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Abstract

A numerical procedure that combines an Extended Finite Element
(XFEM) formulation and a Discontinuous Galerkin technique is presented,
with the final aim of providing an effective tool for the simulation of three-
dimensional fluid-structure interaction problems where the structure un-
dergoes large displacements. In this work we consider thick structures im-
mersed in a fluid domain and we focus on the description of the numerical
models and on the techniques used to deal with the issues related to the
implementation of XFEM in this context. Numerical results are provided
to show the effectiveness of the approach.

1 Introduction

The study of the mechanics of the heart valves and their interaction with blood
is very important for understanding their functional behaviour, for developing
prosthetic valves and for post-surgery feedbacks, see, e.g, [36, 21]. In this context,
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the leaflets of the aortic valve, which is at the interface between the left ventricle
and the aorta, play a key role since they have a major influence on the blood fluid-
dynamics in the proximity of the valve and along the aortic arch [22, 31, 37, 11].
The numerical simulation of such a scenario could provide important quantitative
information about the fluid-structure interaction (FSI) arising between blood
and leaflets. Unlike the vascular case, here the FSI problem requires to deal
with some issues, namely the large displacements involving the leaflets, their
small thickness, and the treatment of the contact.

A classical approach to deal with the vascular FSI problem relies on the
generation of a single mesh with a fitted interface between fluid and vessel wall.
While for the structure problem a Lagrangian formulation is usually considered,
for the fluid one an Arbitrary Lagrangian Eulerian (ALE) approach is employed
to take care about the movement of the interface and the resulting deformation
of the fluid mesh induced by the displacement of the structure [13]. However,
in the valve FSI problem this strategy may lead to a very distorted fluid mesh
and in some cases a remeshing procedure may be necessary [20]. A different
approach consists in considering unfitted meshes, where the fluid mesh is fixed
on the background while the structure one is free to move independently. Within
these methods, the Immersed Boundary (IB) and the Fictitious Domain (FD)
methods, see, e.g., [27, 3, 18, 16, 24], are two effective techniques that were
successfully employed in the case of thin valve leaflets, see, e.g., [34, 10, 2,
5, 17]. A more recent methodology is based on an unfitted formulation that
allows to treat non-conforming, overlapping/unfitted meshes by writing the weak
formulation of fluid and structure problems in their physical domains. This
possibly leads to mesh elements with complex shape, allowing to maintain the
accuracy of the standard finite element method, see, e.g, [1, 8, 23].

In this work, we consider the case of a three-dimensional (3D) structure
immersed in a fluid where the solid mesh overlaps the fluid one and the interface
is fitted only to the solid mesh. Due to the thin thickness of the 3D structure,
which may be smaller than the characteristic fluid mesh size, the solid may
split a fluid element into two subparts, thus generating two fluid polyhedra with
the solid in between (in what follows we refer to this kind of elements as split
tetrahedra). To manage this situation, we propose to use an eXtended Finite
Element Method (XFEM) [19, 1], where the degrees of freedom (dofs) of the split
elements are doubled, allowing to represent a discontinuity within the element
accurately. We notice that in the literature, other, more general, definitions of
XFEM have been provided [15]. Here we will refer to XFEM only when the
doubling of the interface dofs is considered.

To glue the solution at the physical interface, we employ a Discontinuous
Galerkin (DG) technique. The use of an unfitted formulation in combination
with the XFEM and the DG techniques has been reported in [1] for the case of a
membrane structure. In [28], the authors employ a similar formulation in 3D for
the incompressible Navier-Stokes equations solely. At the best of our knowledge,
this strategy is here employed for the first time for a FSI problem with thick
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structure. In this work we focus on the methodological and implementational
aspects. To this aim, we limit our study to small deformations of the structure
domain.

The paper is organized as follows. In Section 2 we present the fluid-structure
interaction problem and the corresponding XFEM/DG discretization. In Sec-
tion 3 we describe how to solve the major technical issues encountered by the
proposed method. In Section 4 we show several 3D numerical tests to assess and
validate the proposed method. Finally, Section 5 is devoted to conclusions and
limitations.

2 Numerical formulation

In this section, we present the numerical formulation of a time-dependent fluid-
structure interaction problem with thick structure in the case of small displace-
ments, hence the fluid-structure interface is considered as fixed. We consider
the incompressible Navier-Stokes equations for the fluid and the Hooke elastic
model for the structure.

2.1 Governing equations

Referring to Figure 1, we consider a fluid domain Ωf and a structure domain Ωs

such that Ω = Ωf ∪ Ωs ⊂ Rd, d = 2, 3, and Σ = Ω
f ∩ Ω

s
is the fluid-structure

interface. We denote by ∂Ωf and ∂Ωs the boundary of the fluid and solid domain,
respectively, and we define Γf = ∂Ωf \Σ and Γs = ∂Ωs \Σ. Finally, we indicate
with nf and ns the outward unit normal to the domain Ωf and Ωs, respectively.
On the interface Σ we have nf = −ns = n.

ns

Ωf

Γs

nf

Γf

Ωs

Σ

Figure 1: Sketch of the fluid and structure domain Ωf and Ωs with the fluid-
structure interface Σ.

