew(y)er(y), (10)

where ) is the eigenvalue of; associated with the eigenfunctign,, while the
weightw is a positive continuous function. The following statensemoid.

1. The eigenvalue§); } are real and form a countable monotone non-decreasing
sequence convergent to infinity fer— +oc. In the one-dimensional case
(i.e., ford = 2), the multiplicity of all the eigenvalues is equal to one.

2. The eigenfunctiongy;, } are orthogonal with respect to tié ()-weighted
scalar product. They constitute a complete set in the saawesf his means
that, for a generic functioff € L2 (), the truncated series

Snf(y) =Y frer(y), (11)
k=1

8



with f, = / w(y)f(y)er(y) dy, is such that
Y

lim I = Snflle =0, (12)

where|| - ||, denotes the norm associated with the sp&géy). From now
on, we refer to the basis functiofgy } in (10) guaranteeing expansion (11)
as to the SL basis.

3. Fork — +o0, the asymptotic Weyl formula for the eigenvalues in (10)
holds[25, 8]:
2
=0 (kﬂ) . (13)

For the derivation of a one-dimensional & 2) HiMod educated basis, we
focus on the following SLE problem: fay € (0,1), find the eigenpaif\x, vx)
such that

{ — ()W) + o ()er(y) = Mw(y)er () in (0, 1)
X0%k(0) + 1(0)2,(0) =0, x19x(1) + p(1)g(1) =0

with xq, x1 € R, and where we assume the following regularity on the data:

(14)

w, 1, o, we C%0,1]) with p,w >0 ando >0 a.e.in0,1].  (15)

The differential operator associated with equation (14inisar, elliptic and self-
adjoint. Foryy, = x1 = 0, we obtain a fully Neumann problem (in particular, for
o = 0, problem (14) has multiple solutions - up to a constant - &islreflects in
the fact that one of the eigenvalues is identically equakto zvith the associated
eigenfunctions given by constants).

Analogously, the definition of a two-dimensional & 3) HiMod educated
basis leads us to the SLE problem

{ —div(p(y)Ver(y)) + o(y)er(y) = Mew(y)er(y) in~y

(16)
xek(Y) + 1Y) Ver(y) n=0 ondy

with y € R andn the unit outward normal vector to the boundary, and where
we assume the same regularity as in (1508 andw.

In the following, we consider the coefficientsand o to be constant. The
numerical methodology we present is however more general.

Notice that, in SLE problems (14) and (16), a constant reactioefficient
o # 0 simply shifts the spectrum associated with the ease0, while preserving
the same eigenfunctions.



3.2 Approximability properties

We recall here some properties of SLE eigenfunctions. Inctee of 1D SLE
problem, most of these results can be found in Chapt. 5 of\{@.illustrate the
results in the general setting of interest for our problems.

LetR,,f denote theesidualassociated with the:-th truncated series in (11),
namely

+0o0
Rnf (W) = f@) = Smf@) = Y. fror(®)
k=m+1

Here, we investigate the convergence rate of the residuhlregpect ton and on

the generic domain. To this aim, we first establish the dependence of the Fourier
coefficientf‘k on \z. In particular, when functiorf belongs at least té/2(~y), we

can compute also the generalized Fourier series ffwhosek-th coefficient will

be denoted b)Afk CoefﬂmentsAfk will be employed to relat@“k with A\, as
stated in the following result.

Lemmal Let ¢, be the eigenfunction, solution to probleft6), and let f <
H?2(~) be a generic function fulfilling the same boundary condgias,;. Then,
it holds

. 1 —
fe=(fror)r2,7) = _)\_kAfk: Vk > 1. (17

Moreover, if f € H?P(~), withp > 2, and compatible boundary conditions are
assigned in(16), i.e., f(25) satisfies the same boundary conditionsfagor any

s <p-—1,then
2 1\r——
fi= (= 52) AWf k=1, (18)

/\

whereA(®) f, denotes thé-th coefficient of the generalized Fourier series of the
p-LaplacianA®) f.

Proof 3.1 For the sake of simplicity, we prove the results above byrassgw =
1, » = 1l ando = 0. By exploiting the differential problem {{16) and by integrat-
ing by parts twice, we get

fr= Lf(y)wk(y) dy = —%k/vf(y)&pk(y) dy

_ _i[—AVf(y)'Vwk(y)dyJF/(%V@k(s)'”f(s)ds]

Ak

= sl [ srwemans [ Vo) miwas - [ @i nas
k tiw 9y

= ——/Af Y)or(y )\kAfk:

(19)

10



In particular, since bothy, and f satisfy the same boundary condition @, the
boundary terms irf19) are identically equal to zero. Indeed, we have

Von(s) - nf(s)ds — / on(5)V f(5) - mds

e 2 (20)
| @@ ds+ [ xs)antsds <o

Oy oy

From (19) then(17) is proved. Moreover, sincgpyl|r2(,y = 1, via the Cauchy-
Schwarz inequality, we get the additional bound

A 1
| fi| < /\_k|f|H2('y)'
In addition, if we consider a functiofi € H??(~y) for somep > 2 and such

that ther-LaplacianA (") f fulfills the same boundary conditions fisfor 0 < r <
p — 1, we can iterate the same argument, to obtain

A0, = 3 ATy, (21)

By properly combining19) with (21) for f regular enough, we obtai(18).

Let us analyze now the convergence of the residRalf. We can state the
following

Theorem 2 Let ¢, be the eigenfunction, solution to probldgitg), and let f <
H?(v) satisfy the same boundary conditionsias Then, there exists a constant
C s independent of, such that

2—s

1 a1
R fll 57y < Cus < ) | f1E2(7)5 (22)

m—+1

for s = 0,1, and withH®(y) = L?(v). Moreover, iff € H?(«), withp > 2 and
compatible boundary conditions are assigneds), then there exists a constant
Cs s, independent ofr, such that, fors = 0,1,

2p—
d—

1 1
R fll (1) < Coys (m——i—1> | flE20 () (23)

Proof 3.2 We first consider the case= 0. By resorting to the Parseval’s identity,
we have

+oo
IR fllF2y = D i
k=m+1

The properties of the SLE problem listed above guarantegthiearight hand side
converges to 0 fok — oo. In addition, the slowest term to convergefis

11



since coeﬁicientgf‘k inversely depend ok;. Thanks to Lemma 1 and by exploiting
the Weyl formula, we have that, ff ¢ H?(y) and satisfies the same boundary
conditions ofpy, then

