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Abstract

In this paper we consider the numerical solution of the three-dimensional
(3D) fluid-structure interaction problem in haemodynamics, in the case of
physiological geometries and data, and finite elasticity vessel deformations.
We introduce new partitioned algorithms and compare their efficiency with
that of existing ones. We also study some new inexact variants, obtained
from semi-implicit approximations, and show that they allow to improve the
efficiency while preserving the accuracy of the related exact (implicit) scheme.
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1 Introduction

To obtain predictive accurate information about the blood fluid-dynamics in the
arteries of the cardiovascular tree, it is necessary to solve in three-dimensional (3D)
realistic geometries a fluid-structure interaction (FSI) problem, that arises from
the interaction between blood and vascular vessel [41, 7, 14, 44, 12, 3, 16, 17].

To capture the complex dynamics, non-linear fluid and structure models have
to be taken into account. This leads to the solution of a complex non-linear coupled
problem, formed by the fluid and the structure subproblems, together with the fluid
domain subproblem when the fluid equations are written in Arbitrary Lagrangian-

Eulerian (ALE) formulation [25, 11]. Efficient numerical strategies are mandatory
to solve such non-linear FSI problem in 3D real geometries and with physiological
data. Only few works have focused on this aspect. We mention [7, 34] among the
monolithic schemes, which build the whole non-linear system, and [30, 21] among
the partitioned schemes, which consist in the successive solution of the subproblems
in an iterative framework (see also [12, 5, 4, 9] in the case of infinitesimal elasticity).

In this work, we focus on the numerical solution of the FSI problem with
partitioned strategies in haemodynamics, when non-linear sub-problems and 3D
real computational domains and physiological data are considered. This problem
is very complex, the main difficulties being:

1. The high added mass effect, due to the similar fluid and structure densities,
which makes very difficult the solution of the FSI problem with partitioned
strategies [8, 20, 40];

2. The treatment of the physical interface conditions, which enforce the conti-
nuity of velocities and normal stresses at the fluid-structure (FS) interface
between the fluid and the structure subproblems;

3. The treatment of the geometrical interface condition, which enforces the
continuity of displacements at the FS interface between the fluid and the
structure domains;

4. The treatment of the constitutive non-linearities in the fluid and the structure
models.

Regarding points 1 and 2, it has been clearly highlighted in several works that
the physical conditions have to be treated implicitly in haemodynamics, due to
the high added mass effect [8, 20, 3, 40]. In particular, in this work we consider
partitioned algorithms based on Robin interface conditions, which have good con-
vergence properties, independent of the added-mass effect [3, 4, 1, 22, 38].

For what concerns point 3, we can distinguish between exact and inexact algo-
rithms. The first group consists in those schemes that satisfy exactly the geomet-
rical interface condition (geometrical exact schemes [23, 7, 13]). On the contrary,
in the geometrical inexact schemes this condition is not satisfied, due to an ex-
plicit treatment of the interface position by extrapolation from previous time steps
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(the so-called semi-implicit schemes [12, 6, 39]), or to an a priori fixed number
of “fixed-point” iterations performed over the interface position [38]. The semi-
implicit schemes have been shown to be stable [37, 43, 12, 39] and accurate [36, 2]
in the case of the linear infinitesimal elasticity.

Regarding point 4, we have to consider the fluid and the structure constitutive
non-linearities. We focus here on partitioned strategies, obtained by the appli-
cation of a suitable linearization of the monolithic system. A first approach of
this type consists in solving the non-linear fluid and structure subproblems in an
iterative framework until convergence of the physical continuity conditions (think
for example to the classical Dirichlet-Neumann scheme) [29, 31, 24, 27, 40]. At
each iteration two non-linear subproblems have to be solved, for example with the
Newton method. In this case, the constitutive non-linearities are treated in an
inner loop with respect to both the physical and the geometrical interface condi-
tions. We refer to these schemes as “classical” partitioned algorithms. A second
strategy considered so far consists in applying the Newton or the approximate-
Newton method (the latter obtained by approximating the tangent operator) to
the monolithic non-linear system (approximate-Newton-based algorithms). In [23],
the author proposed a block-diagonal approximation of the Jacobian, leading to
a partitioned algorithm where all the interface conditions and non-linearities are
treated in the same loop (see also [33, 24, 30, 10, 45]). In [38], the authors con-
sidered alternative approximations of the Jacobian, leading to different, most effi-
cient partitioned algorithms. The general structure of such schemes consists in an
external loop to manage the geometrical interface condition and the constitutive
non-linearities and in an internal one to prescribe the physical interface conditions.

The study of the effectiveness and accuracy of different partitioned schemes to
treat the structure non-linearity for a full non-linear FSI problem in haemodynam-
ics is far to be exhaustive nowadays. The present work aims at providing some
answers in this direction.

The first goal of this paper consists in comparing the performance of different
partitioned algorithms, to understand which are the most effective for 3D real
haemodynamic applications. In particular, we considered three families of schemes:
the “classical” algorithms, the approximate-Newton-based algorithms, a new class
of schemes, obtained by considering fixed point iterations over the geometrical
interface condition (fixed-point-based schemes). For all the three families, we
considered several alternatives, all based on the exchange of Robin conditions
to prescribe the physical interface conditions. We ran each of the considered
scheme on a real 3D geometry with physiological data, with the aim of studying
the efficiency of such schemes for practical purposes. The reported numerical
results show that the double loop approximate-Newton-based schemes are the most
performing, while the classical ones are the slowest.

All the algorithms considered so far solve “exactly” (i.e. up to a given small tol-
erance) the non-linear FSI problem. As already mentioned earlier, in the context
of linear elasticity, semi-implicit approaches which treat explicitly the geometrical
coupling have been proven to be stable and accurate. It is therefore worth asking
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if in haemodynamic applications with finite elasticity one really needs to solve
exactly also the structure non-linearity, or if the latter can be linearized around
a state suitably extrapolated from previous time steps. In particular, here we
propose to solve at each time step a linearized elasticity problem, coupled with
the fluid in a fixed domain, with both the structure linearization point and the
fluid domain extrapolated from previous time steps. This approach would corre-
spond to perform just one approximate-Newton iteration on the monolithic FSI
problem, starting from a well-chosen initial guess. Alternatively, we propose to
run just few Newton iterations at each time step, with the aim of improving the
accuracy. We also consider the inexact variants of the fixed-point-based schemes,
obtained by performing one or few external iterations, where again both the struc-
ture linearization point and the fluid domain are extrapolated from previous time
steps.

The second goal of this work consists in studying the accuracy of such inexact
schemes. When a globally third order accurate time discretization of the FSI
problem is considered, we show numerically on a simple test case that performing
at least two Newton iterations allows to recover a third order convergence in time
even when starting from a first order extrapolation, while one Newton iteration is
enough when starting form a third order extrapolation. We also show that such
schemes are very accurate in the case of a real 3D case, and that they allow to
improve the computational efficiency up to three times.

The outline of the work is as follows. In Section 2 we present the global FSI
problem, its time discretization and a Lagrange multipliers formulation useful to
derive the numerical schemes. In Section 3 we present the exact schemes. In
particular, in Section 3.1 we introduce the classical partitioned algorithms, in
Section 3.2 those based on the approximate-Newton method, and in Section 3.3
the new family based on a fixed-point reformulation of the global FSI problem. In
Section 3.5 we study the efficiency of such schemes by considering a real case in
haemodynamics. Then, in Section 4 we introduce the inexact schemes, both those
derived by approximate-Newton-based methods (Section 4.1) and those derived
by fixed-point-based methods (Section 4.2). Finally, in Section 4.3 we provide the
convergence rates of inexact methods used to solve an analytical test case, and
in Section 4.4 we provide a study on the accuracy and efficiency of such schemes
applied to a real haemodynamic case.