The fluid-structure interaction problem reads as follows: find the fluid veloc-
ity u : Ωf × (0, T ] → Rd, the fluid pressure p : Ωf × (0, T ] → R, and the solid
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displacement d : Ωs × (0, T ]→ Rd, such that
ρf∂tu + ρfu · ∇u−∇ ·Tf (u, p) = 0 in Ωf × (0, T ] ,

∇ · u = 0 in Ωf × (0, T ] ,

u = 0 on Γf × (0, T ] ;

(1)


ρs∂ttd−∇ ·Ts(d) = 0 in Ωs × (0, T ] ,

d = 0 on Γs × (0, T ] ;
(2)

 u = ḋ, on Σ× (0, T ] ,

Tf (u, p)nf = −Ts(d)ns, on Σ× (0, T ] ,

(3)

where T > 0, ρf and ρs are the fluid and structure densities, Tf (u, p) = −pI +
2µfD(u) is the fluid Cauchy stress tensor, Ts(d) = λs(∇ · d)I + 2µsD(d) is the

solid stress tensor, D(w) =
1

2
(∇w + ∇wT ), µf is the fluid dynamic viscosity,

λs, µs > 0 are the Lamé parameters, ḋ = ∂td and where for the sake of simplicity
we have considered homogeneous Dirichlet conditions on Γf and Γs.

The problem is completed with the initial conditions u(x, 0) = u0(x),
d(x, 0) = d0(x) and ḋ(x, 0) = v0(x).

2.2 Spatial discretization

We consider the spaces V = [H1
Γf (Ωf )]

d
, Q = L2(Ωf ) and W = [H1

Γs(Ωs)]
d
,

where H1
Γf (Ωf ) = {v ∈ H1(Ωf ), v|Γf = 0} and H1

Γs(Ωs) = {v ∈ H1(Ωs), v|Γs =
0}. The weak formulation of the problem given by (1)-(3) reads as follows: for
t ∈ (0, T ], find (u(t), p(t),d(t)) ∈ V ×Q×W such that u = ḋ on Σ, and{

ρf (∂tu,v)Ωf + af (u,v) + b(p,v)− b(q,u) + c(u,u,v)
+ρs(∂ttd,w)Ωs + as(d,w) = 0,

for all (v, q,w) ∈ V ×Q ×W such that v|Σ = w|Σ. Here, with ·|Σ we indicate
the trace on Σ and we have indicated by (·, ·)Ωi , i = f, s, the L2 product over Ωi.
Moreover, we have introduced the bi-linear forms af : V×V→ R, b : Q×V→ R
and as : W ×W→ R defined as

af (u,v) = 2µf (D(u),D(v))Ωf ,

b(p,v) = −(p,∇ · v)Ωf ,

as(d,w) = λs(∇ · d,∇ ·w)Ωs + 2µs(D(d),D(w))Ωs ,
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and the tri-linear form c : V ×V ×V→ R defined as

c(z,u,v) = ρf (z · ∇u,v)Ωf
.

To ease the presentation, we assume that Ωf , Ωs and Σ are polyhedral. We
denote by T sh the solid mesh that covers the domain Ωs and it is fitted to ∂Ωs

and by T fh the fluid mesh that covers the whole domain Ω and it is fitted to Γf ,
but in general not to Σ and Γs. We indicate with h > 0 the spatial discretization
step. As result, the solid mesh T sh overlaps the fluid mesh T fh , see Figure 2. We

T s
h

T f
h

Figure 2: The structure mesh T sh overlaps the fluid mesh T fh .

also introduce the following mesh

Gh = {K : K ∈ T fh , K ∩ Σ 6= ∅, K ∩ Ωf is a disconnected set},

that consists of all the elements K in T fh cut by the interface Σ such that they are
split elements, i.e., each fluid element K is split into two or more fluid subparts,
see Figure 3 (left). In general, a split element K may be divided into NK fluid
subparts, see Figure 3 (right). We define GPh the collection of all connected
subset of K ∩ Ωf , for all K ∈ Gh. More precisely

P ∈ GPh ←→ ∃K ∈ Gh s.t. P ⊂ K ∩ Ωf , P is a connected set.

The set GPh can be partitioned by identifying the maximal connected sets found
by the union of elements of GPh , more precisely we can identify Nf subsets of

Ω
f
, Ωi

h, i = 1, . . . , Nf , so that

Ωi
h is connected,Ωi

h ⊂
⋃
P∈GPh

P and

if P ∩ Ω
i
h = ∅ −→ P ∪ Ωi

h is a disconnected set,∀P ∈ GPh ,

see Figure 4 (left). Given any element K ∈ Gh we can now number its fluid
subparts according to which Ωi

h they belong. We call PKi the set that satisfies

PKi ⊂ K ∩ Ωf , PKi ⊂ Ωi
h,
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Figure 3: Left: representation of the mesh Gh. Right: representation of a split
element K with two fluid subparts PK1 and PK2 .

see Figure 3 (right).
Moving from these definitions, we set

Ω0
h = Ωf \

⋃
K∈Gh

K,

see Figure 4 (left), and we denote by T 0
h the smallest mesh composed of the

elements K ∈ T fh that covers the set Ω0
h, i.e.,

K ∈ T 0
h ←→ K ∩ Ω

0
h 6= ∅

see Figure 4 (right). Finally, we denote by T ih , for i = 1, . . . , Nf , the smallest
mesh that consists of all the elements of Gh that covers the set Ωi

h, i.e.,

K ∈ T ih ←→ K ∩ Ω
i
h 6= ∅, i = 1, . . . , Nf .

In this way, each element K ∈ Gh belongs to NK different meshes T ih . We point

out that Ωf =
⋃
i=0,...,Nf Ωi

h and that Ωi
h ∩Ωj

h = ∅,∀i 6= j. We observe that the

set covered by T ih is larger than the one covered by the corresponding Ωi
h, see

Figure 4 (right). It is important to distinguish between the physical parts Ωi
h

and the computational ones T ih , since some operators act on the former, while
other operators, such as the stabilization terms, on the latter. This requires to
be able to integrate over a portion of an element K or a portion of a facet F . A
detailed explanation of this point will be presented in Section 3. In what follows,
we indicate with

• physical, the restriction of a geometrical entity of T ih on Ωi
h;

• computational, the entire geometrical entity in the mesh T ih .

