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Many biological and geological systems can be modelled as porous media with small

inclusions. Vascularized tissue, roots embedded in soil or fractured rocks are examples of

such systems. In these applicatons, tissue, soil or rocks are considered to be porous media,
while blood vessels, roots or fractures form small inclusions. To model flow processes in

thin inclusions, one-dimensional (1D) models of Darcy- or Poiseuille type have been
used, whereas Darcy-equations of higher dimension have been considered for the flow
processes within the porous matrix. A coupling between flow in the porous matrix and

the inclusions can be achieved by setting suitable source terms for the corresponding

models, where the source term of the higher-dimensional model is concentrated on the
centre lines of the inclusions.

In this paper, we investigate an alternative coupling scheme. Here, the source term
lives on the boundary of the inclusions. By doing so, we lift the dimension by one and

thus increase the regularity of the solution. We show that this model can be derived from

a full-dimensional model and the occurring modelling errors are estimated. Furthermore,
we prove the well-posedness of the variational formulation and discuss the convergence

behaviour of standard finite element methods with respect to this model. Our theoretical

results are confirmed by numerical tests. Finally, we demonstrate how the new coupling
concept can be used to simulate stationary flow through a capillary network embedded

in a biological tissue.

Keywords: elliptic problems, small inclusions, model reduction, finite element approxi-
mation.
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1. Introduction

In this work, we address a special type of second order elliptic equation, which can

be considered a model problem for diffusion processes in porous media with small

inclusions. To define this problem, a two-dimensional, open, bounded and convex

domain Ω ⊂ R2 is considered. Moreover, we assume that Ω is a polygonal domain.

Within Ω there are N ∈ N open balls Bi ⊂ Ω. By Bi, we denote a ball around a

centre xi ∈ Ω having the radius Ri. For a given constant C > 0 it holds:

dist (∂Ω, Bj) > C, dist (Bi, Bj) > C, i 6= j, i, j ∈ {1, . . . , N} ,

where

dist (M,Bj) = min
{
‖x− y‖2| x ∈M, y ∈ Bj

}
, M ∈ {∂Ω, Bi} .

For notational convenience, we split the domain Ω in two parts, Ωf ,Ωp:

Ωp = Ω \ Ωf , where Ωf =

N⋃
i=1

Bi. (1.1)

In the applications discussed in more detail later on, Ωf represents the collection

of channels and fractures, while Ωp is the surrounding porous material. Having this

notation at hand, our model problem reads as follows:

−∆uref = f in Ωp, −∇uref · ni = κi (Ui − uref) on ∂Bi, uref = 0 on ∂Ω. (1.2)

The source term f ∈ L2(Ωp) represents a body force or external source and sink

terms, while κi (Ui − uref) is modelling a flux through the interface Γi from the

inclusions into the porous medium or vice versa. More precisely, κi ∈ R, κi > 0

plays the role of a permeability, Ui ∈ R, Ui > 0 is a given intensity of the inclusion

Ωi, and ni denotes the outward unit normal vector of ∂Bi. In Section 7, we will also

consider the case where Ui are functions that obey partial differential equations

coupled with problem (1.2). For applications with many small inclusions, model

(1.2) is computationally unfeasible, because of the excessive computational cost that

would arise using a computational mesh that conforms to all inclusions. Therefore,

we present in this work a simplified form of problem (1.2), which considerably

reduces the cost of numerical simulations. The reduced model we propose consists

of the following equations for the unknown ured:

−∆ured = F +

N∑
i=1

κi

(
Ui − u(i)

red

)
δ∂Bi in Ω, ured = 0 on ∂Ω, (1.3)

where δ∂Bi stands for a Dirac measure laying on ∂Bi and the expression u
(i)
red ab-

breviates the mean value of ured on ∂Bi:

u
(i)
red =

1

2πRi

∫
∂Bi

ured dS. (1.4)

The fluctuations ũ
(i)
red of ured on ∂Bi are defined by:

ũ
(i)
red = ured|∂Bi − u

(i)
red. (1.5)
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The source term F ∈ L2 (Ω) is an extension of the source term f in (1.2), where we

claim that F coincides with f on Ωp:

F (x) =

{
f (x) , for x ∈ Ωp,

fi (x) , for x ∈ Bi.
(1.6)

In addition to that, it may hold that F exhibits no jumps at the interfaces ∂Bi and

that for a constant Cf > 0:

‖fi‖L2(Bi)
≤ Cf ‖f‖L2(Ωp) , ∀i ∈ {1, . . . , N} . (1.7)

In cases where Ui are the solutions of partial differential equations derived from

model reduction techniques, thus defined on lower dimensional manifolds or sets

(2D,1D,0D), this gives rise to coupled systems of PDEs defined on embedded do-

mains with heterogeneous dimensionality5,7,26,14. Such PDE systems are often clas-

sified into PDE systems with co-dimension 1, i.e., 3D-2D or 2D-1D coupled PDEs,

and PDEs with co-dimension 2, i.e., 3D-1D or 2D-0D coupled problems.

The numerical analysis and discretization of these types of problems have been

investigated in several publications 6,17,20. For the numerical treatment of interface

problems with co-dimension 1, XFEM methods have proved to be very effective
10,32. In the case of co-dimension 2, the solution of the higher dimensional problem

exhibits singularities along the manifolds representing the inclusions. When the

lower dimensional problems are represented as a distribution of Dirac source terms

embedded into the higher dimensional space, the reduced regularity deteriorates

the convergence of numerical methods and optimal convergence rates can only be

recovered using graded meshes or local error norms 2,6,19,18.

In this paper, we investigate by means of the model problem (1.3) a different

way of coupling partial differential equations with heterogeneous dimensionality.

The fundamental difference between the coupling term in (1.3) and the existing

coupling concepts is that the inclusion is not represented by a single line or point in

space. In the source term of (1.3) the Dirac measure is concentrated on the physical

boundary of the inclusions. Therefore, a dimensional gap of two in the coupling

term is avoided and the corresponding solution is smoother. At the same time, the

averaging technique applied to the interface conditions makes it possible to couple

the bulk problem with sub-problems defined on manifolds of co-dimension two. This

formulation allows for a more natural mathematical analysis of the model, numerical

discretization and error analysis of the resulting approximation schemes.

The coupling of three-dimensional continua with embedded 1D inclusions, of

which the proposed model represents a template, arises in applications of great

importance such as microcirculation, flow through perforated media and the study

of reinforced materials.

