
MOX-Report No. 34/2021

An efficient and robust soil erosion model at the basin
scale

Bonaventura, L.;  Gatti F.; Menafoglio A.; Rossi D.; Brambilla

D.; Papini M.; Longoni L.

MOX, Dipartimento di Matematica 
Politecnico di Milano, Via Bonardi 9 - 20133 Milano (Italy)

mox-dmat@polimi.it http://mox.polimi.it



An efficient and robust soil erosion model

at the basin scale

Luca Bonaventura (1) Federico Gatti(1) Alessandra Menafoglio(1) Daniele Rossi(1)

Davide Brambilla(2) Monica Papini(2) Laura Longoni(2)

June 3, 2021

(1) MOX – Modelling and Scientific Computing
Dipartimento di Matematica, Politecnico di Milano

Piazza Leonardo da Vinci, 20133 Milano, Italy
luca.bonaventura@polimi.it

federico.gatti@polimi.it

alessandra.menafoglio@polimi.it

(2) Dipartimento di Ingegneria Civile e Ambientale
Politecnico di Milano

Via G. Previati 1/c, 23900 Lecco, Italy
davide.brambilla@polimi.it

monica.papini@polimi.it

laura.longoni@polimi.it

Keywords: basin scale modeling, erosion modeling, semi-implicit time dis-
cretization, finite differences, finite volumes.

AMS Subject Classification: 5L60, 35Q35, 65Z05, 76B03, 76D99

1



Abstract

We present a numerical model of soil erosion at the basin scale
that allows one to describe surface run-off without a priori identifying
drainage zones, river beds and other water bodies. The model is based
on robust and unconditionally stable numerical techniques and guar-
antees mass conservation and positivity of the surface and subsurface
water layers. Furthermore, the method is equipped with a geostatisti-
cal preprocessor that can perform downscaling of data retrieved from
digital databases at coarser resolutions and integrate them with field
measurements. Numerical experiments on both idealized and realistic
configurations demonstrate the effectiveness of the proposed method in
reproducing transient high resolution features at a reduced computa-
tional cost and to reproduce correctly the main hydrographic features
of the considered catchment. Furthermore, probabilistic forecasts can
be carried out, also with limited computational effort, based on soil
data automatically generated by the geostatistical preprocessor. Even
though the model results are still far from full quantitative agreement
with the available data, robust estimates of water levels, discharge and
of the order of magnitude of the total sediment yield were achieved in
two validation experiments on realistic benchmarks.
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1 Introduction

Soil erosion in mountain catchments is a widely studied phenomenon with
major economical and societal impacts. A great number of models for the
simulation of this phenomenon exist, see e.g., among many others, [25, 29,
30, 47, 53, 57] and the references therein. Even though a complete review of
these models goes beyond the scope of this paper, a more detailed discussion
of some of the most relevant conceptual and physically based models is
the starting point of our work. One conclusion that can be anticipated
is that most of the models available for high resolution simulation of soil
erosion at the basin scale suffer from several basic shortcomings, such as the
need for substantial pre-processing of the orography data and for a priori
identification of river beds and other drainage zones.

Our goal in this work is to introduce a novel approach to the distributed
modelling of soil erosion over mountain catchments which addresses some of
these shortcomings. The main novel feature of the proposed model consists
in the use of the De Saint-Venant equations to model surface water flow over
the whole domain, without a priori identification of drainage zones. This
allows one to model basins in which strong variations of the surface run-off
occur without ad hoc hypotheses, as well as to include naturally lakes and
other water reservoirs. The model is also equipped with a geostatistical
preprocessor, fully described in [32], which can be used to downscale to fine
resolution meshes the soil composition data available in global databases
like SoilGrids [42] and to integrate them with field measurements. With
respect to all the other model components, very simple choices have been
made so far, which are justified for this first development stage and which
are sufficient to demonstrate the model capabilities. However, all these
choices can and should be revised in future development stages, depending
essentially on the level of computational resources that are available to run
the model. Several possible improvements will be already outlined in this
work.

The model equations are approximated numerically using a very well
tested, efficient and robust semi-implicit discretization method [13, 17]. The
proposed technique yields an effective spatially distributed model, able to
handle the wide range of transients that can arise in long term simulations
and to run even at high resolution with time step values that are dictated by
accuracy rather than stability reasons. Furthermore, a dynamical time step
adaptation is employed, which automatically reduces the time step during
intensive rainfall events and increases it when no precipitation occurs. The
numerical discretization guarantees exact mass conservation, positivity of
the water and sediment layers and consistency of the discretized equations
for tracers with that for the water mass, according to the prescriptions in
[36]. Preliminary versions of this model have been introduced in [1, 37]. The
model has been implemented in an object oriented programming language.
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The results of the first verification and validation experiments confirm the
model efficiency, robustness and flexibility and demonstrate its potential
role as the basis for a more comprehensive simulation tool with uncertainty
quantification capabilities.

The structure of the paper is the following. A review of erosion mod-
els at the basin scale is presented in Section 2, where several shortcomings
of the currently available models are highlighted. The governing equations
of the proposed model are then introduced in Section 3, while their dis-
cretization is presented in Section 4. The data preprocessing strategy and
the companion geostatistical preprocessor are briefly described in Section 5.
A first attempt at verification and validation of the model is presented in
Sections 6,7, concerning respectively simulations on idealized and realistic
orography. Some conclusions and some perspectives for future developments
are discussed in Section 8.

2 A review of erosion models at the basin scale

As already mentioned in Section 1, a complete review of soil erosion models
at the basin scale goes beyond the scope of this paper. A well known attempt
in this direction is represented by [53], while more recent efforts are presented
in [25, 30, 47, 57], among many others.

Erosion models can broadly be classified as either empirical, conceptual
or physically based. Empirical models describe the effects of erosion process
(for example, the amount of detached soil) in terms of parameters that can
either be measured, such as the temperature, slope gradient and basin area,
or need to be subjectively assigned, such as the soil erodibility factor and
the vegetation cover. These models do not seek to describe the underlying
physics and assume homogeneity of input data throughout the basin. There-
fore, they give more reliable results when applied to limited areas, where the
variation of such parameters may be considered negligible. Examples of this
group are the well known USLE [82], RUSLE [61] and the Gavrilović models
[33, 34, 24].