2 The FSI problem and its time discretization

Referring to the fluid domain Ωt
f like the one represented in Figure 1, left, we

denote, for any function v living in the current fluid configuration, by ṽ := v ◦ A
its counterpart in the reference configuration Ω0

f , where A is the ALE map. By

considering instead the structure domain Ωt
s like the one represented in Figure 1,

right, we denote, for any function g defined in the current solid configuration, by
g̃ := g ◦ L its counterpart in the reference domain Ω0

s, where L is the Lagrangian
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map. The strong formulation of the FSI problem, including the computation of

Figure 1: Representation of the domain of the FSI problem: fluid domain on the
left, structure domain on the right.

the ALE map reads then as follows:

1. Fluid-Structure problem. Given the (unknown) fluid domain velocity um

and fluid domain Ωt
f , find, at each time t ∈ (0, T ], fluid velocity uf , pressure

pf and structure displacement ηs such that




ρf
DAuf

Dt
+ ρf ((uf − um) · ∇)uf −∇ · T f (uf , pf ) = ff in Ωt

f ,

∇ · uf = 0 in Ωt
f ,

uf =
∂ηs

∂t
on Σt,

T s(ηs)n − T f (uf , pf )n = 0 on Σt,

ρs
∂2η̃s

∂t2
−∇ · T̃ s(η̃s) = f̃ s in Ω0

s,

(1)
where ρf and ρs are the fluid and structure densities, µ is the constant blood
viscosity, ff and f s the forcing terms, n the unit normal exiting from the

structure domain, and DA

Dt denotes the ALE derivative;

2. Geometry problem. Given the (unknown) interface structure displacement
η̃s|Σ0 , find the displacement of the points of the fluid domain ηm such that

{
−△η̃m = 0 on Ω0

f ,

η̃m = η̃s on Σ0,
(2)
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and then find accordingly the fluid domain velocity ũm := ∂eηm

∂t , the ALE
map and the new points xt

f of the fluid domain by moving the points x0
f of

the reference domain Ω0
f :

A(x0
f ) = xt

f = x0
f + η̃m.

In the previous problem, T f (uf , pf ) is the Cauchy stress tensor related to a

homogeneous, Newtonian, incompressible fluid, whilst T̃ s(η̃s) and T s(ηs) are the
first Piola-Kirchhoff and the Cauchy stress tensors of the solid, respectively, de-
scribing the structure problem. The two matching conditions enforced at the FS
interface are the continuity of velocities (1)4 and the continuity of normal stresses
(1)5 (physical interface conditions), whilst condition (2)2 enforces the continuity at
the FS interface of displacements of the fluid and structure subdomains (geomet-
rical interface condition). Equations (1) and (2) have to be endowed with suitable
boundary conditions on Ωt

f \ Σt and Ω0
s \ Σ0, and with suitable initial conditions.

Let ∆t be the time discretization parameter and tn := n ∆t, n = 0, 1, . . .. For
a generic function z, we denote with zn the approximation of z(tn). We consider
Backward Differentiation Formulae of order p (BDFp) of the form

Dpv
n+1

∆t
:=

1

∆t

(
β0 vn+1 −

p∑

i=1

βi v
n+1−i

)
=

∂v

∂t
(tn+1) + O(∆tp),

D2
pv

n+1

∆t2
:=

1

∆t2

(
ξ0 vn+1 −

p+1∑

i=1

ξi v
n+1−i

)
=

∂2v

∂t2
(tn+1) + O(∆tp),

for suitable coefficients βi and ξi [38, 40]. We report here the formulation of the
time discretization of order p of problem (1)-(2).

1. Fluid-Structure problem. Given the (unknown) fluid domain velocity un+1
m

and the fluid domain Ωn+1
f and the solution at previous time steps, find the

fluid velocity un+1
f , the pressure pn+1

f and the structure displacement ηn+1
s

such that




ρf

Dp un+1
f

∆t
+ ρf ((un+1

f − un+1
m ) · ∇)un+1

f −∇ · T f (un+1
f , pn+1

f ) = fn+1
f in Ωn+1

f ,

∇ · un+1
f = 0 in Ωn+1

f ,

un+1
f = un+1

s on Σn+1,

T s(η
n+1
s )n − T f (un+1

f , pn+1
f )n = 0 on Σn+1,

ρs

D2
p η̃n+1

s

∆t2
−∇ · T̃ s(η̃

n+1
s ) = f̃

n+1

s in Ω0
s.

(3)

In problem (3) we have also introduced the structure velocity un
s :=

Dpηn
s

∆t .

2. Geometry problem. Given the (unknown) interface structure displacement
η̃n+1

s |Σ0 , solve a harmonic extension problem
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{
−△η̃n+1

m = 0 in Ω0
f ,

η̃n+1
m = η̃n+1

s on Σ0,
(4)

and then find accordingly the discrete fluid domain velocity ũn+1
m and the points

xn+1
f of the new fluid domain by

ũn+1
m :=

Dp η̃n+1
m

∆t
, xn+1

f = x0
f + η̃n+1

m . (5)

We consider here an equivalent formulation of (3) and (4) based on the intro-
duction of three Lagrange multipliers living at the FS interface, representing the
fluid and structure normal stresses λf and λs, and the normal derivative of the
fluid mesh displacement λm [38]. For the sake of notation we remove the temporal
index n+1. With ΣD

f , ΣD,0
s and ΣD

m we denote the parts of the boundary where
Dirichlet boundary conditions are prescribed. Then, we define the following spaces

Vf := {v ∈ H1(Ωf ) : v|ΣD
f

= 0}, Q := L2(Ωf )1,

Vs := {v ∈ H1(Ω0
s) : v|

ΣD,0
s

= 0}, Vm := {v ∈ H1(Ω0
f ) : v|

ΣD,0
m

= 0}.

Let vf := (uf , pf ) collect the fluid unknowns and F : V f × Q × V m → (V f ×
Q)′ be the fluid operator. Analogously, for the structure subproblem we define
the operator S : V s → (V s)

′, and for the harmonic extension we introduce the
operator H : V m → (V m)′. We then rewrite problem (3)-(4) as follows





H η̃m + γ̃∗
mλ̃m = 0 in (V m)′ ,

γ̃mη̃m = γ̃sη̃s on Σ0,

F(vf , um) + γ̃∗
f λ̃f = Gf in (V f × Q)′ ,

αf γ̃fvf + λ̃f = αf γ̃s
Dp eηs

∆t − λ̃s on Σ0,

αsγ̃s
Dp eηs

∆t + λ̃s = αsγ̃fvf − λ̃f on Σ0,

S(η̃s) + γ̃∗
s λ̃s = Gs in (V s)

′ ,

(6)

where γ̃f : V f × Q → H1/2(Σ0), γ̃s : V s → H1/2(Σ0), γ̃m : V m → H1/2(Σ0)
are trace operators and γ̃∗

f , γ̃∗
s , γ̃∗

m are their adjoints, Gs and Gf account for the
right hand sides, (6)2 is the geometrical interface condition, and the interface
physical conditions (6)3−4 are linear combinations of conditions (3)3−4 through
coefficients αf and αs. This will allow to obtain partitioned algorithms based on
Robin interface conditions, which have good convergence properties, independent
of the added-mass effect when the parameters αf and αs are suitably chosen [3, 4,
1, 22].

1Since we solve the FSI problem in a partitioned way with Robin conditions at the FS interface
(see (6)), the pressure is always defined and L

2(Ωf ) is the suitable pressure space for the weak
formulation.

