
MOX-Report No. 36/2016

Marked Point Process models for the admissions of
heart failured patients

Mancini, L.; Paganoni, A.M.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



Marked Point Process models for the admissions of

heart failured patients

Luca Mancini] and Anna Maria Paganoni]

October 9, 2016

] MOX– Modellistica e Calcolo Scientifico
Dipartimento di Matematica

Politecnico di Milano
via Bonardi 9, 20133 Milano, Italy

anna.paganoni@polimi.it, luca.mancini@mail.polimi.it

Keywords: Marked Point Process; Conditional intensity function; Hawkes pro-
cess; Temporary ground process; Inference; Simulation.

Abstract

The aim of this paper is to model the stochastic process of hospitaliza-
tions with Marked Point Processes. We examine the longitudinal dataset
including the admissions of heart failured patients to Lombardia hospitals
on a follow-up period of six years since January 1st, 2006. We analyse four
separate groups of patients, which we call HF groups, according to their
diagnoses-codes contained in the SDO (dimission hospital discharge form)
of their first hospitalizations.
The statistical model links the temporal trend of hospitalization (the ground
process) with the length of stay (the mark) at each event. Instead of fram-
ing our application in the more theoretical context of the counting measures
and processes, we make use of the conditional intensity function, a para-
metric approach which leads us to deal with Hawkes processes.
Hypotheses are made on the mark concerning its distribution as well as
its independence or dependence with the ground process. Independence is
better to model and give us significant results while dependence is harder
to be dealt with due to computational and modeling issues.
Finally, we provide a general framework for modeling longitudinal data with
a MPP as of methods for statistical inference and suggest a specific model
for our topic, validating it through a goodness of fit technique.

1 Introduction

Nowadays, Marked Point Processes (MPPs) are becoming increasingly relevant
not only from a theoretical point of view but also in real applications. We
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may find examples of these stochastic processes in finance, queueing theory and
telecommunication network and, especially, in seismology to model earthquakes,
taking into account their temporal trends together with their magnitudes.
However, there are not significant applications in a biomedical context so far
in spite of lots of longitudinal studies concerning clinical researches, therapeutic
evaluations and epidemiologies. Here, we aim at modeling a longitudinal dataset
involving the hospitalization process of heart failured patients with MPPs. Since
it is a quite new approach to this topic, we give details as of some particular
parametric models and inferential procedures.
First of all, we should recall that by point process we mean a model of points
randomly distributed in some space and indistinguishable for their locations.
Points represent times of events or, better, times elapsed since a starting point
and will be referred to as a collection of random variables Ti, the timepoints
at which the i-th recording of an event takes place. Of course every point or
statistical unit not only cointains information on times but also secondary fea-
tures which constitute the so called marks of the points and are indeed random
variables called Yi.
For instance, when an earthquake occurs, we can collect the time of occurrence
Ti but also information Yi about its magnitude or spatial location. Also, when
a patient is admitted to a hospital, we know the starting date of the hospital-
ization and the related length of stay.
There are two ways of characterizing a marked point process (see Daley and
Vere-Jones, 2008). It can be studied in the context of counting processes and
measures or through the conditional intensity function λ(t,y|Ht) which repre-
sents the infinitesimal expected rate of events at time t with marks y, given all
the observations up to t and is made up of two parts (Harte, 2010):

λ(t, y|Ht) = λg(t|Ht)f(y|t,Ht), (1)

where Ht is the filtration of the process, λg(t|Ht) is the intensity of the ground
process (i.e. of the times {Ti}) and f(y|t,Ht) stands for the multivariate distri-
bution of the marks {Yi}, which generally depend on time.
The most difficult issue is the modeling of the ground process intensity function;
if we are able to assign a particular expression for it, we may then focus on spe-
cific parametric models known as the Hawkes processes (see Daley at al., 2008).
However, it may be difficult to model the mark distribution too, especially due
to its relation with time. Then, some assumptions on the mark structure are
usually made, leading to unpredictability and independence.
A mark is unpredictable if it does not depend on the past and can be regarded
as conditionally i.i.d given the past of the process while the independence hy-
pothesis is stronger and means that the {Yi} are independent of everything else
except maybe {Ti}.
The main advantages of framing a marked point process under this parametric
approach concern the statistical inference as well as the simplicity in suggesting
some algorithms for parameters’ estimation and methods for goodness of fit and
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simulation.