Flow and transport simulations in complex vascular networks are becoming a

popular approach to studing the physiology of tumors and to design new treatments
12,25,34. This new trend is motivated by the need to incorporate accurate physical

models of flow, biochemical transport and mechanical interactions within a realistic



May 22, 2017 19:47 WSPC/INSTRUCTION FILE
TSWLatexianTemp˙000008
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geometrical description of the vasculature, which in turn enables the comparison

of simulations with imaging data captured at the microscale by means of intravital

microscopy techniques 3,4,22,23,36. We also point out that a similar approach is being

used for simulating the interaction of plant roots with soil 31.

This new approach for solving PDEs in domains with inclusions is also of interest

in many other fields such as in the design of cooling systems for electronics (for

designing pulsating heat pipes for space applications) in neuroscience (to study the

impact of cerebrospinal fluid clearance on chronic mental disease and dementia) and

in the simulation of floods (through the interaction of the hydraulic network with

the surrounding territory).

The remaining parts of this work are organized as follows: In Section 2, we

summarize some trace inequalities which are required for the mathematical analysis

in the following sections. Section 3 presents the model derivation and the weak

formulation of (1.3). Moreover, the existence and uniqueness of the weak solution

is shown and its regularity is discussed. Section 4 characterizes the modelling error.

In Section 5, we consider the numerical discretization by the finite element method

and study its convergence. Our theoretical results are confirmed by numerical tests,

which are presented in Section 6. Finally, in Section 7, the new coupling concept is

used to address a relevant application, i.e., the perfusion of vascularized biological

tissues.

2. Trace inequalities

In this section, we discuss two trace inequalities that are key ingredients for our

mathematical analysis. The first trace inequality allows us to bound the mean value

v(i) (see (1.4)) of a function v ∈ H1
0 (Ω) with respect to the boundary of a ball Bi,

while the second trace inequality is an inequality of Steklov-type providing an upper

bound for traces of functions v, whose averages vanish on ∂Bi:∫
∂Bi

v dS = 0.

In order to prove the well-posedness of our model problem (Section 3) and to derive

suitable upper bounds for the modelling error (Section 4), it is crucial to know how

the arising constants depend on the radii Ri of the circular inclusions Bi. Therefore,

we investigate these constants in more details.

Lemma 2.1. Let Bi ⊂ Ω be a ball with a sufficiently small radius Ri. Then it holds

for the mean value v(i) of v ∈ H1
0 (Ω):

v(i) ≤ C |lnRi|
1
2 ‖∇v‖L2(Ω) ,

where the constant C > 0 is independent of Ri.

Proof. According to 1[Remark 1], it holds for Bi:

v(i) ≤ 1

2πRi

(
2

Ri

∫
Bi

|v| dx+

∫
Bi

|∇v| dx
)
.
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Applying the Hölder inequality to both summands, we have:

v(i) ≤ 1

πR2
i

(
πR2

i

) 1
q ‖v‖Lp(Bi)

+

√
πR2

i

2πRi
‖∇v‖L2(Bi)

,

≤
(
πR2

i

)− 1
p ‖v‖Lp(Bi)

+

√
πR2

i

2πRi
‖∇v‖L2(Bi)

.

for the parameters p and q such that 1/p+1/q = 1, while the L1-norm in the second

summand is estimated by a product of L2-norms. The choice p = | lnRi| ≥ 2 and

q = | lnRi|
| lnRi|−1 yields:

v(i) ≤ π−
1

| lnRi|R
− 2
| lnRi|

i ‖v‖Lp(Bi)
+

√
πR2

i

2πRi
‖∇v‖L2(Bi)

≤ exp(2) ‖v‖Lp(Ω) +
1

2
√
π
‖∇v‖L2(Ω) .

According to a Sobolev inequality 37 [Equation (6.20)], there exists a constant C > 0

independent of Ri such that for v ∈ H1
0 (Ω) it holds true:

‖v‖Lp(Ω) ≤ Cp
1
2 ‖∇v‖L2(Ω) . (2.1)

Therefore, we have

v(i) ≤ C
(
|lnRi|

1
2 ‖∇v‖L2(Ω) + ‖∇v‖L2(Ω)

)
,

with a constant C > 0 independent of Ri.

Next, we derive by means of the Steklov inequality a trace inequality for the

fluctuation ṽ(i) with respect to a ball Bi (see (1.5)).

Lemma 2.2. Let Bi ⊂ R2 be a ball with a sufficiently small radius Ri and v ∈
H1

0 (Ω). Then we have:

‖v‖L2(∂Bi)
≤ C

√
Ri |lnRi| ‖∇v‖L2(Ω) ,

where C > 0 is a constant independent of Ri.

Proof. Observing that
∫
∂Bi

ṽ(i) dS = 0, we find in terms of 16 [Section 3] and 21

[Section 5] that ∥∥∥ṽ(i)
∥∥∥
L2(∂Bi)

≤
√
Ri ‖∇v‖L2(Bi)

. (2.2)

Using the orthogonal decomposition of v, we obtain:

‖v‖2L2(∂Bi)
=
∥∥∥v(i) + ṽ(i)

∥∥∥2

L2(∂Bi)
= 2πRi

(
v(i)
)2

+
∥∥∥ṽ(i)

∥∥∥2

L2(∂Bi)
.

In order to bound the first term, we apply Lemma 2.1 and the second term is

bounded by (2.2).
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3. Model derivation and analysis

Let us start with the variational formulation of reference problem (1.2). It consists

of finding uref ∈ V (Ωp) such that

(∇uref ,∇v)Ωp +

N∑
i=1

κi(uref , v)∂Bi = (f, v)Ωp +

N∑
i=1

κiUi

∫
∂Bi

v dS, ∀v ∈ V (Ωp) ,

(3.1)

where we have adopted the standard notation for the L2-inner product. The function

space V (Ωp) is defined as follows:

V (Ωp) =
{
v ∈ H1 (Ωp) | v |∂Ω = 0

}
.

Using (1.4) and (1.5), the interface terms can be written as:

(u, v)∂Bi =

∫
∂Bi

u v dS = 2πRi u
(i)v(i) +

∫
∂Bi

ũ(i) ṽ(i)dS. (3.2)

We derive a simplified model (also named here as reduced model) on the basis of

the following assumptions, which rely on the fact that the inclusions are small:

(A1) we identify the domain Ωp with the entire Ω;

(A2) we assume that the residual term in (3.2) is small, namely∫
∂Bi

ũ(i) ṽ(i)dS ' 0.

In Section 4, we will define the error components associated with each of these

assumptions, and we will analyse their magnitude in terms of the parameters of the

problem. We replace (3.1) with a surrogate problem: Find ured ∈ H1
0 (Ω) such that

(∇ured,∇v)Ω + 2π

N∑
i=1

Riκiu
(i)
redv

(i) = (F , v)Ω + 2π

N∑
i=1

RiκiUiv
(i), ∀v ∈ H1

0 (Ω) .

