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tWe 
onsider the equation −∆u = wu3 on a square domain in R
2, withDiri
hlet boundary 
onditions, where w is a given positive fun
tion that isinvariant under all (Eu
lidean) symmetries of the square. This equation isshown to have a solution u, with Morse index 2, that is neither symmetri
nor antisymmetri
 with respe
t to any nontrivial symmetry of the square.Part of our proof is 
omputer-assisted. An analogous result is proved forindex 1.1 Introdu
tionIt is a well known phenomenon that symmetri
 equations 
an have non-symmetri
solutions. However, �simple� solutions often tend to be symmetri
, even in 
aseswhere the notion of simpli
ity is not manifestly related to symmetry. A 
ase inpoint is the boundary value problem problem

−∆u(z) = f(z, u(z)), ∀z ∈ Ω , u(z) = 0, ∀z ∈ ∂Ω , (1)1



on a bounded open domain Ω ⊂ R
n that is symmetri
 with respe
t to some
odimension 1 hyperplane. If Ω is 
onvex in the dire
tion orthogonal to thisplane, and if f does not depend expli
itly on z, then any positive solution uof the equation (1.1) is ne
essarily symmetri
 as well. This is a 
lassi
al resultby Gidas, Ni, and Nirenberg [1℄. Subsequent extensions in
lude, among otherthings, 
lasses of solutions that are not ne
essarily positive [5, 7, 9, 11, 12℄.We 
onsider the same equation (1) but fo
us on a di�erent 
lass of �simple�solutions, proposed �rst in [5℄, namely solutions with �xed Morse index. Re
allthat solutions of equation (1) are 
riti
al points of the fun
tional J on H1

0 (Ω),
J(u) =

∫

Ω

[

1

2
|∇u(z)|2 − F (z, u(z))

]

d2z , ∂uF = f , (2)assuming that F satis�es some growth and regularity 
onditions; and the Morseindex of a 
riti
al point u is the number of des
ending dire
tions of J at u.The question 
onsidered in this paper is motivated by the symmetry results in[11℄, whi
h 
over domains (balls and annuli) and nonlinearities f that are radiallysymmetri
. We refer to [11℄ for the pre
ise assumptions and results. Roughlyspeaking, ∂uf is assumed to be 
onvex in u, but f need not be monotone in
|z|. Then any solution u of Morse index ≤ n has an axial symmetry. Given thisresult, it is natural to ask whether there is an analogue for domains that onlyhave dis
rete symmetries, su
h as regular polytopes.We will give a partial answer by 
onstru
ting 
ounter-examples with index
1 and 2, in n = 2 dimensions. We start with the easier 
ase: a non-symmetri
index-1 solution. Let Ω be a bounded Lips
hitz domain in R

2 with only �nitelymany (Eu
lidean) symmetries. A fun
tion u on Ω is said to have symmetry σ if
u ◦ σ = u.Theorem 1.1 There exists a C∞ fun
tion w ≥ 0 on Ω, possessing all symme-tries of Ω, su
h that (1) with f = wu3 admits a positive solution u ∈ H1

0 (Ω),with index 1, that has no nontrivial symmetry of Ω.This theorem 
an be proved by standard variational methods; see Se
tion 2.In what follows, the domain Ω is �xed to be the square Ω = (0, π)2. Our maingoal is to prove an analogous result for index 2, using 
omputer-assisted methods.Su
h a result seems 
urrently outside the s
ope of other known methods. Similarte
hniques should apply to a variety of other semilinear ellipti
 problems, as longas the domain and other quantities involved take a relatively simple form.When 
onsidering solutions u with multiple extrema, the natural question iswhether |u| is symmetri
; u itself may be antisymmetri
 with respe
t to some ofthe re�e
tions that leave Ω invariant. There is numeri
al eviden
e that this isindeed the 
ase for low-index solutions, at least for some standard nonlinearitiesthat do not depend expli
itly on the variable z [2, 3, 4, 6, 8℄. But it is not 
learwhether this holds more generally. While symmetry results have been proved inmany situations, no antisymmetry results are available, as far as we know.2