+o0
1 2 - 2 C 2
1R flZ20y < (7 Afy]" < —— fliey), 24
L2(v) ()\m+1) k:Z:mH[ } (m+1)% H2(v)
with C' depending on the domain, and where we have upper boundeditivated
series of the Laplacian of via the H2(~y)-seminorm off. Analogously, iff €
H?P(~) for somep > 2, and compatible boundary conditions are enforce(li),
we derive that
+o0

1 2p R 2 C 2
IRmf1122(y) < (AP f1]7 < ——— | flHw(y)- (25)
L2(v) <)\m+1) k:%:ﬂ (m + 1)% H2P ()

Now we select = 1. We notice that the symmetric continuous and coercive-bilin
ear form

a(pr,v) = /MVSDk:(Y) -Vo(y) dy +/8 xer(s)v(s) ds
Y Y
associated with probler(l6) for o = 0 and defined i *(), induces the scalar
product ((w,v)) = a(w,v) and the normjwl|2 = a(w,w) for anyw andv €

H'(~). In particular, the functions{&k = \/‘f’—;_k}k N form an orthonormal basis
S

with respect to this scalar product[24]. Thggeeneralized=ourier coefficients}‘; =
((f, @x)) of f with respect to this basis can be easily related to the céefiis in
(17) simply by exploiting problerfl.6) and integration by parts, as

fr = ((£,88) = alf, @) = Me(f, @) = VMlfr 08) = VM i
Via Parseval’s identity and thanks to the coercivity of thlebar forma(-,-), we
obtain

“+o00 “+o00
AR fline <IRuflla= D fi= >, Wfd,
k=m+1 k=m+1
with « the coercivity constant. The same arguments adopté@dipand (25) lead
to estimates

) 1 x [/\ ]2 C 9
H‘ameHl»y < E Afk < |J|H2»y7
" )\m—l—l k=m+1 (m—i— 1)‘131 @)
and
1R f 177 v S 1( 1 )2 1 E [A/(\ p)f ]2 < I |f 1 v
m S = = )
e Ay k=m+1 * (m + 1)4dp—12 MY

respectively, witl now depending also on the coercivity constant. This comsud
the proof.

12



Remark 3.1 For p — oo, estimatdg23) yields spectral convergence. In the partic-
ular case of Neumann conditions, this means that a fungtiorfinitely regular and
with all the odd derivatives vanishing at the boundary isctrzly approximated
by Fourier truncated series. This is a well known result texh for instance, in
[9], Sect. 2.2, pag. 68.

For the case with Neumann conditions in (16), we can provedalitianal
result under some regularity assumptions that however tiovalve the boundary
conditions of the derivatives gf. At the best of authors’ knowledge, this result is
non standard and it is reflected by our numerical findings.

Lemma 3 Let ;. be the eigenfunction, solution to problgtt) completed with
Neumann boundary conditions (i.&.,= 0). If f € H*(v) and satisfies homoge-
neous Neumann boundary conditions&s then we have

A 1
| frl < Cw”f”m(«,) Vk>1, (26)
k

with C' = C(7), T being the constant associated with the trace inequalitypdn
ticular, if ¢, is bounded uniformly witlt (as it happens for sinusoidal functions,
Legendre polynomials as well as Bessel funcégnshen the previous statement
refines in

A 1
| fil < CFHfHH‘*('y) Vk > 1. (27)
k

We give the proof of the Lemma together with the proof of tHfeing Corol-
lary, for the sake of brevity. As Corollary we have the follog results.

Corollary 4 Under the assumptions of Theorem 2, there exists a conétant
independent ofn, such that, fors = 0, 1,

3—s
d—1

1
1R Al < Cae (25 ) Ul 8)

If the basis functions are uniformly bounded, then therste constanty , in-
dependent ofin such that

1

4—s
d—1
—)" Wl 9)

Roun 11+ < Can (

Proof 3.3 If f € H*(y), it is possible to mimic the procedure adopted in Lemma
1, by working directly on the coefficients of the generaligedrier series forA f,

2Bessel functions are eigenfunctions for the Laplace emjerevproblem[8] in 2D. Uniform
boundedness is stated in [26]

13



to obtain
1
—Afk— | sswatwiay =5 [ Arwsew
k Jy

- 5 /Mf eyt | Vo) nafod - [ aevane il

Oy
(30)
where A denotes the bilaplacian operator. Fro(80) and since we assume
Neumann boundary data, i.&/¢; - n = 0, we have

8= gl [ 20wt - [ a@vane nal e

By combining(19) with (31) together with the trace inequality yields the relation

1+ 72|
fel € =720l
k

with 7 the trace constant and keeping in mind thiat,||;>(,y = 1. In addition, we
have observed thaltoy || 1 (,) =~ VA that leads td26). From (31), if [|¢x |l £2()
is uniformly bounded witl, then(27) follows.

The corollary is an immediate consequence(28) and (27) when we apply
the arguments used in Theorem 2.

4 HiMod Educated Bases

The main contribution of this paper refers to using the SL&btl and SL eigen-
functions as informed or educated basis functions to irmate general lateral
boundary conditions prescribed by, in an essential fashion.

The educated HiMod (e-HiMod) procedure articulates in tileWing steps:

1. split the problem along the axial (1D) and the transvetde—(1)D) direc-
tions, respectively;

2. solve the(d — 1)-dimensional SLE problem associated with the symmetric
part of the ADR operator on the transverse fiheto obtain the modal basis

{erh

3. assemble the block tridiagonal matrix associated wighlih coupled prob-
lems (7), each block including the effect of the transversgadics;

4. solve system (7) and exploit the modal representatioto(&pnstruct.”,.

Hereafter, we focus on step (2), by detailing the proposedogeh in both 2D
and 3D, separately. To simplify the discussion, westiluass;, 3 ando in (1)
to be constant. Moreover, we complete problem (1) by presgifor simplicity
homogeneous Dirichlet boundary datalopandI’s, and the homogeneous Robin
conditionuVu - n + yu = 0onT,,.