(3.3)

Problem (3.3) is equivalent to finding ured ∈ H1
0 (Ω) such that:

a (ured, v) = L (v) , ∀v ∈ H1
0 (Ω) , (3.4)

where the bilinear form a (·, ·) : H1
0 (Ω)×H1

0 (Ω)→ R is given by:

a (u, v) = (∇u,∇v)Ω + 2π

N∑
i=1

Riκiu
(i) v(i). (3.5)

The linear form L is defined as follows:

L : H1
0 (Ω)→ R, L (v) = (F , v)Ω + 2π

N∑
i=1

RiκiUi v
(i). (3.6)

Obviously, (3.4) is the weak formulation of the reduced problem (1.3). For the

variational problem (3.4), one can prove the following result on the well-posedness:



May 22, 2017 19:47 WSPC/INSTRUCTION FILE
TSWLatexianTemp˙000008

Second order elliptic problems with active inclusions 7

Theorem 3.1. Let the requirements of Lemma 2.1 be fulfilled. Then problem (3.4)

has a unique solution

ured ∈ H1
0 (Ω) ∩H 3

2−ε (Ω) , ∀ε > 0.

Furthermore it holds the following stability estimate:

‖ured‖H1
0 (Ω) ≤ C

(
‖F‖L2(Ω) +

N∑
i=1

κiRi| lnRi|
1
2Ui

)
.

Proof. The variational problem (3.4) can be analysed by means of the Lax-Milgram

Lemma. We begin by proving that the symmetric bilinear form (3.5) is continuous

and coercive. The coercivity is a direct consequence of the Poincaré inequality. More

precisely for any v ∈ H1
0 (Ω) there exists a positive constant CP independent of Ri

and κi, such that:

a (v, v) ≥ (∇v,∇v)Ω ≥
(
1 + C2

P

)−1 ‖v‖2H1
0 (Ω) .

By means of Lemma 2.1, we have

2πRi u
(i) v(i) ≤ 2πRiC |lnRi| ‖u‖H1

0 (Ω) ‖v‖H1
0 (Ω) . (3.7)

Then, using (3.7), we obtain the continuity of the bilinear form:

a (u, v) ≤

(
1 + 2πC

N∑
i=1

κiRi |lnRi|

)
‖u‖H1

0 (Ω) ‖v‖H1
0 (Ω) .

The boundedness of the linear form (3.6) then remains to be proven. According to

Lemma 2.1 we have:

2πRiv
(i) ≤ 2πRiC |lnRi|

1
2 ‖∇v‖L2(Ω) ≤ 2πRiC |lnRi|

1
2 ‖v‖H1

0 (Ω) .

All in all, it follows that there is a unique solution ured ∈ H1
0 (Ω). Due to the

presence of Dirac source terms in (1.3) no H2-regularity can be recovered and the

question arises as to which interspace Ṽ with H2 (Ω) ⊂ Ṽ ⊂ H1
0 (Ω) the solution

ured belongs. Since the right hand side in (1.3) is in H−
1
2−ε (Ω) , ∀ε > 0 it can be

shown, analogous to Case (iii) in 15 [Theorem 2.1], that ured ∈ H
3
2−ε (Ω) , ∀ε > 0.

Testing (3.4) with v = ured, using the coercivity of the bilinear form a, the con-

tinuity result of the linear form L and the Cauchy-Schwarz inequality the above

stability estimate can be derived.

4. Analysis of the modelling error

We aim to analyse the error arising from assumptions (A1) and (A2) at the basis of

the reduced model (3.3). Let us denote by uint the solution of the problem obtained

after the intermediate step (A1), that is

(∇uint,∇v)Ω +

N∑
i=1

κi(uint, v)∂Bi = (F , v)Ω +

N∑
i=1

κiUi

∫
∂Bi

v dS ∀v ∈ H1
0 (Ω) .

(4.1)
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Proceeding as in 35 [Theorem 4.12] and Theorem 3.1, one can prove that prob-

lems (3.1) and (4.1) admit unique solutions uref ∈ V (Ωp), and uint ∈ H1
0 (Ω),

respectively. We define the modelling error as e := uref − ured|Ωp , and we naturally

decompose it as the error related to assumption (A1), that is e1 := uref − uint|Ωp
and the one associated to (ii), namely e2 := uint − ured. The two parts of the error

are analysed separately, and we show that the following inequality holds true:

‖e‖H1(Ωp) ≤ ‖e1‖H1(Ωp) + ‖e2‖H1(Ω)

≤ C1

[
‖F‖L2(Ω)

N∑
i=1

Ri |lnRi|
1
2 (1 + κi) +

N∑
i=1

UiκiRi |lnRi|
1
2

]

+ C2

‖F‖L2(Ω)

N∑
i=1

κiRi +

N∑
i,j=1

κiκjRiRj | lnRj |
1
2Uj

 , (4.2)

where the constants C1 and C2 are independent of Ri, κi and Ui, ∀i ∈ {1, . . . , N}.
Equation (4.2) informs us of the structure of the modelling error. The first two

terms on the right hand side relate to the modelling assumption (A1) concerning

extension of the physical domain Ωp to the whole domain Ω. This component of

the error scales quasi-linearly with the size of the inclusions. The third and fourth

components on the right-hand side quantify the error of replacing the solution on

the interfaces with its average and relate to the modelling assumption (A2). Since

a modelling error for one interface affects all the other interfaces, not surprisingly

the fourth term is proportional to
∑N
i,j=1RiRj , up to a log-term.

4.1. Analysis of the modelling error related to assumption (A1)

In this subsection, we derive an upper bound depending on the parameters which

occur in our model problem for the modelling error corresponding to assumption

(A1). As a first step we define an elliptic auxiliary problem:

−∆uf = F in Ω, uf = 0 on ∂Ω.

having the weak formulation:

(∇uf ,∇v)Ω = (F , v)Ω , ∀v ∈ H
1
0 (Ω) . (4.3)

By means of the solution uf , we decompose the solutions of (3.1) and (4.1) as

follows:

uref = wref + uf |Ωp and uint = wint + uf . (4.4)

Next, we introduce two extension operators

Esa : V (Ωp)→ H1
0 (Ω) and Est : H2 (Ω)→ H2

0

(
Ω̂
)

presented in 30 [Section 2.1] and 13 [Theorem 7.25], respectively. Here, Ω̂ is an open

and bounded set with Ω b Ω̂ ⊂ R2. In order to derive a stability estimate for wref ,

we exploit the following properties of Esa and Est:
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(P1) Let v ∈ V (Ωp) then it holds: Esav|Ωp = v and Esav
(i)

= v(i).

