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Abstract

We assess the accuracy and efficiency of several exponential time integra-
tion methods coupled to a spectral discretization of the three-dimensional
Boussinesq thermal convection equations in rotating spherical shells. Expo-
nential methods are compared to implicit-explicit (IMEX) multi-step meth-
ods already studied previously in [12]. The results of a wide range of nu-
merical simulations highlight the superior accuracy of exponential methods
for a given time step, especially when employed with large time steps and
at low Ekman number. However, presently available implementations of
exponential methods appear to be in general computationally more expen-
sive than those of IMEX methods and further research is needed to reduce
their computational cost per time step. A physically justified extrapola-
tion argument suggests that some exponential methods could be the most
efficient option for integrating flows near Earth’s outer core conditions.



1 Introduction

Spectral (or, more accurately, pseudospectral) spatial discretizations
are a very established tool for problems in spherical geometry, see e.g.
[5, 6, 7, 22]. Due to the very high accuracy of such a space discretiza-
tion method, the application of high order methods in time is meaningful
and appropriate, in order to achieve the goal of minimizing both space
and time truncation errors. On the other hand, for typical problems in
spherical geometry in which spectral discretizations are employed, such as
atmospheric modelling and mantle convection, extreme efficiency is manda-
tory, due to the need to carry out simulations on very long time scales. For
these reasons, the numerical methods to be preferred should allow the use
of relatively large time steps, while maintaining a high level of accuracy. In
this work we assess the accuracy and efficiency of some high order expo-
nential time integrators for spectral discretizations of thermal convection
equations in spherical geometry. We extend previous works [12, 13], where
high order IMEX methods [3, 18] were considered and their accuracy and
efficiency evaluated.

Exponential integrators are an attractive technique for time discretiza-
tion of systems of ordinary differential equations (ODEs). In the case of
a linear, homogeneous Cauchy problem x = Ax, x(0) = xq, they con-
sist in the numerical approximation of the solution representation formula
x(t) = exp(At)xg. As long as the exponential matrix can be computed
accurately, this approach can be extended to obtain methods for nonlinear
equations that are linearly unconditionally stable and provide the exact so-
lution for linear ODE systems. Early methods of this type were proposed
already in the late 1960s, see e.g. [23]. Accurate and reliable computation
of the exponential matrix, however, is not an easy task, as discussed in
the well known review [26]. In particular, for a long time these methods
have been inapplicable to large ODE systems deriving from the spatial dis-
cretizations of partial differential equations. On the other hand, starting
with the seminal paper by Y. Saad [30], Krylov space methods have estab-
lished themselves as an advantageous option for this type of applications.
Since then, an increasing attention has been devoted to the use of this tech-
nique for stiff problems and large scale computational problems have been
successfully solved by these methods, see e.g. the results in [25, 32]. Recent
reviews and assesment of exponential methods can be found, among oth-
ers, in [2, 9, 20], while other applications of exponential methods to thermal
convection problems can be found in [24].

In this paper, we will focus especially on the application of the so called
exponential Rosenbrock methods proposed in [19], which have already been
applied to large scale fluid dynamics simulations in [32]. A wide range
of numerical simulations clearly show that such exponential methods are
more accurate by at least one order of magnitude than the equivalent order
IMEX scheme. This is especially true when they are employed with large
time steps and at small Ekman number. On the other hand, presently
available implementations of exponential methods appear to be in general
computationally more expensive than those of IMEX methods, although in
the small Ekman number limit they tend to be competitive also in terms



of computational cost. Therefore, since the small Ekman number regime is
among the most physically relevant for mantle convection problems, appli-
cation of exponential methods appears to be very promising for this kind of
applications. Indeed, a physically justified extrapolation argument seems to
hint that the exponential time differencing Rosenbrock methods (ETDR)
could be the most efficient option for integrating flows near Earth outer
core conditions.

The paper is organized as follows. In section 2, the model equations
and the spectral space discretization are introduced. In section 3 the time
integration methods are presented in detail, while in section 4 the numerical
simulations performed are shown and discussed. Some conclusions and
perspectives for future work are summarized in section 5.

2 The model equations and the spectral space
discretization

We consider the thermal convection of a differentially heated spherical
fluid shell, rotating about an axis of symmetry with constant angular ve-
locity €2 = Qk and subject to radial gravity g = —~r, where «y is a constant
and r the position vector. We write below the mass, momentum and en-
ergy equations in a rotating frame of reference with angular velocity €2,
using the same formulation and non-dimensional units as in [12]. The units
employed are the gap width, d = r, — r;, for the distance, v?/yad* for the
temperature, and d?/v for time, 7; and r, being the inner and outer radii,
respectively, v the kinematic viscosity, and « the thermal expansion coeffi-
cient. The velocity field is expressed in terms of toroidal, ¥, and poloidal,
®, potentials as

v=Vx(¥r)+VxVx(or). (1)

Consequently, the equations for both potentials, and the temperature per-
turbation, © = T — T, from the conduction state v = 0,7 = T.(r), with
r = ||r||2, are

[(&—VQ)LQ—%&,}\I' = —%Q(I)—I'-VX(WXV), (2)

{(at—VQ)LQ—%aq,} V20 4+ [,0 = %Q\Ifﬂ-v x V x (wx V),

(3)
(00, = V*)© = Ry(1 —n)*r?Ly® = —o(v-V)6. (4)