7



2.1 Outlook of iterative algorithms

As discussed above, we have to face three sources of coupling and non-linearities,
namely

(G) the geometrical interface condition;

(C) the constitutive non-linearities;

(P) the physical interface conditions.

We give here an outlook of the partitioned algorithms considered in the following
sections. In principle, our model algorithm will consist of three nested loops, one
for each of the three sources of coupling and non-linearities summarized above.
Just to fix the ideas, we suppose here that the external loop will manage the geo-
metrical interface condition, the intermediate one the constitutive non-linearities
and the internal one the physical interface conditions. Our model algorithm is
then of the type

while (geometrical interface condition not satisfied) do

...

while (constitutive non-linearities not satisfied) do

...

while (physical interface conditions not satisfied) do

...

end

end

end

We call this algorithm G∞-C∞-P∞, where ∞ means that we let the iterations
continue until convergence. Starting from this model scheme, we can obtain many
other algorithms as follows.

1. The order of the loops could be exchanged, leading to different schemes
(G∞-P∞-C∞, ...);

2. We can merge two or more loops. For example, starting from the model
algorithm G∞-C∞-P∞, we could decide to treat in the same loop the ge-
ometrical interface condition and the constitutive non-linearities, obtaining
the algorithm GC∞-P∞.

3. The external loop could be solved not until convergence, but performing just
few external iterations. In this case, such algorithms have to be intended
as inexact, since the external stopping criterion is not checked and satisfied.
For example, starting from our model scheme, we could decide to do just 2
external iterations, obtaining the algorithm I-G2-C∞-P∞, where we put a
letter I at the beginning to emphasize that such scheme is inexact.
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4. In the case of inexact schemes where only few (even one) iterations are per-
formed in the external loop, we could consider starting the iterations from
an initial guess obtained by a p−th order extrapolation in time. In this case,
we add the letter E after the number of iterations of the loop involving the
extrapolation. For example, starting from the model algorithm with just 1
external iterations, if we decided to use an extrapolation of the interface po-
sition as initial guess, we name the corresponding scheme as I-G1E-C∞-P∞.
In this work, we have always used the same order p for the extrapolation as
the order of the temporal scheme.

3 Exact schemes

We discuss here the family of exact schemes, that is schemes which satisfy ex-
actly, up to given tolerances, the three interface conditions and the constitutive
non-linearities. In particular, we describe the classical schemes, the approximate-
Newton-based scheme and the new family of fixed-point-based scheme. Then, in
Section 3.5, the performance of these schemes will be compared for the first time
for a real haemodynamic case, by using an exponential law for the structure strain
energy.

3.1 Classical scheme

The first strategy corresponds to simple iterations at each time step between the
fluid geometry, the fluid and the structure subproblems (see [24, 29, 31, 27] for
the Dirichlet-Neumann case). Here, we present the Robin-Robin version of such
schemes introduced in [40]. In particular, we have the following

Algorithm 3.1 GP∞-C∞ scheme.

Given the solution at iteration k, solve until convergence

1. The fluid geometric problem

{
H η̃k+1

m + γ̃∗
mλ̃

k+1

m = 0 in (V m)′ ,

γ̃mη̃k+1
m = γ̃sη̃

k
s on Σ0,

(7)

2. The (non-linear) fluid problem in ALE configuration with Robin interface
condition

{
F(vk+1

f , uk+1
m ) + γ̃∗

f λ̃
k+1

f = Gf in
(
V f (ηk+1

m ) × Q(ηk+1
m )

)′
,

αf γfvk+1
f + λk+1

f = αfγs
Dpηk

s

∆t − λk
s on Σk+1;

(8)
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3. The (non-linear) structure problem with Robin interface condition
{

S(η̃k+1
s ) + γ̃∗

s λ̃
k+1

s = Gs in (V s)
′ ,

αs γ̃s
Dpeηk+1

s

∆t + λ̃
k+1

s = αsγ̃fvk+1
f − λ̃

k+1

f on Σ0;

4. Relaxation step
η̃k+1

s = ω η̃k+1
s + (1 − ω)η̃k

s ,

where ω ∈ (0, 1] is a relaxation parameter.

At step 2. we have highlighted the dependence of V f and Qf on ηk+1
m . We monitor

the residuals of conditions (7)2 and (8)2 and stop the iterations when such residuals
are below a prescribed tolerance.

At each iteration of the previous algorithm, the fluid and structure subproblems
have to be solved with a proper strategy to handle the non-linearities, such as with
Picard iterations for the fluid and Newton iterations for the structure. Algorithm
3.1 has a double-loop nature and, according to the notation introduced in Section
2.1, it will denoted in what follows as GP∞-C∞.

3.2 Approximate-Newton-based schemes

We present here the prototype of such family of schemes, which combines an
approximate-Newton scheme for the monolithic FSI problem with Robin-Robin
subiterations for the linearized problem. This is given by the following

Algorithm 3.2 GC∞-P∞ scheme

[External loop - index k]. Given the solution at iteration k, solve until conver-
gence

1. The harmonic extension
{

H η̃k+1
m + γ̃∗

mλ̃
k+1

m = 0 in (V m)′ ,

γ̃mη̃k+1
m = γ̃sη̃

k
s on Σ0,

(9)

obtaining the new fluid domain and fluid domain velocity;

2. The linearized FSI problem. For its solution, we consider the following par-
titioned algorithm:

[Internal loop - index l] Given the solution at subiteration l − 1, solve at
current subiteration l until convergence

(a) The fluid subproblem with a Robin condition at the FS interface




∇̂vf
F(uk

f − uk+1
m )vk+1

f,l + γ̃∗
f λ̃

k+1

f,l = Gf in
(
V f (ηk+1

m ) × Qf (ηk+1
m )

)′
,

αfγfvk+1
f,l + λk+1

f,l = αfγs
Dp η

k+1

s,l−1

∆t − λk+1
s,l−1 on Σk+1;

(10)
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(b) The structure subproblem with a Robin condition at the FS interface





∇ηS(η̃k
s) δη̃k+1

s,l + γ̃∗
sδλ̃

k+1

s,l = Gs − S(η̃k
s) − γ̃∗

s λ̃
k

s in (V s)
′ ,

αsγ̃s

Dp η̃k+1
s,l

∆t
− λ̃

k+1

s,l = αsγ̃f ṽk+1
f,l − λ̃

k+1

f,l on Σ0;

(11)

(c) Relaxation step

η̃k+1
s,l = ω η̃k+1

s,l + (1 − ω)η̃k+1
s,l−1,

where ∇̂vf
F is the Oseen approximation of ∇vf

F with the convective term high-
lighted in the brackets. Such algorithm is obtained by applying the approximate-
Newton method to the monolithic non-linear system (6), by considering as approx-
imation of the Jacobian




H γ̃∗
m

γ̃m γ̃∗
s

∇umF ∇vf
F γ̃∗

f

αf γ̃f I I −αf
βs,0

∆t γ̃s

−αsγ̃f I I αs
βs,0

∆t γ̃s

γ̃∗
s ∇ηsS




,

the following expression

ĴDL =




H γ̃∗
m

γ̃m

∇̂vf
F γ̃∗

f

αf γ̃f I I −αf
βs,0

∆t γ̃s

−αsγ̃f I I αs
βs,0

∆t γ̃s

γ̃∗
s ∇ηsS




,

which neglects the term ∇umF involving the shape derivatives and the term γ̃∗
s

which couples the fluid geometry and the structure problems [38].
This algorithm has a double-loop nature as Algorithm 3.1, however in this

case the physical interface conditions are managed in the internal loop (GC∞-P∞
scheme). For the external loop, we monitor the residual of equation (9)2 and the
residuals related to the convergence of the non-linear terms in the fluid and in the
structure subproblems. For the internal loop, we monitor the residual of equation
(10)2. In any case, we stop the external and internal iterations when the related
residuals are below a prescribed tolerance.

