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Abstract

A framework is developed for inference concerning the covariance operator

of a functional random process, where the covariance operator itself is an object

of interest for the statistical analysis. Distances for comparing positive definite

covariance matrices are either extended or shown to be inapplicable for functional

data. In particular, an infinite dimensional analogue of the Procrustes size and

shape distance is developed. The convergence of the finite dimensional approx-

imations to the infinite dimensional distance metrics is also shown. To perform

inference, a Fréchet estimator for the average covariance function is introduced,

and a permutation procedure to test the equality of the covariance operator be-

tween two groups is then considered.

The proposed techniques are applied to two problems where inference con-

cerning the covariance is of interest. Firstly, in data arising from a study into

cerebral aneurysms, it is of interest to determine whether two groups of data can

be combined when comparing with a third group. For this to be done, it is neces-

sary to assess whether the covariance structures of the two groups are the same or

different. Secondly, in a philological study of cross-linguistic dependence, the use

of covariance operators has been suggested as a way to incorporate quantitative

phonetic information. It is shown that distances between languages derived from
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phonetic covariance functions can provide insight into relationships between the

Romance languages.

1 Introduction

Data sets are increasingly becoming available that are best described as being func-

tional. In recent years, research in this field has provided many statistical techniques to

deal with these kinds of data (Ramsay and Silverman, 2005; Ferraty and Vieu, 2006).

However, this work has mainly focused on mean functions and using associated bases

to provide insight into these means, and little attention has been paid to the explicit

analysis of the covariance operator. In many applied problems, the covariance opera-

tor is either directly or indirectly intrinsically interesting in its own right. This paper

is primarily focused on providing inference for the covariance operator of a functional

random process.

While little studied, there is some recent work that has examined testing the equality

of covariance structures from two groups of functional curves by defining a test statis-

tic through the Karhunen-Loéve expansions of the two covariance structures (Panateros

et al., 2010; Fremdt et al., 2012). The techniques we propose here will take a some-

what different view, in that, the underlying objects of interest in our studies are the

covariance operators themselves, not necessarily the underlying curves, and as such

we will approach the problem through the definition of functional distance metrics for

covariance operators. While it will be seen that some finite dimensional distances for

positive definite covariance matrices (Dryden et al., 2009) naturally lend themselves to

functional analogues, others do not have natural extensions. However, it will be shown

that the extended metrics can be intuitively understood as providing methods for testing

different properties of the underlying covariance structure.

Analysis of the covariance operator arises in many applied contexts, two of which

will be detailed in Section 5. Firstly, in data associated with brain aneurysms, to gain

power, several patient populations are routinely considered similar enough to treat as

one population. We will explore their covariance structures, and assess through our

distance based permutation tests whether they can indeed be so combined. Secondly, in

the linguistic analysis of human speech, the overall mean structure of the data produced

is often not of interest, but rather the variations that can be found within the language.

Here we will show that different languages can be compared and even predicted through

functional distances, allowing, for the first time, a quantitative analysis of comparative

philological relations based on speech recordings rather than discrete textual analysis.

2 Some remarks on operators on L
2(Ω)

In this section we focus on properties and definitions that will be useful below. More

details and proofs can be found, e.g., in Zhu (2007).

Definition 2.1 Let B1 be the closed ball of unitary radius in L2(Ω), consisting of all

f ∈ L2(Ω) such that ||f ||L2(Ω) ≤ 1, where L2(Ω) is the Hilbert space of square-
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integrable functions on Ω ⊆ R. A bounded linear operator T : L2(Ω) → L2(Ω) is

compact if T (B1) is compact in the norm of L2(Ω). A bounded linear operator T is

self-adjoint if T = T ∗

An important property of a compact operator on L2(Ω) is the existence of a canoni-

cal decomposition. This decomposition implies that two orthonormal bases {uk}, {vk}
for L2(Ω) exist so that

Tf =
∑

k

σk〈f, vk〉uk,

or, equivalently,

Tvk = σkuk,

where 〈., .〉 indicates the scalar product in L2(Ω). The sequence {σk} ∈ R is called

the sequence of singular values for T . If the operator is self-adjoint, there exists a basis

{vk} such that

Tf =
∑

k

λk〈f, vk〉vk,

or, equivalently,

Tvk = λkvk

and {λk} ∈ R is called the sequence of eigenvalues for T .

A compact operator T is said to be trace class if

trace(T ) :=
∑

k

〈Tek, ek〉 < +∞

for an orthonormal basis {ek}. It can be seen that the definition is independent of the

choice of the basis. We indicate with S(L2(Ω)) the space of the trace class operators

on L2(Ω).
A compact operator T is said to be Hilbert-Schmidt if its Hilbert-Schmidt norm is

bounded, i.e.

||T ||2HS = trace(T ∗T ) < +∞.

This is a generalisation of the Frobenius norm for finite-dimensional matrices.

These properties are crucial in the context of the statistical analysis of functional

data. Indeed, let f be a random function which takes values in L2(Ω), Ω ⊆ R, such that

E[||f ||2
L2(Ω)] < +∞. The covariance operator is

Cfg(t) =

∫

Ω
cf (s, t)g(s)ds,

for g ∈ L2(Ω) and

cf (s, t) = cov(f(s), f(t)) = E [(f(s)− E [f(s)]) (f(t)− E [f(t)])] .

Then, Cf is a trace class, self-adjoint, compact operator on L2(Ω) with non negative

eigenvalues (see, e.g., Bosq, 2000, Section 1.5).