Here w = V X v is the vorticity, R is the Rayleigh number, o the Prandtl
number, F the Ekman number and 7 is the radius ratio. These non dimen-
sional parameters are defined in this context as

ATd*
g JOATd o v

KV Qd?
where k is the thermal diffusivity, and AT the temperature difference be-
tween the inner and outer boundaries. The operators Lo and Q are defined



by Ly = —12V2+0,.(r%0,), Q@ = r cos 0V2 — (Lo +710,.) (cos 00, —r~ sin 00y),
(r,0,¢) being the spherical coordinates, with 6 measuring the colatitude,
and ¢ the longitude. In non-dimensional units the conduction state reads
T.(r) = To + Rn/o(1 — n)?r. Non-slip, perfect thermally conducting con-
ditions & = 9, = ¥ = O = ( are assigned at the internal and external
boundaries.

A standard treatment of the spatial dependence of the equations is used,
so that we will only discuss the basic points (see e.g., [16, 34|, for more
details). The functions X = (¥, ®, O) are expanded in spherical harmonic
series up to degree L, namely

l

L
X(t,r,0,p) = Z Z X" (r, )Y, (0, ), (6)

=0 m=—1

with ;™ = U, ¢,™ = ¢/, ©,™ = O, U = &) = 0 to uniquely
determine the two scalar potentials, and Y;™(0, ) = P/"(cosf)e™¢, P
being the normalised associated Legendre functions of degree [ and order
m. Equations (2-4) written for the complex coefficients become

v =Dt
1 1 am m m
+ ) 2E7H (im¥" = [QP]") = [r- V x (w x V)[*], (7)
D" = DIOM — O + ] [2E~ (imDy@]" + [QU]}")
eV X V x (@ x V)7, (8)
00" = o DO
+o (I + DRy —n)2r 20 — [(v- V)6, (9)
with boundary conditions
D=0 =09 =0" =0. (10)

The spherical harmonic coefficients of the operator Q = Q" + Q' are

[Q"fI" = =l +2)c11 D 5 T4
[Q'f]" = == D)+ 1)e" DI f2y, (11)

where we have set

l 12— m2\"? 2 (l+1)
+ _ mo__ _ 2 = o
Df =0+, <74z2—1) D=0 — e (12)

In the radial direction, a collocation method is employed, using a Gauss-
Lobatto mesh of N,. + 1 points (N, — 1 being the number of inner points).

The spherical harmonic coefficients of the nonlinear terms in Eqgs. (7-9)
are obtained following [16]. The velocity and vorticity fields are computed



first on a collocation mesh in the three coordinates (r, 8, ¢) with the help
of dealiased Legendre and fast Fourier transforms [6]. The cross product
is computed on the mesh, and, finally, transformed back to the spectral
space in the angular variables. The computation of the coefficients of the
nonlinear terms of Eq. (9) requires the evaluation of the inner product
(v-V)O on the collocation mesh, and then to transform back to the spectral
space.

The mode m = [ = 0 is nonzero only for © to uniquely determine W
and @, while the amplitudes for m = 0 are real. With these considerations,
a large system of ordinary differential equations of dimension N = (3L? +
6L + 1)(N, — 1) must be integrated in time.

3 Time integration methods

In this section, we introduce the two different classes of methods for in-
tegrating stiff ordinary differential equations that have been considered in
this paper, namely the IMEX backward differentiation formulae (IMEX-
BDF) [3, 10, 18] and the exponential time differencing schemes (ETD) 9,
21, 19, 33]. To describe these time integration methods, Egs. (7-9) are
written in the form

Lot = Lu+ N (u), (13)

where v = (U] (r;), ®]"(r;), ©]"(r;)) is the vector containing the values of
the spherical harmonic coefficients at the inner radial collocation points,
and Ly and £ are linear operators including the boundary conditions. The
former is invertible. Its action is that of the identity for the ¥}* and ©}"
components, while it is defined by the operator D; for the component ®;*
(see the time derivatives in Egs. (7-9)). In the ETD schemes, the operator
L includes all the linear terms, while in the IMEX-BDF scheme it only
includes the terms DU, DO — O, and o' D;0" + 0~ (1 +1)Ry(1 —
n)~2r=3®M of Eqgs. (7), (8) and (9), respectively, and part of the Coriolis
terms (see below). In the IMEX-BDF scheme the operator N, which is
treated explicitly, always contains the nonlinear terms and the part of the
Coriolis terms not included in £. In the ETD scheme, the operator N only
contains the nonlinear terms. All the time integration methods defined in
the following will be assumed to provide approximations u” =~ wu(t,) to
solutions of Eq. (13) at time levels ¢, = t,—1 + At,,—1, n=1,2,..., M.

3.1 Implicit-explicit schemes

The IMEX-BDF schemes employed here were described in detail in [12, 13]
so only a very short description will be included here. IMEX-BDF schemes
are collocation multistep methods, which obtain u"*! from the previous
approximations 4”7, j = 0,1,...,k — 1, k being the number of steps in
the formula. When constant time steps At,, = h are considered, the linear

system to be solved in order to find u”*! can be expressed as
k—1 k—1
h 1% ; Bih ,
T — _£—1£> un—i—l — _lun—z 4 7 E—lN(un—z)’ (14)
( % ° z:; 0 ; % 0



where the coefficients o, 3; and vy do not depend on n, and are listed,
for instance, in [31]. It is well known that, if & < 6 and the time steps are
constant (see e.g. [17, S IIL.3]), the BDF formulae are zero-stable, while
they are unstable for £ > 7. It is also known that for & < 6 the k-step
formula is convergent of order k, that is, the errors u(t,) — u™ are O(h¥).
Therefore the k-step formula is also termed the k-th order formula.

