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Abstract

We develop a computer-assisted technique to construct and analyze orbits of dissipative evolution

equations. As a case study, the methods are applied to the Kuramoto-Sivashinski equation. We prove the

existence of a hyperbolic periodic orbit.

1. Introduction

In this paper we consider the problem of investigating the flow of dissipative parabolic
equations via computer-assisted methods. The type of equations that we have in mind are
of the form

∂tu+ (i∂x)mu+H(u, ∂xu, . . . , ∂
m−1
x u) = 0 , (1.1)

with m > 0 even, H real analytic, and u = u(t, x) satisfying suitable boundary conditions
on a bounded spatial domain.

Our goal is to obtain estimates for the time-t map and its derivative, for small times
t > 0, and to combine these estimates with shadowing arguments, in order to control the
long-time dynamics. For periodic orbits, this includes bounds on the eigenvalues of the
linearized return map. Our method takes advantage of the fact that the solutions u(t, x) of
equation (1.1) are real analytic in x, when t > 0, due to the dissipation and the analyticity
of H. This allows us to obtain accurate bounds in a relatively straightforward and general
way.

As a case study, we consider the unidimensional Kuramoto-Sivashinski equation, which
has been the focus of numerous analytical and numerical investigations [3–11]. Considering
Dirichlet boundary conditions on [0, π], this equation can be written in the form

∂tu+ 4∂4
xu+ α

(
∂2

xu+ 2u∂xu
)

= 0 ,

u(t, 0) = u(t, π) = 0 ,
x ∈ [0, π] , t ∈ R . (1.2)
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It is a well known numerical result [2] that this system exhibits chaotic dynamics when
α > 133. Obtaining rigorous bounds for such large values of α is more difficult, since high
frequency modes contribute more heavily to the dynamics. In order to test the robustness
of our algorithm, and to make a first step towards the analysis of chaotic dynamics, we
consider the value α = 150, which is well above the chaotic threshold. Our main result on
the Kuramoto-Sivashinski equation is the following.

Theorem 1.1. Equation (1.2) with α = 150 admits a hyperbolic periodic orbit of period
τ = 0.00214688 . . .. The Poincaré map associated with some transversal hyperplane is
compact, and its eigenvalues lie in the disk |µ| < 0.69, except for a simple eigenvalue
|µ1| > 4.8.

Somewhat similar results were obtained recently in [12], namely the existence of peri-
odic orbits, for several values of α between 30 and 134. However, the methods used in [12]
are purely topological and given no information on the stability of the orbit.

The remaining part of the paper is structured as follows. In Section 2, we outline the
general strategy and then describe the various steps in more detail. This part applies to
dynamical systems in any separable Banach space, although the approach is motivated by
the intended applications. A more specific functional setting is introduced in Section 3,
where we discuss the integral equation used to control the time-t map. Section 4 describes
our implementation of the various steps, and further details of our computer-assisted proof.

2. Strategy and techniques

Consider an evolution equation of the type

∂tu = Lu+G(u) , u(0) = ν , (2.1)

for a function u = u(t), defined for t ∈ [0,∞), that takes values in some Banach space X .
Here, L and G are operators on X , with L linear. In the applications that we have in mind,
which include the Kuramoto-Sivashinski equation, X is a space of real-valued functions on
a bounded domain in R

n, satisfying suitable boundary conditions.
Assume that we can compute numerically an approximate periodic orbit ū, starting at

some point ū0 at time t = 0, and returning to the same point at a later time t = τ̄ . After
choosing a codimension-one hyperplane S0 ⊂ X that intersects the curve ū transversally at
ū0 , we define the corresponding Poincaré return map Ψ : S0 → S0 , by setting Ψ(u) = u(t),
where t = t(ū0) is the first return time to the section S0 . Here, and in what follows, a
Poincaré return map need only be defined locally. If the system is dissipative, then the
derivative of Ψ is compact, and in particular, it has only finitely many eigenvalues of
modulus larger than 1. We will refer to the corresponding eigenvectors as the “expanding
directions”. Our strategy for proving the existence of hyperbolic orbits involves several
steps and technical tools. The basic tool is a computer-assisted technique for computing
bounds on the time-t map Φt of the system, and of its derivative DΦt . Then we choose
a sequence of intermediate Poincaré sections Sj along the approximate orbit and compute
rigorous estimates on the intermediate Poincaré maps Pj : Sj−1 → Sj and their derivatives.
By means of a shadowing technique, applied to the sequence of map Pj , we prove the
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existence of a true periodic orbit close to ū. This information is then used to estimate
the derivatives of the intermediate Poincaré maps Pj . After verifying appropriate cone
conditions for these derivatives, we obtain the desired bounds on the full Poincaré map.

2.1. Integration

Our first goal is to integrate equation (2.1) on a sequence of time intervals [Tn−1, Tn],
starting with T0 = 0. Since the problem is autonomous, it suffices to consider the initial
value problem on [0, T ]. We turn (2.1) into an integral equation as usual, by rewriting the
equation as

∂t

[
e−tLu

]
= e−tLG(u) , u(0) = ν , (2.2)

integrating both sides, and then multiplying by etL,

u(t) = etLν +

∫ t

0

e(t−s)LG(u(s)) ds , 0 ≤ t ≤ T . (2.3)

After defining a Banach space X of admissible initial conditions ν, our aim is to solve
equation (2.3) by iteration, on a Banach space XT of continuous X -valued functions on the
interval J = [0, T ]. Setting Φt(ν) = u(t) then defines the time-t map Φt on X , for t ∈ J .