14



4.1 The 2D case in rectangular domains

Let us start by re-writing the weak form (1) by including theld condition: find
u=u(z,y) € V= H} () such that

L1 L
//u (a: y)—l—gz(a:,y)g—Z(a:,y))dxdy—I—/xu(a:, v(x,1)dx
00 0
L L1

- [ruteote.0de+ [ [ (5@t + g e g)ote)) dedy
° 1 °0

o(z,y)dedy = | | fla Ydzdy Yo eV,

O/()/aua:y x,y)dxdy O/O/ v(z,y)dzdy Vv €

beingIl'; » = I'y UT'2. Now, we solve the SLE problem (14) with = 1 andy, =
X1 = x to generate the educated modal bgsig } with & € N* characterizing
the HiMod approximation (5). Thé?(v)-orthonormality of the eigenfunctions;,
simplifies the first two HiMod coefficients in (8) to

ri(@) = b, iy () = Bidjk.

The third HiMod coefficient reduces to
1250) = [ Bas Werlo)dy + X
0

since, by exploiting problem (14), it holds

(w;(y)%(y) + Usog'(y)wk(?/)>dy B [%’ (ym};
1

(w;(y)wk(y) + wj(y)wk(y))dy + xlpierlo = / Njoi(y)er(y)dy = Xjdj.
0

SO —

Therefore, the assembly cost of the HiMod matrix signifisaréduces when re-
sorting to an educated basis, at least for the case of carstefiicients. In addi-
tion, in the absence of a vertical convection (i.e., for= 0), the sparsity pattern
is block-diagonal. This may introduce a significant costurtiton for the linear
algebra.

Remark 4.1 Non-homogeneous boundary conditions can be treated wjoap
priate lifting functions. These can be taken as a modal esipanof the boundary
data. In addition, the case where different types of boupdanditions are pre-
scribed on different portions df,, can be considered as well by a domain decom-
position approach.
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Remark 4.2 In many cases, the solution to the 1D SLE probl@d) can be ob-
tained analytically or after the numerical rootfinding of amiinear function[9].
For instance the eigenfunctions associated with problem

—op(y) = Aer(y)  In(0,1)

completed with full homogeneous Dirichlet boundary caodg coincide with the
sinusoidal functions, consistently with the modal basispéed so far in a HiMod
approximation[1]. For instance, for the mixed boundary ddions ¢ (0) = 0

andy) (1) + xer(1) = 0, the eigenvalues of the problem coincide with the roots of
the nonlinear equatiory tan(\;) + A\ = 0, while the eigenfunctions are given by
vr(y) = sin(Azy). In both these cases, the basis functions are clearly umifpr
bounded withk. When analytical solutions are not available, we compue th
eigenpairs by numerical approximation.

4.2 The 3D case in slab domains

We hierarchically reduce now the ADR problem (1) in the datapiped domain
of Fig. 1. For this purpose, we generalize the proceduredrptlvious section to
a 3D setting. In particular, to identify the educated modmib associated with
the selected boundary conditions, we solve the SLE probl&ndn the transverse
fiber v by taking advantage of the Cartesian structuré&ofin this way problem
(16) can be turned into a pair of 1D SLE problems, whose soiudan be computed
analytically. For simplicity, we set = 0 since the reactive term just shifts the
spectrum of the operator. Then, we factorize the eigeniomdn (16) as

Pk (y> Z) = Py,p(k) (y)(pz,q(k) (2)7 (32)

wherep(k) andq(k) are indices related to the and to thez-coordinate, respec-
tively used to identify thé:-th 2D modal function. Factorization (32) leads to the
1D eigenvalue problems

— 1oy o (Y) = Ay pyp(y) N (0, Ly) —ppy o (2) = Aegpzq(2) N (0, L)
112y (0) + x4y p(0) = 0, p’, 4 (0) 4+ x2,4(0) =0,
12y p(Ly) 4+ X0y p(Ly) = 0, el o(L2) 4 x@zq(Lz) = 0,

(33)

with A, , and . , the eigenvalue associated with the eigenfunctign andy. 4,
respectively. Thus, the eigenpdip (v, z), A } solution to the 2D problem (16)
on the slicey reads

{(pk’ (ya Z), )\k’} = {(py,p(k) (y)(pz,q(k) (2)7 )\y,p(k) + )‘z,q(k)} (34)

Consistently with the analysis of the previous section,gigenvalues\; have to
be sorted into a nondecreasing sequence. The identificatip(k) and ¢(k) to
identify the correct eigenvalue in (34) of the sequence @apdyformed with the
following algorithm hereafter denoted by ESA (Eigenvalumtfdg Algorithm).
Letm be given. Then we perform the following steps.
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i) Fork =1we set\; = A\, 1 + A, 1 with respect tq andz, respectively (i.e.,
p(1) = 1landq(l) = 1 identify £ = 1).

ii) While £ <m do

- computed, k)41 + Az gk) @NAAy k) + Az (k)1 @nd store them in
the list of the eigenvalues to examine;

- compute the minimal element in the list of the eigenvalwesxamine:
this will be assigned td, 1; correspondingly we assigik + 1) and
q(k+1).

- Incrementk.

A schematization of ESA is depicted in Fig. 5. In particuthe diagram refers
to (33), forL, = w and L, = 3n/2, completed with homogeneous Dirichlet
boundary conditions, i.e., to a test case when the eigeswatan be calculated
exactly. The light grey boxes refer to eigenvalues alreadyrened, while the
white boxes identify the eigenvalues that have to be stédkcg&ed. In the boxes we
report three numbers with the following notatioh, , ), A 4(x)) Ak; the numbers
outside the boxes denote the index

As we recalled above, for the cage= 3 - when the fibers are 2D - eigenvalues
are not necessarily simple. In the ESA, when this repetitiocurs, either one of
the repeated nodes or the other (in the dark grey boxes ob}ig.removed from
the list. For instance, after the detection of the simplemiglue), = 5, we
obtain the next candidate77 twice. One of the two occurrences (anyone of the
two) needs to be eliminated from the tree.

Remark 4.3 If the rectangular fibery is skewed with a dominant dimension be-
tweenL, and L, a different number of modal basis functions is expectedglo
directiony and z, respectively. For instance, if, > L., the eigenvalues associ-
ated withz-direction are larger than the ones related gedirection. Hence, less
modal functions will be employed alongdirection thany-direction (recall that
the truncation error of the approximating function scaleshwvthe inverse of the
first eigenvalue of the integral, so a larger eigenvalue dedsaless modes). In
particular, if the ratio betweerd , and L, is close to zero, out of: modes we will
naturally selectn — 1 in they direction and 1 along:. In fact, alongz one eigen-
function is enough and the tree of Fig. 5 becomes unbalariokdwing only they
side of the branch.