To ease the presentation, in what follows we suppose that Nf = 2, so that
we have only the sets Ω1

h and Ω2
h, see Figure 4 (left).

Thanks to the above definitions, we denote by
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Figure 4: Left: sketch of the sets Ω0
h, Ω1

h and Ω2
h in the case of Nf = 2. Right:

the shaded regions represent the meshes T 0
h (top) and T ih (bottom) in the case

of Nf = 2. In this case, T 1
h coincides with T 2

h .

• F ih,phy, the physical part of the faces in T ih , i = 1, 2, see Figure 5(a), on
which we weakly impose the continuity of the fluid velocity and stresses
by means of the DG formulation;

• F ih,com, the computational counterpart of the faces F ih,phy, i = 1, 2, see
Figure 5(b)-(c);

• F ih,Σ, the (computational) faces of T ih , i = 1, 2, cut by the interface Σ, see
Figure 5(d).

As we will explain in Section 3.3, the degrees of freedom associated to the ele-
ments in Gh are duplicated according to the XFEM strategy: a set of degrees of
freedom is used to compute the solution over T 1

h , and a second set of degrees of
freedom is used to compute the solution over T 2

h . In the case the number of fluid
subparts shared by the common face F of two elements K1 ∈ T 0

h and K2 ∈ Gh
is not equal, it is not possible to apply continuity at the interface strongly, see
for example Figure 4 (left), where the fluid element near the tip of the structure
(in blue) faces two fluid subparts (in yellow and red). For this reason, we apply
a DG mortaring on these interfaces and, for simplicity, on all faces that belongs
to F ih,phy, for i = 1, 2.

We introduce the following spaces:

Xf
h = {vh ∈ L2(Ωf ) : vh ∈ C0(Ω0

h), vh|K ∈ P1(K), ∀K ∈ T ih for i = 0, 1, 2},

and
Xs
h = {vh ∈ C0(Ω

s
) : vh|K ∈ P1(K),∀K ∈ T sh }.
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F1
h,phy F2

h,phy

(a)

F1
h,com

(b)

F2
h,com

(c)

F1
h,Σ F2

h,Σ

(d)

Figure 5: Representation of the sets of faces involved in the integration (high-
lighted in green): (a) the physical faces F1

h,phy and F2
h,phy; (b) the computational

faces F1
h,com; (c) the computational faces F2

h,com; (d) the computational faces

F1
h,Σ and F2

h,Σ intersected by Σ which, in this example, coincide.

For the approximation of the fluid velocity, fluid pressure and solid displacement
we consider the spaces

Vh = {vh ∈ [Xf
h ]d : vh|Γf = 0}, Qh = {qh ∈ Xf

h},

Wh = {wh ∈ [Xs
h]d : wh|Γs = 0},

respectively.
Further, we introduce some trace operators defined over an interface I that

separates a domain Ω1,2 into Ω1 and Ω2, such that Ω1,2 = Ω1∪Ω2 and Ω1∩Ω2 =
I. For a function q, we denote by J·KI the jump and by {{·}}I,α the α-weighted
mean across the interface I, defined as

JqKI = q1 − q2, {{q}}I,α = αq1 + (1− α)q2, (4)

where q1 and q2 are the traces of q at the two sides of the interface and α ∈ [0, 1].
If the subscript α is not indicated, we assume that α = 1

2 .
The space semi-discretization problem related to (1)-(3) reads as follows: for
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t ∈ (0, T ], given β > 0, find (uh(t), ph(t),dh(t)) ∈ Vh ×Qh ×Wh such that

ρf (∂tuh,vh)Ωf + af (uh,vh) + b(ph,vh)− b(qh,uh) + c(uh,uh,vh)

+ρs(∂ttdh,wh)Ωs + as(dh,wh)

+ch(uh,uh,vh) + sph(ph, qh) + gh(uh,vh)

−(αTf (uh, ph)nf + (1− α)Ts(dh)nf ,vh −wh)Σ

−(uh − ḋh, αTf (vh,−qh)nf + (1− α)Ts(wh)nf )Σ

+
γΣµ

f

h
(uh − ḋh,vh −wh)Σ

−
∑

i=1,2

∑
F∈Fi

h,phy

({{
Tf (uh, ph)

}}
F,β

nf , JvhKF
)
F

−
∑

i=1,2

∑
F∈Fi

h,phy

(
JuhKF ,

{{
Tf (vh,−qh)

}}
F,β

nf
)
F

+
∑

i=1,2

∑
F∈Fi

h,phy

γvphyµ
f

hF
(JuhKF , JvhKF )F = 0,

(5)

for all (vh, qh,wh) ∈ Vh×Qh×Wh. We have indicated by γΣ > 0 and γvphy > 0

the penalty parameters related to the interface Σ and to the faces in F ih,phy,
respectively. In (5), we have introduced:

• a Brezzi-Pitkäranta-type pressure stabilization, see, e.g., [6, 9], defined as

sph(ph, qh) = γp
∑

i=0,1,2

∑
K∈T i

h

h2
K

µf

∫
K
∇ph · ∇qh

+ γpcom
∑
i=1,2

∑
F∈Fi

h,com

hF

µf

∫
F

JphKF · JqhKF ,

with γp > 0 and γpcom > 0 the penalty parameters related to the pressure
stabilization on T ih , i = 0, 1, 2, and the pressure stabilization on the faces
in F ih,com, respectively;

• a ghost-penalty term, see [7], to guarantee robustness of the method w.r.t.
the cut elements, defined as

gh(uh,vh) = γg
∑
i=1,2

∑
F∈Fi

h,Σ

µfhF

∫
F

J∇uhKF n · J∇vhKF n,

with γg > 0;

• a correction of the convective term to maintain the condition c(z,v,v) =
0, ∀v ∈ V, z ∈ {v ∈ V,∇·v = 0} in the discrete space, see [33, 12], defined
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as

ch(zh,uh,vh) =
ρf

2
((∇ · zh)uh,vh)Ωf

−
∑
i=1,2

∑
F∈Fi

h,phy

ρf
(
{{zh}}F,α · n JuhKF , {{vh}}F,α

)
F

−
ρf

2
(zh · n,uh · vh)Σ.