To be more precise, suppose that L has a compact inverse, and a sequence of eigen-
vectors v1,v2, . . . whose span is dense in X . Let −λ1,−λ2, . . . be the corresponding eigen-
values, and assume that λk > 0 for sufficiently large k. Then t 7→ etL is a continuous
semigroup on X . Substituting the formal expansion u(t) =

∑
k uk(t)vk into equation (2.3)

yields a system of (infinitely many) coupled ODEs

uk(t) = e−λktνk +

∫ t

0

e−λk(t−s)gk(s) ds , t ∈ J , (2.4)

where {νk} and {gk(t)} are the expansion coefficients for the vectors ν and g(t) = G(u(t)),
respectively. Our aim is to work with a finite truncation of this system of ODEs, say
k ≤ N , and to control the truncation errors. The truncation is defined in terms of the
spectral projection PL onto the span of the first N eigenvectors of L.

The same approach will be used to analyze the derivative DΦt of the time-t map: The
function w = DΦt(u)ω is the solution of the initial value problem

∂tw = Lw +DG(u)w , w(0) = ω , (2.5)

which can be reduced to an integral equations similar to (2.3) and (2.4). Further details
are provided in Section 3.

2.2. Intermediate Poincaré maps

A well known problem with computer-assisted integration is that the errors accumulate
along the orbit, making the computation useless after a certain amount of time. In our
approach to the Kuramoto-Sivashinski equation, this time is significantly shorter than
what would be needed to estimate the Poincaré map Ψ directly. (And we do not expect



4 HANS KOCH

the situation to be much better with other PDEs.) Adapting an approach that has been
developed for finite dimensional dynamical systems [13], we proceed by smaller time steps
as follows.

Consider a partition of the approximate period [0, τ̄ ] into M subintervals [tj , tj+1],
where tj = jτ̄/M for j = 0, 1, . . . ,M . Then the points ūj = ū(tj) define a discretization of
the approximate orbit ū. For each j, we choose a nonzero linear functional ηj : X → R and
define a Poincaré section Sj = ūj +Xj , where Xj is the null space of ηj . After verifying
that Sj is transversal to the flow, as defined below, a Poincaré map Pj : Sj−1 → Sj is
defined in the usual way as x 7→ Φt(x), where t = t(x) is the smallest positive number
such that Φt(x) ∈ Sj . The composition of all these “intermediate” Poincaré maps yields
the full local Poincaré map Ψ.

In our implementation of this procedure, we choose for each j an ordered basis in
PLX . The second basis vector is chosen to point roughly in the direction of the flow at ūj .
Then we define ηj(x) to be the second coordinate of PL(x− ūj).

We will use (verify) the following notion of transversality. Let B ⊂ X be a fixed set
of initial conditions. Assume that η : X → R is continuous and nonzero.

Definition 2.1. Consider a differentiable flow (t, ν) 7→ u(t), defined on [a, c]×B. Let s ∈ R.
We say that the section S = η−1(s) is transversal to the flow if, for all initial conditions
ν ∈ B, the interval bounded by η(u(a)) and η(u(c)) contains s, and the derivative of
t 7→ η(u(t)) is bounded away from zero on [a, c], uniformly in ν.

2.3. Shadowing

Our aim is to prove that there exists a true orbit that closely “shadows” the approximate
orbit ū. In addition, we would like to show that the full Poincaré map has no eigenvalue
on the unit circle, and to estimate the spectral gap between the least expanding and least
contracting eigenvalue.

Our main tool for the first step is Theorem 2.1 below, which is an extension to the
infinite dimensional setting of Theorem 4 in [14]. (See also [12] for an approach to the
infinite dimensional case.)

Theorem 2.2. Consider a Banach space X = R ⊕ Z, and let V be the closed unit ball
in Z. Let F be a continuous and compact map from [−1, 1] × V to X = R ⊕ Z. Writing
F (u, v) = (g(u, v), h(u, v)), assume that g(−1, v) ≤ −1 and g(1, v) ≥ 1 and ‖h(u, v)‖ ≤ 1,
for all u ∈ [−1, 1] and v ∈ V . Then F has a fixed point in [−1, 1] × V .

Proof. We may assume that the norm on X is given by ‖(u, v)‖ = max{|u|, ‖v‖}. By our
assumption on F , the closure K of F ([1, 1]×V ) is compact. Thus, given ε > 0, there exist
points w1, w2, . . . wn ∈ K, such that the balls Wi = {w ∈ X : ‖w − wi‖ < ε} cover the set
K. For w ∈ K define

φε(w) =

∑n
i=1 ϕi(w)wi∑n

i=1 ϕi(w)
, ϕi(w) =

{
ε− ‖w − wi‖ if w ∈Wi ;
0 otherwise.

Clearly, φε : K → X is continuous, and ‖φε(w) − w‖ ≤ ε for all w ∈ K. Assuming ε < 1
2 ,

define ψε(u, v) = ((1+2ε)u, (1− 2ε)v). Then Fε = ψε ◦φε ◦F is continuous on [−1, 1]×V
and satisfies ‖F (x) − Fε(x)‖ ≤ cε, for some fixed constant c > 0.
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Denote by Xε the subspace of X spanned by the vectors {w0, w1, . . . , wn}, where
w0 = (1, 0). Notice that Fε takes values in Xε . The restriction of Fε to Xε satisfies the
hypotheses of Theorem 4 in [14], and therefore it admits a fixed point in [−1, 1]×V . If xm

is such a fixed point, obtained with ε ≤ 1
cm , then ‖F (xm)−xm‖ = ‖F (xm)−Fε(xm)‖ ≤ 1

m .
Since F is compact, we can choose m 7→ xm in such a way that F (xm) → x for some x in
[−1, 1] × V . Then

‖x− xm‖ ≤ ‖x− F (xm)‖ + ‖F (xm) − xm‖ → 0 .

