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Abstract

This work focuses on the finite element discretization of boundary value
problems whose solution presents either a discontinuity and/or a discon-
tinuous conormal derivative across an interface inside the computational
domain. The interface is characterized via a level-set function. The discon-
tinuities are accounted for using suitable extension operators whose numer-
ical implementation requires a very low computational effort. Numerical
results to validate our approach are presented in one, two and three dimen-
sions.

1 Introduction

This paper is focused on the numerical approximation of elliptic problems whose
solution features discontinuities across interfaces internal to the computational
domain. More precisely, we consider a Poisson problem in two disjoint subdo-
mains of the computational domain Ω ⊂ RN (N = 1, 2, 3) with jump conditions
across the interface Γ separating the two subregions. Γ is a point if N = 1, a
line if N = 2 or a surface if N = 3 that is characterized by a level-set function
φ : Ω → R. More precisely, we consider an open bounded domain Ω to be par-
titioned into the two non-overlapping subdomains Ω1 = {x ∈ Ω| φ(x) < 0} and
Ω2 = Ω \ Ω1. According to the classical level-set method (see, e.g., [9]), φ is
regarded as the signed distance function to the interface, whence Γ is defined by
the equation φ = 0.

The mathematical formulation of our problem is as follows. We look for a
function u in Ω that satisfies a Poisson problem in each subdomain:

−∆ui = fi in Ωi, i = 1, 2, (1)
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where ui = u|Ωi
, with the following conditions on the jumps of the trace and of

the normal derivatives across Γ:

[[u]]Γ = u2|Γ − u1|Γ = gd, (2)[[
∂u

∂n

]]
Γ

= ∇u2 · n2|Γ +∇u1 · n1|Γ = gn. (3)

gd and gn are two assigned functions on Γ, while n1 and n2 are the unit normal
vectors on Γ directed outwards of Ω1 and Ω2, respectively. Notice that n2 = −n1

on Γ. For simplicity, we impose homogeneous Dirichlet boundary conditions on
the boundary of the domain Ω: u = 0 on ∂Ω.

Discontinuities in the normal derivative of the solution of a PDE arise e.g.
as soon as a force is localized on a part of the computational domain with lower
dimension. The most popular example is the surface tension in flow simula-
tions [6], which is a force that applies at the interface between two fluids. In
this framework, Γ is a free surface, that is its location is a further unknown of
the problem at hand. It can also happen that the solution itself is discontin-
uous, for example with phase transition when considering entropy [2] or with
incompressible flames [5].

A possible strategy to correctly approximate this kind of problems is to build
a mesh which captures the interface. This solution however can be not always
practicable, as for a time dependent problem conforming meshes (that is meshes
that perfectly match on the interface) have to be rebuilt at each time step,
resulting in too expensive schemes in term of computational cost. The mesh
could also be cut by the interface and only locally rebuilt, however this could
lead to highly deformed cells. For these reasons, methods that do not require
the reconstruction of a new mesh are preferable. For the same reasons, a good
method should not require mesh refinement near the interface, neither require
the computation of quantities (such as integrals) on the interface itself.

The goal of this paper is to present a new method, called SESIC (for Sim-
plified Exact Subgrid Interface Correction), to take into account these jump
conditions in a finite element framework. This method has been inspired by the
ESIC method developed in [4]: we have improved the construction of the liftings
and changed the weak formulation so that the efficiency of the ESIC is kept
while improving its mathematical interpretation and its effective implementa-
tion. More precisely, the paper has the following content. In section 2, we study
the weak formulation of the internal discontinuity problem (1)-(3) and we intro-
duce at the continuous level suitable lifting operators to account for the jumps
across the interface. In section 3, we present the finite element approximation
of the problem and we discuss several numerical issues of our methodology com-
paring it to the one developed in [4]. Finally, section 4 presents the numerical
results that we have obtained on different test cases.

Even though this paper addresses the model problem (1) only, the numerical
methods here considered can be easily extended to address the more complex
situations mentioned above, e.g. the problem of numerical approximation of
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free surface in multiphase flows. A preliminary example is provided in section
5. This issue will make the object of a future paper.

2 Weak formulation for the internal discontinuity in-
terface problem

To derive a weak formulation of (1) - (3), we introduce two suitable liftings (or
extensions) Rigd (i = 1, 2) of gd in Ωi so that the jump of Rigd is gd on Γ:
Rigd ∈ H1

∂Ωi\Γ(Ωi) (i = 1, 2) such that [[Rigd]]Γ = gd. Then, we consider the
splitting

ui = ūi +Rigd in Ωi. (4)

We denote ū : Ω → R such that ūi = ū|Ωi . The function ū belongs to H1
0 (Ω).

We consider a global test function v ∈ H1
0 (Ω) and its restrictions vi on Ωi.