The paper is organized as follows. In section 2, we introduce and analyse the
dataset. In section 3, we introduce a parametric model for dealing with marked
point processes and suggest some inferential procedures for our topic. In section
4, we contextualize the model, assigning particular expressions to the right hand
terms in (1). Then, we discuss the results, presenting a simultation method for
our hospitalization stochastic process.
All the statistical models and tools have been implemented by using R software
(see R Core Team, 2014). Precisely, the R package we used to model MPPs in-
dexed by time is named PtProcess (see Harte, 2010) which provides a structure
and environment so as to define and analyse our own MPP models. We therefore
implement some specific R-functions for the fit of Hawkes processes of different
kinds, which could be definitely included in the existing R-package.

2 Data description

Data comes from a long pre-processing of Regione Lombardia database of hospi-
tal discharge forms, collecting events of hospitalization from January 1st, 2006
to December 31st, 2012 for a follow-up period of six years.
The dataset consists of a list of events of admissions, containing both demo-
graphical and administrative information of a patient at that time. It is also
possibile to follow the patients’ hospitalizations in an individual way thanks to
their encrypted ID. Here, we decide to focus on patients older than 18 which
have less than six hospitalizations, whence analysing the 95.10% of all available
events (see Ieva et al, 2014). Then, 51,186 patients are considered and their
related 83,138 events of hospitalizations are analysed.
We mainly aim at modeling the hospitalization process of heart failured patients,
linking its temporal trend with the length of stay through a marked point pro-
cess. When dealing with these stochastic processes, it is quite common to fix
an initial time of observation, i.e. in earthquakes’ context where one of the
main goals is to continuously monitor their temporal trend and relation with
the magnitude for safety and prediction purposes. Thus, we basically focus on
the following two variables:

• Time: time elapsed since January 1st, 2006.

• Length Of Stay (LOS): difference in days between the date of an ad-
mission and date of the relative discharge.

Furthermore, Mazzali et al.(2015) showed that heart failure should not be treated
and diagnosed in the same way, leading to a sharper distinction of patients in
four subgroups, which will be called HF (Heart Failure) groups, due to the clas-
sification of patient’s disease. Actually, in order to cluster heart failured people,
Mazzali et al. (2015) rely on the type and number of patient’s diagnosis coded
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with ICD-9-CM (International Classification of Diseases, 9th revision, Clinical
Modification) and on two slightly different criteria: AHRQ and HCC (see AHRQ,
2015 and Pope et al. 2004).
Then, the hospitalization process should be studied in a more specific way ac-
cording to the given HF groups: the most meaningful one is the first which
includes patients suffering from evident heart failure condition. In Table 1, we
give an overview of some useful summary statistics for every given group.

HF Groups No. events No. patients % Men % Women LOS mean and sd [days]

G1 57,622 34,866 52.97 47.03 13.86 (±14.99)
G2 12,750 7,617 35.89 64.11 12.65 (±16.96)
G3 12,387 8,487 53.09 46.91 16.02 (±16.82)
G4 379 216 50.92 49.08 14.56 (±13.86)

Table 1: Summary statistics for HF groups

Since the length of stay will be one of the mainstays of the hospitalization pro-
cess, we note that the groups have qualitatively the same shape of distribution
(Figure 1) with a mode ranging from three days to one week; then we may sup-
pose the same statistical distribution and validate this hypothesis later, with
a more accurate inferential procedure. Also, variability of LOS distribution is
affected by outliers in every group, most of which stand for patients suffering
from severe diseases or spending long time intensive care.

Figure 1: Histograms of length of stay for each HF group.

Finally, a thorny issue is surely the testing of sex influence over the length of
stay. First of all, we should point out that the proportion of men and women
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is unbalanced and different in percentage in every group (Table 1); it is then
natural to check if we should refine our analyses by actually regarding sex of pa-
tients as a discriminating factor in every cluster in an ANOVA context. We test
for equality between the distribution of length of stay of males and females in
every HF group under the null hypothesis that they could not be distinguished.
Through a permutational one-way anova (see Pesarin and Salmaso, 2010) and a
Kruskall-Wallis test, we find that we do not need to make any distinction based
on sex within the first, third and fourth group. As of the second group, since
the fitted marked point process is quite similar for men and women, we will not
take into account this sex distinction.