Finally, we recall the definition of unitary operator on L2(Ω), which will be needed

for the definition of Procrustes distance in the functional setting.
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Definition 2.2 A bounded linear operator R on L2(Ω) is said to be unitary if

||Rf ||L2(Ω) = ||f ||L2(Ω) ∀f ∈ L2(Ω).

We indicate with O(L2(Ω)) the space of unitary operators on L2(Ω).
We take now advantage of these tools from functional analysis to introduce possible

distances that can be used to measure the difference between two covariance operators.

3 Distances between covariance operators

In this section we propose several distances that can be used to compare the covariance

operators of two random functions taking values in L2(Ω). These are a generalisation

to the functional setting of metrics that have been proved useful for the case of positive

semi-definite matrices (Dryden et al., 2009). However, not all matrix based distances

are extendable in the functional case.

Two popular metrics for finite dimensional covariance matrix analysis are the log

Euclidean metric and the affine invariant Riemannian metric. While both would appear

to be natural candidates for generalisation to covariance operators, in both cases, this

is not straightforward due to the natural trace class structure of the covariance opera-

tor. The trace class property implies that the (descending) ordered eigenvalues λi are

summable, i.e. ∑

i

λi < ∞ ⇒ λi → 0 as i → ∞

The log Euclidean distance for two positive definite matrices, M1 and M2, is defined as

dlog(M1,M2) = || log(M1)− log(M2)||.

with the log() indicating the matrix logarithm. This is not well defined for trace class

operators as this quantity tends to infinity. The affine invariant Riemannian metric for

positive definite matrices is defined as

dRiem(M1,M2) = || log(M
− 1

2

1 M2M
− 1

2

1 )||

which requires consideration of the inverse. For a compact operator, even when it is

positive definite, the inverse is not well defined (see, e.g., Zhu, 2007, Section 1.3).

Even though in applications only finite dimensional representations are available,

these are usually not full rank (i.e. they have zero eigenvalues), meaning that these

metrics have to be computed on subspaces which should be carefully chosen to avoid

instability in the computation of the distance (coming from small eigenvalues) while

taking into account all the significant information. Moreover, since the distance be-

tween infinite dimensional operators is not well defined, it is not clear how to interpret

the asymptotic behaviour of the distance computed between finite dimensional repre-

sentations. This could be an issue when the dimensionality of the problem is high and

different choices are possible for the reduced space.

We thus resort to some alternative distances which are well defined for self-adjoint

trace class operators with nonnegative eigenvalues.
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3.1 Distance between kernels in L
2(Ω× Ω)

Distances between covariance operators can be naturally defined using the distance

between their kernels in L2(Ω× Ω). Let S1 and S2 be two covariance operators and

Sif(t) =

∫

Ω
si(s, t)f(s)ds, ∀ f ∈ L2(Ω).

Then, we can define the distance

dL(S1, S2) = ||s1 − s2||L2(Ω×Ω) =

√∫

Ω

∫

Ω
(s1(x, y)− s2(x, y))2dxdy.

This distance is correctly defined, since it inherits all the properties of the distance in the

Hilbert space L2(Ω×Ω). However, it does not exploit in any way the particular structure

of covariance operators and therefore it need not to be useful for highlighting significant

differences between covariance structures. In addition, as will be seen later, it is not

constrained to always provide estimates within the space of covariance operators.

3.2 Spectral distance

A second possibility is to regard the covariance operator as an element of L(L2(Ω)), the

space of the linear bounded operators on L2(Ω). It follows that the distance between S1

and S2 can be defined as the operator norm of the difference. We recall that the norm

of a self-adjoint bounded linear operator on L2(Ω) is defined as

||T ||L(L2(Ω)) = sup
v∈L2(Ω)

|〈Tv, v〉|

||v||2
L2(Ω)

and for a covariance operator it coincides with the absolute value of the first (i.e. largest)

eigenvalue. Thus,

dL(S1, S2) = ||S1 − S2||L(L2(Ω)) = |λ̃1|

where λ̃1 is the first eigenvalue of the operator S1−S2. The distance dL(., .) generalises

the matrix spectral norm which is often used in the finite dimensional case (see, e.g., El

Karoui, 2008). This distance takes into account the spectral structure of the covariance

operators, but it appears restrictive in that it focuses only on the behaviour on the first

mode of variation.

3.3 Square root operator distance

Since covariance operators are trace class, we can generalise the square root matrix

distance (see Dryden et al., 2009). Indeed, S being a self-adjoint trace class operator,

there exists a Hilbert-Schmidt self adjoint operator (S)
1

2 defined as

(S)
1

2 f =
∑

k

λ
1

2

k 〈f, vk〉vk, (1)
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where λk are eigenvalues and vk eigenfunctions of S. We can therefore define the

square root distance between two covariance operators S1 and S2 as

dR(S1, S2) = ||(S1)
1

2 − (S2)
1

2 ||HS .

Inspiration for this kind of distance comes from the log-Euclidean distance for pos-

itive definite matrices. There, the logarithmic transformation allows to map the non

Euclidean space in a linear space. As mentioned above, a logarithmic map for covari-

ance operators is not available. Thus, we choose a different transformation, namely, the

square root transformation. This has been shown to behave in a similar way in the finite

dimensional setting (see Dryden et al., 2009) but it is also well defined for trace class

operators.

Any power greater than 1/2 would be a possible candidate distance, but for gen-

eral trace class operators, the square root operator is the smallest power that can be

defined while still ensuring finite distances, meaning that it is the closest available to

the log-Euclidean distance. In addition, it can be interpreted as a distance which takes

into account the full eigenstructure of the covariance operator, both eigenfunctions and

eigenvalues.