(P2) According to the proofs of 30 [Lemma 2.2, Theorem 2.2, Example 2.1], there

is a constant Csa > 0 independent of Ri, such that:

‖∇Esav‖L2(Ω) ≤ Csa ‖∇v‖L2(Ωp) for v ∈ V (Ωp) .

(P3) For v ∈ H2 (Ω), there is a constant Cst > 0, such that:

‖Estv‖H2(Ω̂) ≤ Cst ‖v‖H2(Ω) and Estv|Ω = v.

For v = wref ∈ V (Ωp) in (3.1), using the decomposition in (4.4) we obtain:

‖∇wref‖2L2(Ωp) ≤ (F , Esawref)Ω − (∇uf ,∇Esawref)Ω −
N∑
i=1

(fi, Esawref)Bi

+

N∑
i=1

(∇uf ,∇Esawref)Bi −
N∑
i=1

κi (uf , wref)∂Bi +

N∑
i=1

Uiκi

∫
∂Bi

wref dS.

Testing (4.3) with v = Esawref ∈ H1
0 (Ω), we have:

(F , Esawref)Ω − (∇uf ,∇Esawref)Ω = 0

and by (P1) and the Hölder inequality, it follows:

‖∇wref‖2L2(Ωp) ≤
N∑
i=1

‖fi‖L2(Bi)
‖Esawref‖L2(Bi)

+

N∑
i=1

‖∇uf‖L2(Bi)
‖∇Esawref‖L2(Bi)

+

N∑
i=1

κi ‖uf‖L2(∂Bi)
‖wref‖L2(∂Bi)

+ 2π

N∑
i=1

UiκiRi · w(i)
ref .

In order to bound the first summand, we consider once again the Hölder inequality

with the parameters r and s fulfilling the condition 1/r + 1/s = 1. By means of

this, one can show that:

‖Esawref‖L2(Bi)
≤ CR

1
r
i ‖Esawref‖L2s(Bi)

(4.5)

Setting s = p/2 and using (2.1), we obtain:

‖Esawref‖L2(Bi)
≤ CR1− 2

p

i p
1
2 ‖∇Esawref‖L2(Ω) . (4.6)

Then it follows for p = |lnRi| together with (1.7) and (P2):

N∑
i=1

‖fi‖L2(Bi)
‖Esawref‖L2(Bi)

≤ C ‖F‖L2(Ω) ‖∇wref‖L2(Ωp)

N∑
i=1

Ri |lnRi|
1
2 . (4.7)

Analogously to (4.5) and (4.6) one can show that:

‖∇uf‖L2(Bi)
≤ CR1− 2

p

i ‖∇uf‖Lp(Bi)
.
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Based on (2.1), (P3) and the H2-regularity of uf , we obtain:

‖∇uf‖Lp(Bi)
≤

(
2∑
i=1

‖∂xiEstuf‖pLp(Ω̂)

)1/p

≤ Cp 1
2

(
2∑
i=1

‖∇ (∂xiEstuf)‖pL2(Ω̂)

)1/p

≤ Cp 1
2 ‖Estuf‖H2(Ω̂) ≤ Cp

1
2 ‖uf‖H2(Ω) ≤ Cp

1
2 ‖F‖L2(Ω) .

Choosing p = |lnRi| the following estimate for the second summand results in:

N∑
i=1

‖∇uf‖L2(Bi)
‖∇Esawref‖L2(Bi)

≤ C ‖F‖L2(Ω) ‖∇wref‖L2(Ωp)

N∑
i=1

Ri |lnRi|
1
2 .

(4.8)

Applying Lemma 2.2, (P1) and (P2) to the third summand and considering the

H2-regularity of uf together with a standard Sobolev embedding, we have:

N∑
i=1

κi ‖uf‖L2(∂Bi)
‖wref‖L2(∂Bi)

≤ C ‖F‖L2(Ω) ‖∇wref‖L2(Ωp)

N∑
i=1

κiRi |lnRi|
1
2 .

(4.9)

The bound for the last summand follows directly from Lemma 2.1 and (P3):

2π

N∑
i=1

UiκiRi · w(i)
ref ≤ C ‖∇wref‖L2(Ωp)

N∑
i=1

UiκiRi |lnRi|
1
2 . (4.10)

Summarizing (4.7)-(4.10), we finally have:

‖∇wref‖L2(Ωp) ≤ C

[
‖F‖L2(Ω)

N∑
i=1

Ri |lnRi|
1
2 (1 + κi) +

N∑
i=1

UiκiRi |lnRi|
1
2

]
.

(4.11)

As a next step, we derive a stability estimate for the function wint. In this process,

(4.1) is tested with v = wint ∈ H1
0 (Ω). Inserting the decomposition of uint (see

(4.4)) into (4.1), it follows that

‖∇wint‖2L2(Ω) ≤ (F , wint)Ω − (∇uf ,∇wint)Ω −
N∑
i=1

κi (uf , wint)L2(∂Bi)

+ 2π

N∑
i=1

UiκiRi · w(i)
int.

By means of the techniques which have been used to derive the stability estimate

for wref one can prove that:

‖∇wint‖L2(Ω) ≤ C

[
‖F‖L2(Ω)

N∑
i=1

κiRi |lnRi|
1
2 +

N∑
i=1

UiκiRi |lnRi|
1
2

]
. (4.12)
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Based on (4.11) and (4.12) an upper bound for the error component e1 can be

derived:

‖e1‖H1(Ωp) = ‖wref − wint‖H1(Ωp) ≤ ‖wref‖H1(Ωp) + ‖wint‖H1
0 (Ω)

≤ ‖Esawref‖H1
0 (Ω) + ‖wint‖H1

0 (Ω) ≤ C
(
‖∇wref‖L2(Ωp) + ‖∇wint‖L2(Ω)

)
≤ C1

[
‖F‖L2(Ω)

N∑
i=1

Ri |lnRi|
1
2 (1 + κi) +

N∑
i=1

UiκiRi |lnRi|
1
2

]
.

4.2. Analysis of the modelling error related to assumption (A2)

Here, we aim to derive an upper bound for e2, in terms of the data and the geomet-

rical configuration of the inclusions. By subtracting problem (3.3) from (4.1) and

rearranging the terms, we obtain the following equation:

(∇(uint − ured),∇v)Ω +

N∑
i=1

κi(uint − ured, v)∂Bi

+

N∑
i=1

κi(ured − u(i)
red, v)∂Bi = 0, ∀v ∈ H1

0 (Ω) .