4.3 Error analysis

To perform the error analysis characterizing e-HiMod, wstfoompute the er-
ror associated with the modal discretization (semi-discpeoblem), and then we
include the error due to the finite element approximatiorhefaxial dynamics.
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Figure 5: Schematization of ESA to select the 2D eigenvaljes (34).

We still refer to advection-diffusion-reaction problems.
As for the semi-discretization error, we have the followragult. The letter”
will denote a constant (not necessarily the same in eacherme).

Theorem 5 Letu € H?(2) be the solution to the full probleil), with Q c R9,
and letP,,,u denote the projection af onto the educated HiMod spa&&™ in (3).
Then, there exists a constafit independent aof, such that

2—s
1 a1
a— Pl ey < C (—) e, (35)

m—+1
for s = 0,1 and with H°(Q) = L?(Q2). Moreover, ifu € H?(), withp > 2, and
compatible boundary conditions (i.e. the Laplacian ofu with s < p — 1 fulfills
the same condition af) complete the full problem, then there exists a constant
independent ofn, such that, fors = 0, 1,

2p—s

1

d—1
lu=Paslliey <€ (7)o 36)

Proof 4.1 By exploiting the density of the spakg, in H'(Q) for the modal rep-
resentation of:;, we have

+oo 2
luPaliay = [ [ 3 weront)] ayas -
1D Y7

k=m+1
_ /QH(u—Pmu)(x)H%g(v)dx.
1D

Estimateg35) and (36) now follow by Theorem 2 after identifyirfg,,, f with (u —

Now, we consider the fully discretized solutiaf},, obtained by completing the

modal expansion with an approximation of the axial dynammiadfinite elements
of orderr. We can prove the following
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Theorem 6 Letu be anH*(£2)-function, withs > 2, solution to the full problem
(1), with Q@ c R?. Then, the error associated with the e-HiMod approximation
satisfies the priori estimate (wheré€' depends on the solution)

lu = w10y < C(h?+m™) (37)

with ¢ = min(s — 1,7) andl = 1/(d — 1). In particular, if u € H?P(Q2), with
p > 2, and compatible boundary conditions complete the full jgoh then =
(2p-1)/(d—1).

Proof 4.2 Via the GBa’'s Lemma and the triangle inequality, it follows

h : h h
=il rrey < - inf | lu—vm @) < lu—vmllm @)+ llvm —vmllm @

o vk evh

(38)
wherev,, € V,, is the semi-discrete counterpart of the generic e-HiMoc:fiom
v whereas\/ anda denote the continuity and the coercivity constants assedia
with the bilinear form in(1). Now, we identify,,, with P,,u. As a consequence, the
second term on the right-hand side(@8) can be bounded by standard arguments.
The thesis follows promptly from classical piecewise pmiyial approximation
results and Theorem 5.

In addition, we have the following result from Corollary 4.

Theorem 7 Letu € H*(Q) be the solution of1) with Neumann lateral conditions
(and Dirichlet conditions either ofi; or I';) and letP,,,u be defined as in Theorem
5. Then, the semi-discretization error for= 0, 1 fulfills the bound

1 -1
o= Podlr <€ (27 ludae (39)

where(C is a constant independent of. If the modal basis is uniformly bounded,
then

4—s
1 a1
[lu — Ppullgs < C <—> || ra(2)- (40)

m+1
The fully discrete e-HiMod solution then features the caysece rate
lu = wup | 1) < C(hT+m™)

with ¢ = min(s — 1,r) andl = (3 —s)/(d —1) (orl = (4 —s)/(d — 1) for
uniformly bounded modal basis functions).

The proof follows the same arguments as in Theorems 5 and &armnit it
for the sake of brevity.
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5 Numerical results

This section is devoted to the numerical assessment of Hided procedure. We
consider both 2D and 3D test cases. The two-dimensionaMséiicode is devel-
oped inMVat | ab, while the 3D tests are implementedlin f eV[22]. Numerical
results will be tested against analytical solutions wheailakle and finite element
approximations on fine enough meshes otherwise.

In the e-HiMod approximation, we use linear finite elemeRtY) to discretize
the supporting fiber combined with an educated modal basisdoribe the trans-
verse dynamics. Using higher order finite elements is ctlyrender investigation.

5.1 2D qualitative assessment

We start investigating qualitatively the consistency & éHiMod procedure with
a finite element solution on a fine mesh in absence of an acalgblution.
Let us consider the problem

—Au+B-Vu=f inQ=1(0,6)x (0,1)
U =9gp onl', (41)
Vu-n+ xyu=ggr onlyy:

p1Vu N+ pou = 0 on Fw,up U I‘w,downa

where 3 = (20,0)” represents a horizontal wind, the forcing tefirmodels
two elliptical sources localized in the left-portion of tHemain, beingf(z,y) =
XEuE, (T,y), With By = {(z,y) € Q : (x — 1.5)2 + 0.4(y — 0.25)? < 0.01}
andE; = {(x,y) € Q: (x — 1.5)2 + 0.4(y — 0.75)? < 0.01}. Conditions orT",,
prescribe Robin, Dirichlet or Neumann data for differeniues of the parameters
p1, p2. The latter can take different values on different portibthe boundary”,,,
namely the upper and the lower sidEs, ., = [0, 6] x {1}, 'y, down = [0, 6] x {0}.
Herel';,, = {0} x[0,1],Tou = {6} %[0, 1], (See Figure 6, left for a schematization
of the test case). Finally,y, andgr are given functions ang is a constant.

We test two combinations of boundary conditionsIan,,, andI', sown, i.€.,
Dirichlet/Robin and Robin/Robin data, respectively. Ag tihtersection (corners)
of the different portions of the boundary prescribed datacampatible. As refer-
ence solution we take FE1 approximation computed on a stegttuniform grid
with mesh sizeh, = h, = 0.0025. For the e-HiMod simulations we adopt a
FE1 discretization alon@:p with uniform lengthh, = 0.01, while varying the
number of educated modes along

Dirichlet/Robin

We assign the Robin conditiofiu - n = —3(u — 0.06) onT", joun, and Dirichlet
conditonu = 0.05 onT'y ,,. In Figure 7, top we show the contour plot of the
reference FE1 approximation. The Robin datalgn,..,, warps downward the
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Figure 6: Schematization of the test case setting for thdef) and the 3D (right)
e-HiMod verification.

horizontal dynamics induced by the wind, so the effect oftét@forcing terms on
the solution is different and clearly detectable.