3.4 Procrustes size-and-shapes distance

The square root operator distance looks at the distance between the square root opera-

tors (S1)
1

2 and (S2)
1

2 in the space of Hilbert-Schmidt operators. However, this is only

a particular choice of a broad family of distances, which are based on the mapping of

the two operators S1 and S2 from the space of covariance operators to the space of

Hilbert-Schmidt operators. We can consider in general a transformation Si → Li, so

that Si = LiL
∗
i and define the distance as the Hilbert-Schmidt norm of L1 − L2. Con-

sidering this more general framework, it is easy to see that any of this transformation is

defined up to a unitary operators R:

(LiR)(LiR)∗ = LiRR∗L∗
i = LiL

∗
i = Si.

To avoid the arbitrariness of the transformation, it is meaningful to use a Procrustes

approach which looks for the unitary operator R which best matches the two operators

L1 and L2, however they are defined.

In Dryden et al. (2009), a Procrustes size-and-shape distance is proposed to compare

two positive definite matrices. Our aim is to generalise this distance to the case of

covariance operators on L2(Ω). Let S1 and S2 be two covariance operators on L2. We

define the square of the Procrustes distance between S1 and S2 as

dP (S1, S2)
2 = inf

R∈O(L2(Ω))
||L1−L2R||2HS = inf

R∈O(L2(Ω))
trace((L1−L2R)∗(L1−L2R)),

where ||.||HS indicates the Hilbert-Schmidt norm on L2(Ω) and Li are such that Si =
LiL

∗
i for i = 1, 2.
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As mentioned above, the decomposition Si = LiL
∗
i can be seen as a general form of

transformation, mapping Si to a space where a linear metric is appropriate. In particular,

a good choice could be the square root transformation.

Proposition 3.1 Let σk be the singular values of the compact operator L∗
2L1. Then

dP (S1, S2)
2 = ||L1||

2
HS + ||L2||

2
HS − 2

+∞∑

k=1

σk

Proof. Note that

dP (S1, S2)
2 = inf

R∈O(L2(Ω))
trace((L1 − L2R)∗(L1 − L2R))

= inf
R∈O(L2(Ω))

{trace(L∗
1L1) + trace(L∗

2L2)− 2trace(R∗L∗
2L1)}

= ||L1||
2
HS + ||L2||

2
HS − 2 sup

R∈O(L2(Ω))

trace(R∗L∗
2L1).

We therefore look for the unitary operator R which maximises trace(R∗L∗
2L1). Exploit-

ing the definition of the trace operator and the singular value decomposition for the compact

operator L∗
2L1 (which is trace class - see Bosq (2000, Section 1.5)),

L∗
2L1vk = uk for k = 1, . . . ,+∞,

we obtain

trace(R∗L∗
2L1) =

+∞∑

k=1

〈R∗L∗
2L1ek, ek〉 =

+∞∑

k=1

〈R∗L∗
2L1vk, vk〉 =

=

+∞∑

k=1

σk〈R
∗uk, vk〉 ≤

+∞∑

k=1

σk||R
∗uk||L2(Ω)||vk||L2(Ω) =

+∞∑

k=1

σk||uk||L2(Ω)||vk||L2(Ω) =

+∞∑

k=1

σk.

Thus, the maximum is reached for the operator R̃ such that

R̃∗uk = vk ∀k = 1, . . . ,+∞,

or, equivalently,

R̃vk = uk ∀k = 1, . . . ,+∞.

Substituting this optimal transformation in the definition of the distance,

dP (S1, S2)
2 = ||L1||

2
HS + ||L2||

2
HS − 2trace(R̃∗L∗

2L1)

= ||L1||
2
HS + ||L2||

2
HS − 2

+∞∑

k=1

〈R̃∗L∗
2L1ek, ek〉

= ||L1||
2
HS + ||L2||

2
HS − 2

+∞∑

k=1

〈R̃∗L∗
2L1vk, vk〉

= ||L1||
2
HS + ||L2||

2
HS − 2

+∞∑

k=1

σk 〈R̃
∗uk, vk〉︸ ︷︷ ︸
=1

. �
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The Procrustes distance takes into account the arbitrariness in the definition of the

map Si → Li. It is worth noticing that the unitary transformation allows the operator

Li to become non self-adjoint. Thus, this extends the analysis in the Hilbert-Schmidt

space to go beyond symmetric operators applied to a function inducing covariances to

explanations that include operators such triangular operators with interpretations such

as causal flow directions in time.

3.5 Finite dimensional approximation

In practical applications, we observe only a finite dimensional representation of the

operators of interest. Therefore, ideally we would require square root distance and

Procrustes size-and-shape distance between two finite dimensional representations to

be a good approximation of the distance between the infinite dimensional operators.

We show this fact for the more general case of Procrustes distance, with the square root

distance being a special case where Li = (Si)
1

2 and R is constrained to be the identity

operator.

Let {ek}
+∞
k=1 be a basis for L2(Ω), Vp = span{e1, . . . , ep} and Sp

i be the restriction

of Si on Vp, i.e.

Sp
i g =

p∑

k=1

〈g, ek〉Siek ∀ g ∈ Vp.