3 The model

We provide a parametric approach to model the stochastic process of hospital-
izations. The conditional intensity function (1) is well defined when assigning
specific expressions to λg(t|Ht) and f(y|t,Ht). The ground intensity function
models the temporary trend underneath the marked point process, here gov-
erned by Time covariate while the mark distribution describes the length of stay
only.
Assuming independence of the mark distribution given the ground process, we
can deal with the ground process firstly and with the mark distribution then in
a separate way.
In our topic, the ground intensity function is a stochastic process itself and is
even regarded as a Hawkes process, having the following functional form:

λg(t|Ht) = µ(t) + η
∑
ti<t

νθ(t− ti). (2)

Given the assumed left-continuous filtration Ht, the ground intensity function
is the sum of a deterministic base intensity µ(t) called immigration intensity
which represents the background rate of the process and of a ‘self-exciting’ term
η
∑

ti<t
νθ(t−ti), the so called memory kernel that is the convolution of the path

of the process with an interaction kernel νθ and gives rise to event clustering
through an endogenous feedback (past events contribute to the rate of future
events).
In particular, νθ : R+→ R+ is called offspring density, being taken as a probabil-
ity density function with a positive support absolutely continuous with respect
to the Lebesgue measure, and expresses the positive influence of past events
on the current value of the positive intensity process. On the other hand, η,
named branching ratio, is a non-negative costant determining the strength of
self-excitation and making νθ a probability density function (see Hardiman et
al., 204 and Wheatley at al., 2014).
The branching ratio plays a crucial role in the dynamics of the model. It stands
for the fraction of endogenously generated events among the whole population
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and it must be less than one for the process to be stationary, due to the autore-
gressive nature of this last one.
The Hawkes process is then a powerful framework for simulating and modeling
the occurrence or arrivals of events which cluster in time, i.e first hospitalizations
and consecutive ones.
It also heuristically represents the expected number of events per unit of time
where each occurrence increases the probability of other events in the near future
or increases the rate of new occurrences momentarily.
While in real applications it is usual to regard the background rate µ(t) as a
constant, there are several choices for the memory kernel.
The choice of the most appropriate memory kernel for the dataset is one of
the greatest and appealing issues. In Hawkes process literature, an exponential
kernel is usually recommended due to its simple expression and ‘numerical’ ad-
vantages even if it may be not really efficient. Then, we suggest other ways to
model the memory kernel (all listed in Table 2), whose goodness depends on the
real topic we deal with.

Memory Kernel Branching Ratio η

Exponential αe−βt α
β

Gamma αcβ

Γ(β)e
−cttβ−1 α

Weibull α
(
β
γ

)(
t
γ

)β−1
e
−
(
t
γ

)β
α

Hyperbolic α
(t+β)p

{
αβ1−p

p−1 if p > 1

∞ if p ≤ 1

Table 2: Common analytic expressions for the Hawkes process kernel.

However, we firstly have to estimate the model’s parameters by maximizing the
loglikelihood of the marked point process (see Daley and Vere-Jones, 2008)

logL =
∑

i:T1≤ti≤T2

log λg(t|Ht)−
∫ T2

T1

λg(t|Ht)dt+
∑

i:T1≤ti≤T2

log f(yi|Ht), (3)

where {(t1, yn), . . . , (tn, yn)} is a set of marked point patterns on an observation
interval [T1, T2]× Y with Y the mark space.
The most difficult term to maximize involves the ground process. Plenty of
problems may arise: some optimization routines are very sensitive to poor ini-
tial starting values of the parameters while different parameters may take only
specific range (Peng, 2003). Then, we use the estimated parameters through
the optim function with an optimization procedure based here on Nelder-Mead
method, which is more robust to poor starting values, as starting values for nlm
function that is conversely more sensitive to poor initial values but guarantees
a faster convergence (Harte, 2010).
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We underline that Nelder-Mead algorithm (see Lagarias et al., 1998 for details)
turns out to be more efficient than a quasi-Newton method in our application,
producing reasonable results in a relatively short time.
After getting the estimates, we test the absolute goodness of fit of the model.
Here, we rely on some qualitative methods for the ground process, all being
based on the Random Rescaling theorem (Daley and Vere-Jones, 2008) and on
the residual process which is a new point process defined as