Recalling that ũ
(i)
red = ured − u(i)

red and choosing v = e2 = uint − ured ∈ H1
0 (Ω) it

follows:

‖∇e2‖2L2(Ω) ≤
N∑
i=1

κi

(
−ũ(i)

red, e2

)
∂Bi
≤

N∑
i=1

κi‖ũ(i)
red‖L2(∂Bi)‖e2 − e(i)

2 ‖L2(∂Bi).

This intermediate result is coherent with assumption (A2), because it shows that if

the fluctuations on the interfaces ∂Bi are small, then the modelling error is small

too. Now by Lemma (2.2) and the stability estimate in Theorem 3.1, we have:

‖∇e2‖2L2(Ω) ≤
N∑
i=1

κiRi ‖∇ured‖L2(Ω) ‖∇e2‖L2(Ω)

≤ C2

‖F‖L2(Ω)

N∑
i=1

κiRi +

N∑
i,j=1

κiκjRiRj | lnRj |
1
2Uj

 ‖∇e2‖L2(Ω).

By means of Poincaré’s inequality, the result reported in inequality (4.2) is proved.

5. Numerical approximation

In this section, we study the convergence behaviour of a standard finite element

discretization applied to the variational problem (3.4). Let Th be a family of quasi-

uniform triangular meshes which partitions the computational domain Ω. By h, we



May 22, 2017 19:47 WSPC/INSTRUCTION FILE
TSWLatexianTemp˙000008
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denote the characteristic mesh size of the grid. As a finite element space Vh ⊂ H1
0 (Ω)

piecewise linear finite elements are considered:

Vh =
{
v ∈ C

(
Ω
)
∩H1

0 (Ω)
∣∣ v |T ∈ P1 (T ) , T ∈ Th

}
,

where P1 (T ) is the vector space of first order polynomials defined on T . Using the

notation from Section 3, the numerical solution uh ∈ Vh has to fulfill the following

equation:

a (uh,red, vh) = L (vh) , ∀vh ∈ Vh. (5.1)

A first convergence result for this discretization is provided in the next theorem.

Theorem 5.1. Let ured ∈ H1
0 (Ω)∩H 3

2−ε (Ω) be the solution of (3.4) and let uh,red

be defined by (5.1). For the discretization error ured − uh,red, we have the upper

bounds

‖ured − uh,red‖H1(Ω) ≤ C1h
1
2−ε ‖ured‖

H
3
2
−ε(Ω)

and

‖ured − uh,red‖L2(Ω) ≤ C2h
3
2−ε ‖ured‖

H
3
2
−ε(Ω)

for 0 < ε ≤ 1
2 and some constants C1, C2 independent of h.

Proof. It is obvious that the linear form L and the bilinear form a in (3.5) and

(3.6) fulfill all the conditions for Céa’s lemma (see proof of Theorem 3.1). Therefore

the H1-error can be bounded by an interpolation error:

‖ured − uh,red‖H1(Ω) ≤
√
Ca
α
‖ured − Shured‖H1(Ω) , (5.2)

where Sh : H1 (Ω) → Vh is a suitable interpolation operator. Ca and α denote the

continuity and ellipticity constant of the bilinear form a. Choosing for Sh the Scott-

Zhang operator 33 [Theorem 4.1] and considering the regularity result in Theorem

3.1, the first estimate follows. Please note that from the proof of Theorem 3.1 it

can be concluded that the constant in (5.2) is bounded, even if Ri tends to zero.

Based on the first estimate, the second estimate can be shown by means of an

Aubin-Nitsche argument.

We note that although the solution is not globally in H2, and thus we cannot

expect O(h) convergence in the H1-norm, the solution restricted to Ωp and Ωf
can be expected to be in H2. Therefore we can apply particular techniques to

improve the accuracy of the numerical approximation. In this work, we discuss

two possibilities to bypass the reduced regularity of the solution by modifying the

computational grid. The modification of the grid consists in adapting the grid to the

interfaces ∂Bj , j ∈ {1, . . . , N} such that optimal error estimates can be derived. In

the literature they are refered to as δ-resolving 24 (Definition 3.1) and graded meshes
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Fig. 1. Adapted meshes for a circular interface ∂Bj : δ-resolving mesh with δ = O
(
h2

)
(top),

graded mesh (bottom).

6 (Section 3.1). Other ways to handle the lower regularity employ, e.g., appropriate

error norms 19, or an appropriate finite element space 11.

A grid Th is δ-resolving with respect to an interface ∂Bj , if the boundaries of

the subgrids corresponding to Bj and Ω \ Bj have a maximal distance of δ to the

interface ∂Bj . In this work, we consider a special type of a δ-resolving grid, in

which the element edges adjacent to ∂Bj form an interpolating linear spline for this

interface (see Figure 1, top). From standard interpolation theory, it is well known

that in this case δ = O
(
h2
)

holds. Note that to fulfill this property, Th does not

have to be refined locally.

Contrary to that, a grid that is graded with respect to ∂Bj exhibits local re-

finements along ∂Bj , since a graded mesh has the feature that the diameters of the

elements are scaled by the distance to the interface, such that the element diameters

become smaller the nearer they are located to the interface 2[Section 2] (see Figure

1, bottom). Let us denote the minumum distance of an element T to the interfaces

∂Bj by rT and the diameter of T by hT . For the purpose of this work, it is sufficient

to consider a particular case of the graded meshes presented in 6[Section 3.1]. For a

characteristic mesh size h, we assume that the local element size hT scales as
√
rT

and that hT ≈ h2 if T is close to ∂Bi. In other words, let δ > 0 be a fixed coefficient
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(e.g., δ = 1
2 ), then we assume

hT ≈

{
h
√
rT , if rT > δhT ,

h2, otherwise.
(5.3)

In the next theorem, we show that using a δ-resolving or a graded mesh, opti-

mal convergence rates can be recovered, provided that the corresponding solution

exhibits some local smoothness.

Theorem 5.2. Let u be the weak solution of (3.4) such that it holds: ured ∈
H2 (Ωs), where Ωs = Ωp ∪ Ωf (see (1.1)). By T δh we denote a family of δ-resolving

meshes with δ = O
(
h2
)

and by T gh we denote a family of graded meshes. Both

meshes are adapted to the interfaces ∂Bj , j ∈ {1, . . . , N}. The corresponding finite

element solutions of (5.1) are uδh and ugh. On these condtions, one can prove for

the discretization errors ured − ukh,red, k ∈ {δ, g} the following optimal H1 (Ω)- and

L2 (Ω)-estimates:

(E1) ‖ured − uδh,red‖H1(Ω) +
1

h
‖ured − uδh,red‖L2(Ω) . h‖ured‖H2(Ωs),

(E2) ‖ured − ugh,red‖H1(Ω) +
1

h
‖ured − ugh,red‖L2(Ω) . h1−ε‖ured‖

H
3
2
−ε(Ω)

+ h ‖ured‖H2(Ωs)
,

where 0 < ε ≤ 1
2 .