In practical situations, Vp will be the subspace which contains the finite dimensional

representation of the functional data. Let us assume that, for p → +∞, Lp
i → Li

with respect to the Hilbert-Schmidt norm, where Sp
i = Lp

iL
p∗
i . This is not restrictive,

since we can choose for instance Li = (Si)
1

2 , but every choice which guarantees this

convergence is suitable. Then, the distance between the two restricted operators is

dP (S
p
1 , S

p
2)

2 = ||Lp
1||

2
HS + ||Lp

2||
2
HS − 2

p∑

k=1

〈R̃pLp∗
2 Lp

1ek, ek〉.

Since Vp ⊂ L2(Ω), we can choose a subset vp1 , . . . , v
p
p , vpk ∈ {vk}

+∞
k=1 which is an

orthonormal basis for Vp. However, they need not be the first p elements of the basis

coming from the canonical decomposition of L∗
2L1. This happens because the space Vp

depends only on the original basis {ek}
p
k=1 and it does not depend on the covariance

structure of the data. Since the subspaces Vp are nested, we can define a permutation

s : N → N, so that {vs(1), . . . , vs(p)} provides a basis for Vp, for every p. Since the

trace of an operator does not depend on the choice of the basis, we obtain

dP (S
p
1 , S

p
2)

2 = ||Lp
1||

2
HS + ||Lp

2||
2
HS − 2

p∑

k=1

〈R̃pLp∗
2 Lp

1vs(k), vs(k)〉

= ||Lp
1||

2
HS + ||Lp

2||
2
HS − 2

p∑

k=1

σs(k),

8



where {σs(k)}
p
k=1 are singular values for L∗

2L1. This comes from the fact that the

action of the operator Lp∗
2 Lp

1 should be equal to the action of the operator L∗
2L1 on

every element belonging to the subspace Vp and vs(k) ∈ Vp for k = 1, . . . , p. Finally,

as L∗
2L1 is trace class, the series of its singular values is absolutely convergent and

therefore also unconditionally convergent (convergent under any permutation). Thus,

lim
p→+∞

dP (S
p
1 , S

p
2)

2 = ||L1||
2
HS + ||L2||

2
HS − 2

+∞∑

k=1

σs(k)

= ||L1||
2
HS + ||L2||

2
HS − 2

+∞∑

k=1

σk = dP (S1, S2)
2.

4 Statistical inference for covariance operators

In this section we illustrate two inferential problems that can be addressed using the

distances introduced in Section 3. First, we consider the estimation of a common co-

variance operator. Then, we propose a procedure to test the equality of the covariance

operator between two groups.

4.1 Fréchet averaging with Square root and Procrustes distances

In many applications averaging among covariance operators of different groups is needed.

Let S1, . . . , Sg be the covariance operators, sampled from the same distribution on the

space of covariance operators. Then, a possible estimator of the mean covariance oper-

ator Σ is

Σ̂ =
1

n1 + · · ·+ ng
(n1S1 + · · ·+ ngSg).

where weights ni, i = 1, . . . , g are the numbers of observations from which the co-

variance operator Si has been obtained. This formula arises from the minimisation of

square Euclidean deviations, weighted with the number of observations. If we choose

a different distance to compare covariance operators, it is more coherent to average

covariance operators with respect to the chosen distance.

The Fréchet mean of a random element S, with probability distribution µ on the

space of covariance operators, can be defined as Σ = arginfP
∫
d(S, P )2µ(dS). If

a sample Si, i = 1, . . . , g from µ is available, a least square estimator for Σ can be

defined using the weighted sample Fréchet mean:

Σ̂ = arg inf
S

g∑

i=1

nid(S, Si)
2,

The actual computation of the sample Fréchet mean Σ̂ depends on the choice of the

distance d(., .). In general, it requires the solution of a high dimensional minimisa-

tion problem but some distances admit an analytic solution while for others efficient
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minimisation algorithms are available. Note that Σ̂ may not be unique for positively

curved spaces, although it is unique for suitably concentrated data (see Kendall, 1990;

Le, 2001).

Proposition 4.1 For the square root distance dS ,

Σ̂ = argmin
S

g∑

i=1

nidS(S, Si)
2 = (

1

G

g∑

i=1

ni(Si)
1

2 )2. (2)

where G = n1 + · · ·+ ng.

Proof. We prove that in general

argmin
L

g∑

i=1

ni||L− Li||
2
HS =

1

G

g∑

i=1

niLi,

which gives the desired result for the particular case of Li = (Si)
1

2 and L = (S)
1

2 . We have

argmin
L

g∑

i=1

ni||L− Li||
2
HS = argmin

L

g∑

i=1

nitrace
(
(L− Li)

∗(L− Li)
)

= argmin
L

g∑

i=1

ni{||L||
2
HS + ||Li||

2
HS − 2trace(L∗Li)}

= argmin
L

g∑

i=1

ni{||L||
2
HS − 2trace(L∗Li)}

= argmin
L

[
G||L||2HS − 2trace

(
L∗

g∑

i=1

niLi

)]
,

exploiting the linearity of the trace operator. It can be noticed that the second term is a scalar

product in the operator space and therefore it is minimum when L is proportional to
∑g

i=1 niLi.

We thus obtain a minimisation problem in α = ||L||HS :

argmin
L

G||L||2HS − 2trace
(
L∗

g∑

i=1

niLi

)

= argmin
α

Gα2 − 2trace
( α

||
∑g

i=1 niLi||HS

( g∑

i=1

niLi

)∗( g∑

i=1

niLi

))

= argmin
α

Gα2 − 2
α

||
∑g

i=1 niLi||HS
trace

(( g∑

i=1

niLi

)∗( g∑

i=1

niLi

))

︸ ︷︷ ︸
=||

∑g
i=1

niLi||2HS

= argmin
α

Gα2 − 2α||

g∑

i=1

niLi||HS

and the minimum is reached for α = 1
G
||
∑g

i=1 niLi||HS . Therefore

L =
α

||
∑g

i=1 niLi||HS

g∑

i=1

niLi =
1

G

g∑

i=1

niLi. �
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For the Procrustes size-and-shape distance an analytic solution is not available.