We compute the e-HiMod approximation by gradually incnegdihe modal
indexm. We adopt the notation e-Himad{ to denote the hierarchically reduced
solution associated with, educated modal functions. Figure 7 shows the contour
plot of the e-HiMod{) approximation, forn = 2, 4, 8. As expected, the quality
of the reduced solution improves whenincreases. Fom = 8 the solution fully
overlaps to the reference one.
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E £ | ‘ 0.07
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4 5 6

Figure 7: Dirichlet/Robin BC: reference FE1 solution (top)HiMod(m) reduced
solution form = 2, 4, 8 (second-fourth row).
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Robin/Robin

We now assign non-homogeneous Robin conditions on Bgth, and T, jown,
namely we impos&/u - n = —3(u — 0.06) onI'y, ,, andVu - n = —3(u —
0.05) onT', douwn respectively. In Figure 8 we compare the e-HiMadl(approxi-
mation corresponding to = 2, 4, 8 (second-fourth row) with the reference solu-
tion.

Due to the particular nature of the (nontrivial) solutiamhis casen = 4 still
provides an inaccurate solution, while the inclusion ofrfmore modes to have
m = 8 provides an accurate solution.

FreeFem++
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Figure 8: Robin/Robin BC: reference FEL1 solution (top); idbed(m) reduced
solution form = 2, 4, 8 (second-fourth row).

5.2 Educated vs non-educated modal bases

This section highlights the added value provided by an gddcaodal basis with
respect to a standard Fourier basis. For the sake of sityplibis check is per-
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periodic-m=4
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Figure 9: Exact solution to the ADR problem (42) (left); Hifll@pproximation
based or3, (center) and on an educated basis with four modes (right).

formed in a 2D setting. To this aim, we consider the ADR proble

—Au+pB-Vutou=f inQ=(0,1)2

U= Uey onI';, = {0} x [0,1]
Vu-n=Viue - -n onTy, = {1} x [0, 1]
Vu-n+3u=0 onl'y, =Ty up U Ty down = [0,1] x {0, 1},

(42)
with 3 = (20,0)T ando = 2. The source term is selected so that the analytical
solution reads

Uer = @Y+ +y+exp(2ry—y)—1
y?[22 + exp(2z — 1) + 0.1((4z — 6) exp(2z — 1) — 62 + 2)].

In Figure 9, left we provide the contour plot of...

One possible approach leads us to employ a standard Foeries 8,, =
{1, cos(jmy),sin(jmy)}7L,; and a natural treatment of the boundary conditions.
This is expected to introduce some boundary layer in the @smpposed to the
essential treatment of the same conditions with an edudasi$. This is con-
firmed by the contour plots of Figure 9, center and right assed with the basis
B4 and with the e-HiMod{) solution, respectively. While this last approximation
matches the exact solution, the standard HiMod solutiomdas 53, exhibits a
significant discrepancy to,,.

We compare the convergence of the two HiMod approximatiemgigure 10
we show the global error rate in thief (2)- (left) and theH ' (£2)-norm (right), for
both the educated and the non-educated modal bases. Cemveng attained by
both, even though the convergence rat&gfis definitely slower vs. the e-HiMod
approach. In particular, the Fourier basis leads to a limeavergence for the
L?(2)-norm, and sub-linear convergence rate for Bg2)-norm. No sensitivity
with respect toh can be appreciated, suggesting that the modal error dogsinat
Theorem 6 predicts for the e-HiMod solution a quadratic alidesar convergence
for the L?(Q2)- and theH'(Q)-norm of the global error, respectively. Actually,
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Figure 10: Educated vs non-educated bases. Comparisore obtivergence rate
of the global error for different discretization stedg:(2)-norm (left) andH ! (Q2)-
norm (right).

results in Figure 10 slightly outperform the expected cogerce rate in the range
of modes selected, while the finite element error confirmstigery.

5.3 Comparison with a 1D model reduction

Let us compare the e-HiMod procedure with a standard 2D FEoappation
and the reduced model considered in [21]. We compare thedegf freedom of
the different approaches. We consider the same equatidBeadion 5.1 with the
source termf = 10xmur, (,y), With Fy = {(2,y) € Q : (x — 3)2 + 0.4(y —
0.25)2 < 0.01} andFy = {(x,y) € Q: (x — 1.5)2 +0.4(y — 0.75)% < 0.01} (the
two sources are now misaligned).

When the leading dynamics is aligned with the supporting Herfithe e-
HiMod approach reduces the number of dof without giving ugpuaacy. To show
this, we compute a high-resolution FE1 approximation based uniform struc-
tured mesh of sizes, = 0.01, h, = 0.01 (Figure 11, first row); a low-resolution
FE1 approximation by increasirtg, t0 0.2 (Figure 11, second row); the e-HiMod]
approximation associated with = 1 (Figure 11, fourth row) anan = 5 (Fig-
ure 11, fifth row) withh, = 0.01 in both the cases. Consequently, the number of
degrees of freedom of the four approximation§(d800, 3000, 600 and3000, re-
spectively. The e-HiMody) solution perfectly matches the high-resolution FE1 ap-
proximation albeit with a 20 times smaller system. ConJgrdke low-resolution
FE solution demands the same number of dof as e-HiF)duljt with a lower ac-
curacy. Finally, as expected, the e-HiMoyhodel is too coarse due to the limited
transverse information carried by a single mode.

We stress that our primary goal is not to improve the effigiasfca 3D solver
but to provide a solver to be used in network of pipes to captystemic dynamics
yet able to compute locally refined solutions. In this regpee aim at compar-
ing the e-HiMod approach with purely 1D solvers, where thpethelence on the
vertical coordinate is postulatedpriori as well as with geometric multiscale mod-
els, where the local refinement is obtained by using dimeadlp heterogeneous
models[2]. To assess this point, in [21], we propose a 1Daedunodel for an
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Figure 11: Robin/Robin BC. Comparison among 2D FE1 distagtns (first and
second row), the transverse-averaged ADR model (third,ramg the e-HiModX)

and e-HiMod{) approximations (fourth and fifth row).