Conceptual models usually represent catchments as a series of internal
storage units and model the general mechanisms that govern the interchange
of sediment and water between these storage compartments. Input parame-
ters are usually obtained by calibration, based on field-measured data. Re-
search shows that determining the optimal set of values can be cumbersome.
In fact, there might be many sets of optimal parameter values and increas-
ing the model complexity increases the difficulty in the determination of
these values [53]. Among the best known conceptual models we mention
for example AGNPS [83], SWRRB , [5], [81], LASCAM [77, 78], SEDEM
[65]. All these models often use empirical models as subcomponents. For
the purposes of the present work, the model presented in [8] is especially
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relevant, since its formulation has represented the starting point of our de-
velopment. However, the original approach of [8] does not guarantee mass
conservation and has several limitations also common to other models, such
as for example the need to identify a priori the drainage zones.

Physically based models are the most complex ones and try to simulate
directly most of the processes that take place in reality, like the impact of
raindrops on the soil and the consequent detachment of soil particles. These
models usually rely on the numerical solution of the mass and momentum
conservation equations for the water flow and of the mass conservation equa-
tion for sediments. These models require a large amount of input data,
which are often scarce or inconsistent. This leads to poor input datasets
that create errors in output, which can be seen as a drawback that generally
applies to all the models of this group. Another problem is the risk of over-
parametrization. More specifically, the large number of parameters (tens
or even hundreds) that these models require makes it almost impossible to
find optimal values [53]. Although the parameters have physical meaning
and should be measured in the field, this is sometimes impossible in prac-
tice due to their temporal and spatial variability and to time and budget
limitations. As a result, either calibration or some form of uncertainty quan-
tification have to be performed, thus reducing the effectiveness of the model
predictions. Among these models, we can mention LISEM [66], WEPP [73],
EUROSEM [56], SHESED [79] (which is based on the previous SHE hydro-
logical model [2, 3]), DHSVM [80, 23], TOPKAPI [21, 70] and GEOTOP
[64, 69, 26]. The latter, however, focuses more on evapotranspiration and
energy budgets than on erosion modelling. While including rather sophisti-
cated descriptions of soil erosion, all these models use simplified equations
for the surface run-off, require a priori identification of rivers and drainage
zones and are not capable of handling domains in which larger water bodies
are present, such as lakes or estuaries.

3 The mathematical model

In this Section, we describe the governing equations that constitute the pro-
posed basin scale model, which can be seen as an improvement and extension
of the model proposed in [8], from which the general concept and some basic
modelling choices for several physical processes are borrowed. On the other
hand, the proposed approach is fully mass conservative and employs the De
Saint-Venant equations to model surface water flow over the whole domain.

We consider a rectangular domain Ω = [0, Lx]× [0, Ly] which contains a
subdomain Ωb ⊂ Ω that represents the basin under study. This subdomain
is usually identified by geometric and hydrologic considerations. We then
consider the drainage subdomain Ωd ⊂ Ωb, whose extension varies in time
and which is only implicitly defined as the portion of Ωb where the depth
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of the surface water layer H is above a minimum threshold Hd. Notice that
H = η − b, where b denotes the orography profile defined on Ω and η is the
height of water free surface. For x ∈ Ωd, we model the motion of the surface
water layer by the De Saint-Venant equations

∂tH +∇ · (Hu) = (1− µ)p− f,
∂tu + u · ∇u = −g∇η − γ(u)u. (1)

Here u is the surface water velocity, g is the gravitational acceleration and
γ is a friction term to be defined later. The source term p denotes the
precipitation intensity, which is corrected to account for snow by the non-
dimensional parameter µ. This parameter takes the value of 1 if the ground
temperature is lower than or equal to the melting temperature Tm and 0 if it
is higher. The infiltration term f, to be defined in the following, represents
the exchange of water mass between the surface layer and the gravitational
layer.

It is important to remark that the equation for the surface water layer
thickness is in divergence form, which guarantees exact mass conservation
if appropriate numerical methods are employed. We also assume that the
orography profile is not changing in time, so that ∂tH = ∂tη. This simpli-
fication is justified in the limit of thin sediment layers, while bed evolution
can be taken into account, if necessary, by a decoupled approach, see e.g.
[31]. Notice also that, for x ∈ Ωb\Ωd, i.e. wherever H ≤ Hd, the governing
equations are instead modified by assuming zero horizontal velocities and,
as a consequence, null mass fluxes, so that in this region one has

∂tH = (1− µ)p− f,
u = 0. (2)

In this way, drainage zones are automatically identified while preserving
mass conservation. Notice that, on the portion of ∂Ωd on which u = 0,
which coincides with the portion of ∂Ωd which is in the interior of Ωb, zero
mass flux boundary conditions are naturally imposed. On the other hand,
on ∂Ωd ∩ ∂Ωb outflow boundary conditions are assigned. Concerning the
friction coefficient, it is defined by the Manning-Strickler formula

γ(u) =
g n2

H
4
3

|u| , (3)

where n is the Manning friction coefficient, see e.g. [18]. The appropriate
model for this coefficient that is valid for steep slopes and mountain torrents
has been discussed in the series of papers [20, 62, 63], where a number of
corrections to the values typically employed in river hydraulics have been
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proposed. Following [62], we will consider the formula

1

nr
=

0.56 g0.44(H |u|)0.11

|∇b|0.33 (Rd90)0.45
for |∇b| > 0.6%

1

nr
=

2.73 g0.49(H |u|)0.03

|∇b|0.08 (Rd90)0.24
, for |∇b| ≤ 0.6%, (4)

where d90, as customary, denotes the value such that 90% of the soil sediment
has grain diameter d ≤ d90. Notice that we have introduced a roughness
coefficient R that multiplies d90 in the formulation above, to be used to
account for model incompleteness and intrinsic model errors. This is the only
empirical parameter that is not directly derived from data but left instead
to be determined by model calibration experiments, see the discussion in
Section 7.2. In order to allow for regions with very small values of the
slope, the Manning coefficient actually used in the model is defined as n =
max{nr, nmin}, where a minimum value nmin is set by the user depending
on the specific application. For all the simulations performed in this paper,
we assume g = 9.81m s−2 and nmin = 0.01 s m− 1

3 .
The model is then completed by a number of equations for the time evo-

lution of the equivalent depths of other two-dimensional, vertically averaged
water and sediment layers, which are all defined for x ∈ Ωb. More specif-
ically, we consider a snow layer with equivalent depth hsn, a gravitational
layer with equivalent depth hg and a sediment layer with equivalent depth
hsd. For each of these layers, conservation of mass is assumed, so as to obtain

∂thsn = µp− s,
∂thsd +∇ · fsd(hsd,u) = w

∂thg +∇ · fg(hg) = s+ f − ev. (5)

Here fsd, fg denote the sediment and gravitational layer fluxes, while p, s, f
denote, as before, the precipitation, snowfall and infiltration rates, respec-
tively, while ev represents the evapotraspiration rate and w is the sediment
source rate. For the horizontal mass fluxes and the mass exchanges among
layers, relatively simple models are employed in the present formulation,
which will now be discussed in greater detail, starting from the topmost
layer. Each of these, however, could and should be replaced by more sophis-
ticated approaches, the only limitations being in practice the available data
and the computational cost.