Proof. As in the proof of the previous theorem, the H1-errors for both discretiza-

tions can be bounded by an interpolation error. In the case of the δ-resolving mesh,

we use a modified Clément operator Sch presented in 24 [Definition 3.3]. For this

operator one can prove the following approximation result 24 [Theorem 3.5]:

‖ured − Schured‖2H1(Ω) . h2 ‖ured‖2H2(Ωs)
+ δ ‖ured‖2H2(Ωs)

. (5.4)

Then estimate (E1) follows from the assumption δ = O
(
h2
)
. For a graded mesh

T gh , we choose the Scott-Zhang operator Szh from 33 [Theorem 4.1] and compute:

‖ured − Szhured‖2H1(Ω) =
∑
T∈T gh

‖ured − Szhured‖2H1(T )

=
∑
T∈T gh
rT≤δhT

‖ured − Szhured‖2H1(T ) +
∑
T∈T gh
rT>δhT

‖ured − Szhured‖2H1(T )

By Theorem 3.1 for the elements of the first summand we have :

‖ured − Szhured‖2H1(T ) . h1−2ε
T ‖ured‖2

H
3
2
−ε(ωT )

,

where ωT is a patch of elements around T . For 0 < ε ≤ 1
2 and using (5.3), we have:∑

T∈T gh
rT≤δhT

‖ured − Szhured‖2H1(T ) . h2−4ε ‖ured‖2
H

3
2
−ε(Ω)

. (5.5)
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Using ured ∈ H2 (Ωs) and the approximation properties of Szh, for the second

summand we have:∑
T∈T gh
rT>δhT

‖ured − Szhured‖2H1(T ) . h2 ‖ured‖2H2(Ωs)
. (5.6)

Combing (5.5) and (5.6), we obtain the H1-estimate. The L2-estimates follow from

an Aubin-Nitsche argument.

6. Numerical experiments

The objective of this section is to support by means of numerical evidence the

theoretical results of Section 4 and 5. In the first subsection, we show to what extent

the solutions of problem (3.1) and of the simplified model (3.3) differ. The second

subsection contains several tests addressing the convergence results in Theorem 5.1

and 5.2.

6.1. Investigation of the modelling error

In this subsection, we analyse numerically the modelling error in (4.2). Let us con-

sider a single source term, that is, we set N = 1 in (1.3). We denote with uref and

ured the analytical solutions to problem (3.1) and (3.3), respectively. In the general

case, these solutions are not known a priori. Therefore, we verify (4.2) using their lin-

ear finite element approximations uh,ref and uh,red, respectively, since the numerical

solutions converge to the corresponding analytical solutions as the mesh size goes to

zero. We define the reduced problem (3.3) on the domain Ω = (−1, 1)2, while the full

dimensional problem (3.1) is posed on Ωp = Ω\B1, where the only circular inclusion

B1 is a ball of radius R with centre in (0.3, 0.4). In many applications, the radius of

the inclusion is the most relevant parameter and with estimate (4.2) we have proved

that the error introduced adopting the reduced model tends to zero as the radius

of the inclusion becomes smaller. Therefore, in this test, we analyse the influence of

the size of the inclusion, that is, we vary its radius R, while keeping the other pa-

rameters constant. In order to verify the dependency of the modelling error on the

radius R of the inclusion, we take R ∈ {0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125},
while we set κ = U = 1 constant for all simulations. As the source term, we choose

the function

F(x, y) = sin(9x) + sin(13y) + x+ y, for (x, y) ∈ Ω.

According to Theorem 5.1 and standard convergence results, we can bound the

modelling error by:

‖uref − ured‖H1(Ωp) ≤ ‖uref − uh,ref‖H1(Ωp) + ‖ured − uh,red‖H1(Ωp)

+ ‖uh,ref − uh,red‖H1(Ωp)

. O
(
h

1
2

)
+ ‖uh,ref − uh,red‖H1(Ωp).
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As the mesh size h tends to zero, we may assume that the modelling error between

numerical solutions converges to the actual modelling error, as Fig. 2 suggests. As

an error measure, we employ the numerical modelling error defined by:

err = ‖uh,ref − uh,red‖H1(Ωp).

10
-2

10
-1

0.0006

0.0008

0.001

0.002

0.004

0.006

0.008

0.01

R=0.1 R=0.05 R=0.025 R=0.0125 R=0.00625 R=0.003125

Fig. 2. The numerical modelling error is calculated for different values of the mesh characteristic
size (h = 2−i for i = 3, ..., 7) and for different radii of the ball B1 (each line shown with different

colors). For each radius the modeling error values are interpolated using splines. We observe that

as the mesh size h tends to zero, the error converges to a fixed value, which is the actual modelling
error.

Furthermore, we define an error functional to show the experimental order of con-

vergence by

Rate =
log(err(R1)/err(R2))

log(R1/R2)
,

where err(R) is the numerical modelling error for the radius R. In Table 1, the

modelling error, computed at the finest level of the δ-resolving mesh, is provided

for different radii together with the rate of convergence with respect to the radius

R of the inclusion. We observe that the modelling error decays quasi-linearly as R,

which is in good agreement with our estimate (4.2).

6.2. Convergence tests

The objective of this section is to illustrate the convergence results of of Theorems

5.1 and 5.2 by means of numerical experiments based on test cases where the ana-

lytical solution is explicitly available. For our first convergence test, we consider a

single source term, i.e., we set in (1.3) N = 1. The ball B1 has the radius R = 0.25

and the centre x1 = (0, 0). As a computational domain, we choose the square:
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Table 1. The numerical modelling error is shown for different radii and κ = U = 1. The convergence

rate is reported in the last column.