Thus, xm → x, and F (x) = limm→∞ F (xm) = x by the continuity of F . QED

In order to apply Theorem 2.2 to the sequence of Poincaré maps described in the pre-
vious subsection we use the following definitions, which are analogues of similar definitions
in [13,14,15]. Assume that X = Y ⊕Θ⊕Z, where Y and Θ are one-dimensional subspaces
of X . Denote by U and V the closed unit balls in Y and Z, respectively.

Definition 2.3. A section (of X ) is codimension-one affine subspace of X . A box in a
section S is the image of U × V under a bi-continuous affine map ψ : Y × Z → S.

Definition 2.4. Let B1 = ψ1(U × V ) and B2 = ψ2(U × V ) be boxes in two section S1

and S2 , respectively. Given a map f : B1 → S2 , we say that B1 f -covers B2 if the map
F : U ×V → Y ×Z, defined by F = ψ−1

2 ◦ f ◦ψ1 , satisfies the hypotheses of Theorem 2.2.
For simplicity, we identified here Y with R, and U with [−1, 1].

Roughly speaking, the set B1 is stretched along B2 in the direction ψ1(U) and com-
pressed in the other directions by the map f . Clearly, this definition could be extended to
a larger number of expanding directions.

Consider now the Poincaré maps Pj : Sj−1 → Sj described in Subsection 2.2, and for
each j, let Bj be a box in Sj . By periodicity, we identify j = M with j = 0.

Corollary 2.5. If for each j, the box Bj−1 Pj-covers Bj , then the Poincaré map Ψ : S0 →
S0 , defined by Ψ = PM ◦ . . . ◦ P2 ◦ P1 , has a fixed point in B0 .

2.4. Derivatives of the Poincaré map

In our application of Corollary 2.5, we estimate the image of a box Bj under the flow
via bounds on the derivative of the flow. The same bounds can also be used to prove
hyperbolicity. To be more specific, let u be a periodic orbit, denote by uj its intersection
with the section Sj , and define u̇j = Luj + G(uj), for all j. A simple calculation shows
that

DPj(uj−1)w = DΦt(uj−1)(uj−1)w −
ηj(DΦt(uj−1)(uj−1)w)

ηj(u̇j)
u̇j . (2.6)

Thus, what we need are accurate estimates on the velocities u̇j .
The low-frequency parts ℓj = PLu̇j are estimated explicitly in our construction of the

orbit, since G(u(s)) appears in the integral equation (2.3), and ℓj = PLG(uj). Consider
now the high-frequency part hj = PH u̇j . Here, and in what follows, PH = I − PL . After
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proving that u̇j ∈ X for all j, we can use that u̇j = DΦt(uj−1)(uj−1)u̇j−1 . This immediately
yields the following

Proposition 2.6. Let kj = PHDΦt(uj−1)(uj−1)ℓj−1 and Dj = PHDΦt(uj−1)(uj−1)PH .
Then

‖hj‖ ≤ ‖kj‖ + ‖Dj‖‖hj−1‖ , j = 1, 2, . . . ,M.

In particular, if ‖kj‖ ≤ b and ‖Dj‖ ≤ a < 1 for all j, then ‖hj‖ ≤ (1 − a)−1b.

2.5. Hyperbolicity

In order to compute a lower bound on the modulus of the expanding eigenvalue of DΨ(u0),
and an upper bound on the moduli of the contracting eigenvalues, we replace the Pj-
covering conditions by cone conditions on the derivatives DPj . This corresponds roughly
to replacing Theorem 2.2 by the following theorem.

Theorem 2.7. Let A 6= 0 be a bounded linear operator on a real Banach space X = Y ⊕Z,
with Y one-dimensional. Thus, if y ∈ Y and z ∈ Z, we have a unique decomposition

A(y + z) = y′ + z′ , y′ ∈ Y, z′ ∈ Z . (2.7)

Assume now that A is compact, and that there exist positive real numbers β < α, such
that ‖z′‖ ≤ βmax{‖y‖, ‖z‖}, and such that ‖y′‖ ≥ α‖y‖ whenever ‖y‖ ≥ ‖z‖. Then A
has a simple eigenvalue λ of modulus |λ| ≥ α, and no other eigenvalue of modulus > β.

Proof. Consider the double cone C, defined by ‖y‖ ≥ ‖z‖. It is preserved by A. For any
x = y+ z in C we have ‖y′‖ ≥ α‖y‖, and thus ‖Anx‖ ≥ cαn for all n ≥ 0, with c > 0. This
guarantees e.g. that A has a spectral radius ρ(A) ≥ α.

Let λ be an eigenvalue of A, and let x̄ = ȳ + z̄ be an eigenvector for this eigenvalue.
If |λ| < α, then x̄ cannot belong to C, since ‖Anx̄‖ grows slower than cαn. And if x̄ 6∈ C,
then our condition ‖z′‖ ≤ βmax{‖y‖, ‖z‖} implies that |λ| ≤ β. Thus, if |λ| > β, then
|λ| ≥ α and x̄ ∈ C.

Assume from now on that |λ| ≥ α. Then x̄ ∈ C, and in particular, ȳ 6= 0. Replacing
A by −A, if necessary, we may assume that Aȳ ∈ cȳ + Z with c > 0. Denote by C± the
two cones whose union is C, with C+ being the one containing ȳ. Clearly, C+ is invariant
under A. This implies e.g. that λ is real and positive.