Our analysis in the index-2 
ase uses a nonlinearity f = wCu3, with
wC(x, y) = C1

(

41
32

cos(x) cos(y)[cos(2y)−cos(2x)]
)2

+(1−C1)+C2[sin(x) sin(y)]8(3)and 0 ≤ Ck ≤ 1. These fun
tions wC possess all the symmetries of the square
Ω, and they are nonnegative.Theorem 1.2 Let f = wCu3 with C1 = 97

128
and C2 = 145

256
. Then the equation(1) admits a real analyti
 solution, that has Morse index 2 and is neither sym-metri
 nor antisymmetri
 with respe
t to any nontrivial symmetry of the square.Our proof of this theorem is 
omputer-assisted. To be more pre
ise, we �rstreformulate (1) as a �xed point problem G(u) = u and show that the Morse indexof u is related to the spe
trum of the derivative DG(u). This is done in Se
tion 3.In Se
tion 4, we redu
e the proof of Theorem 1.2 to a set of su�
ient 
onditionson G and DG, near an approximate �xed point u0 . Se
tion 5 des
ribes howthese 
onditions (inequalities) 
an be, and have been, veri�ed with the aid of a
omputer.The 
omputation of the approximate solution u0 is des
ribed in Se
tion 6.The graphs of u0 and of wC are shown in Figure 1.
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Figure 1: Weight wC and solution u, for C1 = 97
128

and C2 = 145
256

.2 Proof of Theorem 1.1To simplify notation, we write H1
0 = H1

0 (Ω) and Lp = Lp(Ω). Given a nontrivial
ontinuous fun
tion w ≥ 0 on Ω, the fun
tional (2) 
an be written as
J(u) =

1

2
‖u‖2

H − F (u) , ‖u‖2
H =

∫

Ω

|∇u|2 , F (u) =
1

4

∫

Ω

wu4 .We start by maximizing F on the unit sphere S = {u ∈ H1
0 : ‖u‖H = 1}. Noti
ethat F is well de�ned and 
ontinuous on L4. Sin
e S is a 
ompa
t subset of L4,3



we 
an �nd a sequen
e (un) in S, that 
onverges strongly in L4 and weakly in H1
0 ,su
h that limn F (un) = supS F . The limit u 
annot be zero, sin
e supS F > 0.Furthermore, ‖u‖ ≤ 1. In fa
t, we must have ‖u‖H = 1, otherwise ‖u‖−1

H u ∈ Ssatis�es F (‖u‖−1
H u) = ‖u‖−4

H F (u) > F (u).Let u ∈ S be any point where maxS F is a
hieved. We may assume that
u ≥ 0, sin
e F (|u|) ≥ F (u), and |u| ∈ S. The latter follows from the fa
t that
|∇|u|| = |∇u| a.e. [14, Theorem 6.17℄. Furthermore, given that the fun
tion u is
ontinuous and vanishes on ∂Ω, it has a maximum at some point z1 ∈ Ω. Sin
e
u is harmoni
 outside the support D = supp(w) of w, we must have z1 ∈ D, and
u(z) < u(z1) for all z ∈ Ω \ D.Next, we pi
k a parti
ular weight w. Let σ1, σ2, . . . , σn be the symmetriesof Ω, with σ1 the identity. We may assume that n ≥ 2. Let w1 be a nontrivialnonnegative C∞ fun
tion on Ω, su
h that the fun
tions wj = w1 ◦ σj havemutually disjoint supports Dj = supp(wj), where 1 ≤ j ≤ n. De�ne w =
w1 + w2 + . . . + wn .Assume for 
ontradi
tion that u ◦ σ = u for some nontrivial symmetry σ of
Ω. Without loss of generality, we may assume that z1 ∈ D1 and σ = σ2 . Then
u takes its maximum value at the distin
t points z1 ∈ D1 and z2 = σ(z1) ∈ D2 .Choose c < u(z1) su
h that B = {z ∈ Ω : u(z) > c} is dis
onne
ted, with one
onne
ted 
omponent B1 
ontaining z1 , and another 
onne
ted 
omponent B2
ontaining z2 . Consider the fun
tion u′ = u−v1 +v2 , where vj(z) = u(z)− c forall z ∈ Bj , and vj(z) = 0 for all z 6∈ Bj . Using again [14, Theorem 6.17℄, togetherwith the fa
t that v2 = v1 ◦ σ, we see that u′ ∈ H1