R err Rate

0.1 9.92770e− 03 /

0.05 6.31752e− 03 0.65

0.025 3.62451e− 03 0.80

0.0125 1.95587e− 03 0.89

0.00625 1.00884e− 03 0.96

0.003125 5.12174e− 04 0.98

Ω = (−1, 1)
2 ⊂ R2. The remaining parameters of the problem are given by κ1 = 0.1

and U1 = 1. Setting F ≡ 0 and appropriate Dirichlet boundary conditions, the

exact solution of this problem is given by 8:

ue,1 (x) =

{
U1

κ1

1+κ1

(
1−R ln

(
r
R (x)

))
, r(x) > R,

U1
κ1

1+κ1
, r(x) ≤ R,

where r(x) is the Euclidean distance from an arbitrary point x ∈ Ω to the centre of

the ball B1:

r(x) = ‖x− x1‖2 . (6.1)

The numerical solution uh,1 is defined by (5.1), and the numerical discretization

Fig. 3. Three different types of meshes are used for the first convergence test (single point source
term). left: Uniform mesh (521 elements), middle: δ-resolving mesh, δ = O

(
h2

)
(1368 elements),

right: Graded mesh (870 elements).

error eh,1 is given as follows: eh,1 = ue,1 − uh,1. For the triangulation of Ω three

different types of meshes are used: A uniform mesh, a δ-resolving mesh with δ =

O
(
h2
)

and a graded mesh, defined by (5.3). The second refinement levels of these

grid types are depicted in Fig. 3. Tables 2 and 3 show the discretization errors eh,1
with respect to the L2- and the H1-norm. Considering the convergence rates in
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both tables it can be seen that the theoretical convergence results in Theorem 5.1

and 5.2 are confirmed, since it holds ue,1 ∈ H2 (Ωs).

Table 2. L2-norms of eh,1 and convergence rates for three different meshes (uniform, δ-resolving,

graded). In the last line of the table the theoretical convergence rates are listed.

Level uniform mesh Rate δ-resolving mesh Rate graded mesh Rate

1 8.506954e− 03 / 8.844852e− 04 / 1.154294e− 03 /

2 2.717929e− 03 1.65 2.272761e− 04 1.96 2.517585e− 04 2.20

3 8.675497e− 04 1.65 4.925913e− 05 2.21 7.779338e− 05 1.69

4 3.011329e− 04 1.53 1.452474e− 05 1.76 2.061325e− 05 1.92

5 1.041544e− 04 1.53 3.649972e− 06 1.99 4.491752e− 05 2.20

expected: 1.50 expected: 2.00 expected: 2.00

Table 3. H1-norms of eh,1 and convergence rates for three different meshes (uniform, δ-resolving,

graded). In the last line of the table the theoretical convergence rates are listed.

Level uniform mesh Rate δ-resolving mesh Rate graded mesh Rate

1 6.074554e− 02 / 2.463609e− 02 / 2.826352e− 02 /

2 3.995154e− 02 0.60 1.132668e− 02 1.12 1.482623e− 02 0.93

3 2.995280e− 02 0.42 5.583932e− 03 1.02 9.268436e− 03 0.68

4 2.047021e− 02 0.55 2.772943e− 03 1.01 4.954802e− 03 0.90

5 1.460174e− 02 0.49 1.381250e− 03 1.01 2.162039e− 03 1.20

expected: 0.50 expected: 1.00 expected: 1.00

As a next step we want to study problem (1.3) with several circular inclusions

Bi for i = 1, ..., N (N > 1). For this purpose, a new analytical solution ue,2 is

determined. Analogously to (6.1), the distance between the centres of the balls xi
and an arbitrary point x ∈ Ω is given by ri(x) = ‖x− xi‖2 , i ∈ {1, . . . , N} . Using

this notation we define the solution ue,2 as a linear combination:

ue,2(x) =


∑N
i=1 αi

(
1−Ri log ri

Ri

)
, x /∈

⋃N
i=1Bi,

Gi(x), x ∈ Bi,

where αi ∈ R and Gi(x) is a harmonic function in Bi. Then it holds:

−∆ue,2 =

N∑
i=1

αiδ∂Bi . (6.2)

A comparison of the right hand sides in (6.2) and (1.3) yields the following equations

for the coefficients αi:

αi = κi

(
Ui − u(i)

e,2

)
, i ∈ {1, . . . , N} .
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In order to compute the average u
(i)
e,2, we use the fact that the functions

uj = 1−Rj log
rj
Rj
, j ∈ {1, . . . , N} \ {i}

are harmonic in Bi. By the mean-value formula for harmonic functions 9 [Chapter

2.2, Theorem 2], we have:

u
(i)
j = 1−Rj log

rij
Rj
, rij = ‖xj − xi‖2 , i 6= j,

resulting in the following expression for u
(i)
e,2:

u
(i)
e,2 = αi +

∑
j 6=i

αju
(i)
j .

Now, the coefficient vector α = (α1, . . . , αN )
T

can be determined by a system of

equations:

A · α = b,

where the matrix A ∈ RN×N and the right hand side b ∈ RN are given by:

Aij = (1 + κi) δij + κiu
(i)
j (1− δij) and bi = κiUi, i, j ∈ {1, . . . , N} .

It remains to determine the functions Gi on Bi. An appropriate expression for these

functions is given by the following linear combination:

Gi = αi +
∑
j 6=i

αj

(
1−Rj log

rj
Rj

)
,

since these functions are harmonic and represent a continuous extension of

ue,2|Ω\⋃Ni=1 Bi
.

For the numerical simulations, we again consider Ω = (−1, 1)
2

and 5 source terms

(N = 5,Fig. 4). As in the case N = 1 the boundary conditions are adjusted such

that ue,2 is the exact solution of problem (1.3). Table 4 contains the remaining

parameters used for the numerical simulations. The discretization errors in the L2-

and the H1-norm summarized in Table 5 are based on a uniform triangulation of

Ω (see e.g. Fig. 3, left). We observe that the discretization scheme converges as

predicted by Theorem 5.1.

7. A 3D problem coupled with 1D inclusions with application to

microcirculation

We present a prototype model for stationary flow in a permeable biological tissue

perfused by a network of capillaries. Although flow in the capillary network is better

described by a mixed type model addressing velocity and pressure simultaneously

and transport of chemical species is often unsteady, we consider here steady coupled

elliptic problems. The domain Ω where the model is composed of two parts, Ωp and

Ωf , denoting the interstitial volume and the capillaries, respectively. We assume
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Table 4. Parameter set used for problem (1.3) with N = 5 source terms.

xi Ri Ui κi
B1 (−0.50, 0.50) 0.15 2.30 0.12

B2 (0.75,−0.25) 0.20 2.50 0.10

B3 (−0.50, 0.50) 0.25 2.80 0.09

B4 (0.25, 0.25) 0.10 2.50 0.08

B5 (0.25,−0.75) 0.05 3.00 0.25

Table 5. L2- and H1-norms and of eh,2. In the last line of the table the theoretical convergence

rates are listed.