Notice that C+ has a non-empty interior. Thus, by the Krein-Rutman theorem, ρ(A)
is a simple eigenvalue of A. Furthermore, A is strongly positive: C+ \ {0} is mapped into
the interior of C+, since ‖z′‖ ≤ βα−1‖y′‖ whenever y + z belongs to C+. This guarantees
[9, Theorem 1.2] that ρ(A) is the only eigenvalue of A that has an eigenvector in C+.
Consequently, our eigenvalue λ is simple and equal to ρ(A). This concludes the proof of
Theorem 2.7. QED

Definition 2.8. Let X = Y ⊕ Z, and let α > β be positive real numbers. Given two
sections ν1 +X1 = ψ1(X) and ν2 +X2 = ψ2(X) of X , and a linear map B : X1 → X2 , we
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say that B satisfies the (α, β) cone condition, if A = Dψ−1
2 BDψ1 satisfies the hypotheses

of Theorem 2.7.

Consider again the Poincaré maps Pj : Sj−1 → Sj described in Section 2.2. Denote
by uj the intersection of our periodic orbit with the Poincaré plane Sj .

Corollary 2.9. If for each j, the derivative DPj(uj) satisfies an (αj , βj) cone condition,
then DΨ(u0) has a simple eigenvalue µ1 ≥

∏
j αj and no other spectrum outside the disk

|µ| ≤ ∏
j βj .

As far as the proof of Theorem 1.1 is concerned, our task is now reduced to verifying
the hypotheses of Corollary 2.5, and of Corollary 2.9, with βj < 1 < αj for all j.

3. Functional setting

3.1. The integral operator

It is convenient to rewrite the integral equation (2.3) as a fixed point problem Kν(w) = w
for the function w(t) = u(t) − etLν. The operator Kν can be written as Kν = Λ ◦ Γν ,
where

(Λw)(t) =

∫ t

0

e(t−s)LMw(s)ds ,
(
Γν(w)

)
(t) = M−1G

(
w + etLν

)
(t) , (3.1)

for 0 ≤ t ≤ T . Here, M is some invertible linear operator on X that we are free to choose
later. The problem with estimating Kν on a computer is that the function t 7→ etLν, and
thus the integrand in Λ, can vary very rapidly near t = 0. Such functions have to be
considered e.g. when estimating the derivative of the flow.

We deal with this problem by partitioning J = [0, T ] into n subintervals Ji = [ti−1, ti],
with the partition being much finer near t0 = 0, than near tn = T , and controlling
our functions on each subinterval Ji separately. Define XT to be space of all continuous
functions u : J → X with a finite norm

‖u‖ = max
i

∞∑

k=1

sup
t∈Ji

‖uk(t)vk‖ , u(t) =

∞∑

k=1

uk(t)vk . (3.2)

We note that this norm depends on the partition {Ji} of J . But the norms associated with
two different partitions are equivalent. Our only reason for subdividing J is to get more
accurate estimates on the computer. For the results in this section, it suffices to consider
just the trivial partition {J}.

We recall that the functions vk are assumed to be eigenvectors of L, with eigenvalues
−λk that tend to −∞ as k → ∞. In order to avoid growing factors e−λkt in the equation
(2.4), we assume from now on that λk ≥ 0 for all k. This represents no loss of generality,
since a positive part of L can always be incorporated into the nonlinear part G of the
vector field L+G.
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Lemma 3.1. Let 0 < a ≤ b < 1, set M = (I−L)a, and assume that
∑

k>m λb−1
k <∞, for

some m > 0. Then Λ is compact on XT , and ‖Λ‖ ≤ c(T +T b−a), for some constant c that
is independent of T .

Proof. Let w ∈ X and w̃ = Λw. Let k ≥ 1. If λk < 1, then |w̃k(t)| ≤ 2t‖wk‖, where
‖wk‖ = supt∈J |wk(t)|. If λk ≥ 1 then

∣∣w̃k(t)
∣∣ ≤

∫ t

0

e−λk(t−s)(1 + λk)a|wk(s)| ds

≤ 2λb−1
k tb−a

[
(λkt)

a−b
(
1 − e−λkt

)]
‖wk‖.

(3.3)

The expression [· · ·] in this equation is bounded, uniformly in k and t. Multiplying both
sides of (3.3) by ‖vk‖, and summing over k, yields ‖w̃‖ ≤ c(T + T b−a)‖w‖, with c inde-
pendent of w and T .

Denote by Pk the canonical projection onto the one-dimensional subspace spanned by
vk . Then ΛPk is compact, by Arzelà-Ascoli. The sum

∑
k ΛPk converges in norm to Λ,

due to the factor λb−1
k in (3.3). Thus, Λ is compact. QED

What remains to be proved is that Γν is continuous and bounded on some appropriate
domain in XT . Then Kν = Λ ◦ Γν is compact. Now it suffices to find a closed and convex
set C in this domain, such that Kν(C) ⊂ C. Then Kν has a fixed point in C. On the
computer, we determine such a set C by starting with a singleton C0 = {w̄}, where w̄ is
an approximate fixed point of Kν . Using a suitable enlargement map C 7→ C ′ for sets,
we compute for n = 1, 2, . . . an enclosure Cn for Kν(C ′

n−1), until Cn ⊂ C ′
n−1. The set

C = K(Cn) for the final value of n is a bound on the fixed point w of Kν , in the sense
that C ∋ w. This in turn yields a bound on u(t) for t ∈ J , and a bound (in a sense that
will be made more precise later) on the time-t map ν 7→ u(t).

How exactly these bounds are implemented depends on the specific equation. In
the remaining part of this paper, we describe the details for the Kuramoto-Sivashinski
equation.

3.2. The Kuramoto-Sivashinski equation

The one-dimensional Kuramoto-Sivashinski (KS) equation can be written as

∂tu = Lu− α∂x(u2) , L = −4∂4
x − α∂2

x . (3.4)

As mentioned earlier, we consider this equation for α = 150. But for now, α can be any
positive real number.