0 and ‖u′‖H = ‖u‖H = 1. But
F (u′) > F (u), sin
e f(x) = x4 satis�es f(a − b) + f(a + b) > 2f(a) whenever
a > b > 0. This 
ontradi
ts the fa
t that F (u) = maxS F . Thus, u 
annot havea nontrivial symmetry of Ω.Consider now the fun
tion J : R × S → R de�ned by J (t, v) = J(tv) =
1
2
t2 − t4F (v). When restri
ted to R × {u}, it has a maximum at some value

t = τ > 0. And the restri
tion of J to {τ} × S has a minimum at (τ, u).Consequently, τu is a 
riti
al point of J , with Morse index 1. This 
ompletes theproof of Theorem 1.1.The remaining part of this paper is devoted to the proof of Theorem 1.2.3 The �xed point equation and Morse indexSolutions of the equation (1) 
an be obtained as �xed points of the map G,
G(u) = (−∆)−1f(· , u) . (4)In this se
tion we relate the Morse index of a solution u to the spe
tral propertiesof the derivative of G at u. For simpli
ity, we assume that f(z, u) is a polynomialin u with 
oe�
ients in L∞(Ω). Then the fun
tional (2) is of 
lass C∞ on H1

0 (Ω),4



and its se
ond derivative is given by the quadrati
 form
Qu(v) =

∫

Ω

(|∇v|2 − Wuv2) , (5)where Wu(z) = (∂uf)(z, u(z)). The Morse index of u is the number of negativedire
tions of Qu . The derivative of G at u is given by
DG(u)v = (−∆)−1(Wuv) . (6)De�ne vm(x) = sin(mx) for positive integers m. The fun
tions vm×vn are theeigenfun
tions of the Diri
hlet Lapla
ean on Ω, and they 
onstitute an orthogonalbasis for H1

0 = H1
0 (Ω), with the standard inner produ
t on this spa
e (see below).Thus, every fun
tion h in H1

0 has a 
onvergent sine series expansion
h =

∑

m,n∈K

hm,n vm× vn , (7)where K is the set of all positive integers. Modulo a 
onstant fa
tor, the standardinner produ
t on H1
0 is given by

〈g, h〉H := π−2

∫

Ω

(∇g)(z) · (∇h)(z) d2z =
∑

m,n∈K

(m2 + n2)gm,nhm,n . (8)And the inverse Diri
hlet Lapla
ean takes the following simple form
−∆−1h =

∑

m,n∈K

(m2 + n2)−1hm,n vm× vn . (9)Proposition 3.1 Assume that Wu is of 
lass C1. Then DG(u) is a 
ompa
tpositive self-adjoint operator on H1
0 (Ω). Its eigenvalues are stri
tly positive, if

Wu > 0 almost everywhere on Ω. If u solves equation (1), then the Morse indexof u agrees with the number of eigenvalues of DG(u) that are larger than 1.Proof. The 
ompa
tness of DG(u) follows from the fa
t that −∆−1 is 
ompa
t and
h 7→ Wuh bounded. The identity

〈g, DG(u)h〉H = π−2

∫

Ω

g(z)Wu(z)h(z) d2z (10)shows that DG(u) is self-adjoint and positive. Furthermore, if Wu > 0 almost every-where, then 〈h, DG(u)h〉H is positive, unless h = 0. Denote by λ1 ≥ λ2 ≥ . . . ≥ 0 theeigenvalues of DG(u). The 
orresponding eigenve
tors u1, u2, . . . 
an be 
hosen to bean orthonormal basis for H1
0 . Then