τi =

∫ ti

0
λ̂g(t|Ht), (4)

where λ̂g(t|Ht) the fitted ground intensity function.
If the fitted ground intensity function is the true ground intensity function, τi,
also called transformed times, will form a homogeneous Poisson process of rate
on some interval [0, T ].
Then, if we plot the event number i versus the transformed time τi in a quarter,
we would like to expect the points (i, τi) to follow the diagonal without relevant
departures. However, as the dataset’s size increases, deviations from the diagonal
get no longer sharp; thus, as Page (1954) suggested, we should replace τi with
τi − i so as to have a cumsum plot, which is nothing but a zoom of the residual
process near the diagonal.
As far as the mark distribution is concerned, it is easier to get its parameters
estimates under our initial independence assumption; actually, if the two terms
of (1) share no parameters, maximization of (3) can be done separately and we
can assess the goodness of fit of the mark distribution through a cumsum plot,
in a similar way we do for the ground process.
Finally, when dealing with heart failured patients, it may be useful to monitor
the admissions’ trends and predict future ones in order to improve the efficiency
of clinical facilities and collective welfare. For instance, it may be of a great
interest to find the empirical probability distribution of the time to the next
event with a defined length of stay. It is indeed a simulation and predictive
issue. When a conditional intensity function is specified, it is quite affordable
to do simulation; we take Ogata’s modified thinning algorithm (Daley and Vere-
Jones, 2008) as a starting point and extend it to our application thanks to Harte
(2010).

4 Results

As we have already underlined, the hardest issue when dealing with Hawkes
processes is modeling the ground intensity function (2).
Before giving details, it is useful to remind one of its possible interpretations:
the total number of events occurring in the unit of time is given by the back-
ground rate µ and the number of secondary events, that is the number of events
triggered by previous events. Each event has a positive probability of generating
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an offspring sequence, whose number of events is connected to the time distance
between triggering and triggered ones.
In our topic, the first admissions are the triggering events while the consecutive
ones are the triggered. Since events of hospitalizations seem to hyperbolically

Figure 2: Empirical distributions of Time covariate.

decay in time (Figure 2), we adopt a Hawkes model with hyperbolic interaction
kernel in each HF group, expecting long-memory features and long-range inter-
actions to be comparatively more important than for exponential kernels with
the same branching ratio. Thus, the ground intensity function we use is

λg(t|Ht) = µ+A
∑
i:ti<t

(
c

c+ (t− ti)

)p
(5)

where the parameters (µ,A, c, p) must be all positive and are estimated through
optim and nlm R functions (note that (5) is a re-parametrization of hyperbolic
kernel listed in Table 2). This expression is very similar to Omori’s law kernel
(Ogata, 1988), except for a function in the sum taking into account their mag-
nitudes.
As far as the mark is concerned, we should note that, primarly, any discrete or
continuous covariate may be taken into account; of course, not all make sense
since they explore several aspects which look somehow marginal to the hospital-
ization process. What it may be of a great interest so as to inspect a possible
influence over the above temporary process is, as we have already noticed, the
length of stay.
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Then, we inspect its empirical distribution in every given group (Figure 1) and
model the marks Yi through a Gamma(a,s) distribution with parametrization is

f(y|a, s) =
1

saΓ(a)
ya−1e−

y
s I(0,+∞)(y) (6)

where a stands for the shape and s for the scale.
Since λg(t|Ht) and f(y|a, s) have not any parameter in common, the maximiza-
tion of λ(t, y|Ht) is easier; so we firstly present the results about the ground
process and then we discuss the ones concerning the mark distribution, in a
coherent way with Harte’s analyses (2010).

4.1 The ground process

At the beginning of this section, we have supposed a hyperbolic memory ker-
nel is more appropriate for modeling hospitalizations in time by just inspecting
their empirical distributions. In order to validate this hypothesis, we display
the plots of the fitted ground intensity function λg(t|Ht) which represent the
expected number of event per unit of time and make us suppose they underes-
timate the underneath temporary process (Figure 3).