Then, on each domain, starting from (1), integrating by parts and exploiting
the homogeneous Dirichlet boundary conditions on ∂Ωi ∩ ∂Ω, we obtain∫

Ωi

∇ui · ∇vi −
∫

Γ

∂ui
∂ni

vi =

∫
Ωi

fivi. (5)

Summing up the contributions of each subdomain

2∑
i=1

∫
Ωi

∇ui · ∇vi −
∫

Γ

(∂u1

∂n1
+
∂u2

∂n2

)
vi =

2∑
i=1

∫
Ωi

fivi (6)

and imposing the jump condition on the normal derivative (3) in a natural way,
we obtain

2∑
i=1

∫
Ωi

∇ui · ∇vi −
∫

Γ
gnvi =

2∑
i=1

∫
Ωi

fivi . (7)

Finally, using the decomposition (4), we obtain the weak form of problem (1)-(3):
find ū ∈ H1

0 (Ω) such that ∀v ∈ H1
0 (Ω):∫

Ω
∇ū · ∇v =

2∑
i=1

∫
Ωi

fivi −
2∑
i=1

∫
Ωi

∇Rigd · ∇vi +

∫
Γ
gnv. (8)

Another possible weak formulation of (1)-(3) is proposed by Huh and Sethian
[4], where an additional lifting is considered for the function gn. More precisely,

they define a function Sign ∈ H1
∂Ωi\Γ(Ωi), i = 1, 2 such that

[[
∂Sign
∂n

]]
Γ

= gn and,

instead of (4), they consider the splitting:

ui = ûi +Rigd + Sign. (9)

The two liftings Rigd and Sign ideally satisfy the following constraints:

[[Rigd]]Γ = gd

[[
∂Rigd
∂n

]]
Γ

= 0 , (10)
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[[Sign]]Γ = 0

[[
∂Sign
∂n

]]
Γ

= gn , (11)

so that they take into account independently the jump of the functions and that
of the fluxes.

Using the approach by Huh and Sethian, one obtains the weak form: find
û ∈ H1

0 (Ω) such that, ∀v ∈ H1
0 (Ω),∫

Ω
∇û · ∇v =

2∑
i=1

∫
Ωi

fivi −
2∑
i=1

∫
Ωi

∇(Rigd + Sign) · ∇vi +

∫
Γ
gnv . (12)

Note that û is such that û|Ωi = ûi for i = 1, 2.

We can remark that the bilinear form associated to both methods (8) and (12)
is the classical Dirichlet formulation of the Poisson problem in H1

0 (Ω) (without
internal discontinuity interface). This allows proving the well-posedness of the
problem in a direct way by the Lax-Milgram lemma [7].

Both formulations (12) and (8) are equivalent from the mathematical point of
view. However, their numerical approximation gives rise to different numerical
solutions. We will discuss this issue in Sect. 4.1, while we focus now on the
construction of the lifting operators Ri and Si.

2.1 The continuous lifting operators

To construct the liftings, we assume that there exist two continuous scalar func-
tions ḡd and ḡn in Ω such that gd = ḡd|Γ and gn = ḡn|Γ. This assumption is more
or less strong depending on the way the data gd and gn are provided. If, as in
the cases that we will consider, they are given as functions on the whole domain
Ω or as a finite element function, this assumption is fulfilled. If they are given in
another way, then we have to rely on an extension procedure, depending again
on the information available.

Thanks to the extensions ḡd and ḡn, we are now able to define liftings that
satisfy conditions (10) and (11) exactly at the continuous level. For the sake of
simplicity, we start with the lifting for gn which accounts for the jump in the
normal derivative. Consider the function

Sgn = H(φ)φḡn in Ω, (13)

where H(φ) is the Heaviside function:

H(φ)(x) =

{
1 if φ(x) ≥ 0
0 if φ(x) < 0 ,

whence

Sgn(x) =

{
φ(x)ḡn(x) if φ(x) ≥ 0
0 if φ(x) < 0 .

(14)

Note that Sgn is continuous across Γ (defined as the 0-level set of φ), that is
[[Sgn]]Γ = 0. On the other hand,[[

∂Sgn
∂n

]]
Γ

=
∂(φḡn)

∂n
|Γ =

∂φ

∂n
|Γ ḡn|Γ +

∂ḡn
∂n
|Γ φ|Γ = gn , (15)
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thus Sgn is a suitable lifting for gn in the sense that the conditions (11) are
satisfied.

We also need a lifting Rgd for the function gd which is discontinuous across
Γ but featuring a continuous normal derivative.

To this aim we define Rgd as:

Rgd = H(φ)(ḡd −∇ḡd · ∇φ φ) (16)

which can be expressed explicitly as

Rgd(x) =

{
ḡd(x)−∇ḡd(x) · ∇φ(x) φ(x) if φ(x) ≥ 0
0 if φ(x) < 0.

(17)

We can see that [[Rgd]]Γ = gd, whereas by a direct computation[[
∂Rgd
∂n

]]
Γ

=
∂(ḡd −∇ḡd · ∇φ φ)

∂n
|Γ

=
∂ḡd
∂n
|Γ −

∂(∇ḡd · ∇φ)

∂n
|Γ φ|Γ −

∂φ

∂n
|Γ (∇ḡd · ∇φ)|Γ

=
∂ḡd
∂n
|Γ −

∂(∇ḡd · ∇φ)

∂n
|Γ 0− 1 (∇ḡd · n)|Γ

=
∂ḡd
∂n
|Γ −

∂ḡd
∂n
|Γ = 0. (18)

Rgd is then a suitable lifting at the continuous level in the sense that the condi-
tions (10) are satisfied.

Example 2.1. We consider a 1D example for the sake of clarity. The domain is
Ω = (0, 1) and the interface Γ is composed of the two points x1 = π−1 and x2 =
1−π−1. The level set function is defined accordingly. We choose gd(x) = sin(3x)
and gn(x) = exp(2x), so that ḡd(x) = gd(x) and ḡn(x) = gn(x), x ∈ (0, 1). The
continuous liftings Rgd and Sgn are shown in figure 1.

Figure 1: Continuous liftings obtained for the example 2.1: Rgd (left) and Sgn
(right).
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3 Finite element approximation

In this section, we will address the numerical approximation of the problems
introduced thus far, together with the introduction of the approximate lifting
operators.