2.3 Full discretization

We denote by ∆t > 0 the temporal discretization step and by (0, T ] the temporal

domain such that tn = n∆t, for n = 1, . . . , Nt with Nt =
T

∆t
. To ease the

presentation, we consider only the backward difference formula (BDF) of order
1 for the time discretization. The space-time discretization of the problem given
by (1)-(3) reads as follows: for n = 0, . . . , Nt − 1, find (un+1

h , pn+1
h ,dn+1

h ) ∈
Vh ×Qh ×Wh such that

ρf

∆t
(un+1

h ,vh)Ωf + af (un+1
h ,vh) + b(pn+1

h ,vh)− b(qh,un+1
h ) + c(unh,u

n+1
h ,vh)

+
ρs

∆t2
(dn+1

h ,wh)Ωs + as(dn+1
h ,wh)

+ch(unh,u
n+1
h ,vh) + sph(pn+1

h , qh) + gh(un+1
h ,vh)

−(αTf (un+1
h , pn+1

h )nf + (1− α)Ts(dn+1
h )nf ,vh −wh)Σ

−(un+1
h −

dn+1
h

∆t
, αTf (vh,−qh)nf + (1− α)Ts(wh)nf )Σ

+
γΣµ

f

h

(
un+1
h −

dn+1
h

∆t
,vh −wh

)
Σ

−
∑

i=1,2

∑
F∈Fi

h,phy

({{
Tf (un+1

h , pn+1
h )

}}
F,β

nf , JvhKF
)
F

−
∑

i=1,2

∑
F∈Fi

h,phy

(q
un+1
h

y
F
,
{{

Tf (vh,−qh)
}}
F,β

nf
)
F

+
∑

i=1,2

∑
F∈Fi

h,phy

γvphyµ
f

hF

(q
un+1
h

y
F
, JvhKF

)
F

=

ρf

∆t
(unh,vh)Ωf +

2ρs

∆t2
(dnh,wh)Ωs +

ρs

∆t2
(dn−1

h ,wh)Ωs

+

(
dnh
∆t
, αTf (vh,−qh)nf + (1− α)Ts(wh)nf

)
Σ

−
γΣµ

f

h

(
dnh
∆t
,vh −wh

)
Σ

,

(6)
for all (vh, qh,wh) ∈ Vh × Qh ×Wh, and where we have used a first order
extrapolation to treat the non-linearity of the convective term.

The algebraic linear system associated with equation (6) reads:

RU = F
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where

R =

 Kf + C(Un) +G+ Euu +Huu BT + Eup +Hup Eud

−B + EupT +HupT S Edp

EudT EdpT Ks + Edd

 ,

U =

 Un+1

Pn+1

Dn+1

 and F =

 Fu

Fp

Fd

 .
We have indicated by Kf = ∆t−1Mf + Af and Ks = ∆t−2M s + As, where
Mf , Af , B and C(Un) represent the standard matrices of the Finite Element
discretization of the Navier-stokes problem, M s and As represent the mass and
stiffness matrices related to the structure discretization, S the matrix related to
the fluid stabilization and G the matrix associated with the ghost penalty term.
The matrices E contain the DG terms that couple the fluid and the structure
on the interface Σ, while the matrices H contain the DG terms that ensure the
weak continuity of the velocity and stresses on the faces F ih,phy.

3 Implementation details

In this section, we describe the main issues that arise during the implementation
of the proposed XFEM/DG approach, in particular the specific features that
characterize the method with respect to the standard Finite Element Method.

In what follows, we indicate with

• background mesh, the fluid mesh T fh that covers the entire domain;

• foreground mesh, the solid mesh T sh that covers the solid domain and
overlaps the fluid one;

• cut-entities, the physical portion of the geometrical entities of the back-
ground mesh partially covered by the foreground mesh, which, in the case
of volumes or faces, are in general polyhedra or polygon, see Figure 6
(left). In particular, we refer to cut-elements and cut-faces the case of
three-dimensional and two-dimensional entities;

• cut-mesh, the fluid mesh resulting from the difference between the back-
ground mesh and the foreground one, see Figure 6 (right), that coincides
with the physical portion of the background mesh (i.e. the union of cut-
entities and the elements not covered by the foreground mesh), in the sense
of the definition given in Section 2.2.

Due to the unfitted nature of the involved meshes, it is necessary to identify
which parts of the entities in the background mesh are physical (i.e. belonging
to the cut-mesh) with the aim of computing the integrals over these portions.
The main steps to address are:
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Figure 6: Left: example of a tetrahedron (blue) of the background mesh that
intersects the interface Σ (white mesh). The darker part represents the phys-
ical part given by the cut-element, i.e., the portion of the element that is not
overlapped by the foreground mesh, while the lighter part is the overlapped one.
Right: the cut-mesh associated with the background mesh shown in Figure 2
that contains cut-elements (in red).

1. the computation of the intersections between the unfitted meshes;

2. the generation of the cut-elements and cut-mesh;

3. the addition of the extended degrees of freedom according to the XFEM
philosophy;

4. the integration over the cut-elements and cut-faces.