Qu(v) =
〈

v, [I − DG(u)]v
〉

H
=

∑

n

(1 − λn)
∣

∣〈v, un〉H
∣

∣

2
. (11)This shows that the number of negative dire
tions for Qu agrees with the number ofeigenve
tors un for whi
h 1 − λn < 0. �Our aim is to solve the �xed point equation G(u) = u on a spa
e Ao thatis mu
h smaller than H1

0 . The following proposition will be used to re
overproperties of DG(u) : H1
0 → H1

0 from properties of DG(u) : Ao → Ao.5



Proposition 3.2 Let H be a Hilbert spa
e. Let X be a Bana
h spa
e that is
ontinuously and densely embedded in H. Let L be a self-adjoint bounded linearoperator on H, that leaves X invariant and de�nes a 
ompa
t linear operator LXon X. Then every eigenve
tor of L for a nonzero eigenvalue belongs to X.Proof. Let λ be a nonzero eigenvalue of L. Denote by P the spe
tral proje
tion for
LX , asso
iated with all eigenvalues of modulus ≥ |λ|. Sin
e L is self-adjoint and P has�nite rank, P de�nes an orthogonal proje
tion on H that 
ommutes with L.Consider the self-adjoint operator T = L(I − P) on H . Assume for 
ontradi
tionthat T has an eigenvalue λ. Let y be a normalized eigenve
tor for this eigenvalue. Pi
k
x ∈ X su
h that 〈x, y〉H = a > 0. Then ‖T nx‖H ≥ a|λ|n for all n. This, together withthe embedding inequality ‖ · ‖H ≤ C‖ · ‖X on X , implies that the operator LX(I − P)on X has a spe
tral radius ≥ |λ|. This is impossible by the de�nition of P. Thus, everyeigenve
tor of L with eigenvalue λ belongs to PH ⊂ X . �Before de�ning the spa
e Ao mentioned earlier, we note that the sine series(3.4) extends a fun
tion h ∈ H1

0 to a fun
tion on R
2. Denoting the extensionagain by h, and using the notation h = h(x, y), the fun
tion h is 2π-periodi
in both variables x and y. Furthermore, −h(−x, y) = h(x, y) = −h(x,−y) forall x, y ∈ R. A fun
tion h with this property will be 
alled an odd fun
tion.Similarly, a fun
tion h : R

2 → R that satis�es h(−x, y) = h(x, y) = h(x,−y) forall x, y ∈ R will be 
alled even.Sin
e we will need to estimate both odd and even fun
tions, we 
onsiderFourier series (7) with K = N, where vm(x) = cos(mx) for integers m ≤ 0. Ifthe series (7) for h has only �nitely many nonvanishing terms, the fun
tion hwill be referred to as a Fourier polynomial. Given ρ > 0, we de�ne A to be the
ompletion of the ve
tor spa
e of Fourier polynomials h with respe
t to the norm
‖h‖ =

∑

m,n

|hm,n|e
ρ|m|+ρ|n| . (12)This spa
e A is a Bana
h algebra, that is, ‖gh‖ ≤ ‖g‖‖h‖, for all g, h ∈ A. Theodd and even subspa
es of A will be denoted by Ao and Ae, respe
tively. Clearly,

H1
0 
ontains Ao as a dense subspa
e.Proposition 3.3 Assume that Wu belongs to Ae and is positive on Ω. Then alleigenve
tors of DG(u) : H1

0 → H1
0 belong to Ao, and the restri
tion of DG(u) to

Ao de�nes a 
ompa
t linear operator on Ao.Proof. By using the Bana
h algebra property of A, and the representation (9) for
(−∆)−1, we see that DG(u) de�nes a 
ompa
t linear operator on Ao. Clearly, thereexists C > 0 su
h that 〈u, u〉H ≤ C‖u‖2, for all u ∈ o. The assertion 
on
erningthe eigenve
tors of DG(u) : H1

0 → H1
0 now follows from Proposition 3.1, and fromProposition 3.2, using X = Ao and H = H1