However, the Procrustes mean can be obtained by an adaptation of the algorithm pro-

posed in Gower (1975). It is an iterative method that alternates a registration step and

an averaging step.

1.Initialization The algorithm is initialized with Σ̂(0) = L(0)L(0)∗, where L(0) =
1
G

∑g
i=1 niLi, Li so that Si = LiL

∗
i and G = n1 + · · ·+ ng.

2.Registration step For all the groups i = 1, . . . , g, L
(k)
i = L

(k−1)
i Ri, where Ri is

the unitary operator which minimises the Hilbert Schmidt norm of L(k−1) −

L
(k−1)
i Ri.

3.Averaging step The new Procrustes mean is computed: Σ̂(k) = L(k)L(k)∗, where

L(k) = 1
G

∑g
i=1 niL

(k)
i , since this minimises

∑g
i=1 ni||L−L

(k)
i ||2HS as shown in

the proof of Proposition 4.1.

Steps 2 and 3 are iterated until convergence, i.e. when the Hilbert-Schmidt norm of

the difference between L(k) and L(k−1) is below a chosen tolerance. In practice, the

algorithm will give a local minimum, often called Karcher mean (Karcher, 1977), in

few iterations, if it is initialised with the estimate provided by (2).

The algorithm above is adapted from one of a number of variants of the Procrustes

algorithm, all of which have been shown in the finite dimensional setting to have similar

convergence properties (see Groisser, 2005). It is conjectured that analogous conver-

gence properties are also true in the infinite dimensional setting (in particular that the

finite dimensional algorithm converges to the correct infinite dimensional limit), but the

geometric arguments using in the finite dimensional proof by Groisser (2005) are not

immediately available for the infinite dimensional setting and we leave this for future

work.

We also compared our version of the algorithm with the one proposed by Dryden

and Mardia (1998), where each operator Li is aligned to the average obtained from

all the other operators, namely 1
G−ni

∑g
j 6=i njL

(k)
j . However, this algorithm, in the

examples below, provided the same result as the one above, while also having very

similar convergence speed and computational burden.

4.2 A permutation test for two - sample comparison of the covariance

structure

In this section we show an example of how the proposed distances can be used in an

inferential procedure. We would like to use the distance between two sample covari-

ance operators to carry out inference on the difference between the true covariance

operators. However, the complicated expression of the available distances makes it dif-

ficult to elicit their distributions, even when random curves are generated from a known

parametric model. Thus, we propose to resort to a non parametric approach, namely

permutation tests.
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Permutation tests are non parametric tests which rely on the fact that, if there is

no difference among experimental groups, the labelling of the observations is com-

pletely arbitrary. Therefore, the null hypothesis that the labels are arbitrary is tested by

comparing the test statistic with its permutation distribution, i.e. the value of the test

statistics for all possible permutations of labels. In practice, only a subset of permu-

tations, chosen at random, is used to assess the distribution. A sufficient condition to

apply this permutation procedure is exchangeability: under the null hypothesis, curves

can be assigned indifferently to any group.

Let us consider two samples of random curves. Curves in the first sample f1
1 (t), . . . , f

1
n1
(t) ∈

L2(Ω) are realisations of a random process with mean µ(t) and covariance operator Σ1.

Curves in the second sample f2
1 (t), . . . , f

2
n2
(t) ∈ L2(Ω) are realisations of a random

process with mean µ(t) and covariance operator Σ2. We would like to test the hypoth-

esis

H0 : Σ1 = Σ2 vs H1 : Σ1 6= Σ2.

We reformulate the test using distances between covariance operators,

H0 : d(Σ1,Σ2) = 0 vs H1 : d(Σ1,Σ2) 6= 0.

Let S1 and S2 be the sample covariance operators of the two groups. We use d(S1, S2)
as a test statistic, since large values of d(S1, S2) are evidence against the null hypothe-

sis.

For this formulation of the permutation test, equality of mean functions is essen-

tial. However, if the two groups have different (and unknown) means, an approximated

permutation test can be performed, having first centred the curves using their sample

means. This is a common strategy for testing scaling parameters, such as variance,

for univariate real random variables (see, e.g., Good, 2005, Section 3.7.2). The test

obtained is approximate in the sense that the nominal level of the test is exact only

asymptotically for n1, n2 → +∞. This happens because the observations are only

asymptotically exchangeable, due to the fact that µ̂i(t) =
1
ni

∑ni

k=1 f
i
k(t) → µi(t) and

therefore centred observations asymptotically do not depend on the original labels.

Now we have all the ingredients to set up a permutation test. We consider M ran-

dom permutation of the labels {1, 2} on the sample curves and we compute d(S
(m)
1 , S

(m)
2 ),

m = 1, . . . ,M , where S
(m)
i is the sample covariance operator for the group indexed

with label i in permutation m. The p-value of the test is the proportion of d(S
(m)
1 , S

(m)
2 )

which are greater than or equal to d(S1, S2).