3.1 Intersection between meshes

To identify the physical portions of the cut-entities it is necessary to compute
the intersection points between the background and foreground mesh. These
intersections will be used to reconstruct the cut-elements and the cut-faces on
the interface.

Referring to Figure 7, we show two configurations where the intersections
points between the background and interface meshes are represented: to the
left, we consider the case of an element with only one fluid physical element,
while to the right we consider the case of two fluid physical elements. The com-
putation of the intersections points may be very expensive from a computational
viewpoint, since it is not know a-priori which elements of the background mesh
are intersected, so a naive procedure may be to check all the elements of the
foreground mesh for each element of the background mesh. To avoid this and to
obtain an efficient algorithm, we rely on an Alternating Digital Tree (ADTree),
see [4, 14]. This data structure, given a bounding box of an entity of the fore-
ground mesh, allows to check if the bounding box intersects the elements of
background mesh and returns a list these elements. Once the list is obtained,
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Figure 7: The foreground mesh (in white) ad the physical part of the tetrahedron
(in blue). The resulting intersection points are highlighted (in yellow). Left:
one fluid physical element is generated. Right: two fluid physical elements are
generated.

we proceed to compute the intersection points. A similar strategy has been
already employed, for example, in [23].

At the end of this procedure, for each element of the background mesh that
is cut by the foreground one, we have a list of all the intersection points.

3.2 Generation of the cut-mesh

The intersection points calculated are stored to generate a sub-tetrehedralization
inside each element of the background mesh. The purpose of this tetrahedral-
ization is twofold: i) it will be used to integrate over the cut-elements and the
cut-faces, ii) it will be used to visualize the numerical solution. The first point
will be explained in detail in Section 3.4. Regarding the second one, the sub-
tetrehedralizations are employed to visualize the solution only on the cut-mesh
instead on the entire background mesh, by avoiding the visualization of the
solution on the non-physical portions of the elements.

The sub-tetrahedralization has to fulfill two requirements: i) we have to
force the intersection points to be vertices of the final tetrahedralization; ii) the
possible additional vertices introduced by the tetrahedralization has to lie inside
the element, otherwise the conformity between facing element will be lost. To
satisfy these requirements, for each element K, we proceed as follows:

1. a one-dimensional mesh for each edge of K is generated by using the in-
tersection points that lie on the edge as vertices, see Figure 8 (left-center);

2. a two-dimensional mesh for each face of K is generated by using the edges
computed at step 1 to define the boundary of the face, and by using the
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intersection points that lie of the face as vertices, see Figure 8 (center-
right);

3. a three-dimensional mesh is generated by using the faces computed at step
2 to define the boundary of the element, and by using the intersection
points that lie inside the volume of the element.

Steps 2 and 3 are carried out by Triangle [29] and TetGen [30], respectively. In
Figure 9, we report the sub-tetrahedralization for the cases presented in Figure 7.

→ →

Figure 8: Sub-triangulation of the face of the element in Figure 7. Left: face
of the background mesh (in red) and the foreground mesh (in white). Center:
generation of the one-dimensional meshes over the edges. Right: generation of
the two-dimensional mesh over the face. The intersection points are highlighted
in yellow.

Figure 9: Tetrahedralization of the element, with the edges of the sub-tetrahedra
highlighted in light blue. Left: element with one fluid physical element. Right:
element with two fluid physical elements.
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3.3 Extended degrees of freedom

The main goal of the tetrahedralization is the computation of the integrals over
the cut-entities. To this aim, it is first necessary to identify which degrees of
freedom (dofs) need to be selected when integrating an element of the background
mesh. To ease the presentation, in what follows we refer to the dofs associated
with conforming piecewise linear finite element.

The elements of the background mesh can be divided into three categories:

• elements that are non-overlapped by the foreground mesh, see Figure 10
(left). In this case, we select the dofs of the standard FEM and integration
proceeds as usual;

• elements that are partially-overlapped by the foreground mesh, see Fig-
ure 10 (center). In this case, we may have to consider additional dofs
depending on the number of physical elements as explained below;

• elements that are fully-overlapped by the foreground mesh, see Figure 10
(right). In this case, we do not have to consider any dof on the element
since the latter does not belong to the physical domain.

Figure 10: Possible scenarios of background elements (in red) with respect to
the foreground mesh (in grey). From left to right: the element is not overlapped,
the two elements are partially overlapped, the element is completely overlapped.

As shown in the previous section, the case of partially-overlapped element gen-
erates many possible configurations: an element cut into only one physical part
(see Figure 9, left), an element cut into two physical parts (see Figure 9, right),
and an element cut into more physical parts. The latter case can be treated
analogously to the case of two subparts, so that we discuss here only the first
two cases. In the case of only one fluid physical part, we just consider the stan-
dard dofs of the FEM, see Figure 11 (left). In the case of two fluid physical
elements, we have to double the finite element, i.e., the geometric entity and its
associated dofs, see Figure 11 (right). Hence, we will use a first set of dofs to
compute the integrals over one physical element, and the second set of dofs to
compute the integrals over the other physical element, see, e.g. [19]. As noticed
in Section 2, these additional dofs needs to be coupled with the surrounding ones

15



to achieve continuity of the solution. To do this, we impose a DG mortaring to
weakly impose the continuity of the solution.

We notice that a similar strategy to handle the FSI problem for unfitted
meshes in the case of thick structure has been studied in [8] as well. However, in
that paper the authors do not consider that a fluid element could be cut by the
solid into two physical parts, and thus they do not need to double the dofs. In
some sense our approach is similar to that proposed in [28] even if in this paper
the authors consider only a fluid problem, not a FSI one.