ADR problem by averaging the corresponding 2D model aloegtthnsverse di-
rection. In particular, we assume that the solutioto (41) may be expanded as
u(z,y) = u(x)p(y), whereu is the mean of, along the fibery, while p is such
thatfo1 p(y)dy = 1. In generalp is assigned when setting the 1D reduced model.
In [21] this transverse-averaged ADR model is used in a géarmaultiscale for-
mulation and compared with a HiMod approximation. We makee tihe point
that e-HiMod provides a much more flexible approach yetmétigia good level of
local accuracy by a judicious selectionmaf We compute the transverse-averaged
solution by preserving the partition along theaxis of sizeh,, = 0.01 resulting in
600 dof. Profilep is retrieved from the high-resolution FE1 approximatiorheT
quality of the corresponding reduced model is poor as showigure 11, third
row. The solution is even less accurate than the e-HiMoalproximation.

5.4 Convergence analysis

When assessing the convergence rate of the e-HiMod appatiim we will select
a steph small enough to emphasize the modal error; alternativdytge number
of modesn to outline the 1D finite element approximation error. We edesboth
2D and 3D cases. All the convergence graphs provided hereatft log-log plots.
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5.4.1 The 2D case
Dirichlet/Robin

The first case test solves on the unit square the advectifusidn-reaction prob-
lem, completed with homogeneous Dirichlet boundary caooton the upper side
and with Robin boundary conditions on the lower side,

—Au+B-Vutou=f  onQ=(0,1)

U = Uey onI;, = {0} x [0,1]

u=0 onl'y up =[0,1] x {1} (43)
Vu-n+u=3 on Ty down = [0,1] x {0}
Vu-n=0 onloy = {1} x [0,1],

with 3 = [20,0]7 ando = 2. The source term is chosen such that the analytical
solution isue, = 4y*(1—y)(0.75+8z2y+8xy?)(x—1)?+(1—y)? (see Figure 12,
left).

Figure 12: Exact solution to problem (43) completed withi@ilet/Robin (left)
and Neumann/Neumann (center) BC, and to the supercontdesgticase (right).

The results of the convergence analysis are summarizedumd-i.3 and quan-
tified in Table 1 and 2, where we provide the global etreru”, for the L?(2)- and
the H'(Q2)-norm, respectively. The step sizeis gradually halved starting from
the valued.1; conversely, the modal index is doubled, starting from glsimode
throughm = 32. Forh small enough, modal approximation slightly outperforms
the expected convergence rates (error reduction facterakayuts and t02.5 vs.
the expected and?2). This is most likely related to the regularity of the soduti
For the largest values @f we have a stagnation of the error in tHé-norm. The
error dependence dncan be evidenced only for high valuesaf as the modal
error dominates.

Neumann/Neumann

We test the results of Theorem 7 for Neumann boundary datahispurpose, we
replace in (43) the conditions dh, ., andl’,, 4o, With @ homogeneous Neumann
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Figure 13: 2D Dirichlet/Robin BC. Convergence of the globalbr for different
discretization stepsL?(£2)-norm (left) andH ' (Q2)-norm (right).

h=0.1 h=0.05 h=0.025 h=0.0125 h=0.00625

m

1 2.32e-01 2.32e-01 2.32e-01 2.32e-01 2.32e-01
2 9.09e-02 9.08e-02 9.08e-02 9.08e-02 9.08e-02
4
8

2.01e-02 2.00e-02 2.00e-02 2.00e-02  2.00e-02
4.23e-03 3.82e-03 3.79e-03 3.79e-03  3.79e-03
2.00e-03 8.22e-04 6.91e-04 6.83e-04 6.82e-04

16
2 1.88e-03 4.74e-04 1.64e-04 1.24e-04 1.21e-04

w

Table 1: 2D Dirichlet/Robin BC: global error with respecttb@ 2.2 (2)-norm.

data, while preserving the condition by, and the free-flux condition an,,;. The
exact solution reads now, = y?(1 — y)? exp (sin(20y*(1 — y)?(z — 1)?)) (see
Figure 12, center). Theorem 7 predicts ordeand 3 with respect to the ?(12)-
and theH! (Q2)-norm, respectively. In Figure 14 we provide the plot of thabgl
error as a function ofn and for decreasing values &f The plots associated
with different mesh sizes are perfectly overlapped uhtileducated modes are
used. The error stagnates except for the smallest valuessbbwing a dominance
of the finite element discretization error. For= 0.0125, 0.00625, 0.003125,
the L2(Q)-norm of the error shows the expected order of convergenbée the
choicesh = 0.00625, h = 0.003125 show the rate predicted by Theorem 7 for the

H'(Q)-norm. Finally, as for the previous boundary data, Hhg(2)-norm exhibits
a minor sensitivity to the step size

Compatible conditions

In this test case we solve problem (43) by assignhing homamenBirichlet bound-
ary conditions o'y, ., U 'y down- Thus, the exact solution coincides with, =
y*(1 — y)*e®(z — 1)% (see Figure 12, right). The peculiar feature of this functio
is that it satisfies compatible boundary conditions. Inipalar, the Laplacian of;
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m h=0.1 h=0.05 h=0.025 h=0.0125 h=0.00625
1 1.45e+00 1.45e+00 1.45e+00 1.45e+00 1.45e+00
2 8.77e-01 8.74e-01 8.73e-01 8.73e-01  8.73e-01
4 3.55e-01 3.45e-01 3.43e-01 3.42e-01 3.42e-01
8 1.56e-01 1.33e-01 1.27e-01 1.25e-01 1.25e-01
16 1.04e-01 6.45e-02 5.01e-02 4.58e-02  4.49e-02
32 9.54e-02 4.93e-02 2.79e-02 1.93e-02 1.69e-02

Table 2: 2D Dirichlet/Robin BC: global error with respectth@ H*(€2)-norm.
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Figure 14: 2D Neumann/Neumann BC. Convergence of the glabait for differ-
ent discretization steps:2-norm (left) andH ! (Q2)-norm (right).

is identically equal to zero o, ., andI'y, 4oun- FOr such a function, we expect a
superconvergent trend when evaluating the global errdr reipect to thd.?(Q2)-
and theH ! (Q2)-norm, consistently with the results in Theorem 6. We confinia
behavior in Figure 15. The convergence rate for BR&?)-norm is about four, as
stated in (37), forh sufficiently small. For thel/!(2)-norm finite element error

induces stagnation, preventing to appreciate the expeawteldl error convergence
rate.

w2 E ‘ El 10 —o—h=0.1
LN I NS —=h=0.05
10 107 e h=0.025
1074 103 F —+—h=0.0125
o £ - E —+—h=0.00625
R U =0 ~&-h=0.003125
§ £ 8 £ -@-order 3
=} —6 [ B -5 L
| 1070 & 1077k -e-order 4
10°7E 10-6 |
r F o,
107°E 1077
F E -
107k, | 1078 |
10° 10! 100 10!