The atmosphere is considered as a water reservoir of infinite capacity.
Water leaves this reservoir through precipitation, in form of snow or rain,
which is characterized by intensity, duration and spatial distribution. On
the other hand, water may enter back the atmospheric layer via evapotran-
spiration. Precipitation can take the form of rain or snow, depending on
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the surface temperature. Rain occurs if the temperature is higher than the
melting threshold of Tm = 2 ◦C. In this case, water is assumed to end up in
the surface run-off layer. In the opposite case, precipitation takes the form
of snow and is being accumulated at the surface until temperature reaches
values high enough to cause melting. We use a linear relationship between
temperature and orography height, based on the International Standard At-
mosphere, see e.g. [27]. The snow melting rate s is computed according to
the degree-day approach [43], [28]:

s = δ(T − Tm), (6)

where δ is a parameter that determines the amount of snow that melts in one
day at a given temperature T . The evapotranspiration rate ev is modeled
via the Hargreaves equation [40], given by

ev = 0.0023Ra(Tmean + 17.8)
√
Tmax − Tmin. (7)

Here, Ra is the water equivalent extraterrestrial radiation, Tmean is the
mean air temperature, Tmax, Tmin the daily maximum and minimum air
temperatures, measured in Celsius degrees, respectively. The extraterres-
trial radiation, Ra, expressed in [MJ m−2 day−1], for each day of the year
and for different latitudes can be estimated from the solar constant, the
solar declination and the time of the year by:

Ra =
24 · 60

π
Gsc dr(ωs sinφ sin δ + cosφ cos δ sinωs), (8)

where the solar constant is given by Gsc = 0.0820[MJ m−2 min−1], dr de-
notes the inverse of the Earth-Sun distance and the sunset hour angle is
given by ωs = arccos (− tanφ tan δ), where δ is the solar declination and φ
is the latitude.

The sediment flux is expressed as a function of the surface run-off velocity
and of the local terrain slope. This dependency is modelled following the
proposal in [84] as:

fsd = α |∇b|β hsdu, (9)

where α and β are empirical coefficients. Possible values for these coefficients
are α = 2.5 and β = 1.6, as suggested in [71]. In this model, the critical shear
stress is set to zero, so that the sediment movement begins simultaneously
with the water movement. The sediment source term w is defined according
to the Gavrilović method [8, 34, 35]. It corresponds to the rate of sediment
production due to erosive processes as a result of precipitation and it is
computed as:

w = π (1− µ) p τg Z
3/2. (10)

Terms τg and Z are empirical coefficients that depend on temperature and
land use, respectively, while p is the precipitation intensity. Although the
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Gavrilović method gives results on a yearly basis, it is assumed that it is
also valid for shorter periods in which w will be interpreted as an intensity.

The gravitational layer is the soil portion in which water can move due
to gravitational forces. This movement is governed mainly by the perme-
ability of the soil. For the present version of the model, the same, extremely
simplified description of the subsurface mass fluxes is adopted as in [8].
More specifically, the horizontal mass fluxes in the gravitational layer fg are
defined as:

fg(hg) = hgug, (11)

where ug represents the water velocity vertically averaged over the layer.
This velocity is modeled as ug = βg(hg,x)n, where βg is the hydraulic
conductivity, a function of the soil permeability and of the water level in the
layer, while n = −∇b/|∇b|. We estimate the hydraulic conductivity from
the characteristic diameters of the soil particles using the Hazen model [41],
which yields

βg = CH
g

ν
d210, (12)

where CH is a non dimensional coefficient with a reference value 6.54 · 10−4,
ν is the water kinematic viscosity (ν = 0.89 · 10−6m2/s at 25◦C) and d10
denotes the value such that 10% of the soil sediment has grain diameter
d ≤ d10. This very crude model will be replaced in future implementations
by a more accurate one based on vertically averaged Darcy equations coupled
to the surface layer flow, along the lines proposed in several papers, see e.g.
[14, 15, 22, 55].

The water infiltration f from the surface run-off layer to the gravitational
layer is described by the well known SCS-CN or curve number method, see
e.g. [60]. This approach has been very widely applied in practice, also to
areas similar to those that will constitute our main case study. On the other
hand, the approach has also been strongly criticized in other studies, see e.g.
[54]. In this first application of the proposed model, the more conventional
SCS-CN model will be employed, while the suggestions for improvements
proposed in [54] and other corrections due to the presence of horizontal
water fluxes will be investigated in future works.

In order to get the expression of the infiltration rate, we consider the
mass conservation laws for surface and gravitational run-off in absence of
boundary fluxes, together with the proportionality hypothesis of SCS-CN
method:

∂tH = p− f
∂thg = f

F

S
=
P − F
P

,

(13)

where S is the maximum soil moisture retention and F and P are the time
integrals of f and p, respectively. For the maximum soil moisture retention,
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we will use the following expression (in mm):

S = 254

(
100

CN
− 1

)
, (14)

where CN is the non dimensional parameter usually called the curve num-
ber. CN varies from 30 to 100 and depends on soil type, land cover and
land use. Large values of such parameter are associated with impermeable
surfaces, and subsequently to lower storage capability and higher run-off.
The US National Resources Conservation Service provides a table in which
each type of land cover and land use is associated to four values of CN ,
depending on the hydrologic soil group, which in turn defines the actual
run-off capability of the soil below. Such soil groups are usually identified
by a letter, from A to D, where A identifies the most impermeable soils
and D the most permeable ones. For example, paved roads are associated
with a CN value of 98 regardless of the soil group, woods in fair conditions
and favourable soil are associated with a value of 42 and woods with un-
favourable soil 80. More details on the criteria used to determine the CN
values will be given in Sections 5 and 7.