Another scheme of this family, obtained by considering a different approxima-
tion of the Jacobian, is the so-called Single-loop (GCP∞) scheme [23, 33, 30, 38],
where all the non-linearities and interface conditions are treated in the same loop.
Such algorithm is obtained by applying the approximate-Newton method to the
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monolithic non-linear system (6), by considering the following approximate Jaco-
bian

ĴSL =




H γ̃∗
m

γ̃m

∇̂vf
F γ̃∗

f

αf γ̃f I

−αsγ̃f I I αs
βs,0

∆t γ̃s

γ̃∗
s ∇ηsS.




.

Single-loop scheme is also obtained by Algorithm 3.2 by performing just 1 internal
iteration, however monitoring the residual of equation (10)2.

3.3 Fixed-point-based schemes

In this section we present new algorithms, firstly proposed in [42], to solve the
coupled FSI problem.

3.3.1 The fixed-point problem

We start from the Lagrange multipliers formulation (6) and we rewrite it as a
fixed-point problem over the interface position. To this aim, we introduce the
variable

ξ̃s := γ̃sη̃s,

that represents the solid displacement at the FS interface. Moreover, we define
the following operators:

- The harmonic extension operator

H† : H1/2(Σ̃) → Ṽ m × Ṽ m, (η̃m, ũm) = H†ξ̃s,

defined as follows

(η̃m, ũm) = H†ξ̃s :





H η̃m + γ̃∗
mλ̃m = 0 in (Ṽ m)′,

γ̃mη̃m = ξ̃s on Σ̃,

ũm =
Dpη̃m

∆t
in Ω̃f ;

- The operator that represents the interaction between the fluid and the solid
problems in a known given fluid domain,

FS† : V m × V m → Ṽ s, η̃s = FS†(ηm, um).

Given ηm and um, this operator is defined as follows

η̃s = FS†(ηm, um) :





F(vf , um) + γ̃∗
f λ̃f = Gf in (V f (ηm) × Qf (ηm))′,

αf γ̃f ṽf + λ̃f = αf γ̃s
Dp eηs

∆t − λ̃s on Σ̃,

αsγ̃s
Dp eηs

∆t + λ̃s = αsγ̃f ṽf − λ̃f on Σ̃,

S(η̃s) + γ̃∗
s λ̃s = Gs in (Ṽ s)

′.

12



We can now introduce a map φ : H1/2(Σ̃) → H1/2(Σ̃), defined as

φ := γ̃sFS†(H†(ξ̃s)), ξ̃s
H†

−→ (η̃m, ũm)
FS†

−→ η̃s
eγs
−→︸ ︷︷ ︸

φ

ξ̃s,

and then write problem (6) as a fixed-point problem: Find ξ̃s such that

ξ̃s = φ(ξ̃s). (12)

3.3.2 The numerical algorithms

Problem (12) can be solved with a fixed-point iteration method:

Given ξ̃
0

s, ξ̃
k+1

s = φ(ξ̃
k

s), k ≥ 0. (13)

This iterative algorithm written in extended form reads as follows:

Given the solution ξ̃
k

s at iteration k, solve at the current iteration k + 1 until

convergence

1. The fluid geometric problem

{
H η̃k+1

m + γ̃∗
mλ̃

k+1

m = 0 in (Ṽ m)′,

γ̃mη̃k+1
m = ξ̃

k

s on Σ̃,

obtaining the new fluid domain and fluid domain velocity;

2. The non-linear FSI problem defined in a known fluid domain





F(vk+1
f , uk+1

m ) + γ̃∗
f λ̃f = Gf in (V f (ηk+1

m ) × Qf (ηk+1
m ))′,

αf γ̃f ṽk+1
f + λ̃

k+1

f = αf γ̃s
Dp eηk+1

s

∆t − λ̃
k+1

s on Σ̃,

αsγ̃s
Dp eηk+1

s

∆t + λ̃
k+1

s = αsγ̃f ṽk+1
f − λ̃

k+1

f on Σ̃,

S(η̃k+1
s ) + γ̃∗

s λ̃
k+1

s = Gs in (Ṽ s)
′;

(14)

3. The solid displacement is then restricted to the interface Σ̃ and updated, in

case, with a relaxation step

ξ̃
k+1

s = ωG γ̃sη̃
k+1
s + (1 − ωG)ξ̃

k

s ,

where ωG ∈ (0, 1] is a relaxation parameter.

�

The second step of the previous algorithm (problem (14)) is a coupled FSI
problem solved in a known fluid domain (obtained thanks to ηk+1

m ), but where

13



the constitutive non-linearities are still present. Therefore, to solve this problem
we have to manage in an internal loop both such non-linearities and the physi-
cal interface conditions. To do this, we consider an approximate-Newton method.
Different approximate Jacobians lead to different algorithms, which are presented
in what follows.

1. Using a single internal loop - G∞-CP∞ scheme. In this case, we apply the
approximate-Newton method to system (14), with the following approximation of
the Jacobian

P̂1 =




∇̂vf
F γ̃∗

f

αf γ̃f I

−αsγ̃f I I αs
βs,0

∆t γ̃s

γ̃∗
s ∇ηsS


 . (15)

This scheme then reads as follows

Algorithm 3.3 G∞-CP∞ scheme

[External loop - index k]. Given the solution ξ̃
k

s at iteration k, solve at the
current iteration k + 1 until convergence

1. The fluid geometric problem

{
H η̃k+1

m + γ̃∗
mλ̃

k+1

m = 0 in (Ṽ m)′,

γ̃mη̃k+1
m = ξ̃

k

s on Σ̃;
(16)

obtaining the new fluid domain and fluid domain velocity.

2. The FSI problem in a known given fluid problem. For its solutions, we con-
sider the following approximate-Newton-based partitioned algorithm:

[Internal loop - index j] Given the solution at subiteration j − 1, solve at
the current subiteration j until convergence

(a) The fluid subproblem with a Robin condition at the FS interface




∇̂vf
F(uk+1,j−1

f − uk+1
m )v

k+1,j
f + γ̃∗

f λ̃
k+1,j

f = Gf in (V f (ηk+1
m ) × Qf (ηk+1

m ))′,

αfγfv
k+1,j
f + λ

k+1,j
f = αfγs

Dp η
k+1,j−1
s

∆t − λk+1,j−1
s on Σk+1,

(17)

(b) The structure subproblem with a Robin condition at the FS interface





∇ηsS(η̃k+1,j−1
s ) δη̃k+1,j

s + γ̃∗
sδλ̃

k+1,j

s = Gs − S(η̃k+1,j−1
s ) − γ̃∗

s λ̃
k+1,j−1

s in (Ṽ s)
′,

αsγ̃s
Dp η̃k+1,j

s

∆t
− λ̃

k+1,j

s = αsγ̃f ṽ
k+1,j
f − λ̃

k+1,j

f on Σ̃.

14



(c) Relaxation step

η̃k+1,j
s = ωP η̃k+1,j

s + (1 − ωP )η̃k+1,j−1
s ,

where ωP ∈ (0, 1] is a relaxation parameter.

3. The solid displacement is then restricted to the interface Σ̃

ξ̃
k+1

s = ωG γ̃sη̃
k+1
s + (1 − ωG)ξ̃

k

s ,

where ωG ∈ (0, 1] is a relaxation parameter.

�

To stop the external iterations, we monitor the residual of condition (16)2,
while to stop the internal iterations we monitor the residual of condition (17)2 and
the residuals related to the convergence of the non-linear terms in the fluid and in
the structure subproblems.