The boundary conditions considered are u(t, 0) = u(t, π) = 0, so the eigenvectors of L

are given by vk(x) = sin(kx), where k ranges over the set of all positive integers N. The
corresponding eigenvalues are αk2 − 4k4. As indicated earlier, we extract a negative part
L from L. To this end, let κ ≥ √

α/2, so that αk2 − 4k4 ≤ 0 for k ≥ κ. Then define L and
L′ by the equations Lvk = −λkvk and L′vk = −λ′kvk, respectively, where

λk =

{
0, if k ≤ κ;
4k4 − αk2 if k > κ;

λ′k =

{
4k4 − αk2 if k ≤ κ;
0 if k > κ;

(3.5)
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Clearly, L = L+L′, and L has no positive eigenvalues. The KS equation (3.4) can now be
written in the standard form (2.1),

∂tu = Lu+G(u) , G(u) = L′u− α∂x(u2) . (3.6)

At this point, we need to define some function spaces. Let ρ be a fixed positive real
number. In addition to vk(x) = sin(kx) for integers k > 0, we also consider vk(x) = cos(kx)
for k ≤ 0. Given a real number p > 0, and a non-empty set of integers K, define AK

p to be

the completion of Span
(
{vk}k∈K

)
with respect to the norm

‖f‖p =
∑

k∈K

|fk|[k]peρ|k| , f =
∑

k∈K

fkvk , (3.7)

where [k] = max(|k|, 1). Notice that the functions in AK

p have analytic and bounded
extensions to the strip |Im(x)| < ρ. The space X referred to in earlier sections is AN

p.
For now, p > 0 is arbitrary; but later on, we will choose p = 0. A slightly different (but
equivalent) norm on X is used in our definition of the boxes Bj , as will be described later.

The space of continuous curves u : J → AK

p with a finite norm

‖u‖p = max
i

∑

k∈K

[k]peρ|k| sup
t∈Ji

|uk(t)| , u(t) =
∑

k∈K

uk(t)vk , (3.8)

will be denoted by C(J,AK

p ). In particular, C(J,X ) agrees with the space XT defined in
Subsection 3.1. A useful property of the spaces AZ

p and C(J,AZ

p) is that they are both
Banach algebras.

As described in the previous subsection, we solve (3.6) via the fixed point equation
Kν(w) = w for w(t) = u(t) − etLν, where Kν = Λ ◦ Γν , with Γν and Λ as defined by
equation (3.1). Notice that this map Kν is independent of the choice of the operator M .

Theorem 3.2. Kν is a compact map on XT , for each ν ∈ X. If B ⊂ X is bounded and
non-empty, and if C is a closed convex subset of XT , such that Kν(C) ⊂ C, for every
ν ∈ B, then Kν has a unique fixed point w ∈ C, for every ν ∈ B. If B is open, then the
map ν 7→ w is of class C1 on B.

Proof. Let a = 1
3 and b = 2

3 . Then the hypothesis of Lemma 3.1 is satisfied, implying
that Λ is compact. Furthermore, since C(J,AZ

p) is a Banach algebra, the map u 7→ u2 is
of class C2 on all of AZ

p . Clearly, the same holds for Γν . Thus, Kν is compact, and the
existence of a fixed point follows from Schauder’s fixed point theorem.

Let w1 and w2 be two such fixed points. Assume for contradiction that w1 6= w2 ,
and let T0 = inf{t ∈ [0, T ] : w1(t) 6= w2(t)}. Replacing wi by t 7→ wi(T0 + t) − etLwi(T0),
if necessary, we can assume that T0 = 0. In what follows, a curve or operator associated
with a time interval [0, s] will be given a subscript s.

Let r > 0. By Lemma 3.1, Kν,s is a contraction on the ball ‖ws‖p < r, if s > 0
is sufficiently small. By continuity, both w1,s and w2,s belong to this ball, if s > 0 has
been chosen sufficiently small. As a result, w1,s = w2,s , contradicting the assumption that
w1 6= w2 .
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Let v be an eigenvector of DKν(w1), for some eigenvalue λ, and define T0 = inf{t ∈
[0, T ] : v(t) 6= 0}. After translating w1 and v in time by T0 , if necessary, we can assume
that T0 = 0. Then vs is an eigenvector of DKν,s(w1,s), with eigenvalue λ; and by taking
s ↓ 0, we see that λ = 0. In particular, DKν(w1) has no eigenvalue 1. Thus, by the implicit
function theorem, the map ν 7→ w1 is of class C1. QED

Consider now a section S = η−1(s), defined by some nonzero continuous linear func-
tional η : X → R, and some s ∈ R. Let B be a non-empty bounded set in X . In what
follows, differentiability of a function on B means differentiability in an open neighborhood
of B.

Theorem 3.3. Let 0 < a < c ≤ T . The flow (ν, t) 7→ u(t) is of class C1, and compact,
as a map from [a, c] × B to AN

p, for any given p > 0. If the section S is transversal to the
flow, then the corresponding Poincaré map P : B → S is well defined, of class C1, and
compact.

Proof. We may assume that B is open. Let 0 < b < T . Consider the map Q : u 7→ u(t)
defined by the integral equation (2.3), where we set ν = u(0). By using that C(J,AZ

p) is a
Banach algebra, the difference Q(u) −Q(u′) can be bounded by

‖u(t) − u′(t)‖p+3 ≤
(
A1 +A2‖u+ u′‖p

)
‖u− u′‖p , (3.9)

for all t ∈ [b, T ], where A1 and A2 are constants that are independent of u and u′. This,
and the quadratic nature of Q, implies that Q defines a C1 map from C(J,AN

p) to AN

p+3 .
Composing Q with the map u(0) 7→ u described in Theorem 3.2, it follows that Φt

is a C1 map from B to AN

q , for q = p + 3. By composing several such time-t maps, this
generalizes to any given q > 0. The same holds for the map u(0) 7→ u̇(t) as well, since
L+G is a smooth map from AN

r+4 to AN

r , for any r > 0, This in turn implies that the flow
Φ : (t, ν) 7→ Φt(ν) is of class C1 on [a, c] ×B.