Finally, in order to derive an expression for f, we recast the last equation
in (13) as:

hg
S

=
H

H + hg
. (15)

It is then possible to solve the system (13) in order to get an expression for
F , which denoting with H0 and hg,0 the initial conditions for surface and
gravitational run-off, reads:

F =
S P

P + S +H0 + hg,0
, (16)

which is the the common expression of the SCS-CN formulation. To get
an expression of f, one can derive (15) with respect to time, under the
hypothesis of constant S, so as to obtain

∂tH = ∂thg

[
S2

(S − hg)2
− 1

]
. (17)

By substituting (17) in the last equation in (13), one gets for f

f = p

(
S − hg
S

)2

. (18)

Notice that, since hg ≤ S, in Equation (18) the precipitation rate is multi-
plied by a real quantity lying between 0 and 1, which ensures that f ≤ p.
An initial loss, Ia, can be added to this model to represent interception and
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depression storage. This loss occurs prior to the onset of run-off. The final
infiltration rate model reads then

f =

0, if H + hg < Ia,

p
(
S−hg
S

)2
, if H + hg > Ia.

(19)

The initial loss is usually assumed to be proportional to the maximum soil
moisture retention Ia = c S, where c is a real constant usually set equal to
values between 0.05 and 0.2.

4 The numerical discretization

The De Saint Venant equations (1) are discretized via the semi-implicit ap-
proach first proposed in [13, 17] and subsequently applied to a large number
of coastal and river circulation models. In this way the numerical stability
of the scheme depends on the velocity based Courant number ∆t |u| /∆x,
rather than on the celerity based Courant number ∆t

√
gH/∆x. The sta-

bility condition based on the latter can be much more restrictive if water
bodies of significant depth are present in the simulation domain. This al-
lows one to use larger values of the time step compared to those required by
classical explicit schemes, see e.g. [49]. An application or the same method
to two-dimensional sediment transport in rivers is presented in [68], while
a one-dimensional, section averaged model for river hydraulics based on a
similar approach is presented in [31, 67]. While higher order variants in
space and time of this approach can be devised, in this work we will stick
to the simplest, first order formulation, since high order formal accuracy is
less relevant than robustness for the target applications.

We consider a Cartesian structured mesh with resolution ∆x, ∆y on
the whole computational domain Ω = [0, Lx] × [0, Ly] and a time step ∆t.
While for simplicity the time step is assumed to be constant in this Section,
in practice an option for the adaptive choice of the time step has been
implemented, which is especially useful in realistic applications, as it will
be shown in Section 7.2. The adaption mechanism chooses time step values
up to a prescribed multiple of the Courant number ∆t

√
gH/∆x for the

surface layer. In this way, a smaller time step is automatically chosen in
case of intense rainfall events, thus allowing for better time resolution of
critical events. A staggered variable arrangement is employed, with discrete
velocity variables un

i+ 1
2
,j

and vn
i,j+ 1

2

defined at half integer locations and

discrete variables ηni,j , H
n
i,j defined at integer locations. Wet cells are defined

as those for which Hn
i,j > Hd. These cells provide a discretization of the

drainage domain Ωd. The space and time discretization is given for all wet
cells and corresponding edges by:
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ηn+1
i,j = ηni,j −

∆t

∆x

[
Hn
i+ 1

2
,j
un+1
i+ 1

2
,j
−Hn

i− 1
2
,j
un+1
i− 1

2
,j

]
− ∆t

∆y

[
Hn
i,j+ 1

2

vn+1
i,j+ 1

2

−Hn
i,j− 1

2

vn+1
i,j− 1

2

]
+ ∆t (1− µ) pni,j −∆t fni,j , (20)

un+1
i+ 1

2
,j

= Fun
i+ 1

2
,j
− g ∆t

∆x
(ηn+1
i+1,j − η

n+1
i,j )

− ∆tγn
i+ 1

2
,j
un+1
i+ 1

2
,j
, (21)

vn+1
i,j+ 1

2

= Fvn
i,j+ 1

2

− g∆t

∆y
(ηn+1
i,j+1 − η

n+1
i,j ),

− ∆tγn
i,j+ 1

2

vn+1
i,j+ 1

2

. (22)

Here Fun
i+ 1

2
,j
, Fvn

i,j+ 1
2

denote some explicit discretization of the momentum

advection terms. In this work, a first order semi-Lagrangian method with
bilinear interpolation is employed. Furthermore, the water layer depths
Hn
i+ 1

2
,j
, Hn

i,j+ 1
2

are defined in an upwind fashion, so that

Hn
i+ 1

2
,j

= Hn
i+1,j if un+1

i+ 1
2
,j
< 0

Hn
i+ 1

2
,j

= Hn
i,j if un+1

i+ 1
2
,j
> 0,

as suggested in [36]. While the method defined by (20) is only first order in
time and space, the resulting discretization is very robust and stable. The
practical solution of equations (20) is achieved as follows. The equations for
un+1
i+ 1

2
,j
, vn+1

i,j+ 1
2

are first rewritten as

un+1
i+ 1

2
,j

= αn
i+ 1

2
,j
Fun

i+ 1
2
,j
− gαn

i+ 1
2
,j

∆t

∆x
(ηn+1
i+1,j − η

n+1
i,j ) (23)

vn+1
i,j+ 1

2

= αn
i,j+ 1

2

Fvn
i,j+ 1

2

− gαn
i,j+ 1

2

∆t

∆y
(ηn+1
i,j+1 − η

n+1
i,j ) (24)

where

αn
i+ 1

2
,j

=
1

1 + ∆tγn
i+ 1

2
,j

, αn
i,j+ 1

2

=
1

1 + ∆tγn
i,j+ 1

2

,

respectively. These equation are then substituted into the equation for ηn+1
i,j ,

so as to obtain, for the interior nodes, the equations
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ηn+1
i,j = Gni,j − g

∆t2

∆x2
αn
i+ 1

2
,j
Hn
i+ 1

2
,j

(ηn+1
i+1,j − η

n+1
i,j )

+ g
∆t2

∆x2
αn
i+ 1

2
,j
Hn
i− 1

2
,j

(ηn+1
i,j − η

n+1
i−1,j)

− g
∆t2

∆y2
αn
i,j+ 1

2

Hn
i,j+ 1

2

(ηn+1
i,j+1 − η

n+1
i,j )

+ g
∆t2

∆y2
αn
i,j− 1

2

Hn
i,j− 1

2

(ηn+1
i,j − η

n+1
i,j−1)

where

Gni,j = ηni,j + ∆t(1− µ)pni,j −∆tfni,j (25)

− ∆t

∆x

[
Hn
i+ 1

2
,j
αn
i+ 1

2
,j
Fun

i+ 1
2
,j
−Hn

i− 1
2
,j
αn
i− 1

2
,j
Fun

i− 1
2
,j

]
− ∆t

∆y

[
Hn
i,j+ 1

2

αn
i,j+ 1

2

Fvn
i,j+ 1

2

−Hn
i,j− 1

2

αn
i,j− 1

2

Fvn
i,j− 1

2

]
.