We consider a uniform triangulation of Ω made of elements K (intervals if
N = 1, triangles if N = 2 or tetrahedra if N = 3). The interface Γ may intersect
the elements K arbitrarily. As finite element space, we use the continuous Pk
elements with k ≥ 1:

Vh = {vh ∈ H1
0 (Ω) ∩ C0(Ω̄) : vh|K ∈ Pk ∀K}, (19)

and we denote by {Ψj} the basis functions of Vh.
The finite element approximation of (8) reads: find ūh ∈ Vh such that∫

Ω
∇ūh · ∇vh =

∫
Γ
gnvh +

2∑
i=1

∫
Ωi

fivhi −
2∑
i=1

∫
Ωi

∇Rhi gd · ∇vhi ∀vh ∈ Vh, (20)

while that of (12) becomes: find ûh ∈ Vh such that∫
Ω
∇ûh ·∇vh =

∫
Γ
gnvh+

2∑
i=1

∫
Ωi

fivhi−
2∑
i=1

∫
Ωi

∇(Rhi gd+Shi gn)·∇vhi ∀vh ∈ Vh.

(21)

3.1 Discrete lifting operators

We introduce now suitable finite element approximations of the continuous lift-
ings Rgd and Sgn. At the discrete level, we would like to have liftings with
minimal support around the interface. Ideally, only the cells crossed by the in-
terface would ought be used in order to keep the computational cost of the finite
element approximation as low as possible.
Let πkh : C0(Ω̄)→ Vh be the classical finite element interpolant operator

πkh(v) =
∑
j

v(xj)Ψj (22)

that is πkh(v) is the unique function in Vh which takes the same values of v at all
finite element nodes xj while Ψj is the characteristic basis function associated
with xj , that is Ψj ∈ Vh : Ψj(xi) = δij ∀i, j (see [8]).
Remark now that both liftings Rgd and Sgn that we have defined at the con-
tinuous level are a product of the Heaviside function by a continuous function.
Then, for any function T (x, y) = H(φ)(x)t(x) with t(x) ∈ C0(Ω̄), we introduce
the following operator:

Πk
h(T )(x) =

{
πkh(t)(x) if φ(x) ≥ 0
0 if φ(x) < 0.

(23)

We define then the discrete liftings Rhglogd = Πk
h(Rgd) and Shglogn = Πk

h(Sgn).
The index glo stands for global and it indicates that these functions are defined
on the global domain Ω.
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Example 3.1. With the same settings of Example 2.1, we perform the interpo-
lation on a mesh with 5 intervals using P1 finite elements. The resulting liftings
are shown in figure 2.

Figure 2: Discrete global liftings Rhglogd (left) and Shglogn (right). The red crosses
show the location of the degrees of freedom.

To reduce the computational cost due to working with the global support of
the liftings, we introduce a region ΩΓ of width h around the interface Γ (see Fig.
3) and we reduce the support of Rhglogd and Shglogn to ΩΓ in a way that their
values on ∂ΩΓ is 0. Notice that ΩΓ corresponds to the strip of width h formed
by those triangles that intersect the interface.

Figure 3: Illustration of ΩΓ in a 2D case.

We denote here T hglo either Rhglogd or Shglogn. As by construction T hglo belongs
to the discrete space Vh, we can express it on each side of the interface using the
finite element basis:

T hglo|K(x) =

{ ∑
i αiΨi(x) if φ(x) ≥ 0

0 if φ(x) < 0.
(24)

Adding any function of the finite element space on both sides of the interface

7



does not change the jumps of this lifting. Then we can define the lifting T h as

T h|K =

{
T hglo|K −

∑
φi≥0 αiΨi if K ∩ Γ 6= ∅

0 otherwise,
(25)

where φi = φ(xi). By definition, the support of T h is ΩΓ. From the explicit
expression of the lifting on the elements K crossed by the interface Γ:

T h|K(x) =

{ ∑
φi<0 αiΨi(x) if φ(x) ≥ 0

−
∑

φi≥0 αiΨi(x) if φ(x) < 0,
(26)

we can see that T h is actually 0 on ∂ΩΓ and it is then extended by continuity
outside ΩΓ. Applying this procedure to Rhglogd and Shglogn we obtain the liftings

Rhgd and Shgn that fulfill all our requirements.

We can now give the explicit expression of the two liftings:

Rhgd|K(x) =

{ ∑
φi<0(ḡd(xi)−∇ḡd(xi) · ∇φ(xi) φ(xi))Ψi(x) if φ(x) ≥ 0

−
∑

φi≥0(ḡd(xi)−∇ḡd(xi) · ∇φ(xi) φ(xi))Ψi(x) if φ(x) < 0,

(27)

Shgn|K(x) =

{ ∑
φi<0(ḡn(xi) φ(xi))Ψi(x) if φ(x) ≥ 0

−
∑

φi≥0(ḡn(xi) φ(xi))Ψi(x) if φ(x) < 0.
(28)

Example 3.2. In figure 4 we show the result of support reduction for the liftings
of the example 3.1 using P1 polynomials, while in figure 5 we show the lifting
Rhgd computed using P2 and P3 polynomials.

Figure 4: Liftings after the support reduction: Rhgd (left) and Shgn (right). The
red crosses show the location of the degrees of freedom.
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Figure 5: Liftings Rhgd after the support reduction using P2 elements (left) and
P3 elements (right). The red crosses show the location of the degrees of freedom.

3.2 The SESIC method

The SESIC method that we propose is obtained by using the discrete lifting
operators (27) and (28) in the context of the weak formulation (21). The only
ingredient that remains to be detailed is the numerical integration formula that
will be used to compute the new terms in the weak formulation (21). More
precisely, we have to perform one integral on the interface Γ of a continuous
function and two integrals over Ω of possibly discontinuous functions (∇Rhgd
and ∇Shgn might be discontinuous across Γ). We propose two different methods
for the integration.