0 . �6



4 Estimates used to prove Theorem 2.1Consider now the �xed point problem for G, in the 
ase where
G(u) = (−∆)−1[wu3] , (13)with w some �xed but arbitrary positive fun
tion in Ae. Sin
e A is a Bana
halgebra, and ∆−1 : Ao → Ao is 
ompa
t, the equation (13) de�nes a 
ompa
t

C∞ map G on Ao. Noti
e also that DG(u) has a �Nehari eigenvalue� 3 at any�xed point u 6= 0 of G, with eigenve
tor u, due to the fa
t that G is homogeneousof degree 3.Let u0 ∈ Ao be �xed, and let A be a linear isomorphism of Ao. If u ∈ Ao,then u0 + Au is a �xed point of G if and only if u is a �xed point of N , where
N (h) = G(u0 + Ah) − u0 + (I − A)h , h ∈ Ao . (14)Furthermore, if DG(u0) does not have an eigenvalue 1, and if we 
hoose Asu�
iently 
lose to [I −DG(u0)]

−1, then N is a 
ontra
tion near the origin. Theequation (9) shows that DG(u0) 
an be approximated by �nite rank operators.This motivates the following.Let p be an invertible map from N = {1, 2, . . .} onto N×N. For every positiveinteger k, de�ne vk = vm× vn , with (m,n) = p(k). Furthermore, denote by hkthe 
oe�
ient of vk in the expansion (7) of a fun
tion h ∈ Ao. Then, to any real
N × N matrix M , we 
an asso
iate a linear operator M̂ on Ao, by setting

M̂h =

N
∑

k,j=1

Mk,jhjvk , h ∈ Ao . (15)From now on, we �x w to be the fun
tion wC de�ned in (1.3), for the parametervalues des
ribed in Theorem 2.1. In addition, we �x the spa
e A by 
hoosing
ρ = ln(1 + 2−60) in the equation (12).Given r > 0 and g ∈ Ao, de�ne Br(g) = {h ∈ Ao : ‖h − g‖ ≤ r}.Lemma 4.1 There exists an odd Fourier polynomial u0 , a real square matrix
M , and real numbers δ, ε,K > 0, satisfying ε + Kδ < δ, su
h that the followingholds. M has no eigenvalue 1, and the map N , de�ned by (14), with A = I −M̂ ,satis�es

‖N (0)‖ ≤ ε , ‖DN (h)‖ ≤ K , ∀h ∈ Bδ(0) . (16)The proof of this lemma is 
omputer-assisted and will be des
ribed in Se
tion5. By the 
ontra
tion mapping prin
iple, the given bounds imply that N hasa unique �xed point h∗ in the ball Bδ(0). In what follows, u∗ = u0 + Ah∗denotes the 
orresponding �xed point of G. Noti
e that u∗ belongs to Br(u0), if
r ≥ ‖A‖δ.The following lemma shows that u∗ is not symmetri
 or antisymmetri
 withrespe
t to any symmetry of the square.7



Let E = {(π/4, π/2), (π/2, π/4), (3π/4, π/2), (π/2, 3π/4)}. Clearly, ea
h non-trivial symmetry of Ω a
ts as a nontrivial permutation on E.Lemma 4.2 There exists r ≥ ‖A‖δ, su
h that for every u ∈ Br(u0), the fun
tion
z 7→ |u(z)| takes 4 distin
t values on E.The proof of this lemma is 
omputer-assisted and will be des
ribed in Se
tion5. Re
all that, by (Morse), all eigenvalues of DG(u) are positive. Our next goalis to prove that all but two eigenvalues of DG(u∗) are smaller than 1. To thisend, we approximate DG(u∗) numeri
ally by an operator T̂ asso
iated with an
N × N matrix T . In what follows, T ∗ denotes the adjoint of T with respe
t tothe inner produ
t on R

N indu
ed by (8).Lemma 4.3 With A, δ, r, u0 as in Lemmas 4.1 and 4.2, there exists a squarematrix T = T ∗ with eigenvalues µ1 > µ2 > 1 > µ3 > . . . > 0, su
h that
∥