Equation (25) can be rewritten as[
1 + g

∆t2

∆x2

(
αn
i+ 1

2
,j
Hn
i+ 1

2
,j

+ αn
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These equations, defined for all wet cells, define a linear system whose matrix
is symmetric, positive definite and diagonally dominant, thus guaranteeing
the possibility of a fast and accurate numerical solution via efficient numeri-
cal linear algebra solvers. In particular, we have used the conjugate gradient
method with an incomplete Cholesky factorization preconditioner, see e.g.
[46], as implemented in the Eigen library [39], with a tolerance equal to
10−6.

Notice that, since the velocities are taken to be zero at the interfaces
between wet and dry cells, the boundary conditions for system (25) are
equivalent to discrete homogeneous Neumann conditions for the free surface
ηn+1
i,j . If instead a cell has an edge that belongs to ∂Ωd ∩ ∂Ωb, imposing out-

flow boundary conditions also results in assuming the same kind of boundary
conditions. All other equations in (5) are discretized by a finite volume ap-
proach over each cell of the computational domain, with first order upwind
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definitions of the numerical fluxes fi± 1
2
,j , fi,j± 1

2
and explicit Euler time dis-

cretization, see e.g. [49]. Notice that, since Courant number larger than one
are allowed for the surface water layer dynamics, the discretization of the
sediment transport equation in (5) is performed with a time step that is a
fraction of that used for the surface layer itself.

As remarked above, the previously outlined approach has good robust-
ness and stability properties. However, when applied on mountainous ter-
rain, very large and unphysical velocity values can still arise in presence of
very large values of the orographic slope, especially during intense rainfall
events. It is to be remarked that, in these regions, the hydrostatic approxi-
mation that is at the basis of the model equations breaks down, so that one
cannot expect these equations to provide an accurate description of the flow.
In order to avoid that the model accuracy is affected by these spurious veloc-
ities, we have therefore also implemented a model option that excludes from
the computational domain cells with a slope value above a given user defined
slope threshold. These large slope regions are treated as reservoirs of water
and sediment for the rest of the computational domain. Mass conservation
is still guaranteed when using this option, since the integrated precipitation
and sediment source terms corresponding to the large slope regions provide
to the water and sediment fluxes into the lowest altitude cell neighbouring
each of these regions. It will be shown in Section 7.2 that this option allows
to improve the quality of the results, as well as improving the efficiency if
the time step adaptation mechanism is not employed.

5 Data preprocessing

For practical applications of the model described in the previous sections,
several input datasets must be made available, including in particular orog-
raphy data and soil composition data. The former is usually provided by
easily accessible Digital Terrain Models (DTM). The depression filling al-
gorithm described in [6] and also used in [7] has been implemented as part
of the model preprocessing package. In this approach, all DTM depressions
or pits are filled to the level of their lowest outlet or spill-point. As it will
be shown, however, the numerical discretization implemented in the model
is such that this form of preprocessing is not necessary for the model to
produce accurate results.

The preprocessing of soil composition data requires instead a special
treatment, since the relevant data are rarely available at the scales of interest
for the application of the proposed model. For this reason, a geostatistical
preprocessor has been developed, described in greater detail in [32], which
downscales to fine resolution meshes the soil composition data available in
global databases such as SoilGrids [42] and blends it with data from field
measurements. The key concepts underlying this preprocessor will be briefly
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reviewed here.
The potential maximum soil moisture retention is a function of soil tex-

ture, which can in turn be determined from particle-size fractions, i.e. the
relative percentages of clay, silt and sand in the soil, see e.g. [52]. These
are compositional data (CoDa), as the sum particle-size fractions have non
negative values and their sum is always equal to one. For this type of data,
well established statistical approaches have been developed in the literature
of Compositional Data Analysis [58], to deal with the data constraints and
to avoid spurious correlations among the recovered ratios [4, 48]. Consis-
tent with this literature stream, in our approach, the particle-size fractions
are transformed via an Isometric Log Ratio transform [51], so as to be able
to work within the Aitchison geometry for CoDa without modifying the
classical statistical techniques based on the Euclidean metric. Data coming
from larger scale databases are then downscaled to match the desired reso-
lution using the Isometric Log-Ratio Area-To-Point Regression Co-Kriging
(ILR-ATPRCoK) as described in [32]. Notice that the same approach also
allows one to perform a geostatistical Conditional Simulation, [72], in order
to analyze, in a Monte Carlo setting, how the uncertainty propagates to the
output of a numerical simulation. A first application of this model capabil-
ity is presented in Section 7.4, while its more systematic deployment will be
the focus of future developments of our approach.

Since the data obtained from global databases such as SoilGrids are only
available at a very low resolution, large discrepancies can be found between
these downscaled particle-size fractions and those obtained from field mea-
surements. To face this issues, the statistical preprocessor described in [32]
was modified to allow for the consideration of field data which are deemed
more representative of the granulometric distribution of some areas of the
domain (e.g. river beds). This is here done by dividing the computational
domain into two subdomains. In the first one, the estimation of particle-
size fractions is mostly driven by the global database, while in the other
subdomain it is mostly influenced by the field data. These subdomains
are separated by a transitional area where the results of the two estima-
tion procedures are blended to obtain a reasonably smooth transition. This
technique will be described in greater detail in Section 7.