4.3 Some simulations

We now consider simulation studies to explore the behaviour of the different distances

with various modifications of the covariance structure. All the curves are simulated

on [0, 1] with a Gaussian process with mean sin(x) and covariance function Σ1 and

Σ2 respectively. Observations are generated on a grid of p = 32 points with six dif-

ferent sample sizes N = 5, 10, 20, 30, 40, 50. Each permutation test is performed with

M = 1000 and the test is repeated for 200 samples, so that we can evaluate the power of

12



the test for different values of sample size and different degrees of violation of the null

hypothesis. Fig. 1 shows the covariance function Σ1 for the first group in all the simu-

lations (where this covariance was obtained from the male curves within the Berkeley

growth curve dataset (Ramsay and Silverman, 2005)).

Figure 1: Integral kernel of the true covariance function Σ1 for reference group.

First simulation: We consider the case in which the first two eigenvalues of Σ2 are

a convex combination of the first two eigenvalues of Σ1:

λ2
1 = γλ1

2 + (1− γ)λ1
1

λ2
2 = γλ1

1 + (1− γ)λ1
2

(3)

Figure 2 shows the estimated power for different values of γ and N .

It is worth mentioning that, despite the normality of the data, traditional parametric

tests for comparison of covariances can be applied only when N > p, i.e. N = 40, 50.

Indeed, the power is low also in these cases, since the sample size is small with respect

to dimension p = 32. Note that the square root and Procrustes tests are the most

powerful here, and all tests have the correct type I error probability.

Second simulation: We consider now a difference in the total variation between the

covariance operators in the two groups, so that

Σ2 = (1 + γ)Σ1.

In this case we can also compare the proposed method with the generalisation of the

Levene test proposed in Anderson (2006), since this is a procedure to test for differences

in multivariate dispersion. In particular we present results for the permutation version

of this test to give a fair comparison with our method, even if the simulated data are

indeed Gaussian. On the other hand, the spectral distance is not suitable, since it cannot

discern between an operator and one of its multiples.

Fig. 3 shows the estimated power for different values of γ and N . For smaller N
the Levene test has a high type I error. For larger N and γ, the Procrustes and square

root tests are a little more powerful than the kernel L2 and Levene tests.
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Figure 2: Power estimated via simulation for different values of γ and N obtained with

Procrustes size-and-shape distance (red line), Square root distance (green line), Kernel

L2(Ω×Ω) distance (black line) and Spectral distance (blue line). The purple line shows

the significance level α = 0.05.

Figure 3: Power estimated via simulation for different values of γ and N obtained with

Procrustes size-and-shape distance (red line), Square root distance (green line), Kernel

L2(Ω × Ω) distance (black line) and generalised Levene test (cyan line). The purple

line shows the significance level α = 0.05.

14



5 Applications

5.1 Data from AneuRisk Project

We illustrate here a possible application of the inferential technique described above.

We consider data that have been collected within the AneuRisk Project, designed to

investigate the role of vessel morphology and blood fluid dynamics on the pathogenesis

of cerebral aneurysm (http://mox.polimi.it/it/progetti/aneurisk). A detailed description

of the problem can be found in Sangalli et al. (2009a).

The AneuRisk data set is based on a set of three-dimensional angiographic im-

ages taken from 65 subjects, hospitalised at Niguarda Ca Granda Hospital (Milan) from

September 2002 to October 2005, who were suspected of being affected by cerebral

aneurysms. Out of these 65 subjects, 33 subjects have an aneurysm at or after the ter-

minal bifurcation of the Internal Carotid Artery (ICA) (Upper group), 25 subjects have

an aneurysm along the ICA (Lower group), and 7 subjects have not had any aneurysm

(No-aneurysm group). In general, Upper group subjects are those with the most dan-

gerous aneurysms; for this reason and for qualitative consideration, statistical analysis

conducted in Sangalli et al. (2009a) joins the Lower and No-aneurysm groups in a single

group, to be contrasted to the Upper group. Here we want to explore possible differ-

ences between Lower and No-aneurysm groups looking at vessel radius and curvature

and their covariance operators.

Starting from the angiographies of the 65 patients, estimates of vessel radius and

curvature are obtained with the procedure described in Sangalli et al. (2009b), resulting

in a free-knots regression splines reconstruction of radius and curvatures. Each patient

is therefore described by a pair of functions R(s) and C(s), where the abscissa parame-

ter s measures an approximate distance along the ICA, from its terminal bifurcation to-

ward the heart (for conventional reasons, this abscissa parameter takes a negative value

to highlight that the direction is opposite with respect to blood flow). These curves are

defined on different intervals, thus we restrict our analysis to the region which is com-

mon to all curves (i.e., for values of abscissa between -25 and -1). Fig. 4 shows radius

and curvature for the two groups, while their covariance operators can be seen in Fig.

5. We evaluate the kernels of the covariance operators on an equispaced grid of p = 65
points.

We want now to verify the equality of the two groups in terms of covariance struc-

ture, since a visual inspection of the covariance operators would seem to indicate differ-

ences. A permutation test for equality of radius covariance operators result in a p-value

of 0.94 using Procrustes distance, 0.885 with Square root distance and 0.9 for kernel

distance. P-values of permutation tests for equality of curvature covariance operators

are 0.86 for Procrustes distance, 0.775 for Square root distance and 0.87 for kernel dis-

tance. Therefore, there is no statistical evidence for difference of covariance operators

between the two groups. Thus, the decision taken in the original analysis to treat the

curves as being from a single group is not rejected.