Remark 3.1 G∞-CP∞ algorithm has a double loop structure, as GC∞-P∞ de-
scribed in Algorithm 3.2. The difference with that algorithm consists in the fact
that there the structure Jacobian was updated just at each external iteration, while
here it is updated at each internal iteration.

2. Using two nested internal loops - G∞-C∞-P∞ scheme. In this case, we consider
two nested loops to solve the FSI problem (14): an intermediate one to manage the
constitutive non-linearities and an internal one to prescribe the physical interface
conditions. This corresponds to use

P̂2 =




∇̂vf
F γ̃∗

f

αf γ̃f I I −αf
βs,0

∆t γ̃s

−αsγ̃f I I αs
βs,0

∆t γ̃s

γ̃∗
s ∇ηsS


 ,

as approximate Jacobian for the approximate-Newton method applied to prob-
lem (14). At each approximate-Newton iterations, we have a fully linearized FSI
problem. This can be solved with a block-Gauss-Seidel preconditioner which has
formally the same expression of (15), but where the structure Jacobian is built
differently, as it will be clear by Remark 3.2. We have then the following

Algorithm 3.4 G∞-C∞-P∞ scheme

[External loop - index k]. Given the solution ξ̃
k

s at iteration k, solve at the
current iteration k + 1 until convergence
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1. The fluid geometric problem

{
H η̃k+1

m + γ̃∗
mλ̃

k+1

m = 0 in (Ṽ m)′,

γ̃mη̃k+1
m = ξ̃

k

s on Σ̃;
(18)

obtaining the new fluid domain and fluid domain velocity.

2. The FSI problem in a known given domain. For its linearization, we consider
the following approximate-Newton iterations:

[Intermediate loop - index j] Given the solution at subiteration j − 1,
solve at the current subiteration j until convergence




∇̂vf
F(uk+1,j−1

f − uk+1
m )v

k+1,j
f + γ̃∗

f λ̃
k+1,j

f = Gf in (V f (η̃k+1
m ) × Qf (η̃k+1

m ))′,

αfγfv
k+1,j
f + λ

k+1,j
f = αfγs

Dp η
k+1,j
s

∆t − λk+1,j
s on Σk+1,

αsγ̃s
Dp η̃k+1,j

s

∆t
− λ̃

k+1,j

s = αsγ̃f ṽ
k+1,j
f − λ̃

k+1,j

f on Σ̃,

∇ηsS(η̃k+1,j−1
s ) δη̃k+1,j

s + γ̃∗
sδλ̃

k+1,j

s =

Gs − S(η̃k+1,j−1
s ) − γ̃∗

s λ̃
k+1,j−1

s in (Ṽ s)
′.

(19)
At each iteration of the intermediate loop this problem is still coupled

through the physical interface conditions. For this reason we consider a
Robin-Robin partitioned algorithm for its solution:

[Internal loop - index l] Given the solution at subiteration l − 1, solve at
the current subiteration l until convergence

(a) The fluid subproblem with a Robin condition at the FS interface





∇̂vf
F(uk+1,j−1

f − uk+1
m )v

k+1,j
f,l + γ̃∗

f λ̃
k+1,j

f,l = Gf in
(
V f (η̃k+1

m ) × Qf (η̃k+1
m )

)′
,

αfγfv
k+1,j
f,l + λ

k+1,j
f,l = αfγs

Dp η
k+1,j
s,l−1

∆t − λ
k+1,j
s,l−1 on Σk+1,

(b) The structure subproblem with a Robin condition at the FS interface





∇ηsS(η̃k+1,j−1
s ) δη̃k+1,j

s,l + γ̃∗
sδλ̃

k+1,j

s,l = Gs − S(η̃k+1,j−1
s ) − γ̃∗

s λ̃
k+1,j−1

s in (Ṽ s)
′,

αsγ̃s

Dp η̃
k+1,j
s,l

∆t
− λ̃

k+1,j

s,l = αsγ̃f ṽ
k+1,j
f,l − λ̃

k+1,j

f,l on Σ̃.

(c) Relaxation step

η̃
k+1,j
s,l = ωP η̃

k+1,j
s,l + (1 − ωP )η̃k+1,j

s,l−1 ,

where ωP ∈ (0, 1] is a relaxation parameter.
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3. The solid displacement is then restricted to the interface Σ̃

ξ̃
k+1

s = ωG γ̃sη̃
k+1
s + (1 − ωG)ξ̃

k

s , (20)

where ωG ∈ (0, 1] is a relaxation parameter.

�

To stop the external iterations, we monitor the residual of condition (18)2.
Regarding the intermediate iterations, we monitor the residuals related to the
convergence of the non-linear terms in the fluid and in the structure subproblems.
Finally, to stop the internal iterations we monitor the residual of condition (19)2.

Remark 3.2 G∞-C∞-P∞ algorithm has a triple loop nature. We observe that
the structure Jacobian is updated at each intermediate iteration, by evaluating it
for a structure displacement (η̃k+1,j−1

s ) which satisfies exactly the physical interface
conditions, differently from that used to update the structure Jacobian in G∞-CP∞
algorithm, which does not satisfy them.

3. Using two nested internal loops - G∞-P∞-C∞ scheme. This scheme is obtained
by exchanging the order of the loops in G∞-C∞-P∞ scheme, that is by treating
the constitutive non-linearities in the internal one. Even if we presented such
algorithm as a fixed-point-based scheme, in the numerical results we will consider
it as a classical one, due to its implementation based on solving in an iterative
framework the non-linear fluid and structure subproblems. For the sake of brevity,
we do not report here the detailed description of this algorithm.

3.4 An efficient choice of the internal tolerance

In the algorithms presented in previous sections, whenever Newton or approximate-
Newton iterations are considered, the linear systems involved at each iteration do
not need to be solved until convergence when an iterative method is considered.
Indeed, as observed for example in [28], it is enough to stop the internal iterations
when the residual is below a tolerance which is proportional to the Newton residual.
This leads to a great saving in the computational times, without affecting the
accuracy, since at convergence of the Newton iterations the tolerance of the internal
linear system has become sufficiently low.

It is then possible to apply such idea to our cases, in particular to GC∞-P∞
and G∞-C∞-P∞. In both cases, the FSI linear system arising at each Newton
iteration (step 2. in Algorithm 3.2 and step b. in Algorithm 3.4, respectively) does
not need to be solved until convergence. This means that the physical interface
conditions are in fact not satisfied at each approximate-Newton iteration. However,
at convergence of the approximate-Newton loop, they are satisfied, so that these
schemes are in fact exact.

In [28] such strategy is referred to as inexact-Newton. However, in order to
avoid confusion with the inexact schemes presented in Section 4, we name these
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algorithms exact schemes with dynamic tolerance and we add the suffix DT at the
end of the name. In what follows, we detail GC∞-P∞-DT scheme.