In the next section, we show how to perform the numerical integration in
such cases.
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Figure 11: The two main configurations that may appear in the case of partially-
overlapped elements. Left: case of one physical element (in blue), the foreground
mesh (in grey) and the dofs highlighted in green. Right: case of two physical
elements with the background element (in white) and the foreground mesh (in
grey). In this case, the set of dofs are doubled (in green and red) and each set
it is used to compute the solution only in one of the two physical element (in
blue).

3.4 Integration over cut-entities

The integration over the physical portions of the partially-overlapped elements,
that, in general, are complex polyhedra, requires to consider advanced numerical
integration techniques. Some of these techniques are presented, e.g., in [26, 25,
32, 35].

To avoid implementing new numerical quadrature formula and to reuse the
classical Gaussian quadrature rule available in a standard FEM implementa-
tion, we proceed instead as follows: by using the tetrahedralization generated
inside each partially-overlapped element, we compute the integral over each sub-
tetrahedron and then we sum up all the contributions.

By referring to the configurations shown in Figure 12:

16



• in the case of one physical part (left), we sum the integrals calculated on
each sub-tetrahedron of the polyhedron PK1 arisen after the tetrahedral-
ization of the latter by using the dofs defined on the entire element K;

• in the case of two physical parts (right), we sum the integrals calculated
on each sub-tetrahedron of PK1 by using the dofs indicated by i′, j′, k′, and
the same strategy is applied on each sub-tetrahedron of PK2 by using the
dofs indicated by i′′, j′′, k′′.

We point out that the same procedure is applied also when considering the
cut-faces for integrating the DG terms on the fluid-structure interface and on
the fluid-fluid interface (i.e. on Σ and F ih,phy, respectively, see Section 2).

This procedure is able to treat efficiently cases of high geometric complexity
and in particular the case of split elements.
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Figure 12: Computation of the integrals over the partially-overlapped elements.
Left: case of one physical part (in blue) with the dofs highlighted in green.
Right: case of two physical parts (in blue). The integral on each part uses a
different set of dofs, i′, j′, k′ (in green) for PK1 , i′′, j′′, k′′ (in red) for PK2 .

4 Numerical examples

In this Section, we present some numerical results aiming at assessing the effec-
tiveness of the proposed method. In Section 4.1, we consider a preliminary test
case on a three-dimensional (3D) cube where an homogeneous elliptic problem is
solved and the relative convergence of the method is verified, while in Section 4.2
we consider the same problem but with heterogeneous coefficients to prove the
reliability of the proposed method with respect to the standard Finite Element
Method (FEM). Then, in Section 4.3 we consider a linear steady FSI problem
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given by a thick plate immersed in a fluid, while in Section 4.4 the results of a
non-linear FSI problem in a time-dependent framework are reported.

The method presented in Section 2 and 3 have been implemented in the C++
finite element library LifeV (www.lifev.org).

4.1 Three-dimensional Poisson problem

In this preliminary test case, we consider the Poisson equation on a simple 3D
domain divided into two parts as reported in Figure 13 (left) and where we
impose the continuity of the solution at the interface Σ. Referring to Figure 13
(left), we have the following problem

−∆u = f in Ωf ∪ Ωs,

u = 0 on Γf ,

JuK = 0 on Σ,

J∇uK · n = 0 on Σ,

(7)

where Ωs = (0.25, 0.75)3m,Ωf = (0, 1)3m \Ω
s
,Σ ≡ ∂Ωs,Γf = ∂Ωf \Σ and f =

3π2 sin(πx) sin(πy) sin(πz). Notice that, accordingly to the notation of Section
2, for the sake of exposition we still name the two subdomains Ωf and Ωs. We
stress however that in this case there is no any fluid and structure subproblems.
At the interface Σ between the two domains, we impose the continuity of the
solution and of its normal derivative. Of course, this problem is equivalent to
the monolithic one where the Poisson equation is solved in Ωf ∪Ωs. The analytic
solution is

u (x) = sin(πx) sin(πy) sin(πz).
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Figure 13: Left: sketch of the domains: the solid domain (red, shaded) in the
middle of the full domain (blue). Right: plot of the error in L2 and H1 norm
with respect to h.
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# tetrahedra in T fh # tetrahedra in T sh have
1 3.7 · 104 5.1 · 103 0.053
2 7.5 · 104 1.0 · 104 0.042
3 1.4 · 105 2.1 · 104 0.034
4 2.4 · 105 3.9 · 104 0.028
5 4.9 · 105 8.9 · 104 0.021

Table 1: Meshes used for the convergence test. have is the average step size of
the corresponding meshes

We consider five pairs of meshes with increasing refinement and we compute
the error of the numerical solution with respect to the analytic one. In Table 1,
we report for each pair of meshes the number of tetrahedra of the mesh T fh that
covers the entire domain Ωf ∪Ωs, the number of tetrahedra of the mesh T sh that
covers the domain Ωs, and the average spatial size have. We point out that the
two meshes are completely arbitrary and non-conforming at the interface.