Fig. 6 shows covariance operators for the two groups used in Sangalli et al. (2009a),

i.e. patients with aneurysm in the upper part of the artery and patients with aneurysm
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Figure 4: Curvature (left) and Radius(right) for the 65 patients in the range of abscissa

common to all curves. Black coloured curves correspond to patients of the Lower group,

red coloured curves to patients of the No-aneurysm group and green coloured curves to

patients of the Upper group.

in lower part of the artery or no aneurysm at all. If we perform the permutation test on

radius covariance operators for these two groups, we find p-values less than 0.0001 for

Procrustes distance, Square root distance and kernel distance. For the curvature covari-

ance operators, we obtain p-values of 0.1 for Procrustes distance, 0.02 for Square root

distance and 0.02 for kernel distance. Thus, all these distances provide far smaller p-

values than in the previous case indicating that the difference between these two groups

is worth investigation. However, the evidence is somewhat weak for curvature, as the

Procrustes distance is only significant at p ≤ 0.1, with this distance being free from the

arbitrary choice of decomposition.

5.2 Exploring relationships among Romance languages

The traditional way of exploring relationships across languages consists of examin-

ing textual similarity. However, this neglects phonetic characteristics of the languages.

Here a novel approach is proposed to compare languages on the basis of phonetic struc-

ture.

People speaking different Romance languages (French, Italian, Portuguese, Iberian

Spanish and American Spanish) are registered while pronouncing words in each lan-

guage. The output of the registration for each word and for each speaker consists of the

intensity of the sound over time and frequencies. The aim is to use this data to explore

linguistic hypotheses concerning the relationships between different languages. How-

ever, while the temporal aspects of each individual word are important, we will con-

centrate on frequencies. Previous studies (Aston et al., 2010; Hadjipantelis et al., 2012)

have indicated that covariance operators characterise languages well, and these will be

the object of study. The operators summarise phonetic information for the language,

while disregarding characteristics of singular speakers and words. For the scope of this

work, we focus on the covariance operators among frequencies in the log-spectrogram,

estimated by putting together all speakers of the language in the data set. The spec-

trogram is a two dimensional time-frequency image which gives localised time and
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frequency information across the word. We consider different time points as replicates

of the same covariance operator among frequencies. It is clear that this is a significant

simplification of the rich structure in the data but in itself can already lead to some

interesting conclusions.

Let fijk(t) ∈ L2(Ω) be a realisation of a random process, where i = 1, . . . , n
are different families of curves (i.e. different words), j = 1, . . . , g the groups (i.e.

languages) and k = 1, . . . ,K the observations (individual speakers). Let Sij(s, t) be

the sample covariance operator for each family i in each group j. As mentioned above,

the working hypothesis is that the significant information of the different groups are in

the family-wise covariances Sij rather than in the individual observations fijk. Thus,

we can also consider Sij as realisation of the random variables Σj , taking value in the

space of trace class non negative definite self-adjoint operators. We want to explore

similarities and differences among groups on the basis of their covariance operators Σj .

A pairwise comparison of the groups may be for example performed using as test

statistic as the distance between the sample Fréchet mean for each group,

Tjj′ = d(Σ̂j , Σ̂j′),

where the Fréchet means Σ̂j and Σ̂j′ are obtained from the samples S1j , . . . , Snjj and

S1j′ , . . . , Snj′j
′ by minimizing the appropriate distance d(., .), being therefore estimates

of the unknown group covariance operators Σj and Σj′ . As in the previous section, a

permutation test can be set up randomizing the assignment of the sample covariance

operators to the two groups.

Here some preliminary results are reported, focusing on the covariance operator for

the word “one” spoken across the different languages by a total of 23 speakers across

the five languages. This word is similar in each language (coming from the common

latin root), but different enough to highlight changes across the languages (American

Spanish: uno; French: un; Iberian Spanish: uno; Italian: uno; Portuguese: um). This

also highlights that in this case, textual analysis is difficult as three of the languages

have the same textual representation.

Fig. 7 shows the covariance operator estimated for each language via Fréchet av-

eraging along time, using the square root distance. Fig. 8 shows dissimilarity matrix

among average covariance operators for each language and the corresponding dendro-

gram. Indeed, it seems that focusing on the covariance operator allows the capture of

some significant information about languages. Relationships among covariance opera-

tors have features which are expected by linguistic hypotheses, such as strong similarity

between French and Italian and between American Spanish and Iberian Spanish or the

fact that Portuguese is far from the pair Italian–French. However, not all our conclu-

sions directly support textual analysis. The distance of Portuguese from both Spanish

languages is greater than expected. Moreover, for historical reasons American Spanish

is expected to be nearer than Iberian Spanish to French and Italian, but the covariance

structures indicate this is reversed. Thus, as this analysis is currently based on the word

“one”, providing further assessment using a much larger corpus will be of significant

interest, and is the subject of ongoing work.

17



Extrapolation of covariance operators

A particularly interesting application of the analysis is to provide insight into the

change of the frequency structure along the path of language evolution. This would be

inherently linked to extrapolation based on the distances we have proposed. A path can

be defined, for example, as the shortest path connecting the languages, using as distance

the distance between frequency covariance operators. All the distances proposed in the

paper lead to the same path,

Italian ↔ French ↔ IberianSpanish ↔ AmericanSpanish ↔ Portuguese.

Here, we want to compare the frequency covariance structure of a language to those

obtained by extrapolating covariance operators of “previous” languages in the evolu-

tionary path. As was seen in Fig 7, the Portuguese language presents a very different

covariance structure with respect to the other Romance languages. Thus, it would be of

interest to compare its frequency covariance operator with the one extrapolated from the

covariances of the two Spanish languages, to see if this kind of covariance was expected

(and a linear model of distance appropriate).