∥

∥
[DG(u) − T̂ ](T̂ − I)

∥

∥

∥
< 1 , ∀u ∈ Br(u0) .The proof of this lemma is 
omputer-assisted and will be des
ribed in Se
tion5. Combining the last three lemmas we arrive at the following.Proof of Theorem 1.2 By lemma 4.1 and the 
ontra
tion mapping prin
i-ple, the map N de�ned by (14) has a unique �xed point h∗ in Bδ(0). If r > ‖A‖δthen the 
orresponding �xed point u∗ = u0 +Ah of G belongs to the ball Br(u0).Clearly, u∗ is a real analyti
 solution of (1). Furthermore, u∗ is not symmetri
or antisymmetri
 with respe
t to any symmetry of the square Ω, as (nosymm)shows.Consider the operators Ls = sDG(u∗) + (1 − s)T̂ , for 0 ≤ s ≤ 1, with T̂ asdes
ribed in (Spe
Gap). They all have the following properties. Ls is 
ompa
t,symmetri
 with respe
t to the inner produ
t (8), and positive, in the sense that

〈h,Lsh〉H ≥ 0 for all h ∈ o. Furthermore, Ls − I has a bounded inverse,
(Ls − I)−1 = (T̂ − I)−1(I + sV )−1 , V = [DG(u∗) − T̂ ](T̂ − I)−1 ,sin
e ‖V ‖ < 1 by Lemma 4.3. In other words, Ls has no eigenvalue 1. Sin
ethe positive eigenvalues of Ls vary 
ontinuously with s, this implies that theoperators T̂ = L0 and DG(u∗) = L1 have the same number of eigenvalues(
ounting multipli
ities) in the interval [1,∞) and its interior. By Lemma 4.3,this number is 2. This, together with Proposition 3.1, 3.2 and 3.3 with X = Aoand H = H1

0 , implies that u∗ has Morse index 2. This 
ompletes the proof ofTheorem 2.1.5 The 
omputer-assisted partWhat remains to be proved are the Lemmas 4.1, 4.2, and 4.3. Given the Fourierpolynomial u0 and the matri
es M and T (obtained from purely numeri
al 
om-putations), this task is 
learly a sequen
e of trivial estimates, assuming that8



there are no fundamental obstru
tions. The sequen
e is �nite, sin
e ∆−1 
an beapproximated to arbitrary a

ura
y by �nite rank operators. But the steps aremu
h too numerous to be 
arried out by hand, so we enlist the help of a 
omputer.For the types of operations needed here, the te
hniques are quite standard bynow. Thus, we will restri
t our des
ription mainly to the problem-spe
i�
 parts.As with any lengthy task, proper organization is 
ru
ial. We start by asso
i-ating to a spa
e X a 
olle
tion std(X) of subsets of X, that are representable onthe 
omputer. These sets will be referred to as �standard sets� for X. A �bound�on an element s ∈ X is then a set S ∈ std(X) 
ontaining s. Ea
h 
olle
tion
std(X) 
orresponds to a data type in our programs. Unless stated otherwise,
std(X × Y ) is taken to be the 
olle
tion of all sets S × T with S ∈ std(X) and
T ∈ std(Y ).Our standard sets for R are asso
iated with a type Ball, whi
h 
onsistsof pairs S=(S.C,S.R), where S.C is a representable number (Rep) and S.R anonnegative representable number (Radius). The standard set de�ned by a BallS is the interval B(S) = {s ∈ R : |s − S.C| ≤ S.R}. Our standard sets for Ao arerepresented by a type Fourier2 
onsisting of a triple F=(F.T,F.C,F.E), whereF.T is a re
ord identifying the spa
e Ao, F.C is an array(0..K,0..K) of Ball,and F.E is an array(0..2*K,0..2*K) of Radius. The 
orresponding set B(F)in std(Ao) is the set of all fun
tion u = p + h ∈ Ao,

p =

K
∑

m,n=1

pm,n vm× vn , h =

2K
∑

m,n=1

hm,n , hm,n =
∑

i≥m,j≥n

hm,n
i,j vi× vj ,with pM,N ∈ B(F.C(M, N)) and ‖hM,N‖ ≤ F.E(M, N), for all M,N ≥ 1. The typeFourier2 is also used to de�ne our standard sets for the spa
e Ae, and for someother subspa
es of . In our programs, the �maximal degree� K is either 100 or