Figure 3: Fitted ground intensity function plots

Moreover, the ground intensity plots highlight some curious features. While we
find that the days with maximum number of events are concentrated in the first
month of 2007 for every group, as we could expect from medical literature, we
also note that each plot points out two different trends in term of the number
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of hospitalizations.
Precisely, the first three groups show a ‘down step’ at December 24th and 25th,
2007, while for the fourth group there is not a sharp distinction concerning the
same topic, maybe due to the small number of hospitalizations (and patients).
The estimated parameters, which are listed in Table 3, allows us to draw some
considerations.

Parameters G1 G2 G3 G4

µ 8.11× 10−1 2.34× 10−1 1.69× 10−1 2.01× 10−2

A 4.31× 10−2 4.07× 10−2 4.52× 10−2 2.23× 10−2

c 9.20× 1011 1.76× 106 1.92× 106 2.02× 106

p 4.11× 1010 7.50× 104 8.96× 104 5.14× 104

η 0.965 0.955 0.967 0.875

logL 1.48× 105 1.31× 104 1.41× 104 −9.52× 102

Table 3: Parameter estimates of (5)

Firstly, we note that the parameter µ determines the intensity of exogenous
events, roughly speaking, how many events occur per unit of time and does not
affect the stability in the event rate of the process which is entirely governed
by the branching ratio. Furthermore, (µ,A, c, p) determine the clustering of the
process and the intra-event dynamics; they substantially give information about
the stationarity of the process as well as the proportion of events that are gen-
erated inside the model to all events.
The branching ratios of each group are very high, meaning that their dynamics
are almost entirely driven by endogenous events and only a small percentage by
exogenous ones. At the same time, we may observe that there is some cluster-
ing in the ground intensity plot as displayed by the occurrences of spikes in the
plots. We can conjecture some main point patterns (primary events and sec-
ondary ones) by inspecting the plot of the stochastic process and support these
empirical considerations through an inferential procedure. As we have previ-
ously underlined, two temporal point patterns are evident standing for first and
consecutive hospitalizations; the same two can be indeed found by relying on
a cluster analysis based on CLARA (CLustering LARge Applications) and on
the Silhouette Coefficient, a quality index which allows us to select an optimal
number of clusters and whose values are displayed in Figure 4 in an increasing
number of clusters (see Strufy et al., 1997).

Finally, while presenting the four common analytical expressions for the ground
process (Table 2), we affirm that its choice depends on the specific data to be
modeled and a measure of absolute goodness of fit is needed. Here, the dis-
criminating factors which lead us to the most suitable model are the analysis of
the residual process and the cumsum plot. We display these kind of plots only
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Figure 4: Silhouette Coefficients values in correspondance with an increasing
number of clusters. The blue line stands for a value equal to 0.50.

for the first and second group (Figure 4), obtaining similar results for the other
groups.
As we can see from these plots, the larger a group, the more the residual process
gets close to the diagonal line and deviation from the straight line is negligible.
Also, the cumsum plots show that the fitted ground processes underestimate the
underneath temporal processes, as we have already expected in the beginning.

4.2 The mark distribution

We recall that we assume {Yi} as mutually independent random variables given
the ground process. This hypothesis leads to an independently marked point
process and make the computations easier. The parameters of the mark distri-
bution can be estimated separately and set as default fixed values within the
intensity function expression. This partially justify our previous computational
procedure and why we have presented the results on the ground process firstly
(see Harte, 2010).
The parameters of a Gamma distribution cannot be found by analitically maxi-
mizing its loglikelihood since they do not have a closed form. Simple numerical
algorithms are suggested such as the fast conditional likelihood already imple-
mented in rGammaGamma R package (Triche, 2013), which is the one we used in
our analyses.
However, we check the adequacy of this assumed distribution by plotting the
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Figure 5: Residual process times on the left and cumsum of residual process
times on the right for G1 and G2. The diagonal for the residual process and the
x-axis for the cumsum are added in blue colour.

Parameters G1 G2 G3 G4

a 1.554 1.181 1.554 1.665
s 8.920 10.706 10.308 8.752

logL −2.061× 105 −4.499× 104 −4.610× 104 −1.369× 103

Table 4: MLE parameters for the mark distribution (6).

cumsum of the length of stay over time in the same way we did for the ground
process (Figure 6).