“Exact” integration

The first method consists in building quadrature rules that take into account
the interface. A possible way to integrate singular functions of type∫

Γ
f =

∫
Ω
δΓf

is to reconstruct explicitly the interface Γ and to use on it a (N−1)-dimensional
quadrature rule. If N = 1, the interface reduces to a point and the integration
requires only to evaluate f at a given point. If N = 2, the elements are triangles
and then the interface in a single triangle is a segment in the case of a piecewise
linear approximation. To apply a suitable integration rule on this segment, we
need to compute the intersections of Γ with the edges of the triangle.

1D 2D

Figure 6: Illustration of the methods used for the computation of the line integral
in 1D and 2D.
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On the other hand, to integrate discontinuous functions like∫
Ω
f1 +H(φ)f2,

we define a quadrature rule for an element crossed by Γ considering a quadrature
rule on the polygons on each side of the interface. More precisely, if N = 1, we
compute the location of the interface and we combine a quadrature rule for
segments on each side of the interface. When N = 2, the triangles crossed
by Γ are split into a triangle and a quadrangle. To integrate discontinuous
functions, we combine then a quadrature rule for triangles and a quadrature
rule for quadrangles.

1D 2D

Figure 7: Illustration of the methods used for the computation of the discontin-
uous functions in 1D and 2D.

The case N = 3 requires a different treatment. Indeed, even if similar meth-
ods are available for 3D simulations, they lead to complicated schemes where
many different cases have to be distinguished depending on the way the interface
cuts the tetrahedra. This is why we have used another method that is simpler
and more suitable for high space dimensions or for high polynomial orders of
approximation.

Smooth integration

The idea is to approximate singular or discontinuous integrands by smooth func-
tions. For example, we make the following approximation:∫

Γ
gnv =

∫
Ω
gnvδΓ

∼=
∫

Ω
gnvδw

where δw is an approximation of δΓ whose support is limited to a band of
width w around Γ. This method is quite widely used, even if, often, there is no
real control of the error produced. We refer here to [10] for the error analysis of
the regularization step. In this analysis, two errors are distinguished:

• the analytical error produced by the introduction of the regularizing func-
tion: ∣∣∣∣∫

Γ
gnv −

∫
Ω
gnvδw

∣∣∣∣ ;
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• the quadrature error coming from the inexact integration of the regularized
integrand.

The usual procedure is to take w as a given quantity of cells, what means
that w is proportional to h. However, the idea that we apply in this paper is
to use a width w that is proportional to

√
h. Our choice is motivated by the

following considerations. First of all, we have to remark that the function δw
must have the form δw(d) = 1

w δ̂(d/w) where δ̂ is a function that does not depend
on w, the factor 1

w making the weight of δw constant with respect to w, and d
is the distance to the interface, that is d(x) = φ(x).

• The analytical error is then proportional to wβ, where β can be computed
using the properties (vanishing moments) of δ̂ [10].

• If the integrand gnvδw is a function of Ck(Ω) and the quadrature rule
(based on the finite element mesh, with typical size h) has a degree of ex-
actness k−1, the quadrature error is proportional to hk||(gnvδw)(k)||L∞(Ω).

However, δ
(k)
w scales like w−(k+1). Therefore, the quadrature error is dom-

inated by hkw−(k+1).

Based on these arguments, we derive that, by choosing w = h we cannot
ensure that the quadrature error will decrease with h. Indeed, with w = h,
the number of quadrature points in the band of width w is constant while the
function δw is becoming steeper to conserve the mass. Our choice of w = c

√
h

leads the analytical error to be controlled by hβ/2 and the quadrature error by
h(k−1)/2. We can then fully control the decay rate of the overall error by choosing
the appropriate δ̂ function.

If we look for second order accuracy, building δ̂ with 3 vanishing moments
(then β = 4, see [10]) and 5 continuous derivatives would be sufficient. By
looking for the polynomial function with the smallest degree featuring these
properties, we end up with:

δ̂(d) =
6435

8192
(3− 35d2 + 147d4 − 315d6 + 385d8 − 273d10 + 105d12 − 17d14)

The same approach can be applied for transition function to integrate discon-
tinuous integrand across the interface. We used for our tests the transition
function:

Ĥ(d) =

∫ d

−1
δ̂(ξ) dξ.

3.3 The ESIC method

As stated before, the SESIC was inspired by the ESIC method first proposed in
[4]. For the sake of comparison, let us recall the principle of the ESIC method
and emphasize the differences with the SESIC method.

The two methods are built on different weak formulations of the given prob-
lem (1)-(3). SESIC stems from the weak form (21) whereas in order to get rid
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of the line integral in (21), Huh and Sethian perform a counter integration by
parts yielding:

∫
Γ
gnvh −

2∑
i=1

∫
Ωi

∇Sign · ∇vhi

=

2∑
i=1

∑
K

∫
K∩Ωi

∆Signvhi −
2∑
i=1

∑
K

∫
∂K

∂Sign
∂n

vhi . (29)

However, this formulation introduces a new error source, as it makes use of

the equality gn =
[[
∂Sgn
∂n

]]
, which might be wrong at the discrete level. This is

in fact documented by the numerical tests that we will present in section 4.

The second major difference relies on the construction of the lifting operators.
According to [4], the extension g̃∗ on ΩΓ of a generic function g∗ defined only on
Γ is defined as follows

g̃∗(x) = g∗(xΓ) for all x ∈ ΩΓ, (30)

where xΓ is the point of Γ that minimizes the distance to x. As a consequence,
g̃∗ is constant along any normal direction issuing from Γ.