Algorithm 3.5 GC∞-P∞-DT scheme

[External loop - index k]. Given the solution at iteration k, solve until conver-
gence

1. The harmonic extension
{

H η̃k+1
m + γ̃∗

mλ̃
k+1

m = 0 in (V m)′ ,

γ̃mη̃k+1
m = γ̃sη̃

k
s on Σ0,

(21)

obtaining the new fluid domain and fluid domain velocity;

2. The linearized FSI problem. For its solution, given the external residual

Rk+1 := ‖γ̃s η̃k+1
s −γ̃s η̃k

s‖X+‖((uk+1
f −uk

f )·∇)uk+1
f ‖W +‖Gs−S(η̃k+1

s )−γ̃∗
s λ̃

k+1

s ‖K ,

we consider the following partitioned algorithm:

[Internal loop - index l] Given the solution at subiteration l − 1 and a
suitable scalar σk+1, solve at current subiteration l until

∥∥∥∥
αfβ0

∆t

(
γ̃sη̃

k+1
s,l − γ̃s η̃k+1

s,l−1

)
+ λ̃

k+1

s,l − λ̃
k+1

s,l−1

∥∥∥∥
Z

≤ σk+1Rk+1,

(a) The fluid subproblem with a Robin condition at the FS interface





∇̂vf
F(uk

f,l − uk+1
m )vk+1

f,l + γ̃∗
f λ̃

k+1

f,l = Gf in
(
V f (ηk+1

m ) × Qf (ηk+1
m )

)′
,

αfγfvk+1
f,l + λk+1

f,l = αfγs
Dp ηk

s,l−1

∆t − λk
s,l−1 on Σk+1;

(22)

(b) The structure subproblem with a Robin condition at the FS interface





∇ηS(η̃k
s,l) δη̃k+1

s,l + γ̃∗
sδλ̃

k+1

s,l = Gs − S(η̃k
s) − γ̃∗

s λ̃
k

s in (V s)
′ ,

αsγ̃s

Dp η̃k+1
s,l

∆t
− λ̃

k+1

s,l = αsγ̃f ṽk+1
f,l − λ̃

k+1

f,l on Σ0;

(23)

(c) Relaxation step

η̃k+1
s,l = ω η̃k+1

s,l + (1 − ω)η̃k+1
s,l−1.
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For the choice of σk we follow [28]. In particular, we set

σk =





σmax k = 0,

min
(
σmax, γ

(
Rk/Rk−1

)2)
k > 0, γ(σk−1)2 ≤ 0.1,

min
(
σmax, max

(
γ
(
Rk/Rk−1

)2
, γ(σk−1)2

))
k > 0, γ(σk−1)2 > 0.1.

(24)
In the numerical simulations presented in this work we have used σmax = 0.9999
and γ = 0.9. In the computation of the residuals, X, W, Z, K are suitable Sobolev
spaces. In particular, the right choice is X = H1/2(Σ0), W = H−1(Ωf ), Z =
H−1/2(Σ0), K = H−1(Ωs). However, due to the complexity in the computation
of these norms, in practical implementations we considered W = L2(Ωf ), K =
L2(Ωs) and X = Z = L2(Σ0).

Remark 3.3 In [28] it has been shown that the choice (24) guarantees a second
order convergence when the exact Newton is considered. For approximate-Newton
strategies, as in our case, this choice allows to recover first order of convergence.

3.5 Numerical results for exact schemes

3.5.1 Generalities

In all the numerical experiments of this work, we considered the nearly incom-
pressible exponential material whose first Piola-Kirchhoff tensor reads

T̃ s(F s) = GJ−2/3
s

(
F s −

1

3
tr(F T

s F s)F
−T
s

)
eγ(J

− 2
3

s tr(FT
s F s)−3)+

κ

2

(
Js − 1 +

1

J s
ln(Js)

)
JsF

−T
s ,

(25)
whose related energy is given by

W (F s) =
G

2γ

(
eγ(Js

− 2
3 tr(FT

s F s)−3) − 1

)
+

κ

4

(
(Js − 1)2 + (lnJs)

2
)
.

Here F s := ∇x0
s
xt

s, with x0
s the coordinates in the reference configuration and xt

s

those in the current configuration, Js := det(F s), κ is the bulk modulus and G the
shear modulus. For small deformations such material behaves as a linear structure
described by the infinitesimal elasticity, characterized by a Poisson’s ratio ν and a
Young modulus E related to κ and G as follows

κ =
E

3(1 − 2ν)
, G =

E

2(1 + ν)
.

The parameter γ characterizes the stiffness of the material for large displacements.
Moreover, we used P1bubble−P1 finite elements for the fluid subproblem and

P1 finite elements for the structure subproblem, and the following data: final
time T = 0.4 s, viscosity µ = 0.03 g/(cms), fluid density ρf = 1 g/cm3, structure
density ρs = 1.2 g/cm3, bulk modulus κ = 107 dyne/cm2, shear modulus G =
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1.034 · 106 dyne/cm2 (corresponding for small displacements to Young modulus
E = 3 · 106 dyne/cm2 and Poisson ratio ν = 0.45), γ = 1. Moreover, if not
otherwise specified, we used as time discretization parameter ∆t = 0.002 s.

For the prescription of the interface continuity conditions, in all the simula-
tions we have considered the Robin-Robin (RR) scheme [3, 4], with the optimized
coefficients proposed in [22] and adapted to the various temporal schemes in [38].
To compute the optimal αf we have used the value of E = 3 · 106 dyne/cm2. In
all the simulations of this work, RR scheme has converged without any relaxation,
confirming its suitability for haemodynamic applications.

The numerical experiments have been performed with the parallel Finite Ele-
ment library LIFEV (www.lifev.org), see [38] for details.

3.5.2 Efficiency of exact schemes in a real test case

In all the simulations of this section and of Section 4.4 we considered the computa-
tional domain depicted in Figure 1, representing the real carotid of a patient, after
the removal of a plaque. The vessel lumen has been reconstructed by using the
code VMTK (see www.vmtk.org), while the structure geometry has been obtained
by extrusion, by setting the ratio between the lumen radius and the thickness
equal to 0.24. The number of degrees of freedom is 160000 for the fluid domain
and 30000 for the structure, and the fluid and structure meshes are conforming
at the interface. For the harmonic extension and for the structure, we prescribed
at the artificial sections normal homogeneous Dirichlet conditions and tangential
homogeneous Neumann conditions, that is we let the domain move freely in the
tangential direction. At the fluid inlet we imposed the patient-specific flow rate
depicted in Figure 2, measured by means of the Eco-Color Doppler technique and
prescribed through the Lagrange multipliers method (see [15, 46, 18, 19]). At the
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Figure 2: Patient-specific flow rate waveform prescribed at the inlet of the carotid.
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fluid outlets, we used an absorbing resistance boundary condition, see [39, 38] for
details. At the external surface Σ0

out we prescribed a Robin boundary condition
with Robin coefficient αe with the aim of modeling the presence of a surrounding
tissue around the vessel [32, 35, 9, 38]. In particular, we set αe = 3 ·106 dyne/cm3.
This value allows to recover a pressure in the physiological range.

As a representative case, we reported in Figure 3 a snapshot of the streamlines
obtained with GC∞-P∞ scheme and BDF1/BDF1 time discretization.

Figure 3: Streamlines of the velocity field at sistole (0.31 s, left) and at diastole
(0.80 s, right). GC∞-P∞ - BDF1/BDF1.

In Table 1 we reported the number of iterations for different exact schemes.
The number of external iterations reported in the table has to be intended as an
average one over the period [0, T ], whilst the intermediate and the internal ones as
the average per outer loop (the external and the intermediate ones, respectively).
We reported also the CPU time normalized over that of GC∞-P∞-DT scheme,
used here as our gold-standard.

Discussion of the numerical results. The results reported in Table 1 show that the
approximate-Newton-based schemes are the most efficient among exact methods.
In particular, GC∞-P∞ scheme is slightly faster than GCP∞. We also ran the
proposed numerical experiment with GC∞-P∞-DT scheme, described in Algo-
rithm 3.5. As observed in Table 1, the CPU time needed by GC∞-P∞-DT have
been almost halved with respect to GC∞-P∞.