Level L2-error Rate H1-error Rate

1 2.669615e− 02 / 1.884496e− 01 /

2 8.892418e− 03 1.59 1.749503e− 01 0.11

3 3.855905e− 03 1.21 1.177106e− 01 0.57

4 1.279445e− 03 1.59 8.816140e− 02 0.42

5 4.521436e− 04 1.50 6.029469e− 02 0.55

6 1.537090e− 04 1.56 4.283918e− 02 0.50

expected: 1.50 expected: 0.50

Fig. 4. Location of the balls B1, . . . , B5 in the computational domain Ω = (−1, 1)2 (left), Three-

dimensional graph of the numerical solution uh,2 based on the parameters in Table 4 (right).

that the capillaries can be described as cylindrical vessels and Λ denotes their

centre line. We decompose the network Λ into individual branches Λi. Branches

are parametrized by the arc length si; a tangent unit vector λi is also defined

over each branch, determining in this way an arbitrary branch orientation. The

capillary radius Ri, is for simplicity considered to be constant along each branch of

the network. In particular, the domain Ωf can be split into cylindrical branches Ωi
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Fig. 5. Visualization of the domains Ω and Λ used in the idealized simulations of microcirculation.

The computational mesh of Ω is also shown. We consider two distinct test cases: on the left the
network consist of one single segment; on the right the network is a graph with 22 branches.

defined as follows:

Ωi = {x ∈ R3; x = s+ r}, s ∈ Λi =Mi(Λ
′ ⊂ R1),

r ∈ DΛi(Ri) = {rnΛi ; r ∈ (0, Ri)},

where Mi is a mapping from a reference domain Λ′ to the manifold Λi ⊂ R3 and

nΛi denotes a unit normal vector with respect to Λi. We denote with Γi the lateral

surface of Ωi. Using this notation, problem (1.2) becomes,

−∆up = 0 in Ωp,

−∆uf = 0 in Ωf ,

−∇up · np = κi (up − uf ) on Γi,

−∇uf · nf = κi (uf − up) on Γi,

up = 0 on ∂Ωp \ ∪Ni=1Γi,

uf = g on ∂Ωf \ ∪Ni=1Γi,

where g denotes a Dirichlet boundary condition imposed at the endpoints of the

network. The problem in Ωf is a prototype of flow or mass transport problem in

a network of cylindrical channels, surrounded by the domain Ωp where another

flow and transport problem is defined. It is assumed that the interface between

these regions is permeable, namely it is crossed by a normal flux proportional to

κi (up − uf ).

Applying the model reduction technique presented in Section 3, the equations

defined on the network of inclusions Ωf can be restricted to the one dimensional

network Λ. Differentiation over the branches is defined using the tangent unit vector

as ∂siw = ∇w ·λλλi on Λi, i.e. ∂si represents the projection of ∇ along λi. As a result,
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the 3D-1D counterpart of problem (3.4) becomes{
a(u, v) + bΛ(u, v) = bΛ(U, v) ∀v ∈ H1

0 (Ω),

A(U, V ) + bΛ(U, V ) = bΛ(u, V ) + F(V ) ∀V ∈ H1
0 (Λ),

(7.1)

where U, V ∈ H1
0 (Λ) denote trial and test functions relative to the reduced problem,

with the following bilinear forms:

a(w, v) = (∇w,∇v)Ω, A(w, v) =
N∑
i=1

(∂siw, ∂siv)Λi , bΛ(w, v) =

N∑
i=1

κi(w, v)Λi .

The right-hand side F(V ) takes into account the boundary conditions on the net-

work endpoints, after applying a suitable lifting. A central role in equation (7.1) is

played by the restriction operator (·) that is defined as:

w(i) (s) =
1

2πRi

∫ 2π

0

w (Λi (s) +RinΛi (s, θ)) dθ .

The vector nΛi (s, θ) indicates a normal vector perpendicular to λλλi (s) and depend-

ing on an angle θ, such that the set {nΛi (s, θ) | θ ∈ [0, 2π)} describes a unit circle

around Λi (s) and perpendicular to λλλi (s). Taking these definitions into account, it

becomes obvious that w(i) represents an average value of w with respect to a circle

of radius Ri around Λi (s) and perpendicular to λλλi (s).

We solve problem (7.1) in the two test cases shown in Fig. 5. In all cases, we

enforce the value uf = g = 1 at the inflow (a single point on one face of the cube)

and uf = g = 0 at one or several outflow points (that are visible on the opposite

face of the cube in Fig. 5).

The results of the simulations are depicted in Fig. 6 in the left and right panels

respectively. The test case of the single segment confirms the expected behaviour

of the model. The field u diffuses radially from the line source. The effect of the

variation of U on the line source is also visible. The second test case shows the

ability of the method and of the corresponding finite element solver to handle more

complex configurations. In this case, the network consists of a unit cube Ω = (0, 1)3

that embeds an idealized branching network of 22 branches, visualized in red. For

simplicity, the capillary radius and the parameter κ are kept constant for each

branch and set to R = 0.01 and κ = 0.1. As a result, the solution uf is expected to

vary along Λ as shown in Fig. 6. The solution in Ω behaves correspondingly, as the

solution of a Poisson equation with a constant concentrated source distributed on

Λ.

8. Conclusion

Thanks to some emerging applications, such as the simulation of complex microvas-

cular networks 3,4,12,27,28 or the computational study of plant roots 31, the numerical

approximation of problems governed by partial differential equations featuring small
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Fig. 6. Visualization of the numerical solutions U on Λ and u on Ω of problem (7.1) for the test
cases of Fig. 5. The contour plots correspond to the solution values u = 0.02 (left) and u = 0.01

(right).

active inclusions, i.e. inclusions that actively interact with the surrounding environ-

ment, has recently attracted the attention of researchers in applied mathematics
5,7,19,6. From the mathematical point of view, the problem consists of coupling par-

tial differential equations on embedded manifolds with a dimensionality gap. The

analysis and approximation of such problems is not completely established yet.

We believe that this work contains some significant contributions in this spe-

cific area. More precisely, we have proposed a new problem formulation, different

from the one previously introduced by D’Angelo 5,7,6, that features the following

advantages: (i) the new problem formulation naturally arises from the full three-

dimensional description of the problem with inclusions, upon application of well

defined model reduction hypotheses; (ii) it allows us to analyze the existence of

solutions in the framework of Lax-Milgram Lemma; (iii) owing to (i), it is possi-

ble to provide upper bounds for the modeling error related to the model reduction

strategy and to explicitly characterize the dependence of the model error from the

parameters of the problem, such as the size of the inclusions; (iv) it allows us to

study the approximation properties of the finite element method exploiting the

classical Céa’s approach. Combining this result with non-standard interpolation

properties of functions with low regularity, we were able to prove error estimates

for the proposed method in the case of uniform, δ-resolving and graded meshes. The

extension of this approach to more advanced models, such as problems in mixed

form 29 or time-dependent problems is under investigation and will be presented in

forthcoming studies.
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