Let now g̃d be the extension in ΩΓ of gd according to (30). Then, considering
the triangulation of Ω and the basis {Ψj} of Vh (19), in [4] the lifting is defined
as follows

R̃gd =

{
−
∑

φj≥0 Ψj g̃d in Ω1∑
φj<0 Ψj g̃d in Ω2.

(31)

By construction, R̃gd has the prescribed jump [[R̃gd]]Γ = gd and it has continuous

normal derivative across Γ:
[[
∂R̃gd
∂n

]]
Γ

= 0. At the discrete level, the lifting

becomes:

R̃hgd =

{
−
∑

φj≥0 Ψj g̃dj in Ω1∑
φj<0 Ψj g̃dj in Ω2,

(32)

where g̃dj denotes the value of the function g̃d at the node xj . In this case, the
jumps through the interface are satisfied in an interpolation sense: indeed it is

[[R̃hgd]]Γ =
∑

j g̃djΨj and
[[
∂R̃hgd
∂n

]]
Γ

=
∑

j g̃dj
∂Ψj

∂n .

The potential disadvantage of this methodology with respect to the approach
that we have developed in the previous section 3.1 is that the interface has to
be reconstructed since in (30) the closest point xΓ is requested and, according
to [4], this operation has to be performed using the interface explicitly.

A similar approach is proposed in [4] to construct the lifting of gn. Note
that after multiplying a function built as in (32) by the level-set function φ, it
becomes continuous across the interface (since φ is equal to 0 on the interface),
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while its normal derivative exhibits a jump of the desired magnitude. So, after
constructing g̃n as in (30), the discrete lifting for gn becomes:

S̃hgn =

{
−
∑

φj≥0 Ψj g̃njφ in Ω1∑
φj<0 Ψj g̃njφ in Ω2.

(33)

The potential drawback of this construction is that the multiplication by φ
increases the polynomial order of the lifting function, thus requiring a polynomial
refinement in the neighborhood of the interface. Moreover, the closest point
extension requires again to rebuild the interface explicitly.

Remark 3.1. The construction of the liftings of Sect. 3.1 can be seen as a
generalization of those presented here. Indeed, if instead of the extensions of g∗
introduced in Sect. 2.1, we took the closest point extension (30), then the liftings
Rhgd and Shgn would coincide with (32) and (33). Notice again that in Sect.
3.1 we do not need at all to reconstruct Γ.

3.4 Alternative construction of the discrete liftings

As alternative to (23), one may consider, instead the interpolation introduced
in (23), a suitable projection (e.g. with respect to the L2 or the H1 scalar
products) of the continuous liftings (13) and (16) on the finite element space
Vh. This alternative could be useful in those cases where interpolation operator
cannot be defined. However, interpolation has to be privileged if it is available
as it usually leads to the same error behavior and enables an explicit formulation
of the lifting at the discrete level, while the projection requires to solve a linear
system.

Remark also that in the case of weak regularity in (23) another option to
construct the discrete liftings would be to consider Clement interpolation instead
of Lagrange interpolation.

Finally, let us point out that to construct the liftings we could also use a
more analytical approach instead of the ones illustrated before. A possibility
would consist in solving a particular PDE in each triangle crossed by the inter-
face to play the role of extension operators. To control both the trace and the
normal derivative at the same time on the interface, we can solve a fourth order
biharmonic problem in Ki = K ∩Ωi for each K such that K ∩ Γ 6= ∅. Precisely,
the problem would be: find R ∈ H2(Ki) such that:

∆2R = 0 in Ki (34)

R = gd on KΓ (35)

∂R

∂n
= gn on KΓ. (36)

Suitable Dirichlet and Neumann boundary conditions are then added on ∂iKi to
close the problem and to keep the support of R restricted to ΩΓ (KΓ and ∂iKi

are defined as in figure 8).
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Figure 8: Illustration of the geometry of a triangle K cut by the interface Γ.

4 Numerical results

In this section, we present numerical results obtained using the methodologies
described in the previous sections for different geometric dimensions.

4.1 1D test case

First of all, we consider a 1D Poisson problem, as this allows us to make complete
error measurements and visualizations. We consider the unit interval Ω = (0, 1)
with an interface located in Γ = {π−1} so that the uniform meshes that we
will use will not conform with the interface. The level set function is defined as
φ(x) = π−1 − x. The Poisson problem consists in finding u : Ω→ R such that

−u′′(x) = −ex in Ω
u(0) = 1
u(1) = e+ 2,

(37)

with the jump conditions

[[u]]Γ = −2π−1

[[
∂u

∂n

]]
Γ

= 2. (38)

The exact solution reads

u =

{
ex if x ≤ π−1

ex + 2x if x > π−1.
(39)

As both jump conditions are non-homogeneous, we need to extend them
in the whole domain Ω. To this aim, we define two possible sets of extension
to highlight the role of the choice of the extensions for the convergence of the
method. The first set is made of arbitrary functions:

ḡd(x) = −(2π−1 + sin(x− π−1)) ḡn(x) = 1 + e(x−π−1) (40)

while the second set, called simplified extensions, is made of constant func-
tions:

¯̄gd(x) = −2π−1 ¯̄gn(x) = 2 (41)

For the simplified extensions (41), thanks to the definitions (14) and (17), it
is easy to see that the interpolation does not introduce any error while if we take
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the extensions in (40), the interpolation will produce some error on the jumps
and the conditions (38) will not be satisfied exactly. In the latter case, we have
measured the error due to the liftings on the jump conditions (38) for P1 and
P2 finite elements. The following table shows the order of convergence of these
errors for h→ 0:

Convergence rates for errors on:

Elements [[Rgd]]
[[

∂Rgd
∂n

]]
[[Sgn]]

[[
∂Sgn
∂n

]]
P1 3 2 2 1
P2 3 2 3 2

We can see that the orders are optimal for all the quantities and that we
have a superconvergence for Rgd with P1 elements. This is because of the special
circumstance that we are interpolating a function with zero derivative.