We have chosen the Q-splitting IMEX-BDF method of [12, 13] because
it had the best performance among the methods analyzed in fixed time
step numerical tests. In this scheme, one step is performed by taking Q"
of Eq. (11) implicitly (including it in the operator £ of Eq. (13)), and Q'
of Eq. (11) explicitly (including it in the opeator A" of Eq. (13)), while the
opposite is done the next step. The rest of the linear operators are always
treated implicitly and the nonlinear operator explicitly.

This study is restricted to fixed time step methods, although for com-
parison purposes results using variable step-size and variable order (VSVO)
IMEX-BDF implementation are included in the efficiency plots of Secs. 4.1
and 4.2. See [12] for details on this algorithm.

3.2 Exponential time differencing schemes

To describe the ETD schemes, Eq. (13) is written in the form
=Ly Lu+ Ly N (u) = F(u), (15)

where £ contains the linear terms (including the Coriolis term) and N the
nonlinear terms of Egs. (7-9).

We have considered first the ETDR schemes of orders 2 to 4 as described
in [19]. The ETDR scheme of second order (ETDR2) is defined by the
formula

u™ T = 4™ + ho(hA)F(u™), (16)

where h = t,41 —t,, F is the right-hand side of Eq. (13), ¢(2) = (e*—1)/z
and A = J(u"), where J denotes the Jacobian of the right hand side of
Eq. (15) "
0. oF
a1 -1 9V _ 97
T(w) = L5 L+ L5 5 (0) = S (u).

In our implementation, we either compute the action of the Jacobian of the
nonlinear operator on a vector v by the one-sided approximation

ON Nu+ev) —N(u
(G ) ~ e =2, (17)
€
with, as usual, € = ||u||2\/€mach, Emach being an estimate of the round-off
error, or by the centered formula
ON 1
(W(u)> (v) = 5 [Nu+ev) = Nu - ev)]. (18)

which is exact for a quadratic . In this case we have always taken € = 1.



Among the family of ETDR schemes of third order (ETDR3) proposed
in [19] we choose that defined by

1
k1= <§hA) F(u™), (19)
1 4
13 3
Un+1 = Un —|— h <Ek1 —|— 1—6k2> s (21)

because it minimizes the number of matrix-vector multiplications necessary
to achieve third order accuracy. For analogous reasons, the specific fourth
order formula (ETDR4) employed in the following is that given by

1
b = (5n4) Fu (22)
1 ny o L
ko = <§hA) (f(u )+ ghAlﬁ) : (23)
1 0, 3 3
ks = <§hA) (f(u + thQ) - ZhA]@) ’ (24)
43 16

It should be remarked, however, that different choices could have to be
made to guarantee a given convergence order also when an approximate
Jacobian is employed, see e.g. the discussion in [28]. As will be seen in
Sec. 4.3, we have only found this type of failure for the ETDR4 method,
which has been therefore implemented by using Eq. 18.

We have also considered the ETD Cox method of second order (ETDC2)
of [24], which is a variant of a scheme introduced in [4, 9]. This scheme can
be defined setting M = £y 'L and N = £5'A. By multiplying Eq. (13) by
the factor e=™*, and integrating over one time step h,

h
untt = eMhyn 4 MR / e_MTN(u(tn + 7))dr, (26)
0

is obtained.
Setting N (u(t, + 7)) = N, + 7(Ny, — Np—1)/h, being N, = N(u(ty)),
evaluated at 7 = h/2, gives the ETDC2 scheme:

h
h
"t = My 4 <6Mh/ eMTdT> 5(3Nn = Nu—1),
0

or
umtl = Mhyn g<ﬂ(Mh)(3N" — Np_1). (27)

This scheme can be interpreted as an extension of the second order Adams-
Bashforth method and can be extended to higher order along the same lines.
The most attractive property of these schemes is that they are based only



on matrix-vector products of the linear operator Ly 1£. Computing them
is significantly less demanding than computing the actions of the Jacobian
required by ETDR methods, which entail repeated computation of the non-
linear terms. The difference in computational cost is displayed in Table 1.
The number of nonlinear evaluations performed to advance one time level
is the main shortcoming of the Rosenbrock methods for integrating the
spectral thermal convection equations on spherical geometry.

The linear operators £ and A are represented by large matrices. The
block-tridiagonal structure of £ is described in detail in the Appendix of[12].
Therefore, Krylov space methods based on the proposals of [30] can be con-
veniently employed to compute the exponential and related matrix func-
tions that appear in the previous schemes. Notice that, employing the
recipe proposed in [30], the computation of ¢(hA) can be achieved by com-
puting the exponential of a bordered matrix. To evaluate the action of
¢(hA) on a vector v, needed by the ETDR schemes, we use the subroutine
DGPHIV of the EXPOKIT package [33]. In this subroutine, a variable
time-stepping strategy is implemented, in order to compute w = p(hA)v
in a Krylov space of fixed dimension nx by taking partial substeps. At
each of them taken with an increment h,, the norm of the error in the
approximation of w at the current substep is estimated by €;,.. Then the
step is accepted if

Eloc < 1~2hn5tol7 (28)

with €., a tolerance provided by the user, and 1.2 a safety factor which
reduces the risk of rejecting the step. This strategy ensures that the accu-
mulated global error is bounded by 1.2hey, independently of the number
of substeps taken.