Assume now that S is transversal to this flow, in the sense of Definition 2.1. Then, by
the implicit function theorem, the equation η(Φt(ν)) = s has a unique solution t = t(ν),
and this crossing time is a C1 function on B. Composing ν 7→ (t(ν), ν) with Φ yields the
Poincaré map P : B → S, and this map is C1 by the chain rule. QED

Convention. From now on, we only consider p = 0 and drop the index p.

The remaining part of the paper is devoted to the proof of the following theorem,
which, together with Corollary 2.5 and Corollary 2.9, implies Theorem 1.1.

Theorem 3.4. For every integer j, modulo M = 4294, there exists a section Sj ⊂ AN, a
box Bj ⊂ Sj , a time interval [aj , cj ], and two positive real numbers βj < 1 < αj , such
that the following holds. For each j, the flow Φ : [aj , cj ] × Bj−1 → AN is transversal to
the section Sj , and the box Bj−1 Pj-covers Bj . If j 7→ uj ∈ Bj satisfies Pj(uj−1) = uj ,
for each j, then the derivative DPj(uj−1) satisfies the (αj , βj) cone condition, for each j.
Furthermore,

∏
j αj ≥ 4.8 and

∏
j βj ≤ 0.69.
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4. Implementation and further details

4.1. Integration

In order to obtain reasonably accurate error bounds for the integral operator Kν , we
decompose this operator into several parts and estimate each separately. In a first step,
we write Kν(w) = P (ν, w) + Q(ν, w), where P is linear and Q bilinear. Then Q(ν, w) is
split into three terms Q(n)(ν, w) that are homogeneous of degree n = 0, 1, 2 in w. After
substituting the sine-series for ν and w, we end up with integrals like

(
Q(1+)

m (ν, w)
)
(t) = −αm

∑

k+ℓ=m

νk

∫ t

0

e−λm(t−s)e−λkswℓ(s) ds . (4.1)

To be more precise, this term is the first of two contributions to the m-th Fourier coef-
ficient of Q(1)(ν, w). The two contributions correspond to the two terms in the identity
∂x

[
2 sin(kx) sin(ℓx)

]
= (k + ℓ) sin

(
(k + ℓ)x

)
− |k − ℓ| sin

(
|k − ℓ|x

)
.

The integral in (4.1) can be computed explicitly if wℓ is a polynomial. For other terms,
we use the following estimate. Define ‖f‖i = supt∈Ji

|f(t)| and

Gi(k, ℓ) =
k + ℓ

(λk+ℓ − λk) + 2/ti
. (4.2)

Proposition 4.1. Let K and L be the supports of k 7→ νk and ℓ 7→ wℓ , respectively. Then

∥∥Q(1+)(ν, w)
∥∥

i
≤ 2α‖ν‖‖w‖ sup

k∈K

ℓ∈L

Gi(k, ℓ)e
−λkti−1 . (4.3)

The supremum in equation (4.3) can be determined in a finite computation, using the
following monotonicity properties of Gi .

Proposition 4.2. For ℓ > 0, the set of all k > κ such that Gi(k+ 1, ℓ) < Gi(k, ℓ) is of the
form {k′ℓ, k′ℓ+1, . . .} with ℓ 7→ k′ℓ non-increasing for ℓ > (α/12)1/2. An analogous statement
holds with the roles of k and ℓ exchanged. Furthermore, Gi(k, ℓ+ 1) ≤ Gi(k + 1, ℓ) for all
k and ℓ.

Similar bounds and monotonicity properties can be obtained for the remaining terms
in the splitting of Kν(ω). For details we refer to the package ContFuns.CE.Ops.KS of
computer programs [22]. The proofs of these propositions are elementary and thus will not
be given here.

4.2. Choice of boxes

Our boxes Bj are centered at points ūj = ū(jτ̄/M) along an approximate periodic orbit
ū, where 0 ≤ j < M . Consider now j fixed. Below we will describe a choice of basis
Σj = (σj,1, σj,2, . . . , σj,N ) in PLX . In particular, σj,2 is roughly the flow direction at ūj .
Using the unique representation x =

∑
k ck(x)σj,k + PHx for vectors x ∈ X , we define

Sj = {x ∈ X : ηj(x) = ηj(ūj)}, where ηj(x) = c2(x).
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Definition 2.3 of a box requires a splitting X = Y ⊕Θ⊕Z. We choose Y and Θ to be
the one-dimensional spaces spanned by v1 and v2 , respectively. Then Z is the closure of
Span({v3,v4, . . .}). In order to specify the box Bj , we choose (determine experimentally)
positive real numbers (rj,1, rj,3, . . . , rj,N , εj), where N = 40. An affine map ψj : Y×Z → X
is now defined by setting ψj(vk) = ūj + rj,kσj,k for k = 1, 3, . . . , N , and ψj(h) = ūj + εjh
for h ∈ PHX . The box Bj is now defined as the image of the unit ball (for the norm below)
in Y × Z under the map ψj . To be more precise, the norm (on X ) used here is

‖x‖′ = max
{
|x1|, |x2|, . . . , |xN |, ‖PHx‖

}
, x =

∞∑

k=1

xkvk . (4.4)

The first 8 vectors in the basis Σj are the first 8 approximate eigenvectors (in decreas-
ing order of the the |eigenvalues|) for the derivative of the time-τ̄ map at the point ūj .
Thus, σj,1 is approximately the expanding direction, and σj,1 approximates the flow direc-
tion, which corresponds to an eigenvalue 1. For k = 9, . . . , 20 we choose σj,k = (I− P )vk ,
where P is an approximation for the spectral projection for the largest 8 (in modulus)
eigenvalues of the linearized time-τ̄ map at ū0 . For k = 21, . . . , 40, we simply choose
σj,k = vk . A precise description of all these choices can be found in the source code of our
computer programs [22].