We apply now the SESIC method to solve the 1D problem. To measure the
associated error, we use three error measures:

• the H1 norm of the error in the domain Ω∗ = (0, π−1−0.1)∪(π−1 +0.1, 1),

• the L2 norm of the error in the domain Ω∗,

• the L∞ norm of the error in the entire domain Ω.

We typically get a quite smooth error pattern on the whole domain, as shown
in Fig. 9 (left), what provides an evidence that all the components of the error
are balanced.

Figure 9: Pointwise error in the solution for the 1D test using P1 elements and
a grid of 20 intervals: left, using the SESIC method; right, without lifting for
the normal derivative.

However, as shown in the next table, we do not get optimal orders for the
maximum error with P2 elements, while the errors in Ω∗ and the errors for the
P1 elements exhibit optimal convergence rates:

Norm P1 elements P2 elements
L2(Ω∗) 2 3
H1(Ω∗) 1 2
L∞(Ω) 2 2
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Optimal orders also in the L∞ norm can be recovered if we use the simplified
extensions (41).

Using this test case, we can also provide a justification of the use of the lifting
for the jump in the normal derivative. If we do not take into account the lifting
Sgn, we have to use the weak formulation (20). We keep the same definition for
Rgd (with the extension given in (40)).

This produces results that are different from our method mainly near the
interface: figure 9 (right) shows a large error peak in the element crossed by the
interface. The error located in that element is far larger than the interpolation
error visible in the other elements.

This additional error comes from the fact that the underlying finite element
space cannot reproduce jumps inside the elements. It is then impossible to reduce
this error without providing the finite element space with the ability to capture
jumps. In the SESIC method, this is the role of the lifting, that carry the jumps
but does not belong to the finite element space. We can also see this behavior
in the following table that shows the convergence orders for the method without
Sgn: even if the errors computed in the domain Ω∗ show optimal convergence
orders, the high error near the interface reduces the convergence rates in the
maximum norm.

Norm P1 elements P2 elements
L2(Ω∗) 2 3
H1(Ω∗) 1 2
L∞(Ω) 1 1

The role of the lifting Sgn for the normal derivative is then clear: it helps to
reduce the magnitude of the error in the neighborhood of the interface.

For the sake of comparing our method with the ESIC method described in
section 3.3, we have also tested the weak formulation modified with (29) and
with the liftings described in section 3.1. This allows us to bring to light the
consequences of using (29). The following table shows the convergence rates for
this test case: we can clearly see that the convergences are slower than with the
weak formulation (21).

Norm P1 elements P2 elements
L2(Ω∗) 1 2
H1(Ω∗) 1 2
L∞(Ω) 1 2

The following picture shows the typical pattern that we get using the modi-
fied weak formulation. The solution looks like if the force applied on the interface
(by the term

∫
Γ gnvh in (20) and (21)) was badly estimated, leading to the trend

of the error to be greater near the interface, while producing no peak there.
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Figure 10: Pointwise error in the solution for the 1D test, using P1 elements on
20 intervals when using the modification (29)

The origin of the error is also emphasized in the next figure, that shows that

there is a big correlation between the error |
[[
∂Sgn
∂n

]]
− gn| and the L2 error.

Figure 11: Comparison between the error on the normal jump of Sgn and the
global L2 error.

This error does not show up in the original ESIC method as shown in the
next table.

Norm Convergence rate
L2(Ω∗) 2
H1(Ω∗) 1
L∞(Ω) 2

The reason is that in the latter method, polynomial refinement is performed
near the interface. In this example, P1 elements have been used except for the
elements containing the interface where a P2 basis was defined. As shown at the

beginning of this section, when P2 are used, the error |
[[
∂Sgn
∂n

]]
−gn| has a second

order convergence and then has the same behavior as the interpolation error.
However this approach requires an additional programming effort as well as
unnecessary addition of degrees of freedom: the next figure shows the pointwise
error for the ESIC method and we can observe that the error in the element
containing Γ is smaller than in the rest of the domain.
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Figure 12: Pointwise error in the solution for the 1D test, using the ESIC method
with 20 intervals.

Finally, we investigate the effects of computing integrals using the regularized

integrands introduced in section 3.2. We test both widths w =
√

h
2 and w = h.

The effects of the thickness of the regularization band is clearly visible in Fig.
13 (left) where we show the behavior of the L2(Ω∗) norm of the error.

Figure 13: L2(Ω∗) error (left) and L∞(Ω) error (right) associated with the dif-
ferent integration methods.

As stated previously in this section, optimal order of convergence is achieved
with the exact integration. Using the proposed smooth integration, i.e., with w
proportional to

√
h, we also get the optimal order of convergence in this norm.

On the contrary, using a regularization band with thickness w = h, we obtain an
unpredictable behavior when h becomes small. The convergence in that case is
difficult to assess. We can observe the same kind of behavior in the L∞(Ω) norm
as shown in Fig. 13 (right). In this case we can see that using w proportional to√
h leads to a convergence slower than the optimal one: if for coarse meshes the

convergence rate seems to be close to 2, it then slows down to 1 for finer meshes.
All these results correspond quite well to the remarks that we made in Sect.