Since we are interested in comparing with IMEX-BDF fixed time-step
methods, the above strategy is modified to change the dimension of the
Krylov subspace, ng, instead of the time step, h,, to satisfy the same
condition given by Eq. (28). Then, the convergence will depend only on the
value of h and &4,;. In case of ETDC2, the subroutine DGPHIV allows the
simultaneous computation of e™"u™ and p(Mh)v™, with v™ = 3N,, — N,,_1.
Again, only a fixed time-stepping strategy with variable Krylov dimension
has been considered.

For analyzing the efficiency of ETD methods using Krylov spaces of
dimension up to ng, one has to keep in mind that, in order to advance one
time step h, the number of evaluations of A = J(u™) (in case of ETDR
methods) or M = L5 £ (in case of the ETDC2 method) is proportional to
ng. In contrast, for the IMEX-BDF methods, only one evaluation of the
right hand side is required for each time step. Therefore, ETD methods need
significantly larger time step than IMEX-BDF methods to be competitive.

4 Numerical simulations

We have done several tests in order to compare the performance of the time
integrators introduced above in different physical regimes described in [15].
In all the cases, the radius ratio is 7 = 0.35 and the Prandtl number o = 0.1
estimated for the Earth’s outer core.



N, L C(Ly'N) C(Ly'L)

32 4 0.157 0.036
o0 84 0.657 0.182
80 160 5.026 1.745

Table 1: Computational cost, C', (CPU time in seconds of an Intel Quad-Core
at 2.40 GHz processor) the evaluation of the linear £ L£ versus the nonlinear
Ly LA operators. The radial resolution is N, and L is the truncation parameter
of the spherical harmonics expansion.

To address the Rayleigh number dependence, we have considered three
cases, denoted by T3, Tb, and T3, respectively, where the Ekman num-
ber is taken to be fixed at E = 1074, while the values of the Rayleigh
number increase according to the physical regime to be represented (see
Table 2). In case Ty (corresponding to Se in [13]), the solution is a weak
supercritical quasi-periodic wave with R = 1.42R,. In case T5 (correspond-
ing to S3 in [13]), the solution, computed with moderate Rayleigh number
R = 10.78R. is chaotic, but still maintains a recognizable columnar struc-
ture. Finally, a strongly supercritical and fully turbulent solution with
R = 53.58R, is considered in case Tj.

Case T1 T2 T3 T12 T13
E 1074 10~* 10~* 10~° 1076
R 2.64 x 10° 2 x 109 107 2.35 x 105 3.5 x 107

R, 1.86 x10° 1.86 x 10° 1.86 x 10° 2.29 x 105 3.32 x 107
lwe| 5.06 x 10 5.06 x 10?2 5.06 x 10> 2.37 x 10*> 1.10 x 10*
Me 6 6 6 11 23
N, 32 50 80 50 80

L 54 84 160 84 160
N 281263 1083650 6143119 1083650 6143119

Table 2: Ekman number, Rayleigh number, critical Rayleigh number, R, critical
precession frequency, |w,|, critical azimuthal wavenumber, m., radial resolution,
N.,., spherical harmonics truncation, L, and number of equations, N, for the test
solutions Ty, 15, 13, T12, and T}3, considered.

To address the Ekman number dependence, we have also considered
cases T with E = 107° and R = 1.03R. and T3 with E = 107% and
R = 1.05R,. In both cases, the solution is a periodic travelling wave. The
linear stability analysis for this range of parameters was performed in [14],
where the power laws for the critical Rayleigh number, R., the absolute
value of the critical precession frequency, |w.|, and the critical azimuthal
wavenumber, m., were found numerically. The Ekman numbers are in the
range for which the power laws of the asymptotic E limit are satisfied.
The critical values and spatial resolutions considered are shown in Table 2.



Notice that the spatial resolutions are increased with the complexity of the
solution, and in order to resolve the small scale structures which appear
in the turbulent solution 73 or that of the lowest E (Ti3) N = 6143119
equations must be integrated. The analysis of the resolutions required to
reproduce the dynamics of the flow in each regime is discussed in [15].

Case T1 TQ T3 T12 T13
Thot 3.2 x 10° 2 x 107 108 2.7x107 4.7 x 108
Teola 1.7x10%  1.3x107 6.2x107 1.5x107 22x108
v[?  22x10% 15x105 1.1x107 6.5x102 4.2x10?
|vy| 78  3.3x102 1.6 x 103 52 3.8 x 10!
Tmin 1.4x105  1.1x10" 53x107 1.3x107 1.9 x10%
Tmax  41x10%  31x107 1.5x10®° 3.6x10°® 5.4 x108

V2. 10710 38x107% 1.7x1072 8x1071® 2x1077
V2. 16x10* 78x10° 56x107 15x10® 1.7 x10*

Vpin —98x 100 =23 x10° —74x10° —2.6x 100 —8.4 x 10
81x10'  14x10® 52x10® 25x10' 5.8x10!