Figure 15: 2D compatible BC. Convergence of the global eiwodifferent dis-
cretization stepsL?(Q2)-norm (left) andH ! (Q2)-norm (right).
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5.4.2 The 3D case

We extend the numerical investigation on the convergenteectaaracterizing the
e-HiMod approach to a 3D setting, in particular by focusimgtioe L2 (£2)-norm.
As for the 2D case, we consider different choices for the damnconditions to be
assigned oiir',.

Dirichlet

We solve problem (9) on a slab with= (5,1,1)” ando = 3. To begin with, we
assign homogeneous Dirichlet data on the whgjg while we assign a Dirichlet
data onl’; and homogeneous Neumann boundary conditiong-orin particular,
we select the source term and the Dirichlet conditio grso that the exact solu-
tion isuee (2,9, 2) = 107y(0.1 — y)2(0.1 — 2)(z — 0.2)% exp(2y2(0.2 — z)?). As
for the 2D analysis, we make different choices for the (unifpspacing step along
the supporting fibef2; o and then, for each selectéd we gradually increase the
number of modal functions.

Figure 16, left shows the trend of the global error for fiveichs of h. The
modal order of convergence predicted for th&2)-norm by the theory in Sec-
tion 4 is one. This is approximatively what we infer from tresults when the
finite element error does not dominate.

. . . | . . .
100-° 10 1045 100 10t 1012
m m

—e—h=0.2
—m—h=0.1
—e—h=0.05
——h=0.025
—+—h=0.0125
-e-order 1

- & -order 2

Error L?
=
S
A

| | |
10 10! 101
m

Figure 16: 3D convergence analysis of the global error vatipect to thd.?(€2)-
norm and for different discretization steps: Dirichleft)eDirichlet/Robin (center)
and Robin (right) BC.
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Dirichlet/Robin

We solve on the cub@ = (0,0.1)3 the standard Poisson problem by assigning
a homogeneous Dirichlet data oy, ,,,, the homogeneous Robin conditi@fu -

n + 3.345u = 0 on L'y, je s, Doy righe @NALy, gown. The source term is selected
such that the exact solution coincides with.(z,y, 2) = 10°(0.1 — z)?2(0.1 —
z)exp (70y?/(zz + 1) — 140y /(0.3(zz + 1)) — 3.345(0.1 — 2y)?/(0.4p1)). As
shown in Figure 16, center the?(Q) norm of the error has a rate very similar
to the fully Dirichlet case, showing how the educated apginodoes successfully
extend the results found for the Dirichlet case. Rosufficiently large and foh
small enough, we obtain the expected rate of convergence.

Robin

We modify the previous test case by assigning now a full Rbbimdary condition
Vu - n + 4.456u = 0 on the entire lateral surface. We observe more sensitivity t
the selected step sizewith respect to the previous choices of boundary conditions
(compare the panel in Figure 16, right with the two others).clieck the modal
convergence, we analyze the plots associated wvith0.0125 with essentially the
expected linear rate.

5.5 The backward facing step test case

We conclude this section by analyzing the robustness ofrbygoged approach on
a more complex geometry, both in 2D and in 3D.

5.5.1 The 2D case

We identify the computational domaihwith the L-shaped portion of the Cartesian
plane given by, \ €, with Q, = (0,2) x (—1,1) and€; = (0,1) x (-1,0).
Moroever, we distinguish the following portions of the bdarny 02: T';,, = {0} x
[0,1] andT',,; = {2} x [—1,1] coinciding with the inlet and the outlet border,
respectivelyl'y, ., = [0, 2] x {1} andl'y, gown = [1,2] x {—-1}U {1} x [—1,0] to
denote the upper and lower portion of the boundary, resfdytiOn this domain
we solve the ADR problem

—Au+03-Vu=f inQ

u=y(l-y) onl',

Vu-n=20 onTy.: (44)
Vu-n+u=0 onTl'y up

u=0~0 onI'y down,

where the source term i8(z,y) = 10x¢,ue, (z,y), with G; = {(z,y) € Q :
(r—1.5)240.4(y —0.25)%2 < 0.01} andGs = {(z,y) € Q: (x—1.5)2+0.4(y —
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Figure 17: 2D backward facing step: advective figldk-component (top left)
and y-component (top right); reference FE1 solution (botteft); piecewise e-
HiMod(8, 20) reduced solution (bottom right).

0.75)2 < 0.01}, while the advective fiel@ is the solution to the Stokes problem

—-V.-o(B,p)=0 inQ

-V-8=0 in Q

o(B,p)n = 5n onT;, (45)
o(B,p)n = O0n onT,.:
\/8 =0 onl'y, = Fw,up U I"w,alowm

with o = (VB 4+ VBT) — pI the stress rate tensor depending on the velg@ity
and on the pressung and withv > 0 the kinematic viscosity and the identity
matrix. The field3 has been approximated on the same mesh employed to compute
the solution of (44) and via a P2-P1 finite element schemeRgpee 17, top ).

Figure 17, bottom left shows the contour plots of the FE1 exiprate solution
computed on a structured 2D mesh of uniform step sizes- h, = 0.01. To ap-
proximate problem (44) via an e-HiMod procedure, we resothé piecewise Hi-

Mod formulation[7]. Following this approach, we split thensputational domain
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into two subregions to apply a standard HiMod reduction arhed them. More
precisely we subdivide the L-shaped domain into the subdwth = (0, 1)? and
Qy = (1,2) x (—1,1). Following [7, 12], we resort to a domain decomposition
iterative method. In particular, we adopt a relaxed DigttNleumann scheme in
correspondence with the interfaCe= {1} x (0, 1) betweerf2; and(2,. We employ

8 and20 educated modal functions ¢ty and(),, respectively while introducing a
uniform subdivision along the supporting fil@fp of steplengthh, = 0.01.