Initially, one idea could be to do extrapolation based on kernels,

s(s, t)(x) =
1

x
(sSA(s, t) + x(sSA(s, t)− sSI(s, t))), (4)

choosing as x the kernel distance between Portuguese language and Spanish American.

However, just as the space of positive definite matrices is not Euclidean, extrapolation

based on kernel distances does not result in a valid kernel for a covariance operator (i.e.

the associated integral operator is not non-negative definite, see Fig 9). If we apply the

extrapolation procedure in the space of square root operators, the problem of negative

eigenvalues is solved with the inverse (square) transformation, which makes all the

eigenvalues positive. While extrapolating to large negative values and then squaring

them would likely introduce additional variation with somewhat questionable meaning,

this procedure, at least, provides a valid covariance operator.

Thus, using the square root mapping, we extrapolate the square root covariance

operator

S(x) =
1

x
{(SSA)

1

2 + x((SSA)
1

2 − (SSI)
1

2 )}∗{(SSA)
1

2 + x((SSA)
1

2 − (SSI)
1

2 )}, (5)

where x can be chosen as ||(SP )
1

2 −(SSA)
1

2 ||HS . Fig. 9 shows the integral kernel of the

obtained covariance operator. It can be seen that the high variability of Portuguese in

the high frequency region is somehow expected from the extrapolation of the Spanish

languages covariances.

Similar results can be obtained using a Procrustes approach on the mapped space,

i.e. aligning (SSA)
1

2 and (SSI)
1

2 through the optimal unitary operator R̃ which min-

imises the square Procrustes distance and then extrapolating:

S(x) =
1

x
{(SSA)

1

2 + x((SSA)
1

2 − (SSI)
1

2 R̃)}{(SSA)
1

2 + x((SSA)
1

2 − (SSI)
1

2 R̃)}∗,

(6)
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where x can be chosen as dP (SSA, SP ). The Procrustes alignment makes the two

operators nearer in the space of Hilbert-Schmidt operators. Thus, as we expect, the

extrapolation is more stable (as the arbitrary nature of the decomposition is removed)

and to yield less artifacts, in this case large positive eigenvalues resulting from squared

negative eigenvalues. Fig. 9 shows the extrapolated covariance operator for Portuguese

for the three methods proposed and indeed the Procrustes estimate seems to provide a

better result with somewhat smaller variance in places due to the Procrustes rotation.

However, further rigorous development of this idea would require a more complete

understanding of the underlying spaces induced by the linearisation of the path and this

would provide considerable scope for future statistical development.

6 Conclusions and further development

In this work the problem of dealing with covariance operators has been investigated.

The choice of the appropriate metric is crucial in the analysis of covariance operators,

and as such some suitable metrics have been proposed and their properties have been

highlighted. In particular two metrics have been applied to infinite dimensional covari-

ance operators: the square root operator distance and the Procrustes size-and-shape dis-

tance. Both these metrics rely on the mapping of the covariance operators to a suitable

space of Hilbert-Schmidt operators where a linear distance, namely the Hilbert-Schmidt

norm of the difference of the operators, is appropriate. The square root operator distance

uses the square root map defined in (1), while the Procrustes distance allows for unitary

transformations in the space of Hilbert-Schmidt operators, thus taking into account the

arbitrariness of the representation.

On the basis of an appropriate metric, statistical methods can be developed to deal

with covariance operators in a functional data analysis framework. Here the notable

cases of estimating the average from a sample of covariance operators and testing the

equality of covariance structure between two groups are illustrated. The latter technique

has proved useful for the analysis of the AneuRisk data, where investigating the covari-

ance structures of different groups supports the results of previously published analysis.

Moreover, in some applications the covariance operator itself is the object of interest, as

shown with the linguistic data of Section 5.2. Using the square root and Procrustes dis-

tances between covariance operators of frequencies, some significant phonetic features

of Romance languages have been found.

Many other developments are of course possible, for both the theoretical aspects

and the practice of the proposed statistical methods. In particular, there is considerable

scope for development of the consistency properties for estimators proposed in Section

4 and of necessary conditions for (local) convergence of the Procrustes algorithm in

infinite dimensions, as well as a rigorous analysis of the proposed extrapolation proce-

dure. The analysis of linguistic data is only preliminary and more significant results are

expected when many words are taken simultaneously into account.
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Figure 5: Covariance operator for curvature (left) and radius (right) for the for the

Lower (first row) and No aneurysm (second row) groups.

Figure 6: Covariance operator for curvature (left) and radius (right) for the Upper (first

row) and Lower or No aneurysm (second row) groups.
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Figure 7: Fréchet average along time of covariance operators of log-spectrogram among

frequencies for five romance languages.

Figure 8: Distance matrix among Fréchet average above, obtained with Square root

distance, along with a corresponding dendrogram indicating possible linguistic rela-

tionships.

21



Figure 9: First row: Kernel extrapolated for Portuguese form the two Spanish languages

kernels using equation (4) (left). It is not a valid kernel for covariance operators, since

the associated integral operator is not non negative definite. Covariance operator ex-

trapolated for Portuguese from the two Spanish languages with the square root mapping

of equation (5) (right). Second row: Covariance operator extrapolated for Portuguese

from the two Spanish languages with the Procrustes alignment in equation (6) (left) and

sample frequency covariance for Portuguese language (right).
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