Table 3: Values and intervals of the isosurfaces of the temperature, T' = T, +
O, the square of the modulus of the velocity field, |v|?, and the longitudinal
component of the velocity, vy, plotted in Fig. 1 for the test solutions T, T3, T3,
T2, and T3, considered.

The isosurfaces of the temperature T' = T, + O, |v|?, and v, of the
initial conditions of T;, ¢ = 1,2,3,12,13, are shown in Fig. 1. For each
scalar field the values where the isosurfaces are taken and their limits are
written down in Table 3. Cases 17, T12 and 113 resemble very much the
eigenfunctions of the linear problem. There are m, spiralling convective
columns which are parallel to the axis of rotation, so nearly fulfilling the
Taylor-Proudman theorem. As it is well known when E is decreased, m.
increases, the spiralling of the columns is more pronounced, and the columns
are confined in a thin cylindrical layer near the inner boundary.

For the solution 75 displayed in the second row, the contribution of
the zonal flow to the kinetic energy density is maximum and advective
effects deform the temperature isosurfaces, but its velocity field already
maintains a roughly columnar structure. The third row corresponds to
T3. The reflection symmetry with respect to the equator is clearly broken,
and the strong turbulent convection fills the spherical shell. Although the
mean zonal flow maintains its strength, its ratio to the convective part has
decreased.

To make the comparisons, all the test runs have been initialized start-
ing from the initial conditions shown in Fig. 1. In cases 17, T and T3, the
initial conditions are obtained from a sequence of solutions obtained with
lower R after the initial transients are discarded and until a stationary pat-
tern is reached, or until the time-averaged properties and the fundamental
frequencies do not change more than 1%. The first solution of the sequence

10



is at R = 2 x 10° and it is computed by starting from an initial condition
with velocity v = 0, and temperature

ilo 24 :
Tg(r,0,0) = r: —7r; + \/—2_77(1 - x2)3P$(9) cos me, (29)

where A =0.1, x =2r —r; — r,, m = 6, and

P™(0) = \/(2m + 1)11/2(2m)!! sin™ 0

is the normalised associated Legendre function of order and degree m. As it
is said The solution tends, after an abrupt transient, to the above mentioned
azimuthal travelling wave of wave number m = 6. For E = 107° (case T12),
the first solution is computed using the same initial condition, but with
critical wave number m = 11, and at £ = 1076 (case Ty3) with m = 23.

Case Jmaz fmean Prean Py (yeal“s) tf
Ty 59.11247 58.58775 1.706841 x 1072 2.9 x 10” 1071
T, 48.31012 872.7377 1.145820 x 1072 1.9 x 108 1072
Ty 168.9822 1187.499 8.421060 x 10~* 1.4 x 108 1074

T 367.5766 368.5130 2.713608 x 1072 4.56 x 10% 1073

Tis 1539.483 1539.483 6.495687 x 1074 1.1 x 108 3.25 x 1074

Table 4: Frequency of maximum amplitude f,,q,, mean frequency fiean, mean
period Ppean, dimensional mean period Py = Preand?/v (d. = 2.3 x 106 m and
v =107% m?/s corresponding to values of the Earth’s outer core) and final time
ts (at which errors e(u) are computed) for all the cases considered.

In Table 4, some quantities are shown to give some idea of the time
scales corresponding to the different cases considered. The frequency finaz
with maximum amplitude A,,q, of the frequency spectrum (f;, A;), the
mean frequency fiean = 2. Aifi/ D Ai, the mean period Prean = 1/ fimean
and the dimensional mean period Py = Ppeand?/v with d. = 2.3 x 10 m
and v = 107% m? /s, corresponding to estimations of values for the Earth’s
outer core. The system is evolved from the initial condition to a final time
ty which is given in the same table. It covers several mean periods of the
orbit for 7} and T5. However, for T3, T2 and T3, only a fraction of the
mean period is considered, to avoid too long time integrations. We have
checked for 77 that the choice of a larger ¢y does not alter substantially
the behavior of the time integration methods.

The time series of the temperature perturbation © at the point (r; +
(ro —r;)/7,0,3m/8), are shown in Fig. 2(a-f), for all the tests. The smooth
oscillatory nature of cases Ty, T2, and T3 with very different periods, and
the chaotic temporal dependence of T3 and T3 can be clearly distinguished.
The time interval is similar to t; only for T and T. For the rest (7%,
T2, and T13) the time interval is between one and two orders of magnitude
larger. Fig. 2(d) shows, for T5, a detail of the oscillations with a time
interval 10 times larger than ¢;.

11



To check the efficiency of the different schemes, the relation between the
relative error, the time step h, and the run time is analyzed. The former is

defined as I I
U — Ur||2
e(u) = ——=
|[ur||2

where u is the solution we want to check, and u,. is an accurate reference so-
lution obtained with the @-implicit variable size and variable order method
of [12]. More precisely, u, is obtained with absolute and relative error toler-
ances €% = " (see [12]), equal to 10~ '3 for 77, to 107! for Ty, T3 and T},
and to 107!2 for Tj,. The decrease of the relative error given by Eq. (30)
is achieved by decreasing the step size h in the case of the IMEX method
and also by decreasing the tolerances e, (see Eq. (28)) for the local errors
(coming from the Krylov approximation) in the case of the ETD methods.
Notice that the errors computed in this way are to be interpreted as em-
pirical estimates of the time discretization error, while no attempt here is
made to estimate the error due to the space discretization method.