Finally, simulation is a useful tool for evaluating some features of our model,
being also strictly related to predictive purposes when no explicit numerical al-
gorithms are available (see Daley and Vere-Jones, 2008).
Once the expression of the conditional intensity function is known, simulation of
a marked point process is straightforward. We then focus on simulating the time
to the next event of a hospitalization with a defined length of stay, determining
its empirical distribution and checking some quantitative features through loca-
tion parameters.
We may suppose that the follow-up period is concluded and a new patient belong-
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Figure 6: Cumsum of LOS in each HF group.

ing to one of the four given group has to be monitored: what is the probability
that he/she will be admitted to hospital for a specific number of days?
This question perfectly translates the need to simulate (and, eventually, predict)
times of hospitalization events together with their length of stay under the con-
text of marked point processes. Here, we build a simulation method starting
from Harte’s algorithm (see Harte, 2010), supposing a Gamma distribution for
the length of stay, independent from the ground process.
For a matter of example, we set the above ‘defined length of stay’ as the 0.90
and 0.95-quantiles of the empirical distribution of LOS, regarding them as ex-
treme values rarely got in each HF group; of course, any reasonable value can
be assigned, being fixed according to a particular phenomenon one is interested
in.
We start simulating events from the day after the last recorded event in each
group and record the time to the first event with length of stay greater than
qα. We display the histograms in Figures 7 and 8, noting that these empirical
probability distributions show a hyperbolic trend and cover a period (in days)
which increases from the first to the fourth group.

Empirical quantiles qα G1 G2 G3 G4

q0.90 29 28 33 29
q0.95 40 39 46 41

Table 5: Empirical quantiles of LOS distribution for each group (in days).
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So far we have dealt with models where the marks are independent of the his-
tory of the process. However, it may seem an optimistic and somehow restrictive
hypothesis in general. Even if it does not make much sense to suppose length of
stay is related with the temporary stochastic hospitalization process, we try to
conjecture a particular dependent model with the same probability distribution
for the mark as in the independent case. Precisely, we model the mark as

f(y|t,Ht) = Gamma(α, s) (7)

where α is the shape, set equal to 1 + ag(t|Ht) (with g(t|Ht)=λg(t|Ht)1/k) and
s stands for the scale. The ‘optimal’ k that gives coherent results with the
independent case and assures a smaller AIC turns out to be equal to 8.
The plots of the fitted ground and residual process are quite similar to the
independent ones while cumsum plots of the mark confirm an independent model
is preferable for almost all the groups.

5 Conclusions and future developments

In this paper, we framed the admissions of heart failured patients in the con-
text of Marked Point Processes. Patients are divided into four separate groups
according to their diagnoses-codes contained in the SDO of their first hospital-
izations and the same statistical model was adopted in each group, leading to
different parameter estimates. The underneath temporal ground process was
hard to model even if making use of a parametric approach such as the Hawkes
process while the mark distribution was easy to be dealt with due to its inde-
pendence hypothesis with the ground process.
We gave details about modeling a longitudinal dataset, chose a particular model
and validated it through a specific technique. Besides, we provided a general
framework for simulating an independently marked point processes.
All these results are very important and useful for our real application; actually,
the fact of monitoring the admissions’ trend could allow hospitals to preview
the needs of future hospital admissions so as to improve the efficiency of clinical
facilities and collective welfare.

Now a greater dataset is available containing more information and events; ac-
tually, not only hospitalizations are recorded but also when drugs are prescribed
after discharge and when outpatient medical examinations take place. Then, we
may extend our analyses and introduce a new mark structure; we may assume a
joint probability distribution for it: a Gamma distribution for the length of stay
and a discrete one accounting for the number of pharmacological and medical
examination’s events.
Furthermore, the assumption of independent marking seems strong and should
be inspected at the beginning of the analyses; hence, statistical tests for assessing
independence based, for example, on likelihood ratio statistics or subsampling
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Figure 7: Histograms of the times to the first event with LOS greater than 0.90-
quantile (in days) for each HF group. The blue dash lines stand for the 0.5, 0.9,
0.95 and 0.99 quantiles.

Figure 8: Histograms of the times to the first event with LOS greater than 0.95-
quantile (in days) for each HF group. The blue dash lines stand for the 0.5, 0.9,
0.95 and 0.99 quantiles.
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approaches are needed.
Finally, we may make inference on longitudinal data modeled by a marked point
processes with non-parametrical and compare the results.
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