6 Simulations with idealized orography

In a first attempt at verification of the model implementation, we have
performed several simulations with idealized orography profiles where, for
simplicity, the computational domain coincides with the basin and ∆x =
∆y = ∆. In these tests, we consider null initial conditions, we keep the
time step constant and we do not exclude higher slope regions from the
computational domain. In a first simulation, we consider a domain with
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Lx = 10 km,Ly = 10 km with non-reflecting boundary conditions at the
boundary of the basin domain. The orographic profile is given by

b(x, y) =15− 80
(x− Lx/2)2 + (y − Ly)2

L2
x

+ 300
(x− Lx/2)4 + (y − Ly)4

L4
x

+

2 + 0.0005 Ly + 0.0005x− 0.0005y,

whose isolines are plotted in Figure 1a. It can be seen that four depressions
are present over the domain. We consider an impermeable and non erodible
soil, so that only the discretization of the surface water layer is being tested
and no preprocessing of the orography is applied. A period of 5 days is
simulated, over which a constant and uniform rainfall intensity of 1mmh−1

on the whole basin domain is considered. A computational mesh with ∆ =
100 m, is considered and the time step was taken to be ∆t = 36 s, which
corresponds to approximately 100 time steps per hour. The isolines of the
surface run-off layer at the final time are plotted in Figure 1b, highlighting
the formation of four lakes at the bottom of the orographic depressions. The
absolute value and direction of the velocity field at the final time are plotted
in Figure 1c,d. It is to be remarked that the Courant number based on the
celerity

√
gH, computed considering the deepest portion of the small lakes, is

approximately 3, which highlights the method’s capability to employ a time
step much longer than that required by classical explicit time discretizations,
which are of almost universal use in the models reviewed in Section 2.

In a second set of simulations, in which also infiltration and motion of
the gravitational layer are considered, the domain is a square with Lx =
10 km,Ly = 10 km with an orographic profile given by the plane

b(x, y) = 2 + 0.0005 Ly + 0.0005x− 0.0005y.

A computational mesh with ∆ = 100 m and a time step ∆t = 72 s are
considered, which corresponds to 50 time steps per hour. The soil properties
are defined here by a constant curve number CN = 79. In a first simulation,
we consider a period of 20 days, over which a constant and uniform rainfall
of 5 mm h−1 is assumed. We apply reflecting boundary conditions on the
water height H at the boundary of the basin domain. In Figure 2a we
plot the time evolution of the gravitational layer water content averaged
over the whole domain. It can be observed that, as the soil reaches the
saturated conditions corresponding to the maximum soil moisture retention,
the infiltration rate approaches zero, see Figure 2b. Finally, in Figure 2c,d
the spatial distribution of the state variables associated to the surface water
layer is plotted at the final time. It can be observed that the lower portion
of the domain is correctly being filled by the surface water layer.

We have then performed a multi-event simulation on the same basin, in
order to test the model response to time dependent rainfall rates. In this
case, we apply non-reflecting boundary conditions on the water height H at
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Figure 1: First idealized test: a) orography profile b) final surface layer
thickness c) absolute value of velocity field d) direction of velocity field.

the boundary of the basin domain and we also consider evapotranspiration
and soil erodibility. We apply a homogeneous rainfall rate of 5mmh−1 over
the whole basin for a sequence of 5 days long intervals, followed by intervals
without precipitation so that the days with precipitation amount to 20% of
the total of 365 simulated days. Figure 3b shows the temperature profile
input of the simulation, which is necessary in this case to feed the evapo-
transpiration and the Gavrilović source term of the solid transport equation.
The temperature behaviour reflects a typical time series at midlatitudes for
a time span of one year starting just after the summer. Figure 3c,d show the
time evolution of the average water content in the gravitational layer, max-
imum soil moisture retention and infiltration rate. It can be seen that the
complementary behaviour of the average water content in the gravitational
layer and infiltration rate already shown in the previous test is reproduced
also with time dependent precipitation forcing.

7 Simulations with realistic orography

In this section, the results of more realistic simulations are reported, includ-
ing some first comparison with field data available for a specific catchment.
As it will be seen, the model is still far from full quantitative agreement with
the available data and a number of further improvements and calibration
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Figure 2: Second idealized test, single event simulation: a) time evolution of
average water content in the gravitational layer (black) and maximum soil
moisture retention (green) b) time evolution of mean infiltration rate (black)
and precipitation rate (green) c) isolines at final time of water content in the
surface layer in m d) surface water velocity field at final time, superimposed
onto the orography isolines.
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Figure 3: Second idealized test, multi event simulation: time evolution of
a) precipitation rate b) temperature c) average water content in the gravi-
tational layer (black) and maximum soil moisture retention (green); d) in-
filtration rate.
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experiments are necessary to turn it into a fully reliable operational tool.
However, the results obtained show that it is able to reproduce correctly
the main hydrographic features of the considered catchment, to achieve a
good estimate of the order of magnitude of the total sediment yield and to
perform uncertainty quantification experiments at a limited computational
cost.

7.1 Data preprocessing and simulation setup

In a set of simulations with more realistic orography, we have considered
a domain corresponding to the Caldone catchment, which is located in the
vicinity of the city of Lecco (Northern Italy) and crossed by the small river
with the same name. The hydrographic catchment covers an area of 28km2.
The land cover of the catchments mainly includes forests (67%), herbaceous
vegetation (16%) and urban areas (13%), according to the CORINE Land
Cover Classification (CLC) [10, 11]. For more details on the river catchment
structure, we refer to [44]. As in most pre-Alpine environments, active
geomorphic processes include colluvial and fluvial transport responsible for
the yield and propagation of sediment downstream. In Figures 4 a), b), we
represent the DTM and the CLC map for the case study at a resolution of
∆ = 5 m, respectively. In Figure 4 a) we also report the location of two
control points where sediment collection tanks are located (blue dots) and
that of the control point where the surface water height and discharge are
monitored (red dot). In Figure 4 c) we show the slope field (in degrees),
while 4 d) displays the same field after removal of the regions with slope
values larger than 100% (highlighted in grey).

The data preprocessor presented in section 5 has been applied at a res-
olution of ∆ = 5 m to produce the soil compositional data (particle size
fractions, denoted in the following as psf) employed in the simulation. In
particular, the ILR-ATPRCoK approach was applied combining both Soil-
Grids data and the field data described in [59, 76]. Since the field data were
collected almost exclusively at the bottom of valleys, the catchment was sub-
divided into three subdomains, based on the local value of the orography
slope. Below the threshold value of sinf = 20 degrees, only the field data
were used as input for the preprocessor, while above the value ssup = 30
degrees, only SoilGrids data were used. For cells with slopes in the interval
[sinf , ssup], the weighted average

χ =
(ssup − s)χf + (s− sinf )χg

ssup − sinf
(27)

was used to compute the compositional value χ. Here, χf denotes the com-
positional value obtained from the field data only and χg the one obtained
from global SoilGrids data only, respectively. After determining the compo-
sitional data, for each cell granulometric curves were obtained from the data
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a) b)

c) d)

Figure 4: a) 5 m-resolution DTM of the study area, in black we represent
the polygon identifying the boundary of the Caldone basin where the non-
reflecting boundary conditions are applied, blue points identify the mean
location of the tanks considered for the sediment transport and the red
point is the control point for the superficial water height b) CLC map c)
slope of 5m-resolution DTM d) slope of 5m-resolution DTM after removal
of areas with more than 100% slope.
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a) b)

c) d)

Figure 5: Maps of soil data obtained with blended ILR-ATPRCoK proce-
dure: a) clay psf b) sand psf c) maximum soil moisture retention S d) d90.

by linear interpolation and the d10, d90 parameter values were determined
from these curves for each cell. An example of the sand and clay compo-
sitions, maximum soil moisture retention S and d90 in the final compound
dataset is shown in Fig. 5.