For the IMEX-BDF methods the curves of relative error e(u) versus h
are extended to the right, up to the maximum 5 allowed by stability. In
the case of ETD methods the limitations on the maximum time step are
due to an increase in the Krylov dimension nx used to approximate the
exponentials. It was limited to nx < 50.

(30)

4.1 Rayleigh number dependence

In this subsection, the influence of the Rayleigh number on the performance
of the time integration methods is studied by considering the cases Tj,
i = 1,2,3. Figures 3(a,c,e) show e(u) versus h for the methods described
in Sec. 3. These three plots suggest that:

- For a given time step h, the ETDR methods are always much more
accurate than the corresponding IMEX-BDF methods of the same
order. ETDR2 gives values of e(u) similar to those of the IMEX-
BDF3, while ETDR3 gives errors similar to those of IMEX-BDFS5.
As the Rayleigh number increases, the ETDR methods become even
more accurate.

- ETDC2 is about one order of magnitude less accurate than ETDR2
for T7. At moderate and high supercritical conditions (T}, i = 1, 2) the
accuracy of the former degrades, and its behavior and that of IMEX-
BDF?2 are nearly the same; most likely because their treatment of the
nonlinear terms is very similar.

- For the three cases under consideration and a given time step h, all the
ETD methods use similar values of the Krylov dimension ng. They
range from 2 — 5 for the smallest h, up to 20 — 30 for the highest. For
larger h than those shown in Figs. 3(a,c,e) the increase of the Krylov
dimension employed is more pronounced.

- ETDRE methods of orders k = 3,4 are, in general, much more ac-
curate than those of second order. However, for T the accuracy of
ETDRA4 is very similar to ETDR3. The order of the latter is exhib-
ited for the smallest h, while for the larger the slopes of the ETDR3
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and ETDR4 error curves in Fig. 3(a) are very similar. With increas-
ing R the differences in accuracy between both methods are more
pronounced (Figs. 3(c,e)).

Figures 3(b,d,f) show e(u) versus the run time, rt, for Ty, T», and T3,
respectively. These three plots suggest that:

- When comparing IMEX-BDF and ETDR methods, it must be kept
in mind that to advance one time step IMEX-BDF methods only
require one linear solve (equivalent in cost to a linear evaluation)
and one computation of the nonlinear terms, while ETDRE methods
need O((k — 1)nk) evaluations of the linear and nonlinear terms if
an approximated Jacobian (see Eq. (17)) is employed. If instead the
exact Jacobian (Eq. (18)) is employed, the number of evaluations per
time step is O(2(k — 1)ng). ETDC2 is more efficient than ETDR
methods because they only perform one evaluation of the nonlinear
terms and O(ng) of the linear, which are cheaper to perform.

- Taking the previous point into account, in order to obtain solutions
with similar e(u) at similar costs, the time step hgrpri of the ETDRE
method should be O((k—1)nk) times larger than hgprg, required for
the IMEX-BDFk& methods. This does not happen for T3, i = 1,2, 3,
and thus IMEX-BDF methods are more efficient to obtain moderately
accurate solutions at £ = 10~* for the wide range of R explored. How-
ever, the difference hgrprr — heprk increases slightly with increasing
R.

- The most accurate IMEX-BDF fixed step method (IMEX-BDF5) can
achieve relative errors £(u) down to O(1071%), O(107°) and O(10~%),
for 17, T, and T3, respectively. The most accurate solutions using
ETDR4 have £(u) down to O(107'2), O(10~7) and O(10~'2). The
differences in accuracy between the most accurate solution obtained
with IMEX-BDF5 and that obtained with ETDR4 increase as R is
increased. In all the three test cases, the VSVO Q-implicit method
of [12] (of orders from 2 up to 5), with very low tolerance values, can
obtain the same accuracy as the ETDR methods but more efficiently.

13



Figure 1: From left to right, snapshots of the isosurfaces of the temperature T
(hot and cold respectively), of [v|* and of v,. For the latter, red/blue means
positive/negative values. First row: Case Ty (E = 107* and R = 2.64 x 10°).
Second row: Case T (E = 107 and R = 2. x 10%). Third row: Case T3
(E =10"*and R = 107). Fourth row: Case T1 (E = 107° and R = 2.35 x 10°).
Last row: Case T13 (E = 1075 and R = 3.5 x 107)
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Figure 3: (a) The relative error, (u), plotted versus the constant time step h
for the ETD and IMEX methods and the case T}. (b) The relative error, e(u),
plotted versus the run time in seconds for the same methods shown in (a) and
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4.2

Ekman number dependence

In this subsection, the influence of the Ekman number on the performance
of the time integration methods is studied by considering the cases T7 and
Ty, @ = 2,3. Figure 3(a) and Figs. 4(a,c) show the relative error e(u)
plotted versus the time step h for the methods described in Sec. 3. These
three plots suggest that:

As for the R dependence, for a given time step h, the ETDR methods
are always much more accurate than the corresponding IMEX-BDF
methods of the same order. As FE decreases, the ETDR methods
become even more accurate. This is quantified in Table 5 where the
constants Cyern, of the numerical fits e(u) = Conetnh® are shown. For
instance, notice that at the lowest E (case T13) the constant for the
ETDR3 method (the highest order taken for which the approximate
Jacobian can be used) is more than 5 orders of magnitude smaller
than that of the IMEX-BDF3.