Regarding the fixed-point-based schemes, they seem to be quite slower than
approximate-Newton methods. The best performance have been obtained by
G∞C∞-P∞ scheme, the CPU time being less than two times greater than for
GC∞-P∞. We point out that in any cases, fixed-point-based schemes converged
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# of external # of intermediate # of internal Normalized
iterations iterations iterations CPU time

GC∞-P∞ 13.5 – 7.7 1.72

GC∞-P∞-DT 13.9 – 3.0 1.00

GCP∞ 20.4 – – 2.00

G∞-CP∞ 12.3 – 9.4 3.53

G∞-C∞-P∞ 12.3 5.7 6.3 3.05

G∞-P∞-C∞ 12.9 6.7 3.5 3.76

GP∞-C∞ 15.3 – 3.8 4.16

Table 1: Average number of iterations in the external loop and average num-
ber of iterations per outer loop in the intermediate and internal ones, and CPU
time normalized with respect to that of GC∞-P∞-DT scheme. Exact schemes.
BDF1/BDF1.

without any relaxation (ωG = 1). We ran G∞-C∞-P∞ scheme also with an
Aitken relaxation procedure [26] over (20), with the hope of improving the effi-
ciency. However, we found that the CPU time normalized with respect to that
of GC∞-P∞-DT is 2.90, against 3.05 for the case ω = 1, so that no substantial
improvement is observed with the Aitken procedure. We did not consider G∞-
C∞-P∞-DT scheme, due to the worse performance of G∞-C∞-P∞ with respect
to GC∞-P∞.

Concerning the classical schemes, they showed a very poor efficiency in compar-
ison to approximate-Newton, their CPU time being more than four times greater
with respect to that of GC∞-P∞-DT. They are also slower than the fixed-point-
based methods. Such schemes are however the most appealing from the computa-
tional point of view, when one has at disposal two black-box solvers for the fluid
problem in ALE formulation and for the structure, since they need just to imple-
ment suitable routines for the transfer of the interface conditions between the two
codes. Instead, approximate-Newton-based and fixed-point-based algorithms can
be implemented in a modular way provided that one can access to the fluid and
structure tangent problems (always possible by running just 1 Newton internal
iteration).

In conclusion, we suggest GC∞-P∞-DT as the most suitable among exact
schemes for real haemodynamic applications.

4 Inexact schemes

Here, we want to extend to the case of the finite elasticity the semi-implicit schemes
[43, 12, 6, 39, 9] and, more generally, the geometrical inexact schemes [38]. A first
way to do this, consists in considering the classical scheme G∞-P∞-C∞ and to
perform just one (or few) external iterations over the interface position [35]. In this
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case the physical interface conditions and the constitutive non-linearities are both
treated exactly. Here, we want to introduce a different family of inexact schemes,
where, besides the geometrical interface condition, also the fluid and structure
constitutive non-linearities are not prescribed exactly. In other words, we ask if
it is necessary in haemodynamic applications to handle exactly the constitutive
non-linearities, in particular the structure one. In Section 4.1 we considered the
inexact versions of the approximate-Newton-based schemes, and in Section 4.2
the inexact versions of the fixed-point-based schemes. To study the accuracy, we
considered both an analytical test case in Section 4.3 and a real test case in Section
4.4. In the latter section, we also study the efficiency of the inexact schemes in a
real context.

4.1 Approximate-Newton-based inexact schemes

The starting point is the observation that in the case of the linear infinitesimal
elasticity, semi-implicit schemes can be regarded as GC∞-P∞ scheme where the
number of external iterations is fixed and equal to 1. By performing just one
external iteration also in presence of the finite elasticity, we obtain a scheme where
also for the constitutive non-linearities just one iteration is performed (I-GC1-P∞).
More in general, it is possible to perform m external iterations for a fixed m > 1,
obtaining the I-GCm-P∞ scheme. For such schemes, the stopping criteria on
the geometrical condition and on the constitutive non-linearities are not checked,
so that they are in principle inexact also with respect to the constitutive non-
linearities. This fact makes very interesting the study of the accuracy of such
schemes, since there is no a priori evidence that the fluid and, especially, the
structure problems need to be solved exactly in order to recover a global accurate
solution.

4.2 Fixed-point-based inexact schemes

We introduce here the inexact variants of the fixed-point-based schemes introduced
in Section 3.3. The philosophy is the same used to derive the inexact schemes from
the approximate-Newton-based algorithms, that is to perform a fixed number of
iterations in the external loops.

We can derive two groups of inexact algorithms, one from G∞-CP∞ scheme
and one from G∞-C∞-P∞ scheme. In any case, as for the approximate-Newton-
based inexact algorithms, the physical interface conditions are satisfied exactly,
due to the high added mass effect in haemodynamics. In the first case we obtain
I-Gm-CP∞ schemes, derived from Algorithm 3.3 by performing just m external
iterations. This scheme, differently from I-GCm-P∞, solves exactly the constitu-
tive non-linearities, and only the geometrical interface condition is not prescribed
correctly. Since we are here interested in the accuracy of schemes which do not
solve exactly the constitutive non-linearities, we do not consider such schemes in
the following numerical experiments.
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The second group of inexact schemes is derived from G∞-C∞-P∞ scheme. In
this case, they are obtained by considering just m iterations in the external loop
and r iterations in the intermediate loop (in principle, also the case r = ∞ could be
allowed, but it is not considered here). We obtain I-Gm-Cr-P∞ schemes, derived
from Algorithm 3.4 by performing just m external iterations and r intermediate
iterations. Such schemes, as for I-GCm-P∞ scheme, treat inexactly both the
geometrical interface condition and the constitutive non-linearities.

4.3 Numerical results for inexact schemes: Convergence with re-

spect to time

We consider the same analytical test case proposed in [38] for the linear infinites-
imal elasticity. This test consists in a translation of a cylinder of small thickness
(the structure) filled by the fluid and in a rotation around its axis with no volume
forces.

Referring to the same data reported in [38], it is easy to check that the ana-
lytical solution of the FSI problem is given by

{
uf = ū in Ωt

f , pf = 0 in Ωt
f ,

η̃s = η̄ in Ω0
s, η̃m = η̄ in Ω0

f ,

where

η̄ :=




x0
s,1(cos θ − 1) − x0

s,2 sin θ + c1,

x0
s,1 sin θ + x0

s,2(cos θ − 1) + c2,

c3,


 , ū :=




θ̇(c2 − xf,2) + ċ1,

θ̇(xf,1 − c1) + ċ2,
ċ3,




for given functions of time θ(t) and c(t). We observe that with respect to the
analytical solution proposed in [38], here the pressure is identically zero.

We considered, in particular, the cylindrical geometry depicted in Figure 4,
where the length is L = 5 cm, the fluid domain radius R = 0.5 cm, the structure
thickness Hs = 0.1 cm. The space discretization parameter is h = 0.025 cm and the
fluid and structure meshes are conforming at the interface. The mesh is composed
of about 57000 degrees of freedom for the fluid and about 6000 for the structure.
For what concerns the data of the test, we have set c = 0 and θ(t) = 0.2(1 −
cos(50π t)). We ran all the simulations on 4 processors for the solution of the fluid
problem and on 1 processor for the structure.

In Figure 5 we show the convergence history of four selected inexact schemes,
namely I-GC1-P∞, I-GC2-P∞, I-G1-C2-P∞ and I-G2-C2-P∞, chosen as the
most representative, for three selected temporal schemes, namely BDF1/BDF1,
BDF2/BDF2 and BDF3/BDF3. A relative L2 norm of the error is computed at
time t = 0.002 s. The time discretization parameter is ∆t = 2 · 10−3, 10−3, 5 ·
10−4, 2.5 · 10−4 s. For BDF2/BDF2 and BDF3/BDF3 schemes, I-GC1-P∞ and
I-G1-C2-P∞ featured just first order convergence, so that we have considered in
these cases also the extrapolated versions I-GC1E-P∞ and I-G1E-C2-P∞.
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Figure 4: Cylindrical geometry.