125.For the representable numbers, we 
hoose a data type (renamed to Rep) forwhi
h elementary operations are available with 
ontrolled rounding. This makesit possible to implement a bound Sum on the fun
tion (s, t) 7→ s + t on R×R, aswell as bounds on other elementary fun
tions on R or R
n, in
luding things likethe matrix produ
t or the Gram-S
hmidt orthogonalization map.Here, a bound on a map f : X → Y is a map F : DF → std(Y ), withdomain DF ⊂ std(X), su
h that f(s) ∈ F (S) whenever s ∈ S ∈ DF . Su
hbounds are implemented as pro
edures or fun
tions in our programs. This 
anbe done hierar
hi
ally. Using e.g. the Sum for the type Ball, it is straightforwardto implement a bound Sum on the map (g, h) 7→ g + h from Ao × Ao to Ao.Similarly for maps like u 7→ ‖u‖ or −∆−1. Implementing a bound on the produ
t

(g, h) 7→ gh is a bit more tedious, but straightforward.A bound on ‖N (0)‖ is now obtained by 
omposing the basi
 bounds men-tioned above. In order to estimate ‖DN (h)‖, as required for a proof of Lemma4.1,9



we use the following fa
t. If L is a 
ontinuous linear operator on Ao, then
‖L‖ = sup

k

‖Lek‖ , ek = ‖vk‖
−1

vk ,where v1, v2, . . . are the fun
tions des
ribed before equation (15). This expli
itexpression for ‖L‖ is our main reason for working with a weighted ℓ1 norm. Forthe operator L = DN (h), it is easy to determine k0 , given c > 0, su
h that
‖Lek‖ ≤ c whenever k ≥ k0 . Thus, estimating the norm of DN (h) redu
es to a�nite 
omputation. Choosing δ > 0 to be a representable number, this estimate
an be 
arried out simultaneously for all fun
tions h ∈ Bδ(0), sin
e Bδ(0) belongsto std(o).The same approa
h is used to estimate the operator norm in equation (4.3).The N × N matrix T is taken to be of the form

T = UMU∗ , M = diag(µ1, µ2, . . . , µN ) ,where µ1, µ2, . . . , µN are positive numeri
al approximations for the largest Neigenvalues of DG(u∗), and where U is an orthogonal N ×N matrix. To be morepre
ise, U is orthogonal for the inner produ
t on R
N indu
ed by (8), and U∗ isthe 
orresponding adjoint matrix, so that U∗ is the inverse of U . This ensuresnot only that T = T ∗, but it also makes it easy to 
ompute the inverse of T̂ − I.The size N used in our programs is 250.Verifying the 
laim in (nosymm) is 
omparatively simple. All we need is abound on the evaluation fun
tion (z, u) 7→ |u(z)| on R

2 × Ao. For the �higherorder� part h in the de
omposition u = p + h, we use the fa
t that |h(z)| ≤ ‖h‖,for all z ∈ R
2.For a pre
ise and 
omplete des
ription of all de�nitions and estimates, we referto the sour
e 
ode and input data of our 
omputer programs [18℄. The sour
e
ode is written in Ada2005 [15℄. For the type Rep we use a MPFR �oating pointtype, with 128 or 256 mantissa bits, depending on the program. MPFR is an opensour
e multiple-pre
ision �oating-point library that supports 
ontrolled rounding[17℄. Our programs were run su

essfully on a standard desktop ma
hine, usinga publi
 version of the g

/gnat 
ompiler [16℄.6 Some numeri
al resultsOur approximate solution u0 was obtained by starting with a symmetri
 solutionfor C1 = C2 = 0, where wC = 1, and following solution bran
hes where either