ETDC?2 is roughly one order of magnitude less accurate than ETDR2,
but one order of magnitude more accurate than IMEX-BDF2 for the
three E considered. This is one of the reasons for which ETDC2 is
the more efficient option (as will be shown later) among the second
order methods.

As happened when addressing the R dependence, for the three cases
under consideration and a given time step h, all the ETD methods
use similar values of the Krylov dimension ng. They range from 2—5
for the smallest h, up to 20 — 30 for the largest. It is nearly 40 for the
largest h in cases T1;, i = 2,3, and ETDRE of orders k = 3, 4,

The facts that the Krylov dimension does not depend on E, (and
neither on R) for the range of (u) shown in the plots, and that the
constants C,etp, are much larger for IMEX-BDF than for the ETDR
suggest that the latter would be more efficient for integrating flows at
E <107°.

The vertical distance between the ETDR2 and ETDR3 (or ETDR4)
curves of Fig. 3(a) and Figs. 4(a,c) increases as E decreases. This
can be seen by measuring the difference between e(u) for ETDR2 and
ETDRS3 at, for instance, h =10"* , h=10"°, and h = 107%, and 71,
T2, and Tis, respectively. In the latter case the vertical distance is
the largest. This suggest that high order (> 2) ETDR methods would
be suitable at low FE.

In the case of the IMEX-BDF methods, as E is decreased the differ-
ences in accuracy (vertical distance) between the methods with orders
k = 3,4,5 diminish. The range of h in which the curves are obtained
without a noticeable accumulation of round-off errors (h for which
e(u) versus h has positive slope) also decreases with E. This suggest
that as F is decreased fixed step and order IMEX-BDF methods with
order larger than 3 would not improve substantially the accuracy.
Moreover, selecting a time step h belonging to the region of absolute
stability and without accumulation of round-off errors would be more
difficult as F is decreased.
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Figure 3(a) and Figs. 4(b,d) show the relative error e(u) plotted versus
the run time for the cases T7 and Ti;, i = 2,3. These three plots suggest
that:

- As discussed in the previous subsection, in order to obtain solutions
with similar e(u) at similar costs, the time step hgrpri of the ETDRE
method should be O((k —1)nk) times larger than hpprg, required for
the IMEX-BDFE methods. This appears to happen at the lowest
Ekman number F = 1075 (case T13) and thus IMEX-BDF methods
are more efficient only for obtaining moderately accurate solutions at
the moderately low Ekman numbers E = 10~4,107°.

- The differences between hgpri and hgrpri have stronger dependence
on the decrease of E than on the increase of R as in the previous
subsection.

- The ETDC2 method is in general the most efficient among the second
order methods for the three cases. This is because ETDC2 method
retains the most attractive properties of the other two. It only requires
one evaluation of the nonlinear terms at each time step (as IMEX-
BDF2) and the solution of the linear part is only constrained by the
Krylov approximation of the exponential (as for ETDR2).

- Implementations of higher order linear multistep exponential meth-
ods similar to ETDC2 could be competitive, but would require the
computation of the functions ¢;(2) = (¢;—1 — 1/4")/z with j > 1,
whose numerical approximation is known to lead often to cancella-
tion errors [27].

- As in the case of increasing R, when FE is decreased, very accurate
solutions can only be obtained with fixed-time step by using ETDR
methods of order k = 3,4 or the VSVO @Q-implicit method [12] with
very low tolerances. At the lowest F, due to the large number of time
steps required for the IMEX-BDF-VSVO method to achieve such high
accuracy, the ETDR3 method becomes more efficient because it can
employ a time step generally larger than the average time step of the
IMEX-BDF-VSVO method.

Using the numerical fit e(u) = Cpetnh”, and assuming that Chepn =
Cmetn(F) (shown in Table 5), values of Cyern can be extrapolated for
regimes near the onset of convection for integrations over half a period of
the solution. We use the constants Ciy,ep, (E) of the methods of third order
(since they are the most efficient among the ETDRs) and E = 107°,1076
(cases Thi, © = 2,3) to make an extrapolation of C(Ecore) for Eepre =
2.6 x 10715,

We have fitted a potential law, Coern = aEP, to cases Th;, i = 2,3
because both are travelling waves, which near to the onset of convection
are confined near the inner core (see Fig. 1), and it is known that critical
parameters R., w. and m, follow this kind of dependence. With the pa-
rameters o and 7 corresponding to those widely used for the Earth’s outer
core the critical frequency is w. = 1.1E7966 [14], and taking into account
E.ore = 2.6 x 1071°, an approximate period ' = 10~ is obtained. In
dimensional units it would be 7' = 7 x 10° s. This value matches well with
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Figure 4: (a,c) Relative error, £(u), plotted versus the constant time step, h, for
ETD and IMEX-BDF methods for the cases T12 (E = 107%) and Ty3 (E = 107°),
respectively. (b,d) Relative error plotted versus the run time, rt, in seconds for
the same methods and cases shown in (a,c). The symbols and types of lines are

those of Fig. 3.

long period oscillations (> 100 years) of the inner core estimated in [11].
In addition most of the physical properties and time scales in developed
turbulent convection follow this type of law [15, 8].