Discussion of the numerical results. From the convergence rates depicted in Figure
5, we observe that when BDF1/BDF1 is used, all the four inexact schemes consid-
ered recovered first order convergence without any extrapolation of the interface
position, fluid velocity and structure displacement. Regarding BDF2/BDF2 and
BDF3/BDF3, we observe that schemes which perform two iterations in the loops
related to the geometrical condition and to the constitutive non-linearities (I-GC2-
P∞ and I-G2-C2-P∞) featured second and third order convergence, respectively,
without any extrapolation. For the other two schemes (I-GC1E-P∞ and I-G1E-
C2-P∞) an extrapolation of order two and three, respectively, has been needed in
order to recover the right convergence order. This results show that, at least for the
analytical test case, it is not needed to solve exactly the constitutive non-linearities
to recover an accurate solution.

4.4 Numerical results for inexact schemes: Efficiency and accu-

racy in a real test case

In this section we report the numerical results obtained for the same test case
presented in Section 3.5.2, by using the four inexact schemes considered above.
This allowed to study the accuracy and the efficiency of such schemes in a real
context.

In Tables 2 and 3 we report the relative errors of the inexact schemes by using
the solution obtained with GC∞-P∞ scheme as the reference one. In particular,
we report the L∞(L∞)-norm of average quantities, namely the mean structure
displacement η, the flow rate Q and the mean pressure P computed over sections
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(b) BDF2/BDF2
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(c) BDF3/BDF3

Figure 5: Convergence rate of three temporal schemes considered. Relative errors
of the fluid velocity (left), of the pressure (middle) and of the structure displace-
ment (right) - BDF1/BDF1 (up), BDF2/BDF2 (middle), BDF3/BDF3 (bottom)
- t = 0.002 s.

perpendicular to the axial axis. To do this, we computed quantities as

maxj ‖x
j
EX − xj

∗‖L∞(0,T )

maxj ‖x
j
EX‖L∞(0,T )

, (26)

where xj is one of the average quantities computed at different sections Σj or-
thogonal to the axial direction, EX stands for “solution computed with the exact
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scheme” and * stands for one of the inexact schemes. The results reported in Table
2 refer to BDF1/BDF1, while those in Table 3 to BDF2/BDF2.

η (%) Q (%) P (%)

I-GC1-P∞ 0.890 0.413 0.702

I-GC2-P∞ 0.003 0.005 0.003

I-G1-C2-P∞ 0.847 0.439 0.694

I-G2-C2-P∞ 0.002 0.001 0.001

Table 2: Relative error of inexact schemes with respect to the exact solution,
computed with (26). BDF1/BDF1. Left: displacement. Middle: flow rate. Right:
mean pressure.

η (%) Q (%) P (%)

I-GC1-P∞ 1.013 0.832 1.342

I-GC1E-P∞ 0.066 0.084 0.054

I-GC2-P∞ 0.004 0.006 0.004

I-G1-C2-P∞ 0.994 0.768 0.078

I-G1E-C2-P∞ 0.042 0.027 0.025

I-G2-C2-P∞ 0.003 0.002 0.002

Table 3: Relative error of inexact schemes with respect to the exact solution,
computed with (26). BDF2/BDF2. Left: displacement. Middle: flow rate. Right:
mean pressure.

In Table 4 we report the number of iterations for BDF2/BDF2. In particular,
the number of iterations in the intermediate and in the internal loops has to be
intended as the average per outer loop. We also report the CPU time normalized
over that of GC∞-P∞-DT scheme, that is the fastest among the exact schemes.

Discussion of the numerical results. The results reported in Tables 2 and 3 show
that the relative errors of inexact schemes with respect to the solution obtained
with an exact scheme are in any case less than 1%. In particular, the accuracy
improves of one order of magnitude by performing just one external iteration with
a suitable extrapolation in the case of BDF2/BDF2, and of two orders of magni-
tude by performing two external iterations instead of one both for BDF1/BDF1
and for BDF2/BDF2, These results show that also in real applications, an inex-
act treatment of the constitutive non-linearities and of the geometrical interface
condition is sufficient to recover a satisfactory solution for practical purposes.

Regarding the efficiency, we observed that the inexact approximate-Newton-
based methods are slightly faster than the inexact fixed-point-based ones, while
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# of external # of intermediate # of internal Normalized
iterations iterations iterations CPU time

I-GC1-P∞ 1 – 24.8 0.34

I-GC1E-P∞ 1 – 24.6 0.33

I-GC2-P∞ 2 – 20.3 0.70

I-G1-C2-P∞ 1 2 21.8 0.46

I-G1E-C2-P∞ 1 2 21.4 0.44

I-G2-C2-P∞ 2 2 18.6 0.83

Table 4: Average number of iterations per outer loop in the intermediate and
internal ones, and CPU time normalized with respect to that of GC∞-P∞-DT
scheme. Inexact schemes. BDF2/BDF2.

we did not experience significant differences in the case of one external iteration
between the cases with or without extrapolation, see Table 4. Performing just one
external iteration allows a big saving in the computational effort, being the CPU
times reduced to three times. When moving from one to two external iterations,
the CPU time doubles, being however less than the CPU time of the most efficient
exact schemes.

5 Conclusions

In this work we studied the numerical performance of several partitioned schemes
for the solutions of the FSI problem with non-linear fluid and structure subprob-
lems for real haemodynamic applications. We considered approximate-Newton-
based, fixed-point-based and classical methods. For the first two families of schemes,
we considered both exact and inexact schemes, the latter being obtained by per-
forming just one or two iterations in the loops managing the geometrical coupling
and the constitutive non-linearities, guaranteeing in any case the satisfaction of
the physical interface conditions. The main features of such schemes highlighted
by this work are summarized as follows.

1. Among exact schemes, approximate-Newton methods are in general more
performing than fixed-point ones. In particular, GC∞-P∞ is the most effi-
cient for real applications;

2. For the latter scheme, we also experienced the excellent performance of a
variant where the physical interface conditions in the internal loop are solved
with a precision which is proportional to the external residual (GC∞-P∞-
DT). This scheme allowed to almost half the CPU times with respect to
GC∞-P∞;

3. Classical schemes are more than four times slower than approximate-Newton
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methods, being however the easier to be implemented when black-box solvers
are available;

4. Inexact schemes, where both the geometrical interface condition and the con-
stitutive non-linearities are not prescribed exactly, are accurate, recovering,
for the analytical test case, the expected convergence rate when at most
two iterations involved in the relative loops are performed. When just one
iteration is considered, a suitable extrapolation of interface position, fluid
velocity and structure displacement is needed to recover the right order of
convergence.

5. Inexact schemes, where two iterations in the external loops are performed
are very accurate for real haemodynamic applications. A very good accuracy
(even if worse than that obtained with two external iterations) has been
experienced also when performing one external iteration for BDF2/BDF2,
provided that a suitable extrapolation is considered. These facts confirm, for
the first time, the effectiveness of inexact schemes in haemodynamics also
when the finite elasticity is considered for the structure subproblem;

6. Inexact schemes are more efficient than exact schemes, the CPU time being
reduced to three times when just one external iteration is performed.

For the reasons highlighted at the previous points, among all the schemes
proposed in this work, we recommend I-GC2-P∞ as the best compromise be-
tween good accuracy and efficiency for real haemodynamic applications. For
BDF2/BDF2 an effective alternative is provided by I-GC1E-P∞, which allows
to half the CPU times with respect to I-GC2-P∞, with a slight reduction in the
accuracy (the errors being however less than 0.1%).
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