In all simulations, the precipitation term p is taken to be a space-time
dependent field. Data coming from nine rain gauges at different locations
in the catchment were used, available from the regional hydrological service
[50]. A two dimensional map was derived via the Inverse Distance Weighting
(IDW) method, see e.g. [19]. Since data on soil moisture content are not
readily available, for all simulations the following initialization procedure
was followed. Firstly, the model was run starting from a dry gravitational
layer, assuming a constant precipitation rate of 20 mm/h for a preliminary
period of 4 days, followed by another 4 days without precipitation. The
output of this run was then used to initialize the actual simulation.
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Two main kinds of data were employed for the sensitivity analysis and
the model calibration. Firstly, water depth and discharge values recorded
at the monitoring station denoted by the red dot in Figure 4a) were used
for a comparison with the model results. This monitoring station is located
on the Caldone river bed. Since the model resolution is coarser than what
would be necessary to resolve accurately the river bed, the simulated river
bed does not exactly correspond to the real one. For this reason, the com-
parison with these data was done considering the model output in all the
cells nearest to the location of the monitoring station. As a consequence, for
each model resolution multiple outputs will be compared to the measured
data. Furthermore, data concerning two sediment accumulation tanks lo-
cated at the blue dots in Figure 4a) were also used. In particular, the data
measured at the location closest to the water depth and discharge moni-
toring station were considered. In this case, the total cumulated sediment
inflow corresponding to the cells nearest to the tank was summed to provide
results for comparison with the available data.

7.2 Sensitivity to roughness coefficient values and inclusion
of large slope regions

In a first attempt to assess the sensitivity of the model to the choice of
the empirical roughness parameter R, we have run simulations of an intense
rain period consisting of the 35 days comprised between October 26 and
November 30 2018, at resolutions ∆ = 50 m and ∆ = 35 m, respectively.
Different values of R were employed, as shown in Figures 6, 7. Notice
that, as explained above, the model output at different locations around the
monitoring stations is reported. It can be observed that the data falls in
the envelope of the model curves, with peak value correctly simulated only
for one of the model cells. On the other hand, too high water levels are
observed for a long period after each peak at all locations. This unphysical
effect still requires deeper investigation and its removal will be addressed in
future model versions.

Based on this sensitivity analysis, the value R = 102 was considered to
yield an acceptable compromise between computed peak values for water
depth and discharge and intensity of the post-peak spurious effect. For this
reason, the value R = 102 was chosen for the simulations in the rest of
the paper. For clarity, only the results computed with this value for the
simulation at ∆ = 35 m resolution are reported in Figure 8. The impact
of the exclusion of the large slope regions was also assessed. Results of the
simulations in which regions with slope above 100% were excluded (labelled
LS ) are in general not too different from those in which these region were
part of the computational domain (labelled no LS ). However, it can be seen
in Figure 9 that the inclusion of the high slope regions results in unrealistic
tails in the time series of the water height at the monitoring location.
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a) b)

Figure 6: Sensitivity analysis with respect to the roughness coefficient values:
simulation at ∆ = 50m resolution a) water height b) discharge at monitoring
location.

a) b)

Figure 7: Sensitivity analysis with respect to the roughness coefficient values:
simulation at ∆ = 35m resolution a) water height b) discharge at monitoring
location.

a) b)

Figure 8: Simulation at ∆ = 35m resolution with R = 102, a) water height
b) discharge at monitoring location.
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a) b)

Figure 9: Sensitivity analysis with respect to the inclusion of large slope
regions: water height in a) simulation at ∆ = 50m resolution b) simulation
at ∆ = 35m resolution.

These simulations were also used to assess the efficiency of our model
implementation. The code was executed on a HPC server node with a Xeon
E5-2640 v4 2.4GHz processor. The 35 days simulations at ∆ = 50m required
about one hour of CPU time, while the simulations at ∆ = 35 m required
about 4 hours. It has been observed that the time step adaptation mech-
anism is especially useful in reducing the total computational cost. More
specifically, the simulations with adaptive choice of the time step required
between 25% and 30% of the CPU time of the corresponding simulations
run with fixed time step (choosing the largest value for which the simulation
could be completed successfully). The effectiveness of the adaptive choice
of the time step can also be seen in Figure 10, where the number of steps
required per hour in each of the two simulations is displayed. It can be
observed that the time step adaptation mechanism only requires to use very
small time steps for relatively short periods that coincide with the peak
rainfall events, while much longer time steps can be used most of the time.

7.3 Deterministic one year simulations

Long term deterministic simulations covering the period between September
2017 and September 2018 have also been run at resolutions ∆ = 50m, 35m,
and ∆ = 20 m, respectively. On the basis of the discussion in Section 7.2,
the simulations were carried out excluding the regions with slope values
above 100% and using values of the d90 parameter rescaled by the empirical
roughness factor R = 102. In this case, the simulations were run on an Intel
i5 2.67GHz processor with 8GB RAM, requiring 7.25, 36.27 and 102.77 hours
for the ∆ = 50m, 35m, and ∆ = 20m, respectively.

An example of the model capability to reproduce realistic run-off pat-
terns without need to prescribe run-off regions a priori is shown in Figure
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a) b)

Figure 10: Number of time steps used per hour in a) simulations at ∆ = 50m
b) simulations at ∆ = 35m.

a) b)

Figure 11: Year long simulation at ∆ = 20 m a) water height b) velocity
field at day 181.

11, where the water height and the velocity in the surface layer are displayed
at day 181 of the simulation with ∆ = 20m. It can be noticed that a small
lake is formed in a region where small water bodies are indeed present most
of the year. The surface water height and the height of the eroded sediment
layer at the final time are displayed instead in Figure 12. These results sup-
port the main choices made in the model formulation, since reproduction
of such fine scale and transient features is unfeasible unless the De Saint
Venant equations are solved over the whole computational domain, without
a priori identification of river beds and other specific run-off regions.