4.3. Mapping boxes by using convexity

In order to prove the covering relations described in Theorem 3.4, we need to compute the
image of the box Bj under the intermediate Poincaré map Pj , for each j. Let now j be
fixed. The first step in estimating Pj is to find an interval [a, c] such that the section Sj is
transversal, in the sense of Definition 2.1, to the flow with initial conditions in B = Bj−1

and times in [a, c]. Assume that we have found such an interval. Then, for every u ∈ B
there exists t ∈ [a, c], such that Pj(u) = EΦt(u). Here, E denotes some fixed affine
projection from X onto Sj . Thus, in order to verify that B Pj-covers Bj , it suffices to
verify that B EΦt-covers Bj , for every t ∈ [a, c]. In what follows, let P ′

j = EΦt , for some
fixed but arbitrary t ∈ [a, c].

Computing P ′
j(B) directly, or even P ′

j(∂B), is a prohibitive task. Fortunately, it
suffices to compute the images of the “corners” of B. To be more precise, fix 0 < n < N ,
set I = {1, 3, . . . , n + 1}, and denote by P the canonical projection onto the span of
{σj−1,k}k∈I . In order to simplify notation, assume that ūj−1 = 0. Write B as the sum of
the n-dimensional rectangle R = PB and the ball b = (I−P)B. The ball b can be regarded
as the “center” of B = b + R. And by “corners” of B we mean the sets b + wi , where
{w1, w2, . . . , wm} are the m = 2n corners of R.

In order to see why it suffices to compute the corners of B, consider the map f(x) =
P ′

j(x) − P ′
j(0), from X = Xj−1 to Xj , which satisfies f(0) = 0. The following arguments

apply to more general situations.

Bound on f from a bound on Df. Suppose that, for every point x ∈ X we have
a bound F (x) on Df(B)x. That is, F (x) is a closed convex set containing Df(w)x,

for every w ∈ B. If t 7→ w(t) is any continuous curve in B, then
∫ 1

o
dtDf(w(t))x is a
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convex combination of elements from F (x) and thus belongs to F (x). In particular, taking
w(t) = tx, we see that f(x) ∈ F (x). Thus, F is a bound for f on B.

Convex combinations of corners. Now we use that every point x ∈ B admits a (unique)
representation x = ξ +

∑
i siwi , where ξ ∈ b, and where 0 ≤ si ≤ 1 are real numbers that

add up to 1. Thus

f(x) =

∫ 1

0

dtDf(tx)x =
∑

i

si

∫ 1

0

dtDf(tx)(ξ + wi) , (4.5)

and by convexity, this point belongs to
∑

i siF (ξ +wi). If F (b+wi) denotes a convex set
containing F (ξ + wi), for every ξ ∈ b, then the bounds {F (b + wi)}m

i=1 are sufficient to
estimate f(x) for arbitrary x ∈ B.

4.4. The computer-assisted proof of Theorem 3.4

We continue our top-down approach to the original problem by reducing the proof of
Theorem 3.4 further, to a point where it suffices to check a finite number of inequalities
between (representable) numbers. In this section, we explain the problem-specific part of
this process. The remaining task is simple enough that it can be automated and carried
out by a computer. For the details of this last part we refer to the source code of our
programs [22].

Besides explicit computations (basic operations for numbers or function), the proof of
Theorem 3.4 involves the solution of implicit equations. In such cases, we first determine
an approximate solution. Then the problem is reduced to verifying a-posteriori estimates
that imply the existence of a true solution nearby. In particular, the sequence of boxes
Bj represent a numerical approximation on the flow and its eigendirections. The covering
relations are a-posteriori estimates that guarantee the existence of a true orbit, including
the points uj ∈ Bj described in Theorem 3.4. Similarly at the level of local solution curves:
The first step is to find an approximate fixed point w0 of the map Kν . A bound C on the
fixed point w is then obtained by verifying set inclusions in AZ, as described in Subsection
3.1. These inclusion relations in turn reduce to simple inequalities in R.

Our computer programs are structured accordingly, into a “dynamical systems” level
that deals with objects like boxes, a level where the main objects are functions in C(J,AZ),
another level that deals with maps between the spaces AZ , and a Scalar level. Every
computation eventually ends up at the Scalar level; it can be carried out either in rigorous
mode (Scalar => Interval), or in purely numeric mode (Scalar => Numeric) if the goal
is to find an approximate solution. The other levels merely organize the proof.

Many of these steps require accurate bounds to succeed, and this has to be achieved
with a finite (and reasonable) number of operations. This is made possible by the fact
that the map Kν is uniformly approximable by finite dimensional mappings. It allows for
accurate bounds that involve only finitely many inequalities.