For ETDR3 and IMEX—BDF3, CETDRS = 0.3E71'6 and CBDFB =6 X
1073E~27 are obtained, respectively. By taking into account E,o.. = 2.6 X
1071, the constants are Crrprs = 7 X 1022 for ETDR3 and Cyprs = 1037
for IMEX-BDF3. This result implies that for integrating half a period
(roughly t; = 5 x 107!° adimensional time units) of the first bifurcated
travelling wave at the Earth’s outer core conditions, with relative error
e(u) = 1075, the time step needed using ETDR3 and IMEX-BDF3 would
be approximately 2 x 10719 and 5 x 107'%, respectively. If the Krylov
dimension required by the ETDR methods does not depend strongly on F
to obtain solutions with a given value of e(u), as suggested by our results,
the ETDR methods could be the most efficient option for integrating flows
near the Earth’s outer core conditions.
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Method E=10"% E=10"° E=10°
ETDC2 3.7 x10° 2.7x10% 4.7 x 10"
ETDR2 7.6 x 10* 1.4 x10° 4.6 x 10°
ETDR3 3.0x10° 3.7x10% 1.5x 108
ETDR4 1.3 x 100 3.1 x 10 2.3x 10!
IMEX-BDF2 1.6 x 107 2.3 x 107 7.1 x 108
IMEX-BDF3 4.3 x10° 1.2x 10 55 x 1013
IMEX-BDF4 3.0 x 102 3.1 x 106 1.5 x 1020
IMEX-BDF5 1.6 x 10 7.9 x 102} 4.1 x 10%6

Table 5: Least-squares fits for the constant C' in e(u) = Ch¥, where k = 2,3,4,5
is the order of the method, as a function of the Ekman number E. The statistical
errors of the fit are less than 5%, and for ETD methods less than 1%.
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4.3 Numerical issues in the application of exponential
methods

In this section, some implementation issues of the exponential methods are
addressed. The details discussed are in general common to all the test
cases, so only the computational aspects of the case T} will be commented.

In Fig. 5(a) the relative error e(u) is plotted versus the constant time
step h for the ETD methods. For each h, the Krylov dimension nx used
to approximate the exponentials is labeled in the curves. For a given h,
the values of ng selected for the different methods are very similar. The
greatest differences (about 5) are between ETDC2 and ETDR methods
and the larger time steps, for which ny are larger. As h decreases, nx
decreases too, from approximately 25 down to 5, and also the bound for
the local relative error, bjoe(u) = 1.2hes0||u, ||~ (computed from Eq. (28)),
used in the Krylov approximation. This bound is shown in Fig. 5(b) as a
function of h for the solutions in Fig. 5(a). As it is expected bjoe(u) must be
decreased accordingly with the order of the integration. This can be seen in
the curves for the third and fourth order ETDR methods. The oscillations
are due to the way we have modified €;,; when changing h. In the case of
second order we were conservative for the larger h, and therefore the slope
is less than two.

Finally, Fig. 5(c) shows £(u) versus the parameter ¢ used in the one-
sided finite difference approximation of the Jacobian, for the Rosenbrock
methods of Fig. 5(a) with h = 107%. The horizontal straight lines are the
values of e(u) obtained with the centered exact formula. As the order of
the method increases, the range of values of € which can be used in the one-
sided approximation, giving the same result, decreases. For the second and
third order methods the value selected in our tests, € = ||u(0)||2v/€Emach, is
always in this range. In the case of the fourth order method the one-sided
approximation always gives a larger ¢(u) than that obtained with the exact
computation of the Jacobian, as the theoretical results in [19] (theorem 5.1)
suggest.
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(red color online)), ETDRL (M, dashed line (k = 2 green, k = 3 blue and k = 4

magenta colors online)).
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5 Conclusions and open issues

In this work, we have carried out an assessment of the accuracy and effi-
ciency of several exponential time integration methods coupled to a spec-
tral discretization of the three-dimensional Boussinesq thermal convection
equations in rotating spherical shells. Fixed time-step exponential and
IMEX-BDF methods have been compared. The latter were already studied
in [12, 13]. We have focused especially on the application of the so called
exponential Rosenbrock methods proposed in [19].

A wide range of numerical simulations have shown clearly that, for a
given convergence order, such exponential methods are more accurate by
at least one order of magnitude than equivalent order IMEX-BDF schemes.
This is especially true when they are employed with large time steps and at
low Ekman number. The computational cost per time step is, in general,
higher than that of the equivalent order IMEX-BDF scheme, at least for
the present implementation. However, in the small Ekman number limit,
exponential Rosenbrock methods tend to be competitive also in terms of
computational cost, even compared with the VSVO implementation of the
IMEX-BDF. This is consistent with the fact that the ETD methods are
exact for linear systems. It is easy to see from Egs. (7-9) that in the limit
of vanishing F, and after rescaling the time, the nonlinear terms are almost
negligible and the equations are close to linear. These conclusions appear
to be very promising for their application, since this is the physically rele-
vant regime for mantle and core convection problems. Indeed, a physically
justified extrapolation argument suggests that the ETDR methods could be
the most efficient option for integrating flows near the Earth’s outer core
conditions.

Future developments will address a number of computational issues,
such as the full parallelization of the present serial implementation, and
the reduction of the computational cost per time step by application of
different approaches for the computation of the exponential matrix, such
as e.g. those proposed in [29, 1].
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