According to (6), the discrete formulation of the problem given by (7) reads:

find (ufh, u
s
h) ∈ Vh such that∑

i=f,s

∫
Ωi

∇uih∇vih −
∫

Σ
{{∇uh}}F · n JvhKF −

∫
Σ

JuhKF {{∇vh}}F · n

+
γΣ

hF

∫
Σ

JuhKF JvhKF + gh(ufh, v
f
h) +

∑
i=1,...,Nf

∑
F∈Fi

h,phy

{
−
∫
F

{{
∇ufh

}}
F
· n

r
vfh

z

F

}

+
∑

i=1,...,Nf

∑
F∈Fi

h,phy

{
−
∫
F

r
ufh

z

F

{{
∇vfh

}}
F
· n +

γvphy
hF

∫
F

r
ufh

z

F

r
vfh

z

F

}
=

∑
i=f,s

∫
Ωi

f ihv
i
h ∀(vfh , v

s
h) ∈ Vh,

where, referring to the notation introduced in Section 2, Vh = {vh ∈ L2(Ω
f
) :

vh ∈ C0(Ω0
h), vh|K ∈ P1, ∀K ∈ T ih for i = 0, . . . , Nf , vh|Γf = 0} × {vh ∈ C0(Ωs) :

vh|K ∈ P1, ∀K ∈ T sh }, with T ih , i = 0, . . . , Nf , defined in (2.2) and (2.2), γΣ > 0
and γvphy > 0 are penalty parameters and

gh(ufh, v
f
h) = γg

∑
i=1,...,Nf

∑
F∈Fi

h,Σ

hF

∫
F

r
∇ufh

z

F
· n

r
∇vfh

z

F
· n,

is the ghost penalty term with γg > 0. For the simulations, we choose γΣ =
γvphy = 103 and γg = 1.

In Figure 13 (right), we report the behavior of the L2 and H1 error with
respect to the mesh step size h. We see that the error is optimal for both the
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norms as in the standard finite element method. In Figure 14, we plot the
meshes and the solution in the case number 2 of Table 1 on a slice that cuts the
entire domain at z = 0.5m. This test case shows the reliability of the proposed
method to treat unfitted meshes without loss of the order of convergence when
considering cut elements and non-conforming interfaces.

Figure 14: Left: top view of the resulting mesh on a slice (z = 0.5m) that

intersects the meshes T fh and T sh labelled as number 2 in Table 1. Right: the
solution on the same slice. The interface is highlighted in red.

4.2 Poisson problem with heterogeneous coefficients

In this test case, we consider the Poisson problem with jumping diffusion param-
eters across Σ and compare our approach with the classical FEM. The problem
we consider is: 

−∇ · (η (x)∇u) = f in Ωf ∪ Ωs,

u = 0 on Γf ,

JuK = 0 on Σ,

Jη (x)∇uK · n = 0 on Σ,

where f = 3π2 sin(πx) sin(πy) sin(πz), and η (x) is piecewise constant in each
subdomain:

η (x) =

ηf =
1

2
in Ωf ,

ηs = 3 in Ωs.

At the interface Σ we impose the continuity of the solution and of its co-normal
derivative. Again, this problem coincides with the monolithic one. In this case,
the solution presents a discontinuity of its derivative along the normal direction
at the interface.
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To prove the effectiveness of the XFEM/DG approach with respect to the
classical FEM, we consider the following frameworks:

• in the XFEM/DG approach we consider two unfitted meshes, T fh for solv-
ing the problem on Ωf and T sh on Ωs, so that the boundary of Ωs coincide
with the interface Σ;

• in the classical FEM approach a single mesh T FEMh is used to solve the
problem on the entire domain.

We use the pair of meshes number 2 of Table 1 and we choose T FEMh ≡ T fh ,
so that, for generality purposes, the FEM mesh is not fitting the interface Σ.
Finally, we choose γΣ = γvphy = 103 and γg = 1.

In Figure 15, we plot a comparison of the solutions with the two approaches
along the plane z = 0.5m. The value of the solution is reported both as the
height of the plot and by means of colours. In the XFEM/DG case, it is clearly
visible the discontinuity of the derivative of the solution along the interface Σ,
while the classical FEM approach is not able to capture such a discontinuity as
it is evident from the smoother solution obtained in this case.

4.3 Steady and linear FSI problem

In the following test case, we consider the steady-state solution of a viscous fluid
that interacts with a linear elastic thick solid in the small deformations regime.
In particular, we consider the Stokes equation for the fluid and the Hooke law
for the solid. In this case, the velocity continuity condition at the interface Σ is
u = 0, and the stresses continuity condition reads Tfnf = −Tsns. We obtain
the following problem:

−∇ ·
(
−pI + 2µfD (u)

)
= 0 in Ωf ,

∇ · u = 0 in Ωf ,

−∇ · (λs (∇ · d) I + 2µsD (d)) = 0 in Ωs,

u = 0 on Σ,

Tf (u, p)nf = −Ts(d)ns on Σ,

(8a)

(8b)

(8c)

(8d)

(8e)

where µf = 0.5Pa · s, λs = 3Pa, µs = 3Pa. We consider the do-
main Ω = (0, 1)3m, Ωs = (0.15, 0.85)m × (0.4, 0.6)m × (0.31, 0.34)m and
Ωf = Ω \ Ω

s
, see Figure 16. Regarding the boundary conditions, we impose

Tfn = (0, 0,−0.002)Pa on Γin, Tfn = 0 on Γout and u = 0 on the remaining
fluid boundary, where n = nf = −ns. On the solid we impose d = 0 at Γswall =
{0.15}m × (0.4, 0.6)m × (0.31, 0.34)m ∪ {0.85}m × (0.4, 0.6)m × (0.31, 0.34)m,
so that it is fixed on the two sides. We impose the interface conditions (8d)
and (8e) on Σ = ∂Ωs \ Γswall. We point out that, accordingly with the proposed
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Figure 15: Plot of the numerical solution (top) and a detail (bottom) on a slice
at z = 0.5m that crosses the domain with the XFEM/DG approach (left) and
the classical FEM approach (right).