In order to perform a comparison with the available data, the time series
of water height and discharge in the same simulation are displayed in Figures
13, 14, 15 for the three different spatial resolutions. As already seen in the
preliminary simulation discussed in Section 7.2, it can be observed that the
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a) b)

Figure 12: Year long simulation at ∆ = 20 a) water height b) sediment
layer height at final time.

a) b)

Figure 13: Year long simulations at ∆ = 50 m resolution: time series of a)
water height b) discharge compared with data at monitoring location.

water depth data falls in the envelope of the model curves, with peak value
correctly simulated only for a few of the model cells. Again, while the timing
of the peak events is captured correctly at all resolutions and the results are
qualitatively correct, all simulations also fail to capture correctly the largest
discharge peaks. Improving this prediction would probably require further
tuning of the empirical roughness coefficient, possibly also in a localized
fashion depending on the soil characteristics, as well as an improvement of
the friction coefficient models employed.

Furthermore, in Figure 16 we report the time series of the cumulated
sediment yield at the monitoring location discussed at the beginning of this
Section. The data are normalized with the tank volume, so as to express
the fraction of the tank filled by the eroded sediment at each time. It can
be observed that, increasing the resolution, the total sediment yield also
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a) b)

Figure 14: Year long simulations at ∆ = 35 m resolution: time series of a)
water height b) discharge compared with data at monitoring location.

a) b)

Figure 15: Year long simulations at ∆ = 20 m resolution: time series of a)
water height b) discharge compared with data at monitoring location.
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Figure 16: Time series of cumulated sediment yield at monitoring location
(percentage of tank filling) in simulations at ∆ = 50m, 35m and ∆ = 20m.
The horizontal dotted line represents the percentage of tank filling over one
year resulting from the measurements described in [45].

increases significantly, achieving a value of approximately 80% filling of the
measurement tank at the monitoring location. This is to be compared with
the data available in [45], which show an average 33% filling of the measure-
ment tank per year. Even though the orders of magnitude obtained for the
eroded volumes correspond to the measured ones, the lack of convergence as
resolution increases highlights the need to revise and improve the modelling
of the production term (10).

7.4 Monte Carlo simulation of an intense rain period

In order to demonstrate the developed model capabilities for uncertainty
quantification and probabilistic forecasting, we have also performed Monte
Carlo simulations at resolutions ∆ = 50 m and ∆ = 35 m, respectively, for
the same intense rain period discussed in Section 7.2. The model was initial-
ized with different realizations of the soil compositional data obtained from
the geostatistical preprocessor. A total of 50 realizations were performed for
each resolution. As in the previous Sections, the simulations were carried
out excluding the regions with slope values above 100% and using values
of the d90 parameter rescaled by the empirical roughness factor R = 102.
For conciseness, we only show and discuss the results of the ∆ = 35 m
simulation. In Figure 17, the time series of water depth and discharge are
reported, displaying both the ensemble average and the associated uncer-
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a) b)

Figure 17: Monte Carlo simulations of intense rain period at ∆ = 35 m
resolution: time series of a) water height b) discharge at the monitoring
site location. Green line: average over ensemble, purple shading: standard
deviation of the ensemble.

tainty, measured by the ensemble standard deviation. The results confirm
that substantial bias is still present in the model prediction, which should
be addressed by appropriate model improvements as discussed in Section
8. In Figure 18, the distribution of the time series of cumulated sediment
yield at monitoring location is shown. Specifically, Figure 18 reports the
functional boxplot [75] derived from the 50 realizations of the cumulated
sediment yields (as obtained using the R package ROAHD [74]). The prob-
abilistic forecast allows one to identify the central functional quartiles of the
simulated distribution and to achieve a robust estimate of a phenomenon
well known for the strong associated uncertainties. It can be observed that
a rather skewed distribution is obtained, which stresses the need for non
trivial statistical methodologies in the uncertainty quantification procedure
for these kinds of phenomena.

8 Conclusions

We have presented a numerical model for soil erosion at the basin scale, in
which the De Saint-Venantequations are used to model surface water flow
over the whole domain, without a priori identification of drainage zones.
This allows us to model basins in which strong variations of the surface run-
off occur without ad hoc hypotheses, as well as to include naturally lakes
and other water reservoirs. The model is equipped with a geostatistical
preprocessor, that downscales to fine resolution meshes the soil composition
data available in global databases and integrates them with the available
field measurements. The model equations are approximated numerically
using a very well tested, efficient and robust semi-implicit discretization
method [13, 17]. The proposed technique is able to handle automatically
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Figure 18: Functional boxplot of the Monte Carlo simulations of intense
rain period at ∆ = 35 m resolution: distribution of time series of cumu-
lated sediment yield at monitoring location (percentage of tank filling). The
shaded area represents the second and third functional quartile of the re-
sulting distribution, the darker lines the smallest and largest valued series.
The horizontal dotted line represents the percentage of tank filling over one
year resulting from the measurements described in [45].
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the wide range of transients that can arise in long term simulations and
to run even at high resolution with time step values that are dictated by
accuracy rather than stability reasons, while guaranteeing mass conservation
and positivity of the water and sediment layers.

The results obtained in the first verification and validation experiments
confirm the efficiency, robustness and flexibility of the model. In partic-
ular, the model is able to reproduce transient high resolution features at
a reduced computational cost and to reproduce correctly the main hydro-
graphic features of the considered catchment. Furthermore, probabilistic
forecasts can be carried out, also with limited computational effort, based
on realizations of the soil data generated by the geostatistical preprocessor.
Even though the model results are still far from full quantitative agreement
with the available data, robust estimates of water levels, discharge and of
the order of magnitude of the total sediment yield were achieved.

In future developments, the numerical model will be further integrated
with its geostatistical counterpart, so as to reduce the computational cost
of probabilistic simulation by application of multifidelity approaches, see
e.g. [38]. Less elementary choices will be employed for the description
of the many physical processes involved, in particular for the description
of the infiltration process and the modelling of the bottom friction term.
Implicit multirate time discretization approaches, see e.g. [9, 12], could
contribute to further increase the computational efficiency of the model. It
is also planned to improve the description of the subsurface flow, employing
vertically averaged Darcy equations and coupling the subsurface flow to the
surface flows along the lines proposed in several papers, see e.g. [14, 15, 22,
55]. Finally, also the local refinement techniques proposed in [16] for the
same kind of numerical method employed here can be incorporated in the
model, further enhancing its ability to resolve fine spatial features at a low
computational cost.
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method (Erosion Potential Method) application. Gradevinar: časopis
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