The general approach is quite standard by now. We start by associating to a space
X a collection std(X) of subsets of X that are representable on the computer. We will
refer to these sets as “standard sets” for X. A “bound” on an element w ∈ X is then a set
W ∈ std(X) containing w, while a bound on a map f : X → Y is a map F : DF → std(Y ),
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with domain DF ⊂ std(X), such that f(w) ∈ F (W ) whenever w ∈ W ∈ DF . Notice that
the composition of two bounds, if defined, is a bound on the corresponding composed map.
This and other properties allow us to combine bounds on elementary maps into bounds
on more complex maps like Kν , and thus to mechanize the necessary estimates. Bounds
are implemented as procedure or functions in our programs. Any procedure (or function)
that uses a theorem first tries to verify that the hypotheses of the theorem are satisfied,
for the given input. If the hypotheses cannot be verified, then the procedure aborts with
an Error message. In that sense, every implemented bound F knows its domain: If a
procedure (and thus any other procedure that may get invoked in the process) terminates
without generating an Error, then the input is by definition in the domain of F .

The basic bounds used in the present proof have been developed already in [16], up to
the level of bounds on basic operations (like sums, products, antiderivatives, norms, etc.)
involving the spaces R and X Z, as well as between products of these spaces. Thus, in order
to avoid undue repetition, the reader is referred to [16,17] for a description of the bounds
used at this level.

Here, we also have to choose and represent appropriate sets in the space C(J,X Z).
For functions in C(J,R), we use approximating polynomials of degrees up to m = 20, and
error estimates on n = 10 subintervals Ji . Given G = (G0, . . . , Gm) in std(R)m+1 and
H = (H1, . . . , Hn) in std(R+)n, define CG,H to be the set of all functions f ∈ C(J,R) that
admit a representation

f(t) =

m∑

k=0

gkt
k + h(t) , h ∈ C(J,R) , (4.6)

such that gj ∈ Gj for all j, and ‖h‖i ≤ hi ∈ Hi for all i. We now define std(C(J,R)) to
be the collection of all such sets CG,H . These standard sets correspond to the data type
ContFun in our programs.

Consider now the space C(J,AZ). Functions in this space can be represented as Fourier
series u(t) =

∑
k uk(t)vk with coefficients uk ∈ C(J,R). The data type for function

ν =
∑

k νkvk in AZ, and the corresponding collection of subsets std(AZ), have already
been defined in [17]. In fact, this type was derived from a generic data type Fourier, with
coefficients in some unspecified Banach algebra, whose standard sets are represented by a
generic type FCoeff. We can take advantage of this by instantiating FCoeff with ContFun,
to define a derived type TFourier. The sets associated with data of type TFourier are our
standard sets for the space C(J,AZ). We note that the (bound on the) norm inherited from
this procedure corresponds to the trivial partition {J} of J . The norm for other choices
of the partition has to be implemented afterwards.

It is now straightforward to implement bounds on the basic operations involving the
spaces AZ and C(J,AZ). This includes e.g. the evaluation map u 7→ u(t) from C(J,AZ) to
AZ. A bound on the map Kν is straightforward as well, albeit tedious, as Subsection 4.1
indicates. Our bound on Kν yields a bound on the time-t map Φt , as described earlier.
The map whose fixed point solves (2.5) is very similar to Kν , and we can use the exact
same estimates as for Kν . This in turn yields a abound on the derivative DΦt .

For the intermediate Poincaré maps Pj we use two different bounds. Let us first
describe the “simple” version and its application. We start with a numerical guess for
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a time-interval [a, c] that should contain the crossing times t(ν), for all initial conditions
ν ∈ Bj . Then we verify the transversality condition in Definition 2.1, with B = Bj−1 and
S = Sj , using the convexity argument described in Subsection 4.3, for for the maps f = Φt

with t ∈ [a, c]. A bound on Pj is now given by a bound on P ′
j = EΦt that is valid for every

t ∈ [a, c]. Here, Ex is the vector obtained from x ∈ X by setting its second coordinate (in
the basis Σj) equal to zero.

Consider now the problem of verifying that Bj−1 P
′
j-covers Bj . Let f = ψ−1

j ◦ P ′
j ◦

ψj−1 , where ψj−1 and ψj are the affine maps associated with the boxes Bj−1 and Bj ,
respectively. That is, Bj = ψj(B), where B denotes the unit ball in the space X = Y ⊕Z,
equipped with the norm (4.4), where x2 = 0. Let I = {1, 3, . . . , 20}. Denote by P the
canonical projection in X onto the span of {vk}k∈I . Then every x ∈ X has a unique
representation x =

∑
k∈I ck(x)vk + ξ(x), where ξ(x) = (I − P)x.

Using the notation from Subsection 4.3, the box B has m = 219 corners b+ wi , with
ck(wi) = ±1 and ξ(wi) = 0. We check that c1(f(b + wi)) ≥ αj > 1 whenever c1(wi) = 1,
and that c1(f(b + wi)) ≤ −αj < −1 whenever c1(wi) = −1. In addition, we verify that
|ck(f(b+wi))| ≤ βj < 1 for k ≥ 3, and that ‖ξ(f(b+wi))‖ ≤ βj < 1. This is done by using
a bound F on Df , as described in Subsection 4.3. By convexity, the above inequalities
imply that Bj−1 P

′
j-covers Bj . This holds for every t ∈ [a, c], so Bj−1 Pj-covers Bj .

Once these covering relations have been verified, the existence of the periodic orbit u
follows from Corollary 2.5. This allows us to bound the derivatives DPj(uj−1) by using
equation (2.6) and Proposition 2.6. Now we repeat the steps described above, but with F
a bound on the derivative of f = ψ−1

j ◦ Pj ◦ ψj−1 on B. By linearity, this is equivalent to
verifying an (αj , βj) cone condition.

For a detailed and complete description of all these steps, we refer to the source code
(in Ada95) and input data for our computer programs [22]. These programs were run
successfully on several different types of machines, using public versions of the GNAT
compiler [23]).
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[10] P. Zgliczyński, K. Mischaikow, Rigorous numerics for partial differential equations: The
Kuramoto-Sivashinsky equation, Found. of Comp. Math. 1, 255–288 (2001).
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