3.2. The smooth integration using w proportional to
√
h permits to control the

error leading to regular convergence, even optimal in the L2(Ω∗) norm. This
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means that the error generated near the interface, reported in the L∞(Ω) norm,
is confined in that area and does not pollute the solution in the whole domain.
On the contrary, with w = h, we lose the control on the quadrature error causing
a large error in the interface area that eventually spreads in the whole domain.

4.2 2D test case

We test our method on the two dimensional test case defined in [4]. This test is
quite simple as the exact solution is continuous, so that the jump is only in the
normal derivative. The domain is defined as the square Ω = (−1, 1)2 and the
interface is the circle with radius 0.5 centered at the origin.

The exact solution reads:

u(x, y) =

{
1 if x2 + y2 ≤ 0.25

1− log(2
√
x2 + y2) if x2 + y2 > 0.25.

Dirichlet boundary conditions are set to ensure this exact solution and the
jump in the normal derivative to be[[

∂u

∂n

]]
Γ

= −2.

Cartesian meshes with n cells on each side were used. The results that we
obtain are listed in the following table:

n Maximal error on Γ rate Maximal error in Ω rate
9 7.13× 10−3 1.84× 10−2

19 2.85× 10−3 1.23 4.61× 10−3 1.85
39 7.10× 10−4 1.93 1.13× 10−3 1.96
79 1.71× 10−4 2.02 2.71× 10−4 2.02

We can see that the SESIC method gives optimal orders of convergence both
at the interface and in the entire domain. This means that the error decreases
with the same rate everywhere in the domain, included near and on the interface.
Moreover, the magnitude of the error is lower than for the methods (ESIC,
XFEM and IBM) compared in [4], while being easier to implement and cheaper
to compute.

4.3 3D test case

We finally consider a 3D problem. This example was implemented in the parallel
version of the finite element library LifeV (www.lifev.org). We consider the

domain Ω = (−1, 1)3. The level set function is φ(x, y, z) =
(
x2 + y2 + z2

)1/2−0.5
so that the interface Γ is a sphere centered in the origin with a radius 0.5. In
Ω, we want to find the solution u : Ω→ R of the problem −∆u = 0 with jumps
conditions through Γ:

[[u]]Γ = 2− ex+z sin(
√

2y)
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[[
∂u

∂n

]]
Γ

= 4 + 2ex+z
(

(x+ z) sin(
√

2y) +
√

2y cos(
√

2y)
)
.

Boundary conditions are such that the exact solution is

u(x, y, z) =

{
(x2 + y2 + z2)−1/2 if φ(x, y, z) ≥ 0

ex+z sin(
√

2y) if φ(x, y, z) < 0.

We solved this problem using P1 finite elements. To measure the error, we
computed both the L2 error in the domain Ω∗ = {x ∈ Ω | |φ(x)| > 0.1} for
regularity and maximal error in all the finite element nodes (denoted hereafter
l∞). We used Cartesian meshes with n representing the number of nodes in
each direction. The computed errors and convergence rates are given in the
next table.

n degrees of freedom error L2(Ω∗) rate error l∞ rate
5 125 6.26× 10−1 3.52× 10−1

10 1000 2.11× 10−1 1.34 8.39× 10−2 1.79
20 8000 1.72× 10−2 3.36 2.09× 10−2 1.86
40 64000 3.07× 10−3 2.40 5.63× 10−3 1.82
60 216000 1.34× 10−3 2.00 2.63× 10−3 1.84
80 512000 7.50× 10−4 1.99 1.67× 10−3 1.56
100 1000000 4.78× 10−4 2.00 1.17× 10−3 1.58

Figure 14: Representation of the error on the surface x = 0 for n = 80. We can
remark that the error near the interface is of the same order of magnitude as far
from it.

The order of convergence in the L2(Ω∗) norm is close to the optimal rate 2
when n increases. This is due to the fact that the error produced by the smooth
integration is well controlled and it is reflected only in the l∞ norm as it is
confined to the interface area (as shown in Fig. 14). The error in the l∞ norm
is expected to behave like the L∞(Ω) error in the 1D test case, i.e., to decrease
slowly for finer meshes until it reaches the convergence rate 1.
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Finally, with this test case we can emphasize the need for a good integration
scheme for the singular functions. Indeed, if instead of smoothing the integrands
on a width proportional to

√
h, we use a width of h, we get the following results:

n degrees of freedom error L2(Ω∗) rate error l∞ rate
5 125 6.33× 10−1 3.18× 10−1

10 1000 2.16× 10−1 1.33 7.23× 10−2 1.83
20 8000 1.71× 10−2 3.39 1.86× 10−2 1.82
40 64000 3.92× 10−3 2.05 1.27× 10−2 0.53
60 216000 1.38× 10−3 2.52 5.47× 10−3 2.03
80 512000 1.17× 10−3 0.57 7.57× 10−3 −1.11
100 1000000 1.01× 10−3 0.65 5.82× 10−3 1.16

We can observe that the convergence is slower when the mesh gets finer
because the quadrature error is more dominating.

Figure 15: Error for the 3D test case on the plane y = 0. The upper figure
represents the error when the interface width is w = 0.0796 (=

√
h/2), whereas

for the lower figure we used w = 0.0127 (= h).

5 An application to free surface flows

In this section we present a possible application of the SESIC method to free
surface flows. Another paper containing a more complete description of this
method is in preparation.