C1 or C2 is �xed. The symmetry breaking o

urs in two steps, as we will nowdes
ribe.Consider �rst C2 = 0. In this 
ase, and for C1 > 0, the weight fun
tion wClooks similar to the fun
tion shown in Figure 1, ex
ept that the 
enter peak ismissing: wC has a lo
al minimum at the 
enter of Ω. The other peaks in
reaseas C1 in
reases. 10



 0
 0.5

 1
 1.5

 2
 2.5

 3  0
 0.5

 1
 1.5

 2
 2.5

 3

-4
-3
-2
-1
 0
 1
 2
 3
 4

u

branch 1,  C1=0.0
       2
       0
      -2

x

y

u

 0
 0.5

 1
 1.5

 2
 2.5

 3  0
 0.5

 1
 1.5

 2
 2.5

 3

-6

-4

-2

 0

 2

 4

 6

u

branch 1,2,  C1=0.66
       4
       2
       0
      -2
      -4

x

y

u

Figure 2: Starting point and bifur
ation point on bran
h 1.For C1 ≥ 0, we �nd a bran
h (referred to as �bran
h 1�) of solutions that aresymmetri
 with respe
t to the diagonal x = y and antisymmetri
 with respe
t tothe diagonal x+y = π. At a value C1 ≈ 0.66, we observe a pit
hfork bifur
ation.As C1 is in
reased past this value, the Morse index on bran
h 1 
hanges from 2to 3.On the interse
ting bran
h (
alled �bran
h 2�), for C1 & 0.66, the solutionsno longer have the two re�e
tion symmetries mentioned above, but they are stillantisymmetri
 with respe
t to the 
omposition of these symmetries: a rotationby π about the 
enter of Ω. The Morse index is 2, and no bifur
ation is observedup to C1 = 0.85. Now we �x C1 = 97
128

= 0.7578125 and start in
reasing C2 .This 
auses the weight wC to develop a peak in the 
enter. The goal is to make itfavorable for the solution u to have a nonzero value at the 
enter of Ω. And theother 8 peaks of wC should make it di�
ult to a
hieve this goal while keeping arotation symmetry.The resulting �bran
h 3� is observed to undergo a pit
hfork bifur
ation at avalue C2 ≈ 0.095, where the Morse index 
hanges from 2 to 3. (It appears thatthere is another bifur
ation later, where the solutions be
ome symmetri
 withrespe
t to x = y and antisymmetri
 with respe
t to x + y = π.)the interse
ting bran
h (
alled �bran
h 4�), for C2 & 0.095, the solutions areneither symmetri
 or antisymmetri
 with respe
t to any of the symmetries ofthe square. Along this bran
h, the third largest eigenvalue �rst de
reases from 1down to about 0.857, and then it in
reases again (rea
hing 1 around C2 = 1.22).The minimum is rea
hed near the value of C2 used in Theorem 1.2.The �basi
� pro
edure that was used to follow a bran
h is to gradually 
hangeparameter values, and using a Newton-type map N asso
iated with G, to �ndan a

urate �xed point at ea
h step. Near a bifur
ation point u, where DG(u)has an eigenvalue 
lose to 1, we 
ompute the 
orresponding eigenve
tor h. Thenew bran
h is found by starting with v = u + εh and adjusting the parameterto minimize the norm of G(w) − w, where w = N k(v) for some appropriate k.Then the map u 7→ w is iterated until the eigenvalues of DG(u) are far enough11
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Figure 3: Two points on bran
h 3.
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Figure 4: Two points on bran
h 4.
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from 1 for the basi
 bran
h-following pro
edure to work. This approa
h 
an of
ourse be improved, but that was not our goal here.The equation (1) for the disk, with nonlinearities that depend expli
itly on
z, is being investigated in [13℄. Other numeri
al studies on related equations 
anbe found in the referen
es [2, 3, 4, 6, 8℄.A
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