The e-HiMod8, 20) reduced solution in Figure 17, bottom right compares very
well with the full finite element solution (yet with a signiéint reduction of dof)
even in capturing transverse dynamics induced by the gepntet would be
dropped in a purely 1D model.

5.5.2 The 3D case

We solve on the 3D domaiil = Qg \ Qr,, with Qg = (0,2) x (0,1) x (0,2) and
Qr, = (0,1)? x (1,2), the advection-diffusion problem

—Au+B-Vu=f 1inQ

u=gq onl’;, (46)
Vu-n=20 only.:
u=20 only,

where, for the sake of simplicity, we select a constant figlds (20, 0, 7)T, and
withT; = {z =0} x (0,1)%, T2 = {z =2} x (0,1) x (0,2), ['y, = 9Q\ (I U
Fout). The forcing term is localized in correspondence with tiegeerical regions,
being f(x,y, z) = 20xs,us,0s5 (T, ¥, 2), With S; = {(z,9,2) € Q: (x — 0.7)% +
(y —0.3)2 4+ (2 — 0.3)2 < 0.1}, S5 = {(z,9,2) € Q: (z — 1.3)2 + (y — 0.5)> +
(2—0.5)2<0.1}, 83 = {(z,9,2) € V: (z —1.2)> + (y — 0.6)> + (2 — 1.5)2 <
0.1}. Figure 18, left shows the contour plot of the reference 3 &fproximation
computed on a structured mesh of uniform step sizes= h, = h, = 1/30. In
particular, the plot refers to the transverse section-at0.5.

For HiMod we resort to a piecewise hierarchical model reidacapplied to
the subdomain§2; = (0,1)% andQy = (1,2) x (0,1) x (0,2). We use sinu-
soidal basis functions in a tensor product setting of the LB froblems on each
subdomain. A uniform 1D discretization of step sizg = 1/30 is employed on
the supporting fibef2;p. We consider the two cases of 100 and 200 modes in
the two subdomains. The relaxed Dirichlet/Neumann scheomeerges after a
few iterations and provides the HiMod approximations inuf&gy18, center (for
m = 100) and right (form» = 200). The HiMod100) solution is already com-
parable with the reference one in Figure 18, left despitecka ¢d accuracy along
the edgell = {z = 1} x (0,1) x {# = 1}. The matching of the two reduced
solutions alongF is a challenging task. In fact, the modal functions (@nare
identically equal to zero o(0, 1)? x {z = 1} due to the Dirichlet data, whilst the
modes involved i, are free to assume any value acrs®) x (0,1) x {z = 1}.
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Figure 18: 3D backward facing step, full homogeneous DieicBC: reference
FE1 solution (left); HiModm) reduced solution forn = 100 (center) andn =
200 (right).

As expected, the mismatch between the two approximatianingdihes when we
move away fromE since no boundary data constrains the projection of a HiMod
basis onto the other one. This drawback completely disappelaen dealing with
the HiMod(200) approximation as observed by comparing the contour pldtgin
ure 18, left and right.

Finally, to qualitatively assess the performances of theeatbd HiMod bases,
we modify the boundary data assigned on the fdges= (0,2) x (0,1) x {z = 0}
andFr = (1,2) x (0,1) x {z = 2}, where we enforce now the Robin dafa -
n+4u = 0. We also move the location of the souréesand.S; by centering them
at (1.1,0.5,0.1) and (1.3,0.5,1.5), respectively. The assignment of the Robin
condition and the shift downward ¢k, yields a complex dynamics in the bottom
part of the domain and, in particular, on the faEg, as shown by the contour
plot of the reference FE1 approximation in Figure 20, lafarfsverse section at
y = 0.5). The computational mesh is reported in Figure 19, left. \Ws@rve
the choices made in the previous test case setting for theo#iifdduction and the
domain decomposition scheme, except for the use of a moda bducated with
respect to the Robin conditions. In Figure 20, center artd rge show the contour
plots of the eHiMod100) and eHiMod200). As expected, the accuracy of the
reduced solution improves by increasing the number of éddaaodal functions.

We stress again the point that e-HiMod is not intended toigeoa new 3D
solver, but to give a method for modulating the accuracy liersecondary trans-
verse dynamics, so to be able of covering networks of pip@sdwing simple 1D
models. Nevertheless, this example shows that e-HiMod aak wn nontrivial
geometries yet approaching the full solution in a “psycpalally 1D” framework.
An appropriate selection of the modescan attain the right trade off for working
on networks.
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Figure 19: Computational mesh for the FE solution of the 3[5BBses

-1.0e- - - ¥ - -1.0e-03 002 004 006 8.0e-02
1003 002 004, 006 80e-02 1oioao‘o‘zuq.‘uz‘s”q.pse.ﬁioz 02,008, 94

...........

Figure 20: 3D backward facing step, Dirichlet/Robin BC. &ehce FE1 solution
(left); HiMod(m) reduced solution fom = 100 (left) andm = 200 (right).
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6 Conclusions

The HiMod procedure follows up the idea of combining sepanadf variables
with a diverse numerical approximation to take advantagmfparticular features
of the problem at hand. For problems with a clear 1D mainsirbiee fluid dy-
namics in pipes, the choice of modal approximation for tvarse dynamics is
quite natural. The framework "1D + transverse componengsties several ad-
vantages as for the general structure of the algebraic gyl for the adaptivity
and for the efficiency of the solver. Despite of its simplicgeveral details need to
be understood. In this paper we consider in detail the proloiegeneral boundary
conditions on the wall of the pipes. This is crucial in viewprhctical applica-
tions of the method in particular for fluid-structure intetian problems, where the
effect of the structure on the fluid can be often represengdRidbin boundary con-
ditions on the moving boundaries. We demonstrated thatdghstauction of basis
functions based on the solution of SLE problems providesfi@ttiere approach
for automatically incorporating general boundary cowdis with the same perfor-
mances previously obtained for Dirichlet conditions. Rissiiave been rigorously
proved in view of the SLE approximation theory. We also dietg#some cases that
imply superconvergent results, depending of the type ohldaty conditions and
the regularity of the solution.

We plan to extend this method to more complex problems ireguthcom-
pressible Navier-Stokes equations in both rectilinear@mded cylindrical pipes,
to be applied to simplified models of the human circulatione &so0 intend to
exploit in more detail the computational advantages of thdide pattern of the
linear system obtained by the e-HiMod procedure. This isetqul to even im-
prove the computational advantages of the methodology.
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