Γin

Γout

Ωf ↙
l1

Ωs
Γswall
↙Γswall

→

z

x

y

Figure 16: Sketch of the domain Ω with the domain Ωs highlighted in grey.
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method, the conditions on the interface Σ are imposed weakly by means of the
DG formulation.

For the numerical simulation, we employ a fluid mesh T fh with 7.5 · 104

tetrahedra and a solid mesh T sh composed by 4.0 · 104 tetrahedra. We choose
γΣ = 102, γvphy = 103, γp = 10−3, γpcom = 1 and γg = 10. The weight α used for
the mean operator on Σ, see eq. (4), is set to 0.5.

In Figure 17, we report the fluid velocity field and the structure displacement
obtained by the XFEM/DG method. In Figure 18 (top), we plot the fluid
pressure field on the plane y = 0.5m that cuts the structure domain into two
parts. From these results, we observe the different value of pressure upstream
and downstream the structure. A quantitative representation of the pressure is
shown in Figure 18 (bottom-left) along the line l1 : x = 0.5m, y = 0.5m, 0 <
z < 1m, see Figure 16. We can observe the jump of the pressure field across the
structure. In Figure 18 (bottom-right), we plot the velocity magnitude profile
on the same line. We observe that at the interface Σ, the velocity condition is
fulfilled.

Figure 17: Plot of the velocity field (in m/s) of the fluid and the displacement
magnitude (in m) of the structure.

Finally, in Figure 19, we show a detail of the pressure field on a slice at
x = 0.5m. We see that, though some fluid elements are divided by the structure
into two unconnected portions, it is possible to approximate a discontinuous
solution within the same geometrical element.

4.4 Time-dependent non-linear FSI problem

We consider a time-dependent FSI problem in the small deformations regime
given by the coupling of the Navier-Stokes equations for the fluid and the linear
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Figure 18: Top: plot of the pressure field (in Pa) on a slice located at y = 0.5m.
The outline of the structure is represented in black. Bottom: plot in the direction
of the flow (line l1) of the pressure (left) and velocity magnitude (in m/s) (right).
The dashed lines at z = {0.31, 0.34}m represent the extremities of the structure.

Figure 19: Detail of the pressure field (in Pa) near the structure. It is possible to
identify some tetrahedra that present a discontinuous solution within the same
element, as the one highlighted in yellow.
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elastic Hooke law for the structure:

ρf∂tu + ρfu · ∇u−∇ ·Tf (u, p) = 0 in Ωf × (0, T ],

∇ · u = 0 in Ωf × (0, T ],

ρs∂ttd−∇ ·Ts(d) = 0 in Ωs × (0, T ],

u = ḋ on Σ× (0, T ],

Tf (u, p)nf = −Ts(d)ns on Σ× (0, T ].

We employ the same computational domains considered in the test case reported
in Section 4.3, see Figure 16, and where T = 48s. We impose a periodic sine
function at the inlet, i.e., u = (0, 0,−0.0025 sin(π8 t))m/s on Γin, so that we
reproduce three periods, Tfn = 0 on the outlet Γout and u = 0 on the remaining
walls of the fluid boundary. As in the steady-state case, the solid is kept fixed
on two of its extremities, i.e., d = 0 at Γswall. We impose the interface conditions
on Σ, defined in the same way as in Section 4.3. As initial conditions, we set
u(x, 0) = 0, d(x, 0) = 0 and ḋ(x, 0) = 0. We also use the following values for
the parameters: ρf = ρs = 1Kg/m3, µf = 1Pa · s, µs = λs = 1Pa.

We employ the discretization described in equation (6). For the time dis-
cretization, we use the first order BDF scheme for both the fluid and the solid
and a first order linear extrapolation to treat the non-linearity of the convective
term.

For the numerical simulation, we employ a fluid mesh T fh composed by 1.4·105

tetrahedra and a solid mesh T sh composed by 4.0 · 104 tetrahedra. The time step
∆t is 0.5s. We choose γΣ = 1, γvphy = 103, γp = 10−2, γpcom = 10 and γg = 1.
The weight α used for the mean operator on Σ, see eq. (4), is set to 1, so
that the mortaring is taken only from the fluid side. This choice reduces the
ill-conditioning of the linear system.

In Figure 20, we show the displacement of the structure at different time steps
during the last cycle. In Figure 21, we plot the fluid velocity and pressure fields
and the displacement magnitude of the structure at two time steps, t = 36s
and t = 44s. At t = 36s, the fluid velocity goes downward the domain and
reaches its maximum value. Again, the proposed method is able to capture the
discontinuous nature of the pressure. In particular, we observe that the pressure
is higher in the upper part of the domain. Viceversa, at t = 44s, the fluid
velocity goes upward, and the pressure is higher in the lower part of the domain.

5 Conclusions

In this paper we have considered an unfitted Extended Finite Ele-
ments/Discontinuous Galerkin approach for the numerical solution of the fluid-
structure interaction problem in the case of a thick structure. At the best of
our knowledge, this is the first time that this methodology has been applied to
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Figure 20: Post-processing of the displacement (inm) of the structure at different
time steps during the last cycle. From top to bottom: t = 32s, t = 36s, t = 40s,
t = 44s and t = 48s.

the case of a thick solid. To assess the effectiveness of the proposed method, we
report several 3D test cases.

The main limitation of the work relies on the small displacement hypothesis.
This simplifies the approach since allows one to consider a fix topology of the
cut entities. The extension to the case of general displacements is undergoing
and it requires the efficient handling of a variable number of dofs between time
steps.
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Figure 21: Numerical solution at different time steps during the last cycle: t =
36s (top), t = 44s (bottom). Left: velocity field (in m/s) of the fluid and
displacement (in m) of the structure. Right: pressure field (in Pa) along the
plane y = 0.5m.
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