5.1 Principle of the correction

We consider the problem of simulating the motion of a surface separating two
incompressible Newtonian fluids. Differently from the problems introduced in
the previous numerical results, the position of the interface is now unknown and
represented via a level set function.

To represent the motion of the two fluids, we use the Navier-Stokes equations
on each side of the surface, but with different densities ρ and viscosities µ within
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each subregion:

ρ∂tu−∇ ·T(u, p) + ρ(u · ∇)u = f
∇ · u = 0

where T(u, p) = µ(∇u+∇uT )−pI is the Cauchy stress tensor, u is the velocity
of the fluid and p its pressure. ρ and µ are constant in each fluid domain, but
they are discontinuous across the interface where they can differ by several orders
of magnitude. For example, if we want to simulate the surface between water
and air, the density ratio is approximately 1000 whereas the viscosity ratio is
50.

Usually, gravity has an important effect on bifluid flow simulations. However,
due to the difference of the densities, the gravity force f = ρg exhibits a large
discontinuity across the interface that leads to a jump in the normal derivative
of the pressure. At the discrete level, a standard choice of the finite element
spaces does not allow to represent discontinuities in the gradients of the un-
known pressure inside the elements crossed by the free surface. This can result
in oscillations in the pressure that may possibly pollute the whole simulation
and give an unphysical shape to the surface (this is especially visible when the
viscosities are low).

This problem had already been studied in [3] where the authors propose a
pressure correction to get rid of these unphysical oscillations. More precisely,
they add new finite element shape functions with discontinuous gradients across
the interface and condense a priori the new degrees of freedom. Although this
approach leads to real improvements in the numerical simulations, its main dis-
advantages are the construction of the new shape functions done geometrically
in each element and the extra cost represented by the a priori condensation.

Using the SESIC method, we can provide a simpler and faster way of con-
structing such a pressure correction. Indeed, since the jump in the gradient of
the pressure is known a priori:[[

∂p

∂n

]]
Γ

= [[ρ]]Γ|g|,

we can construct a lifting for this jump like (28) with gn = [[ρ]]Γ|g|. Then,
we subtract this lifting to the original pressure obtaining an additional term
in the right-hand side of the momentum equation of the Navier-Stokes system.
The lifting can be built without reconstructing the interface as explained in the
previous sections.

5.2 Numerical results

We consider a test case inspired to the one in [3] that consists in water being
pushed up in a rectangular pipe with constant velocity. The fluid is initially at
rest with a flat horizontal free surface at height z = 0.25 m from the bottom
of the pipe. The liquid is then pushed upward with a vertical velocity of 1 m/s
so that the free surface should reach z = 0.75 m at t = 0.5 s and z = 1.25 m

22



at t = 1 s. Boundary conditions are of free-slip type so that the surface should
only move vertically while remaining completely flat. The viscosity of the fluid
if µf = 10−3 Pa·s and its density is ρf = 1000 kg/m3, while the viscosity of the
air-phase is µa = 2 · 10−5 Pa·s with density ρa = 1 kg/m3. The computational
mesh that we have used for our tests is structured, uniform and made of 6762
tetrahedra. We have used the MINI elements [1] for the Navier-Stokes equations
first with standard quadrature formulas, then using a quadrature formula that
accounts for the discontinuities in ρ and µ across the interface (see figure 7) and
finally adding also a pressure-correction term.

The numerical simulations shown in Fig. 16-17 show that without pressure
correction the shape of the free surface gets distorted after few time steps and
also the velocity field is not captured correctly. Moreover, we can see that only
using pressure correction the right elevation of the free surface is obtained, while
the other two approaches lead to some numerical dissipation which slows down
the advancement of the free surface.

6 Conclusions

In this paper, we have investigated a new method, the SESIC method, that can
be used to solve interior discontinuity interface problems. It relies on simple
construction of liftings, i.e. finite element functions that are built to carry the
discontinuities across the interface.

The method that we proposed was inspired by the ESIC method (see [4]) and
in fact inherits some properties of that method. First of all, the jumps across
the interface are actually reproduced by the method. The cost for this method
is also quite low, as only the assembly for a small part (corresponding to the
elements crossed by the interface) of the right hand side is needed.

The SESIC method has also the advantage of requiring no additional degree
of freedom, as no new basis function nor refinement near the interface are nec-
essary. The consequence is that the stiffness matrix remains unchanged with
respect to that associated with the given PDE without interface discontinuities.
At the algebraic level, solution strategies and preconditioning need not be mod-
ified. The liftings introduced in the SESIC method have removed one of the
bottlenecks of the ESIC method: there is no need to reconstruct the interface
explicitly for building the liftings. This adds more generality to the method, as
the level set can now be given in all the possible forms: even a level set given
as a finite element function with high polynomial degree would be acceptable,
as there is no need to solve non-linear equation for finding the zero level set.
Moreover, if we use regularizing functions for the integration of discontinuous
integrands, then the SESIC method treats the interface in a fully implicit way.

The numerical results show that in the 1D and 2D cases that we have tested,
the method exhibits optimal orders of convergence. The use of regularized in-
tegrands rather than exact integration across the interface leads to a slower
convergence in the regularization band around the interface, but it keeps the
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optimal convergence in the remaining part of the domain, as shown on the 3D
test case that we have considered.
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Figure 16: Streamlines of the solutions computed at different times for the bench-
mark problem: with standard numerical quadrature (top), with conforming
quadrature (middle) and with conforming quadrature plus pressure correction
(bottom).
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Figure 17: Free surface velocity for the solutions computed at different times
for the benchmark problem: with standard numerical quadrature (top), with
conforming quadrature (middle) and with conforming quadrature plus pressure
correction (bottom).
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